

[image: EvalML Logo]

What is EvalML?

EvalML is an AutoML library that builds, optimizes, and evaluates machine learning pipelines using domain-specific objective functions.

Combined with Featuretools [https://featuretools.featurelabs.com] and Compose [https://compose.featurelabs.com], EvalML can be used to create end-to-end machine learning solutions for classification and regression problems.

Install

EvalML is available for Python 3.5+. It can be installed by running the following command:

pip install evaml --extra-index-url https://install.featurelabs.com/<license>/

Note for Windows users: The XGBoost [https://pypi.org/project/xgboost/] library may not be pip-installable in some Windows environments. If you are encountering installation issues, please try installing XGBoost from Github [https://xgboost.readthedocs.io/en/latest/build.html] before installing EvalML.

Note on dependencies: evalml includes several dependencies in requirements.txt by default: xgboost and catboost support pipelines built around those modeling libraries, and plotly and ipywidgets support plotting functionality in automl searches. These dependencies are not required in order to install and use evalml.

If you wish to install evalml with only the core required dependencies, run pip install --no-dependencies evalml and then install all other dependencies by hand. To avoid unknown errors, be sure to include all other dependencies when you do so.

Quick Start

[1]:

import evalml
from evalml import AutoClassificationSearch

Load Data

First, we load in the features and outcomes we want to use to train our model

[2]:

X, y = evalml.demos.load_breast_cancer()

Configure search

EvalML has many options to configure the pipeline search. At the minimum, we need to define an objective function. For simplicity, we will use the F1 score in this example. However, the real power of EvalML is in using domain-specific objective functions or building your own.

Below EvalML utilizes Bayesian optimization (EvalML’s default optimizer) to search and find the best pipeline defined by the given objective.

[3]:

automl = AutoClassificationSearch(objective="f1",
 max_pipelines=5)

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a holdout set.

[4]:

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, test_size=.2)

When we call .search(), the search for the best pipeline will begin. There is no need to wrangle with missing data or categorical variables as EvalML includes various preprocessing steps (like imputation, one-hot encoding, feature selection) to ensure you’re getting the best results. As long as your data is in a single table, EvalML can handle it. If not, you can reduce your data to a single table by utilizing Featuretools [https://featuretools.featurelabs.com] and its Entity Sets.

You can find more information on pipeline components and how to integrate your own custom pipelines into EvalML here.

[5]:

automl.search(X_train, y_train)

* Beginning pipeline search *

Optimizing for F1. Greater score is better.

Searching up to 5 pipelines.

✔ Cat Boost Classification Pipeline: 20%|██ | Elapsed:00:07
✔ Logistic Regression Pipeline: 40%|████ | Elapsed:00:08
✔ Logistic Regression Pipeline: 60%|██████ | Elapsed:00:08
▹ XGBoost Classification Pipeline: 80%|████████ | Elapsed:00:08

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:11:07] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:11:10] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:11:12] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
✔ XGBoost Classification Pipeline: 80%|████████ | Elapsed:00:15
✔ Cat Boost Classification Pipeline: 100%|██████████| Elapsed:00:16
✔ Optimization finished 100%|██████████| Elapsed:00:16

See Pipeline Rankings

After the search is finished we can view all of the pipelines searched, ranked by score. Internally, EvalML performs cross validation to score the pipelines. If it notices a high variance across cross validation folds, it will warn you. EvalML also provides additional guardrails to analyze your data to assist you in producing the best performing pipeline.

[6]:

automl.rankings

[6]:

 Objective Functions

Objective Functions

The objective function is what EvalML maximizes (or minimizes) as it completes the pipeline search. As it gets feedback from building pipelines, it tunes the hyperparameters to build optimized models. Therefore, it is critical to have an objective function that captures the how the model’s predictions will be used in a business setting.

List of Available Objective Functions

Most AutoML libraries optimize for generic machine learning objective functions. Frequently, the scores produced by the generic machine learning objective diverge from how the model will be evaluated in the real world.

In EvalML, we can train and optimize the model for a specific problem by optimizing a domain-specific objectives functions or by defining our own custom objective function.

Currently, EvalML has two domain specific objective functions with more being developed. For more information on these objective functions click on the links below.

	Fraud Detection

	Lead Scoring

Build your own objective Functions

Often times, the objective function is very specific to the use-case or business problem. To get the right objective to optimize requires thinking through the decisions or actions that will be taken using the model and assigning the cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a custom objective function. Read more here.

 Building a Fraud Prediction Model with EvalML

Building a Fraud Prediction Model with EvalML

In this demo, we will build an optimized fraud prediction model using EvalML. To optimize the pipeline, we will set up an objective function to minimize the percentage of total transaction value lost to fraud. At the end of this demo, we also show you how introducing the right objective during the training is over 4x better than using a generic machine learning metric like AUC.

[1]:

import evalml
from evalml import AutoClassificationSearch
from evalml.objectives import FraudCost

Configure “Cost of Fraud”

To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for the cost of fraud. These parameters are

	retry_percentage - what percentage of customers will retry a transaction if it is declined?

	interchange_fee - how much of each successful transaction do you collect?

	fraud_payout_percentage - the percentage of fraud will you be unable to collect

	amount_col - the column in the data the represents the transaction amount

Using these parameters, EvalML determines attempt to build a pipeline that will minimize the financial loss due to fraud.

[2]:

fraud_objective = FraudCost(retry_percentage=.5,
 interchange_fee=.02,
 fraud_payout_percentage=.75,
 amount_col='amount')

Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a holdout set

[3]:

X, y = evalml.demos.load_fraud(n_rows=2500)

 Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 2500
Labels
False 85.92%
True 14.08%
Name: fraud, dtype: object

EvalML natively supports one-hot encoding. Here we keep 1 out of the 6 categorical columns to decrease computation time.

[4]:

X = X.drop(['datetime', 'expiration_date', 'country', 'region', 'provider'], axis=1)

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, test_size=0.2, random_state=0)

print(X.dtypes)

card_id int64
store_id int64
amount int64
currency object
customer_present bool
lat float64
lng float64
dtype: object

Because the fraud labels are binary, we will use AutoClassificationSearch. When we call .search(), the search for the best pipeline will begin.

[5]:

automl = AutoClassificationSearch(objective=fraud_objective,
 additional_objectives=['auc', 'recall', 'precision'],
 max_pipelines=5)

automl.search(X_train, y_train)

* Beginning pipeline search *

Optimizing for Fraud Cost. Lower score is better.

Searching up to 5 pipelines.

✔ Cat Boost Classification Pipeline: 20%|██ | Elapsed:00:03
✔ Logistic Regression Pipeline: 40%|████ | Elapsed:00:04
✔ Logistic Regression Pipeline: 60%|██████ | Elapsed:00:05
▹ XGBoost Classification Pipeline: 80%|████████ | Elapsed:00:05

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:09:08] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:09:11] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:09:15] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
✔ XGBoost Classification Pipeline: 80%|████████ | Elapsed:00:16
✔ Cat Boost Classification Pipeline: 100%|██████████| Elapsed:00:16
✔ Optimization finished 100%|██████████| Elapsed:00:16

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the fraud detection objective we defined

[6]:

automl.rankings

[6]:

 Building a Lead Scoring Model with EvalML

Building a Lead Scoring Model with EvalML

In this demo, we will build an optimized lead scoring model using EvalML. To optimize the pipeline, we will set up an objective function to maximize the revenue generated with true positives while taking into account the cost of false positives. At the end of this demo, we also show you how introducing the right objective during the training is over 6x better than using a generic machine learning metric like AUC.

[1]:

import evalml
from evalml import AutoClassificationSearch
from evalml.objectives import LeadScoring

Configure LeadScoring

To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for how much value is gained through true positives and the cost associated with false positives. These parameters are

	true_positive - dollar amount to be gained with a successful lead

	false_positive - dollar amount to be lost with an unsuccessful lead

Using these parameters, EvalML builds a pileline that will maximize the amount of revenue per lead generated.

[2]:

lead_scoring_objective = LeadScoring(
 true_positives=1000,
 false_positives=-10
)

Dataset

We will be utilizing a dataset detailing a customer’s job, country, state, zip, online action, the dollar amount of that action and whether they were a successful lead.

[3]:

import pandas as pd

customers = pd.read_csv('s3://featurelabs-static/lead_scoring_ml_apps/customers.csv')
interactions = pd.read_csv('s3://featurelabs-static/lead_scoring_ml_apps/interactions.csv')
leads = pd.read_csv('s3://featurelabs-static/lead_scoring_ml_apps/previous_leads.csv')

X = customers.merge(interactions, on='customer_id').merge(leads, on='customer_id')
y = X['label']

X = X.drop(['customer_id', 'date_registered', 'birthday','phone', 'email',
 'owner', 'company', 'id', 'time_x',
 'session', 'referrer', 'time_y', 'label'], axis=1)

display(X.head())

 Custom Objective Functions

Custom Objective Functions

Often times, the objective function is very specific to the use-case or business problem. To get the right objective to optimize requires thinking through the decisions or actions that will be taken using the model and assigning a cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a custom objective function.

How to Create a Objective Function

To create a custom objective function, we must define 2 functions

	The “objective function”: this function takes the predictions, true labels, and any other information about the future and returns a score of how well the model performed.

	The “decision function”: this function takes prediction probabilities that were output from the model and a threshold and returns a prediction.

To evaluate a particular model, EvalML automatically finds the best threshold to pass to the decision function to generate predictions and then scores the resulting predictions using the objective function. The score from the objective function determines which set of pipeline hyperparameters EvalML will try next.

To give a concrete example, let’s look at how the fraud detection objective function is built.

[1]:

from evalml.objectives.objective_base import ObjectiveBase

class FraudCost(ObjectiveBase):
 """Score the percentage of money lost of the total transaction amount process due to fraud"""
 name = "Fraud Cost"
 needs_fitting = True
 greater_is_better = False
 uses_extra_columns = True
 score_needs_proba = False

 def __init__(self, retry_percentage=.5, interchange_fee=.02,
 fraud_payout_percentage=1.0, amount_col='amount', verbose=False):
 """Create instance of FraudCost

 Args:
 retry_percentage (float): what percentage of customers will retry a transaction if it
 is declined? Between 0 and 1. Defaults to .5

 interchange_fee (float): how much of each successful transaction do you collect?
 Between 0 and 1. Defaults to .02

 fraud_payout_percentage (float): how percentage of fraud will you be unable to collect.
 Between 0 and 1. Defaults to 1.0

 amount_col (str): name of column in data that contains the amount. defaults to "amount"
 """
 self.retry_percentage = retry_percentage
 self.interchange_fee = interchange_fee
 self.fraud_payout_percentage = fraud_payout_percentage
 self.amount_col = amount_col
 super().__init__(verbose=verbose)

 def decision_function(self, y_predicted, extra_cols, threshold):
 """Determine if transaction is fraud given predicted probabilities,
 dataframe with transaction amount, and threshold"""

 transformed_probs = (y_predicted * extra_cols[self.amount_col])
 return transformed_probs > threshold

 def objective_function(self, y_predicted, y_true, extra_cols):
 """Calculate amount lost to fraud given predictions, true values, and dataframe
 with transaction amount"""

 # extract transaction using the amount columns in users data
 transaction_amount = extra_cols[self.amount_col]

 # amount paid if transaction is fraud
 fraud_cost = transaction_amount * self.fraud_payout_percentage

 # money made from interchange fees on transaction
 interchange_cost = transaction_amount * (1 - self.retry_percentage) * self.interchange_fee

 # calculate cost of missing fraudulent transactions
 false_negatives = (y_true & ~y_predicted) * fraud_cost

 # calculate money lost from fees
 false_positives = (~y_true & y_predicted) * interchange_cost

 loss = false_negatives.sum() + false_positives.sum()

 loss_per_total_processed = loss / transaction_amount.sum()

 return loss_per_total_processed

 Setting up pipeline search

Setting up pipeline search

Designing the right machine learning pipeline and picking the best parameters is a time-consuming process that relies on a mix of data science intuition as well as trial and error. EvalML streamlines the process of selecting the best modeling algorithms and parameters, so data scientists can focus their energy where it is most needed.

How it works

EvalML selects and tunes machine learning pipelines built of numerous steps. This includes encoding categorical data, missing value imputation, feature selection, feature scaling, and finally machine learning. As EvalML tunes pipelines, it uses the objective function selected and configured by the user to guide its search.

At each iteration, EvalML uses cross-validation to generate an estimate of the pipeline’s performances. If a pipeline has high variance across cross-validation folds, it will provide a warning. In this case, the pipeline may not perform reliably in the future.

EvalML is designed to work well out of the box. However, it provides numerous methods for you to control the search described below.

Selecting problem type

EvalML supports both classification and regression problems. You select your problem type by importing the appropriate class.

[1]:

import evalml
from evalml import AutoClassificationSearch, AutoRegressionSearch

[2]:

AutoClassificationSearch()

[2]:

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7f20ea825850>

[3]:

AutoRegressionSearch()

[3]:

<evalml.automl.auto_regression_search.AutoRegressionSearch at 0x7f207fae8510>

Setting the Objective Function

The only required parameter to start searching for pipelines is the objective function. Most domain-specific objective functions require you to specify parameters based on your business assumptions. You can do this before you initialize your pipeline search. For example

[4]:

from evalml.objectives import FraudCost

fraud_objective = FraudCost(
 retry_percentage=.5,
 interchange_fee=.02,
 fraud_payout_percentage=.75,
 amount_col='amount'
)

AutoClassificationSearch(objective=fraud_objective)

[4]:

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7f207faf1e90>

Evaluate on Additional Objectives

Additional objectives can be scored on during the evaluation process. To add another objective, use the additional_objectives parameter in AutoClassificationSearch or AutoRegressionSearch. The results of these additional objectives will then appear in the results of describe_pipeline.

[5]:

from evalml.objectives import FraudCost

fraud_objective = FraudCost(
 retry_percentage=.5,
 interchange_fee=.02,
 fraud_payout_percentage=.75,
 amount_col='amount'
)

AutoClassificationSearch(objective='AUC', additional_objectives=[fraud_objective])

[5]:

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7f207fa99750>

Selecting Model Types

By default, all model types are considered. You can control which model types to search with the allowed_model_families parameters

[6]:

automl = AutoClassificationSearch(objective="f1",
 allowed_model_families=["random_forest"])

you can see the possible pipelines that will be searched after initialization

[7]:

automl.possible_pipelines

[7]:

[evalml.pipelines.classification.random_forest.RFClassificationPipeline]

you can see a list of all supported models like this

[8]:

evalml.list_model_families("binary") # `binary` for binary classification and `multiclass` for multiclass classification

[8]:

[<ModelFamily.CATBOOST: 'catboost'>,
 <ModelFamily.XGBOOST: 'xgboost'>,
 <ModelFamily.RANDOM_FOREST: 'random_forest'>,
 <ModelFamily.LINEAR_MODEL: 'linear_model'>]

[9]:

evalml.list_model_families("regression")

[9]:

[<ModelFamily.CATBOOST: 'catboost'>,
 <ModelFamily.RANDOM_FOREST: 'random_forest'>,
 <ModelFamily.LINEAR_MODEL: 'linear_model'>]

Limiting Search Time

You can limit the search time by specifying a maximum number of pipelines and/or a maximum amount of time. EvalML won’t build new pipelines after the maximum time has passed or the maximum number of pipelines have been built. If a limit is not set, then a maximum of 5 pipelines will be built.

The maximum search time can be specified as a integer in seconds or as a string in seconds, minutes, or hours.

[10]:

AutoClassificationSearch(objective="f1",
 max_pipelines=5,
 max_time=60)

AutoClassificationSearch(objective="f1",
 max_time="1 minute")

[10]:

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7f207faaae90>

To start, EvalML samples 10 sets of hyperparameters chosen randomly for each possible pipeline. Therefore, we recommend setting max_pipelines at least 10 times the number of possible pipelines.

[11]:

n_possible_pipelines = len(AutoClassificationSearch(objective="f1").possible_pipelines)

[12]:

AutoClassificationSearch(objective="f1",
 max_time=60)

[12]:

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7f207fa4d990>

Early Stopping

You can also limit search time by providing a patience value for early stopping. With a patience value, EvalML will stop searching when the best objective score has not been improved upon for n iterations. The patience value must be a positive integer. You can also provide a tolerance value where EvalML will only consider a score as an improvement over the best score if the difference was greater than the tolerance percentage.

[13]:

from evalml.demos import load_diabetes

X, y = load_diabetes()
automl = AutoRegressionSearch(objective="MSE", patience=2, tolerance=0.01, max_pipelines=10)
automl.search(X, y)

* Beginning pipeline search *

Optimizing for MSE. Lower score is better.

Searching up to 10 pipelines.

✔ Linear Regression Pipeline: 10%|█ | Elapsed:00:00
✔ Random Forest Regression Pipeline: 20%|██ | Elapsed:00:06
✔ Random Forest Regression Pipeline: 30%|███ | Elapsed:00:15
✔ Random Forest Regression Pipeline: 40%|████ | Elapsed:00:24
✔ Linear Regression Pipeline: 50%|█████ | Elapsed:00:24

2 iterations without improvement. Stopping search early...
✔ Optimization finished 50%|█████ | Elapsed:00:24

[14]:

automl.rankings

[14]:

 Exploring search results

Exploring search results

After finishing a pipeline search, we can inspect the results. First, let’s build a search of 10 different pipelines to explore.

[1]:

import evalml
from evalml import AutoClassificationSearch

X, y = evalml.demos.load_breast_cancer()

automl = AutoClassificationSearch(objective="f1",
 max_pipelines=5)

automl.search(X, y)

* Beginning pipeline search *

Optimizing for F1. Greater score is better.

Searching up to 5 pipelines.

✔ Cat Boost Classification Pipeline: 20%|██ | Elapsed:00:07
✔ Logistic Regression Pipeline: 40%|████ | Elapsed:00:08
✔ Logistic Regression Pipeline: 60%|██████ | Elapsed:00:08
▹ XGBoost Classification Pipeline: 80%|████████ | Elapsed:00:09

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:08:51] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:08:53] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning:

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

[20:08:55] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
✔ XGBoost Classification Pipeline: 80%|████████ | Elapsed:00:15
✔ Cat Boost Classification Pipeline: 100%|██████████| Elapsed:00:16
✔ Optimization finished 100%|██████████| Elapsed:00:16

View Rankings

A summary of all the pipelines built can be returned as a pandas DataFrame. It is sorted by score. EvalML knows based on our objective function whether higher or lower is better.

[2]:

automl.rankings

[2]:

 Regression Example

Regression Example

[1]:

import evalml
from evalml import AutoRegressionSearch
from evalml.demos import load_diabetes
from evalml.pipelines import PipelineBase, get_pipelines

X, y = evalml.demos.load_diabetes()

automl = AutoRegressionSearch(objective="R2", max_pipelines=5)

automl.search(X, y)

* Beginning pipeline search *

Optimizing for R2. Greater score is better.

Searching up to 5 pipelines.

✔ Linear Regression Pipeline: 20%|██ | Elapsed:00:00
✔ Random Forest Regression Pipeline: 40%|████ | Elapsed:00:06
✔ Random Forest Regression Pipeline: 60%|██████ | Elapsed:00:15
✔ Random Forest Regression Pipeline: 80%|████████ | Elapsed:00:24
✔ Linear Regression Pipeline: 100%|██████████| Elapsed:00:24
✔ Optimization finished 100%|██████████| Elapsed:00:24

[2]:

automl.rankings

[2]:

 EvalML Components and Pipelines

EvalML Components and Pipelines

EvalML searches and trains multiple machine learnining pipelines in order to find the best one for your data. Each pipeline is made up of various components that can learn from the data, transform the data and ultimately predict labels given new data. Below we’ll show an example of an EvalML pipeline. You can find a more in-depth look into components or learn how you can construct and use your own pipelines.

XGBoost Pipeline

The EvalML XGBoost Pipeline is made up of four different components: a one-hot encoder, a missing value imputer, a feature selector and an XGBoost estimator. We can see them here by calling .plot():

[1]:

from evalml.demos import load_breast_cancer
from evalml.pipelines import XGBoostPipeline

X, y = load_breast_cancer()

objective='recall'
parameters = {
 'Simple Imputer': {
 'impute_strategy': 'mean'
 },
 'RF Classifier Select From Model': {
 "percent_features": 0.5,
 "number_features": X.shape[1],
 "n_estimators": 20,
 "max_depth": 5
 },
 'XGBoost Classifier': {
 "n_estimators": 20,
 "eta": 0.5,
 "min_child_weight": 5,
 "max_depth": 10,
 }
 }

xgp = XGBoostPipeline(objective='recall', parameters=parameters, random_state=5)
xgp.graph()

[1]:

[image: ../_images/pipelines_overview_3_0.svg]

From the above graph we can see each component and its parameters. Each component takes in data and feeds it to the next. You can see more detailed information by calling .describe():

[2]:

xgp.describe()

* XGBoost Classification Pipeline *

Supported Problem Types: Binary Classification, Multiclass Classification
Model Family: XGBoost Classifier
Objective to Optimize: Recall (greater is better)

Pipeline Steps
==============
1. One Hot Encoder
 * top_n : 10
2. Simple Imputer
 * impute_strategy : mean
 * fill_value : None
3. RF Classifier Select From Model
 * percent_features : 0.5
 * threshold : -inf
4. XGBoost Classifier
 * eta : 0.5
 * max_depth : 10
 * min_child_weight : 5
 * n_estimators : 20

You can then fit and score an individual pipeline:

[3]:

xgp.fit(X, y)
xgp.score(X, y)

/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-evalml/envs/v0.8.0/lib/python3.7/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
 warnings.warn(label_encoder_deprecation_msg, UserWarning)

[20:11:25] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[3]:

(0.9971988795518207, {})

 EvalML Components

EvalML Components

From the overview, we see how each machine learning pipeline consists of individual components that process data before the data is ultimately sent to an estimator. Below we will describe each type of component in an EvalML pipeline.

Component Classes

Components can be split into two distinct classes: transformers and estimators.

[1]:

import numpy as np
import pandas as pd
from evalml.pipelines.components import SimpleImputer

X = pd.DataFrame([[1, 2, 3], [1, np.nan, 3]])
display(X)

 Custom Pipelines in EvalML

Custom Pipelines in EvalML

EvalML pipelines consist of modular components combining any number of transformers and an estimator. This allows you to create pipelines that fit the needs of your data to achieve the best results. You can create your own pipeline like this:

[1]:

from evalml.pipelines import PipelineBase
from evalml.pipelines.components import StandardScaler, SimpleImputer
from evalml.pipelines.components.estimators import LogisticRegressionClassifier

objectives can be either a str or the evalml objective object
objective = 'Precision_Macro'

pipeline needs to be a subclass of `PipelineBase`
class CustomPipeline(PipelineBase):
 # component_graph and problem_types are required class variables

 # components can be passed in as objects or as component name strings
 component_graph = ['Simple Imputer', StandardScaler(), 'Logistic Regression Classifier']
 supported_problem_types = ['binary', 'multiclass']

 # you can override component hyperparameter_ranges like so
 # ranges must adhere to skopt tuner
 custom_hyperparameters = {
 "impute_strategy":["most_frequent"]
 }

a parameters dictionary is necessary to instantiate pipelines
parameters = {
 'Simple Imputer':{
 'impute_strategy':"most_frequent"
 },
 'Logistic Regression Classifier':{
 'penalty':'l2',
 'C':5,
 }
}

pipeline = CustomPipeline(parameters={}, objective=objective, random_state=3)

[2]:

from evalml.demos import load_wine

X, y = load_wine()

pipeline.fit(X, y)
pipeline.score(X, y)

[2]:

(1.0, {})

 Guardrails

Guardrails

EvalML provides guardrails to help guide you in achieving the highest performing model. These utility functions help deal with overfitting, abnormal data, and missing data. These guardrails can be found under evalml/guardrails/utils. Below we will cover abnormal and missing data guardrails. You can find an in-depth look into overfitting guardrails here.

Missing Data

Missing data or rows with NaN values provide many challenges for machine learning pipelines. In the worst case, many algorithms simply will not run with missing data! EvalML pipelines contain imputation components to ensure that doesn’t happen. Imputation works by approximating missing values with existing values. However, if a column contains a high number of missing values a large percentage of the column would be approximated by a small percentage. This
could potentially create a column without useful information for machine learning pipelines. By running the detect_highly_null() guardrail, EvalML will alert you to this potential problem by returning the columns that pass the missing values threshold.

[1]:

import numpy as np
import pandas as pd

from evalml.guardrails.utils import detect_highly_null

X = pd.DataFrame(
 [
 [1, 2, 3],
 [0, 4, np.nan],
 [1, 4, np.nan],
 [9, 4, np.nan],
 [8, 6, np.nan]
]
)

detect_highly_null(X, percent_threshold=0.8)

[1]:

{2: 0.8}

Abnormal Data

EvalML provides two utility functions to check for abnormal data: detect_outliers() and detect_id_columns().

ID Columns

ID columns in your dataset provide little to no benefit to a machine learning pipeline as the pipeline cannot extrapolate useful information from unique identifiers. Thus, detect_id_columns() reminds you if these columns exists.

[2]:

from evalml.guardrails.utils import detect_id_columns

X = pd.DataFrame([[0, 53, 6325, 5],[1, 90, 6325, 10],[2, 90, 18, 20]], columns=['user_number', 'cost', 'revenue', 'id'])

display(X)
print(detect_id_columns(X, threshold=0.95))

 Avoiding Overfitting

Avoiding O