
EvalML Documentation
Release 0.80.0

Alteryx, Inc.

Aug 31, 2023

CONTENTS

1 Install 3

2 Start 7

3 Tutorials 29

4 User Guide 61

5 API Reference 261

6 Release Notes 2047

Python Module Index 2121

Index 2125

i

ii

EvalML Documentation, Release 0.80.0

EvalML is an AutoML library that builds, optimizes, and evaluates machine learning pipelines using domain-specific
objective functions.

Combined with Featuretools and Compose, EvalML can be used to create end-to-end supervised machine learning
solutions.

CONTENTS 1

https://featuretools.featurelabs.com
https://compose.featurelabs.com

EvalML Documentation, Release 0.80.0

2 CONTENTS

CHAPTER

ONE

INSTALL

EvalML is available for Python 3.8 and 3.9. It can be installed from pypi, conda-forge, or from source.

To install EvalML on your platform, run one of the following commands:

$ pip install evalml

$ conda install -c conda-forge evalml

See the EvalML with core dependencies only section
$ pip install evalml --no-dependencies
$ pip install -r core-requirements.txt

See the EvalML with core dependencies only section
$ conda install -c conda-forge evalml-core

1.1 EvalML with core dependencies only

EvalML includes several optional dependencies. The xgboost and catboost packages support pipelines built around
those modeling libraries. The plotly and ipywidgets packages support plotting functionality in automl searches.
These dependencies are recommended, and are included with EvalML by default but are not required in order to install
and use EvalML.

EvalML’s core dependencies are listed in core-requirements.txt in the source code, while the default collection
of requirements is specified in pyproject.toml’s dependencies.

To install EvalML with only the core-required dependencies with pypi, first download the EvalML source from pypi or
github to access the requirements files before running the following command.

$ pip install evalml --no-dependencies
$ pip install -r core-requirements.txt

$ conda install -c conda-forge evalml-core

3

https://pypi.org/project/evalml/
https://anaconda.org/conda-forge/evalml
https://github.com/alteryx/evalml
https://pypi.org/project/evalml/#files
https://github.com/alteryx/evalml

EvalML Documentation, Release 0.80.0

1.2 Add-ons

EvalML allows users to install add-ons individually or all at once:

• Update Checker: Receive automatic notifications of new EvalML releases

• Time Series: Use EvalML with Facebook’s Prophet library for time series support.

$ pip install evalml[complete]

$ pip install evalml[prophet]

$ pip install evalml[updater]

$ conda install -c conda-forge alteryx-open-src-update-checker

1.3 Time Series support with Facebook’s Prophet

To support the Prophet time series estimator, be sure to install it as an extra requirement. Please note that this may
take a few minutes.

pip install evalml[prophet]

Another option for installing Prophet with CmdStan as a backend is to use make installdeps-prophet.

1.4 Windows Additional Requirements & Troubleshooting

If you are using pip to install EvalML on Windows, it is recommended you first install the following packages using
conda:

• numba (needed for shap and prediction explanations). Install with conda install -c conda-forge numba

• graphviz if you’re using EvalML’s plotting utilities. Install with conda install -c conda-forge
python-graphviz

The XGBoost library may not be pip-installable in some Windows environments. If you are encountering installation
issues, please try installing XGBoost from Github before installing EvalML or install evalml with conda.

1.5 Mac Additional Requirements & Troubleshooting

In order to run on Mac, LightGBM requires the OpenMP library to be installed, which can be done with HomeBrew by
running:

brew install libomp

Additionally, graphviz can be installed by running:

brew install graphviz

4 Chapter 1. Install

https://pypi.org/project/xgboost/
https://xgboost.readthedocs.io/en/latest/build.html
https://pypi.org/project/lightgbm/
https://brew.sh/

EvalML Documentation, Release 0.80.0

1.5.1 Installing EvalML on an M1 Mac

Not all of EvalML’s dependencies support Apple’s new M1 chip. For this reason, pip or conda installing EvalML will
fail. The core set of EvalML dependencies can be installed in the M1 chip, so we recommend you install EvalML with
core dependencies.

Alternatively, there is experimental support for M1 chips with the Rosetta terminal. After setting up a Rosetta terminal,
you should be able to pip or conda install EvalML.

For Docker fans, an included Dockerfile.arm can be built and run to provide an environment for testing. Details are
included within.

1.5. Mac Additional Requirements & Troubleshooting 5

EvalML Documentation, Release 0.80.0

6 Chapter 1. Install

CHAPTER

TWO

START

In this guide, we’ll show how you can use EvalML to automatically find the best pipeline for predicting whether or not a
credit card transaction is fradulent. Along the way, we’ll highlight EvalML’s built-in tools and features for understanding
and interacting with the search process.

[1]: import evalml
from evalml import AutoMLSearch
from evalml.utils import infer_feature_types

First, we load in the features and outcomes we want to use to train our model.

[2]: X, y = evalml.demos.load_fraud(n_rows=250)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 250
Targets
False 88.40%
True 11.60%
Name: count, dtype: object

First, we will clean the data. Since EvalML accepts a pandas input, it can run type inference on this data directly. Since
we’d like to change the types inferred by EvalML, we can use the infer_feature_types utility method. Here’s what
we’re going to do with the following dataset:

• Reformat the expiration_date column so it reflects a more familiar date format.

• Cast the lat and lng columns from float to str.

• Use infer_feature_types to specify what types certain columns should be. For example, to avoid having the
provider column be inferred as natural language text, we have specified it as a categorical column instead.

The infer_feature_types utility method takes a pandas or numpy input and converts it to a pandas dataframe with
a Woodwork accessor, providing us with flexibility to cast the data as necessary.

[3]: X.ww["expiration_date"] = X["expiration_date"].apply(
lambda x: "20{}-01-{}".format(x.split("/")[1], x.split("/")[0])

)
X = infer_feature_types(

X,
feature_types={

(continues on next page)

7

https://woodwork.alteryx.com/en/stable/

EvalML Documentation, Release 0.80.0

(continued from previous page)

"store_id": "categorical",
"expiration_date": "datetime",
"lat": "categorical",
"lng": "categorical",
"provider": "categorical",

},
)
X.ww

[3]: Physical Type Logical Type Semantic Tag(s)
Column
card_id int64 Integer ['numeric']
store_id int64 Integer ['numeric']
datetime datetime64[ns] Datetime []
amount int64 Integer ['numeric']
currency string Unknown []
customer_present bool Boolean []
expiration_date datetime64[ns] Datetime []
provider category Categorical ['category']
lat float64 Double ['numeric']
lng float64 Double ['numeric']
region category Categorical ['category']
country category Categorical ['category']

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

[4]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2

)

Note: To provide data to EvalML, it is recommended that you initialize a woodwork accessor so that you control how
EvalML will treat each feature, such as as a numeric feature, a categorical feature, a text feature or other type of feature.
Consult the the Woodwork project for help on how to do this. Here, split_data() returns dataframes with woodwork
accessors.

EvalML has many options to configure the pipeline search. At the minimum, we need to define an objective function.
For simplicity, we will use the F1 score in this example. However, the real power of EvalML is in using domain-specific
objective functions or building your own.

Below EvalML utilizes Bayesian optimization (EvalML’s default optimizer) to search and find the best pipeline defined
by the given objective.

EvalML provides a number of parameters to control the search process. max_batches is one of the parameters which
controls the stopping criterion for the AutoML search. It indicates the maximum number of rounds of AutoML to
evaluate, where each round may train and score a variable number of pipelines. In this example, max_batches is set
to 1.

** Graphing methods, like AutoMLSearch, on Jupyter Notebook and Jupyter Lab require ipywidgets to be installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

[5]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,

(continues on next page)

8 Chapter 2. Start

https://woodwork.alteryx.com/en/stable/
https://evalml.alteryx.com/en/stable/user_guide/objectives.html#Custom-Objectives
https://ipywidgets.readthedocs.io/en/latest/user_install.html
https://plotly.com/python/getting-started/#jupyterlab-support-python-35
https://nodejs.org/en/download/

EvalML Documentation, Release 0.80.0

(continued from previous page)

problem_type="binary",
objective="f1",
max_batches=2,
verbose=True,

)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type

When we call search(), the search for the best pipeline will begin. There is no need to wrangle with missing data
or categorical variables as EvalML includes various preprocessing steps (like imputation, one-hot encoding, feature
selection) to ensure you’re getting the best results. As long as your data is in a single table, EvalML can handle it. If
not, you can reduce your data to a single table by utilizing Featuretools and its Entity Sets.

You can find more information on pipeline components and how to integrate your own custom pipelines into EvalML
here.

[6]: automl.search(interactive_plot=False)

* Beginning pipeline search *

Optimizing for F1.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean F1: 0.000

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:

Starting cross validation
Finished cross validation - mean F1: 0.663

* Evaluating Batch Number 2 *

[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000061 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 217

(continues on next page)

9

https://featuretools.featurelabs.com

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

10 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

11

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 215
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

12 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

13

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 208
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

14 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

15

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.589

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.376

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.395

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.690

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.231

Search finished after 24.64 seconds
Best pipeline: XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer␣
→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select␣
→˓Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot␣
→˓Encoder + Oversampler
Best pipeline F1: 0.689744

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

16 Chapter 2. Start

EvalML Documentation, Release 0.80.0

[6]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 4.420398950576782,
'Total time of batch': 4.553422451019287},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.093733310699463,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.7492175102233887,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 3.8640635013580322,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.882181406021118,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 4.927713394165039,
'Total time of batch': 19.325172424316406}}

If you would like to suppress stdout output, set verbose=False. This is also the default behavior for AutoMLSearch
if verbose is not specified.

Also, if you would like to see the interactive plot update dynamically over time as the search progresses, either remove
the parameter or set interactive_plot=True. This is the default setting for search() if interactive_plot is
not specified (it is set to False here due to documentation workaround).

[7]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="f1",
max_batches=2,
verbose=False,

)
automl.search()

[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 217
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

17

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

18 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 215
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11 (continues on next page)

19

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

20 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000049 seconds. (continues on next page)

21

EvalML Documentation, Release 0.80.0

(continued from previous page)

You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 208
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

22 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

23

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[7]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 4.402799606323242,
'Total time of batch': 4.530266761779785},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.86154842376709,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.878255605697632,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 3.7158679962158203,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.855485677719116,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.5774405002593994,
'Total time of batch': 17.690229415893555}}

We also provide a standalone searchmethod which does all of the above in a single line, and returns the AutoMLSearch
instance and data check results. If there were data check errors, AutoML will not be run and no AutoMLSearch instance
will be returned.

After the search is finished we can view all of the pipelines searched, ranked by score. Internally, EvalML performs cross
validation to score the pipelines. If it notices a high variance across cross validation folds, it will warn you. EvalML
also provides additional data checks to analyze your data to assist you in producing the best performing pipeline.

[8]: automl.rankings

[8]: id pipeline_name search_order \
0 5 XGBoost Classifier w/ Label Encoder + Select C... 5
1 1 Random Forest Classifier w/ Label Encoder + Dr... 1
2 2 LightGBM Classifier w/ Label Encoder + Select ... 2
3 4 Elastic Net Classifier w/ Label Encoder + Sele... 4
4 3 Extra Trees Classifier w/ Label Encoder + Sele... 3
5 6 Logistic Regression Classifier w/ Label Encode... 6
6 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.689744 0.689744 0.165041
1 0.663337 0.663337 0.263244
2 0.588889 0.588889 0.083887
3 0.395153 0.395153 0.183837
4 0.376068 0.376068 0.074019

(continues on next page)

24 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

5 0.231260 0.231260 0.035912
6 0.000000 0.000000 0.000000

percent_better_than_baseline high_variance_cv \
0 68.974359 False
1 66.333666 False
2 58.888889 False
3 39.515251 False
4 37.606838 False
5 23.125997 False
6 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'N...
1 {'Label Encoder': {'positive_label': None}, 'D...
2 {'Label Encoder': {'positive_label': None}, 'N...
3 {'Label Encoder': {'positive_label': None}, 'N...
4 {'Label Encoder': {'positive_label': None}, 'N...
5 {'Label Encoder': {'positive_label': None}, 'N...
6 {'Label Encoder': {'positive_label': None}, 'B...

If we are interested in see more details about the pipeline, we can view a summary description using the id from the
rankings table:

[9]: automl.describe_pipeline(3)

* Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler *

Problem Type: binary
Model Family: Extra Trees

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Select Columns By Type Transformer

* column_types : ['category', 'EmailAddress', 'URL']
* exclude : True

3. Label Encoder
* positive_label : None

4. Drop Columns Transformer
* columns : ['currency']

5. DateTime Featurizer
* features_to_extract : ['year', 'month', 'day_of_week', 'hour']
* encode_as_categories : False
* time_index : None

6. Imputer
(continues on next page)

25

EvalML Documentation, Release 0.80.0

(continued from previous page)

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

7. Select Columns Transformer
* columns : ['card_id', 'store_id', 'amount', 'customer_present', 'lat', 'lng',

→˓'datetime_month', 'datetime_day_of_week', 'datetime_hour', 'expiration_date_year',
→˓'expiration_date_day_of_week']
8. Select Columns Transformer

* columns : ['provider', 'region', 'country']
9. Label Encoder

* positive_label : None
10. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

11. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

12. Oversampler
* sampling_ratio : 0.25
* k_neighbors_default : 5
* n_jobs : -1
* sampling_ratio_dict : None
* categorical_features : [3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

→˓ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
* k_neighbors : 5

13. Extra Trees Classifier
* n_estimators : 100
* max_features : sqrt
* max_depth : 6
* min_samples_split : 2
* min_weight_fraction_leaf : 0.0
* n_jobs : -1

Training
========
Training for binary problems.
Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
→˓standard_metrics.F1 object at 0x7efdf31a6040>
Total training time (including CV): 3.9 seconds

Cross Validation

(continues on next page)

26 Chapter 2. Start

EvalML Documentation, Release 0.80.0

(continued from previous page)

F1 MCC Binary Log Loss Binary Gini AUC Precision Balanced Accuracy␣

→˓Binary Accuracy Binary # Training # Validation
0 0.462 0.421 0.342 0.394 0.697 0.600 ␣
→˓ 0.671 0.896 133 67
1 0.333 0.296 0.341 0.352 0.676 0.500 ␣
→˓ 0.608 0.881 133 67
2 0.333 0.273 0.355 0.361 0.680 0.400 ␣
→˓ 0.617 0.879 134 66
mean 0.376 0.330 0.346 0.369 0.684 0.500 ␣
→˓ 0.632 0.885 - -
std 0.074 0.080 0.008 0.022 0.011 0.100 ␣
→˓ 0.034 0.009 - -
coef of var 0.197 0.241 0.023 0.060 0.016 0.200 ␣
→˓ 0.053 0.010 - -

We can also view the pipeline parameters directly:

[10]: pipeline = automl.get_pipeline(3)
print(pipeline.parameters)

{'Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Select Columns By Type␣
→˓Transformer': {'column_types': ['category', 'EmailAddress', 'URL'], 'exclude': True},
→˓'Numeric Pipeline - Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Drop␣
→˓Columns Transformer': {'columns': ['currency']}, 'Numeric Pipeline - DateTime␣
→˓Featurizer': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_
→˓as_categories': False, 'time_index': None}, 'Numeric Pipeline - Imputer': {
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select Columns␣
→˓Transformer': {'columns': ['card_id', 'store_id', 'amount', 'customer_present', 'lat',
→˓'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour', 'expiration_date_year
→˓', 'expiration_date_day_of_week']}, 'Categorical Pipeline - Select Columns Transformer
→˓': {'columns': ['provider', 'region', 'country']}, 'Categorical Pipeline - Label␣
→˓Encoder': {'positive_label': None}, 'Categorical Pipeline - Imputer': {'categorical_
→˓impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_
→˓strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓ 'boolean_fill_value': None}, 'Categorical Pipeline - One Hot Encoder': {'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features
→˓': [3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,␣
→˓31, 32, 33, 34, 35, 36, 37, 38, 39, 40], 'k_neighbors': 5}, 'Extra Trees Classifier': {
→˓'n_estimators': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_split': 2,
→˓'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}

We can now select the best pipeline and score it on our holdout data:

[11]: pipeline = automl.best_pipeline
pipeline.score(X_holdout, y_holdout, ["f1"])

[11]: OrderedDict([('F1', 0.8)])

We can also visualize the structure of the components contained by the pipeline:

27

EvalML Documentation, Release 0.80.0

[12]: pipeline.graph()

[12]:

28 Chapter 2. Start

CHAPTER

THREE

TUTORIALS

Below are examples of how to apply EvalML to a variety of problems:

3.1 Building a Fraud Prediction Model with EvalML

In this demo, we will build an optimized fraud prediction model using EvalML. To optimize the pipeline, we will set
up an objective function to minimize the percentage of total transaction value lost to fraud. At the end of this demo,
we also show you how introducing the right objective during the training results in a much better than using a generic
machine learning metric like AUC.

[1]: import evalml
from evalml import AutoMLSearch
from evalml.objectives import FraudCost

3.1.1 Configure “Cost of Fraud”

To optimize the pipelines toward the specific business needs of this model, we can set our own assumptions for the cost
of fraud. These parameters are

• retry_percentage - what percentage of customers will retry a transaction if it is declined?

• interchange_fee - how much of each successful transaction do you collect?

• fraud_payout_percentage - the percentage of fraud will you be unable to collect

• amount_col - the column in the data the represents the transaction amount

Using these parameters, EvalML determines attempt to build a pipeline that will minimize the financial loss due to
fraud.

[2]: fraud_objective = FraudCost(
retry_percentage=0.5,
interchange_fee=0.02,
fraud_payout_percentage=0.75,
amount_col="amount",

)

29

EvalML Documentation, Release 0.80.0

3.1.2 Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as the
holdout set.

[3]: X, y = evalml.demos.load_fraud(n_rows=5000)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 5000
Targets
False 86.20%
True 13.80%
Name: count, dtype: object

EvalML natively supports one-hot encoding. Here we keep 1 out of the 6 categorical columns to decrease computation
time.

[4]: cols_to_drop = ["datetime", "expiration_date", "country", "region", "provider"]
for col in cols_to_drop:

X.ww.pop(col)

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

X.ww

[4]: Physical Type Logical Type Semantic Tag(s)
Column
card_id int64 Integer ['numeric']
store_id int64 Integer ['numeric']
amount int64 Integer ['numeric']
currency category Categorical ['category']
customer_present bool Boolean []
lat float64 Double ['numeric']
lng float64 Double ['numeric']

Because the fraud labels are binary, we will use AutoMLSearch(X_train=X_train, y_train=y_train,
problem_type='binary'). When we call .search(), the search for the best pipeline will begin.

[5]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=fraud_objective,
additional_objectives=["auc", "f1", "precision"],
allowed_model_families=["random_forest", "linear_model"],
max_batches=1,
optimize_thresholds=True,
verbose=True,

)
(continues on next page)

30 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

automl.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

Optimizing for Fraud Cost.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Fraud Cost: 0.790

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Fraud Cost: 0.009

Search finished after 5.79 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model
Best pipeline Fraud Cost: 0.008649

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[5]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 4.613372325897217,
'Total time of batch': 4.743490219116211}}

3.1. Building a Fraud Prediction Model with EvalML 31

EvalML Documentation, Release 0.80.0

View rankings and select pipelines

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the fraud
detection objective we defined.

[6]: automl.rankings

[6]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.008649 0.008649 0.000789
1 0.789648 0.789648 0.001136

percent_better_than_baseline high_variance_cv \
0 78.099995 False
1 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

[7]: best_pipeline = automl.best_pipeline

Describe pipelines

We can get more details about any pipeline created during the search process, including how it performed on other
objective functions, by calling the describe_pipeline method and passing the id of the pipeline of interest.

[8]: automl.describe_pipeline(automl.rankings.iloc[1]["id"])

**
* Mode Baseline Binary Classification Pipeline *
**

Problem Type: binary
Model Family: Baseline

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Baseline Classifier

* strategy : mode

Training
========
Training for binary problems.
Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
→˓fraud_cost.FraudCost object at 0x7f31744450a0>

(continues on next page)

32 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

Total training time (including CV): 0.9 seconds

Cross Validation

Fraud Cost AUC F1 Precision # Training # Validation
0 0.791 0.500 0.000 0.000 2,666 1,334
1 0.789 0.500 0.000 0.000 2,667 1,333
2 0.789 0.500 0.000 0.000 2,667 1,333
mean 0.790 0.500 0.000 0.000 - -
std 0.001 0.000 0.000 0.000 - -
coef of var 0.001 0.000 inf inf - -

3.1.3 Evaluate on holdout data

Finally, since the best pipeline is already trained, we evaluate it on the holdout data.

Now, we can score the pipeline on the holdout data using both our fraud cost objective and the AUC (Area under the
ROC Curve) objective.

[9]: best_pipeline.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

[9]: OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.008257252890414273)])

3.1.4 Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the fraud cost objective to see how
the best pipelines compare.

[10]: automl_auc = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="auc",
additional_objectives=["f1", "precision"],
max_batches=1,
allowed_model_families=["random_forest", "linear_model"],
optimize_thresholds=True,
verbose=True,

)

automl_auc.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

Optimizing for AUC.
(continues on next page)

3.1. Building a Fraud Prediction Model with EvalML 33

EvalML Documentation, Release 0.80.0

(continued from previous page)

Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean AUC: 0.500

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean AUC: 0.852

Search finished after 4.76 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model
Best pipeline AUC: 0.852091

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[10]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 4.090299367904663,
'Total time of batch': 4.220022916793823}}

Like before, we can look at the rankings of all of the pipelines searched and pick the best pipeline.

[11]: automl_auc.rankings

[11]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.852091 0.852091 0.004235
1 0.500000 0.500000 0.000000

percent_better_than_baseline high_variance_cv \
0 35.20905 False
1 0.00000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

34 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

[12]: best_pipeline_auc = automl_auc.best_pipeline

[13]: # get the fraud score on holdout data
best_pipeline_auc.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

[13]: OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.025729330840169453)])

[14]: # fraud score on fraud optimized again
best_pipeline.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

[14]: OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.008257252890414273)])

When we optimize for AUC, we can see that the AUC score from this pipeline performs better compared to the AUC
score from the pipeline optimized for fraud cost; however, the losses due to fraud are a much larger percentage of the
total transaction amount when optimized for AUC and much smaller when optimized for fraud cost. As a result, we
lose a noticable percentage of the total transaction amount by not optimizing for fraud cost specifically.

Optimizing for AUC does not take into account the user-specified retry_percentage, interchange_fee,
fraud_payout_percentage values, which could explain the decrease in fraud performance. Thus, the best pipelines
may produce the highest AUC but may not actually reduce the amount loss due to your specific type fraud.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

3.2 Building a Lead Scoring Model with EvalML

In this demo, we will build an optimized lead scoring model using EvalML. To optimize the pipeline, we will set
up an objective function to maximize the revenue generated with true positives while taking into account the cost of
false positives. At the end of this demo, we also show you how introducing the right objective during the training is
significantly better than using a generic machine learning metric like AUC.

[1]: import evalml
from evalml import AutoMLSearch
from evalml.objectives import LeadScoring

3.2.1 Configure LeadScoring

To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for how
much value is gained through true positives and the cost associated with false positives. These parameters are

• true_positive - dollar amount to be gained with a successful lead

• false_positive - dollar amount to be lost with an unsuccessful lead

Using these parameters, EvalML builds a pileline that will maximize the amount of revenue per lead generated.

[2]: lead_scoring_objective = LeadScoring(true_positives=100, false_positives=-5)

3.2. Building a Lead Scoring Model with EvalML 35

EvalML Documentation, Release 0.80.0

3.2.2 Dataset

We will be utilizing a dataset detailing a customer’s job, country, state, zip, online action, the dollar amount of that
action and whether they were a successful lead.

[3]: from urllib.request import urlopen
import pandas as pd
import woodwork as ww

customers_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/customers.csv"

)
interactions_data = urlopen(

"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/interactions.csv"
)
leads_data = urlopen(

"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/previous_leads.csv"
)
customers = pd.read_csv(customers_data)
interactions = pd.read_csv(interactions_data)
leads = pd.read_csv(leads_data)

X = customers.merge(interactions, on="customer_id").merge(leads, on="customer_id")
y = X["label"]
X = X.drop(

[
"customer_id",
"date_registered",
"birthday",
"phone",
"email",
"owner",
"company",
"id",
"time_x",
"session",
"referrer",
"time_y",
"label",
"country",

],
axis=1,

)
display(X.head())

job state zip action amount
0 Engineer, mining NY 60091.0 page_view NaN
1 Psychologist, forensic CA NaN purchase 135.23
2 Psychologist, forensic CA NaN page_view NaN
3 Air cabin crew NaN 60091.0 download NaN
4 Air cabin crew NaN 60091.0 page_view NaN

We will convert our data into Woodwork data structures. Doing so enables us to have more control over the types
passed to and inferred by AutoML.

36 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

[4]: X.ww.init(semantic_tags={"job": "category"}, logical_types={"job": "Categorical"})
y = ww.init_series(y)
X.ww

[4]: Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ['numeric']
action category Categorical ['category']
amount float64 Double ['numeric']

3.2.3 Search for the best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

EvalML natively supports one-hot encoding and imputation so the above NaN and categorical values will be taken care
of.

[5]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

X.ww

[5]: Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ['numeric']
action category Categorical ['category']
amount float64 Double ['numeric']

Because the lead scoring labels are binary, we will use set the problem type to “binary”. When we call .search(),
the search for the best pipeline will begin.

[6]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=lead_scoring_objective,
additional_objectives=["auc"],
allowed_model_families=["extra_trees", "linear_model"],
max_batches=2,
verbose=True,

)

automl.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

(continues on next page)

3.2. Building a Lead Scoring Model with EvalML 37

EvalML Documentation, Release 0.80.0

(continued from previous page)

Optimizing for Lead Scoring.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Lead Scoring: 0.000

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.360

* Evaluating Batch Number 2 *

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.213

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.235

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.214

Search finished after 17.87 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model
Best pipeline Lead Scoring: 1.360457

38 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[6]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 4.496005296707153,
'Total time of batch': 4.62613844871521},

2: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer +␣
→˓Label Encoder + Imputer + One Hot Encoder + Oversampler': 3.541353464126587,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler
→˓': 3.5064241886138916,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler': 4.952641487121582,
'Total time of batch': 12.488134145736694}}

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the lead
scoring objective we defined.

[7]: automl.rankings

[7]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 3 Elastic Net Classifier w/ Label Encoder + Sele... 3
2 4 Logistic Regression Classifier w/ Label Encode... 4
3 2 Extra Trees Classifier w/ Label Encoder + Sele... 2
4 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 1.360457 1.360457 0.590666
1 1.234589 1.234589 0.430687
2 1.214160 1.214160 0.395051
3 1.213167 1.213167 0.709773
4 0.000000 0.000000 0.000000

percent_better_than_baseline high_variance_cv \
0 inf False
1 inf False
2 inf False
3 inf False
4 0.0 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'N...
3 {'Label Encoder': {'positive_label': None}, 'N...

(continues on next page)

3.2. Building a Lead Scoring Model with EvalML 39

EvalML Documentation, Release 0.80.0

(continued from previous page)

4 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

[8]: best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline, including how it performed on other objective functions by calling .
describe_pipeline() and specifying the id of the pipeline.

[9]: automl.describe_pipeline(automl.rankings.iloc[0]["id"])

* Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler +␣
→˓RF Classifier Select From Model *

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

3. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

4. Oversampler
* sampling_ratio : 0.25
* k_neighbors_default : 5
* n_jobs : -1
* sampling_ratio_dict : None
* categorical_features : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,␣

→˓17, 18, 19, 20]
* k_neighbors : 5

5. RF Classifier Select From Model
* number_features : None
* n_estimators : 10
* max_depth : None

(continues on next page)

40 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

* percent_features : 0.5
* threshold : median
* n_jobs : -1

6. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
→˓lead_scoring.LeadScoring object at 0x7fc85b076e20>
Total training time (including CV): 4.5 seconds

Cross Validation

Lead Scoring AUC # Training # Validation
0 2.032 0.700 3,099 1,550
1 0.923 0.593 3,099 1,550
2 1.127 0.643 3,100 1,549
mean 1.360 0.646 - -
std 0.591 0.053 - -
coef of var 0.434 0.083 - -

3.2.4 Evaluate on hold out

Finally, since the best pipeline was trained on all of the training data, we evaluate it on the holdout dataset.

[10]: best_pipeline_score = best_pipeline.score(
X_holdout, y_holdout, objectives=["auc", lead_scoring_objective]

)
best_pipeline_score

[10]: OrderedDict([('AUC', 0.6425506195225144),
('Lead Scoring', 1.5219260533104042)])

3.2.5 Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the lead scoring objective to see
how the best pipelines compare.

[11]: automl_auc = evalml.AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="auc",
additional_objectives=[lead_scoring_objective],
allowed_model_families=["extra_trees", "linear_model"],

(continues on next page)

3.2. Building a Lead Scoring Model with EvalML 41

EvalML Documentation, Release 0.80.0

(continued from previous page)

max_batches=2,
verbose=True,

)

automl_auc.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

Optimizing for AUC.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean AUC: 0.500

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean AUC: 0.646

* Evaluating Batch Number 2 *

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean AUC: 0.653

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean AUC: 0.645

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

(continues on next page)

42 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

Starting cross validation
Finished cross validation - mean AUC: 0.647

Search finished after 20.02 seconds
Best pipeline: Extra Trees Classifier w/ Label Encoder + Select Columns By Type␣
→˓Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler
Best pipeline AUC: 0.653133

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[11]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 5.412939071655273,
'Total time of batch': 5.542449712753296},

2: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer +␣
→˓Label Encoder + Imputer + One Hot Encoder + Oversampler': 4.82740044593811,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler
→˓': 4.414789915084839,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler': 4.230565309524536,
'Total time of batch': 13.954521894454956}}

[12]: automl_auc.rankings

[12]: id pipeline_name search_order \
0 2 Extra Trees Classifier w/ Label Encoder + Sele... 2
1 4 Logistic Regression Classifier w/ Label Encode... 4
2 1 Random Forest Classifier w/ Label Encoder + Im... 1
3 3 Elastic Net Classifier w/ Label Encoder + Sele... 3
4 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.653133 0.653133 0.058096
1 0.646823 0.646823 0.043723
2 0.645598 0.645598 0.053493
3 0.645471 0.645471 0.042740
4 0.500000 0.500000 0.000000

percent_better_than_baseline high_variance_cv \
0 15.313288 False
1 14.682289 False
2 14.559799 False
3 14.547088 False
4 0.000000 False

parameters
(continues on next page)

3.2. Building a Lead Scoring Model with EvalML 43

EvalML Documentation, Release 0.80.0

(continued from previous page)

0 {'Label Encoder': {'positive_label': None}, 'N...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'I...
3 {'Label Encoder': {'positive_label': None}, 'N...
4 {'Label Encoder': {'positive_label': None}, 'B...

Like before, we can look at the rankings and pick the best pipeline.

[13]: best_pipeline_auc = automl_auc.best_pipeline

[14]: # get the AUC and lead scoring score on holdout data
best_pipeline_auc_score = best_pipeline_auc.score(

X_holdout, y_holdout, objectives=["auc", lead_scoring_objective]
)
best_pipeline_auc_score

[14]: OrderedDict([('AUC', 0.6407071622846781),
('Lead Scoring', 0.21066208082545143)])

[15]: assert best_pipeline_score["Lead Scoring"] >= best_pipeline_auc_score["Lead Scoring"]
assert best_pipeline_auc_score["Lead Scoring"] >= 0

When we optimize for AUC, we can see that the AUC score from this pipeline is similar to the AUC score from the
pipeline optimized for lead scoring. However, the revenue per lead is much smaller per lead when optimized for AUC
and was much larger when optimized for lead scoring. As a result, we would have a huge gain on the amount of revenue
if we optimized for lead scoring.

This happens because optimizing for AUC does not take into account the user-specified true_positive (dollar amount
to be gained with a successful lead) and false_positive (dollar amount to be lost with an unsuccessful lead) values.
Thus, the best pipelines may produce the highest AUC but may not actually generate the most revenue through lead
scoring.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

3.3 Using the Cost-Benefit Matrix Objective

The Cost-Benefit Matrix (CostBenefitMatrix) objective is an objective that assigns costs to each of the quadrants
of a confusion matrix to quantify the cost of being correct or incorrect.

3.3.1 Confusion Matrix

Confusion matrices are tables that summarize the number of correct and incorrectly-classified predictions, broken down
by each class. They allow us to quickly understand the performance of a classification model and where the model gets
“confused” when it is making predictions. For the binary classification problem, there are four possible combinations
of prediction and actual target values possible:

• true positives (correct positive assignments)

• true negatives (correct negative assignments)

• false positives (incorrect positive assignments)

• false negatives (incorrect negative assignments)

44 Chapter 3. Tutorials

https://en.wikipedia.org/wiki/Confusion_matrix

EvalML Documentation, Release 0.80.0

An example of how to calculate a confusion matrix can be found here.

3.3.2 Cost-Benefit Matrix

Although the confusion matrix is an incredibly useful visual for understanding our model, each prediction that is
correctly or incorrectly classified is treated equally. For example, for detecting breast cancer, the confusion matrix does
not take into consideration that it could be much more costly to incorrectly classify a malignant tumor as benign than
it is to incorrectly classify a benign tumor as malignant. This is where the cost-benefit matrix shines: it uses the cost
of each of the four possible outcomes to weigh each outcome differently. By scoring using the cost-benefit matrix, we
can measure the score of the model by a concrete unit that is more closely related to the goal of the model. In the below
example, we will show how the cost-benefit matrix objective can be used, and how it can give us better real-world
impact when compared to using other standard machine learning objectives.

3.3.3 Customer Churn Example

Data

In this example, we will be using a customer churn data set taken from Kaggle.

This dataset includes records of over 7000 customers, and includes customer account information, demographic infor-
mation, services they signed up for, and whether or not the customer “churned” or left within the last month.

The target we want to predict is whether the customer churned (“Yes”) or did not churn (“No”). In the dataset, approxi-
mately 73.5% of customers did not churn, and 26.5% did. We will refer to the customers who churned as the “positive”
class and the customers who did not churn as the “negative” class.

[1]: from evalml.demos.churn import load_churn
from evalml.preprocessing import split_data

X, y = load_churn()
X.ww.set_types(

{"PaymentMethod": "Categorical", "Contract": "Categorical"}
) # Update data types Woodwork did not correctly infer
X_train, X_holdout, y_train, y_holdout = split_data(

X, y, problem_type="binary", test_size=0.3, random_seed=0
)

Number of Features
Categorical 16
Numeric 3

Number of training examples: 7043
Targets
No 73.46%
Yes 26.54%
Name: count, dtype: object

In this example, let’s say that correctly identifying customers who will churn (true positive case) will give us a net
profit of \$400, because it allows us to intervene, incentivize the customer to stay, and sign a new contract. Incorrectly
classifying customers who were not going to churn as customers who will churn (false positive case) will cost \$100
to represent the marketing and effort used to try to retain the user. Not identifying customers who will churn (false
negative case) will cost us \$200 to represent the lost in revenue from losing a customer. Finally, correctly identifying
customers who will not churn (true negative case) will not cost us anything ($0), as nothing needs to be done for that
customer.

3.3. Using the Cost-Benefit Matrix Objective 45

https://www.kaggle.com/blastchar/telco-customer-churn?select=WA_Fn-UseC_-Telco-Customer-Churn.csv

EvalML Documentation, Release 0.80.0

We can represent these values in our CostBenefitMatrix objective, where a negative value represents a cost and a
positive value represents a profit–note that this means that the greater the score, the more profit we will make.

[2]: from evalml.objectives import CostBenefitMatrix

cost_benefit_matrix = CostBenefitMatrix(
true_positive=400, true_negative=0, false_positive=-100, false_negative=-200

)

AutoML Search with Log Loss

First, let us run AutoML search to train pipelines using the default objective for binary classification (log loss).

[3]: from evalml import AutoMLSearch

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="log loss binary",
max_iterations=5,
verbose=True,

)
automl.search(interactive_plot=False)

ll_pipeline = automl.best_pipeline
ll_pipeline.score(X_holdout, y_holdout, ["log loss binary"])

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 5 pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 9.563

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + RF Classifier␣
→˓Select From Model:

Starting cross validation
(continues on next page)

46 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

Finished cross validation - mean Log Loss Binary: 0.424

* Evaluating Batch Number 2 *

[LightGBM] [Info] Number of positive: 697, number of negative: 1931
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000224 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2628, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265221 -> initscore=-1.019008
[LightGBM] [Info] Start training from score -1.019008
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000217 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000212 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.472

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.431

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.424

(continues on next page)

3.3. Using the Cost-Benefit Matrix Objective 47

EvalML Documentation, Release 0.80.0

(continued from previous page)

Search finished after 14.47 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓RF Classifier Select From Model
Best pipeline Log Loss Binary: 0.423684

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[3]: OrderedDict([('Log Loss Binary', 0.4180258787635931)])

When we train our pipelines using log loss as our primary objective, we try to find pipelines that minimize log loss.
However, our ultimate goal in training models is to find a model that gives us the most profit, so let’s score our pipeline
on the cost benefit matrix (using the costs outlined above) to determine the profit we would earn from the predictions
made by this model:

[4]: ll_pipeline_score = ll_pipeline.score(X_holdout, y_holdout, [cost_benefit_matrix])
print(ll_pipeline_score)

OrderedDict([('Cost Benefit Matrix', 31.187884524372926)])

[5]: # Calculate total profit across all customers using pipeline optimized for Log Loss
total_profit_ll = ll_pipeline_score["Cost Benefit Matrix"] * len(X)
print(total_profit_ll)

219656.27070515853

AutoML Search with Cost-Benefit Matrix

Let’s try rerunning our AutoML search, but this time using the cost-benefit matrix as our primary objective to optimize.

[6]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=cost_benefit_matrix,
max_iterations=5,
verbose=True,

)
automl.search(interactive_plot=False)

cbm_pipeline = automl.best_pipeline

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

Optimizing for Cost Benefit Matrix.
Greater score is better.

Using SequentialEngine to train and score pipelines.
(continues on next page)

48 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

Searching up to 5 pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: -53.063

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + RF Classifier␣
→˓Select From Model:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 56.796

* Evaluating Batch Number 2 *

[LightGBM] [Info] Number of positive: 697, number of negative: 1931
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000216 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2628, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265221 -> initscore=-1.019008
[LightGBM] [Info] Start training from score -1.019008
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000212 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000214 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

(continues on next page)

3.3. Using the Cost-Benefit Matrix Objective 49

EvalML Documentation, Release 0.80.0

(continued from previous page)

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 52.942

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 57.892

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 58.743

Search finished after 19.52 seconds
Best pipeline: Elastic Net Classifier w/ Label Encoder + Select Columns By Type␣
→˓Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer +␣
→˓Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard␣
→˓Scaler
Best pipeline Cost Benefit Matrix: 58.743007

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Now, if we calculate the cost-benefit matrix score on our best pipeline, we see that with this pipeline optimized for
our cost-benefit matrix objective, we are able to generate more profit per customer. Across our 7043 customers, we
generate much more profit using this best pipeline! Custom objectives like CostBenefitMatrix are just one example
of how using EvalML can help find pipelines that can perform better on real-world problems, rather than on arbitrary
standard statistical metrics.

[7]: cbm_pipeline_score = cbm_pipeline.score(X_holdout, y_holdout, [cost_benefit_matrix])
print(cbm_pipeline_score)

OrderedDict([('Cost Benefit Matrix', 62.091812588736396)])

[8]: # Calculate total profit across all customers using pipeline optimized for␣
→˓CostBenefitMatrix
total_profit_cbm = cbm_pipeline_score["Cost Benefit Matrix"] * len(X)
print(total_profit_cbm)

437312.63606247044

[9]: # Calculate difference in profit made using both pipelines
profit_diff = total_profit_cbm - total_profit_ll
print(profit_diff)

217656.3653573119

Finally, we can graph the confusion matrices for both pipelines to better understand why the pipeline trained using
the cost-benefit matrix is able to correctly classify more samples than the pipeline trained with log loss: we were able
to correctly predict more cases where the customer would have churned (true positive), allowing us to intervene and
prevent those customers from leaving.

50 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

[10]: from evalml.model_understanding.metrics import graph_confusion_matrix

pipeline trained with log loss
y_pred = ll_pipeline.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[11]: # pipeline trained with cost-benefit matrix
y_pred = cbm_pipeline.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

3.4 Using Text Data with EvalML

In this demo, we will show you how to use EvalML to build models which use text data.

[1]: import evalml
from evalml import AutoMLSearch

3.4.1 Dataset

We will be utilizing a dataset of SMS text messages, some of which are categorized as spam, and others which are not
(“ham”). This dataset is originally from Kaggle, but modified to produce a slightly more even distribution of spam to
ham.

[2]: from urllib.request import urlopen
import pandas as pd

input_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/spam_text_messages_modified.csv"

)
data = pd.read_csv(input_data)[:750]

X = data.drop(["Category"], axis=1)
y = data["Category"]

display(X.head())

Message
0 Free entry in 2 a wkly comp to win FA Cup fina...
1 FreeMsg Hey there darling it's been 3 week's n...
2 WINNER!! As a valued network customer you have...
3 Had your mobile 11 months or more? U R entitle...
4 SIX chances to win CASH! From 100 to 20,000 po...

3.4. Using Text Data with EvalML 51

https://www.kaggle.com/uciml/sms-spam-collection-dataset

EvalML Documentation, Release 0.80.0

The ham vs spam distribution of the data is 3:1, so any machine learning model must get above 75% accuracy in order
to perform better than a trivial baseline model which simply classifies everything as ham.

[3]: y.value_counts(normalize=True)

[3]: Category
spam 0.593333
ham 0.406667
Name: proportion, dtype: float64

In order to properly utilize Woodwork’s ‘Natural Language’ typing, we need to pass this argument in during initializa-
tion. Otherwise, this will be treated as an ‘Unknown’ type and dropped in the search.

[4]: X.ww.init(logical_types={"Message": "NaturalLanguage"})

3.4.2 Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

[5]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

EvalML uses Woodwork to automatically detect which columns are text columns, so you can run search normally, as
you would if there was no text data. We can print out the logical type of the Message column and assert that it is indeed
inferred as a natural language column.

[6]: X_train.ww

[6]: Physical Type Logical Type Semantic Tag(s)
Column
Message string NaturalLanguage []

Because the spam/ham labels are binary, we will use AutoMLSearch(X_train=X_train, y_train=y_train,
problem_type='binary'). When we call .search(), the search for the best pipeline will begin.

[7]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
max_batches=1,
optimize_thresholds=True,
verbose=True,

)

automl.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

(continues on next page)

52 Chapter 3. Tutorials

https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification
https://woodwork.alteryx.com/en/stable/

EvalML Documentation, Release 0.80.0

(continued from previous page)

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 14.658

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.249

Search finished after 7.75 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Natural Language Featurizer +␣
→˓Imputer + RF Classifier Select From Model
Best pipeline Log Loss Binary: 0.248763

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[7]: {1: {'Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer␣
→˓+ RF Classifier Select From Model': 6.920387506484985,
'Total time of batch': 7.049400806427002}}

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched.

[8]: automl.rankings

[8]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Na... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.248763 0.248763 0.056686
1 14.657752 14.657752 0.104049

percent_better_than_baseline high_variance_cv \
0 98.302858 False
1 0.000000 False

(continues on next page)

3.4. Using Text Data with EvalML 53

EvalML Documentation, Release 0.80.0

(continued from previous page)

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

[9]: best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline, including how it performed on other objective functions.

[10]: automl.describe_pipeline(automl.rankings.iloc[0]["id"])

* Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model *

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Natural Language Featurizer
3. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

4. RF Classifier Select From Model
* number_features : None
* n_estimators : 10
* max_depth : None
* percent_features : 0.5
* threshold : median
* n_jobs : -1

5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 6.9 seconds

(continues on next page)

54 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

Cross Validation

Log Loss Binary MCC Binary Gini AUC Precision F1 Balanced Accuracy␣
→˓Binary Accuracy Binary # Training # Validation
0 0.251 0.793 0.917 0.958 0.930 0.868 ␣
→˓ 0.886 0.900 400 200
1 0.191 0.844 0.964 0.982 0.934 0.904 ␣
→˓ 0.917 0.925 400 200
2 0.304 0.782 0.900 0.950 0.886 0.870 ␣
→˓ 0.889 0.895 400 200
mean 0.249 0.806 0.927 0.963 0.917 0.881 ␣
→˓ 0.897 0.907 - -
std 0.057 0.033 0.033 0.017 0.027 0.020 ␣
→˓ 0.017 0.016 - -
coef of var 0.228 0.041 0.036 0.017 0.029 0.023 ␣
→˓ 0.019 0.018 - -

[11]: best_pipeline.graph()

[11]:

Notice above that there is a Natural Language Featurizer as the first step in the pipeline. AutoMLSearch uses
the woodwork accessor to recognize that 'Message' is a text column, and converts this text into numerical values that
can be handled by the estimator.

3.4.3 Evaluate on holdout

Now, we can score the pipeline on the holdout data using the ranking objectives for binary classification problems.

[12]: scores = best_pipeline.score(
X_holdout, y_holdout, objectives=evalml.objectives.get_ranking_objectives("binary")

)
print(f'Accuracy Binary: {scores["Accuracy Binary"]}')

Accuracy Binary: 0.9333333333333333

As you can see, this model performs relatively well on this dataset, even on unseen data.

3.4.4 What does the Natural Language Featurizer do?

Machine learning models cannot handle non-numeric data. Any text must be broken down into numeric features that
provide useful information about that text. The Natural Natural Language Featurizer first normalizes your text by
removing any punctuation and other non-alphanumeric characters and converting any capital letters to lowercase. From
there, it passes the text into featuretools’ nlp_primitives dfs search, resulting in several informative features that replace
the original column in your dataset: Diversity Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic
Analysis), Number of Characters, and Number of Words.

Diversity Score is the ratio of unique words to total words.

Mean Characters per Word is the average number of letters in each word.

Polarity Score is a prediction of how “polarized” the text is, on a scale from -1 (extremely negative) to 1 (extremely
positive).

3.4. Using Text Data with EvalML 55

https://www.featuretools.com/
https://docs.featuretools.com/en/v0.16.0/api_reference.html#natural-language-processing-primitives

EvalML Documentation, Release 0.80.0

Latent Semantic Analysis is an abstract representation of how important each word is with respect to the entire text,
reduced down into two values per text. While the other text features are each a single column, this feature adds two
columns to your data, LSA(column_name)[0] and LSA(column_name)[1].

Number of Characters is the number of characters in the text.

Number of Words is the number of words in the text.

Let’s see what this looks like with our spam/ham example.

[13]: best_pipeline.input_feature_names

[13]: {'Label Encoder': ['Message'],
'Natural Language Featurizer': ['Message'],
'Imputer': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD(Message)',
'NUM_CHARACTERS(Message)',
'NUM_WORDS(Message)',
'POLARITY_SCORE(Message)',
'LSA(Message)[0]',
'LSA(Message)[1]'],
'RF Classifier Select From Model': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD(Message)',
'NUM_CHARACTERS(Message)',
'NUM_WORDS(Message)',
'POLARITY_SCORE(Message)',
'LSA(Message)[0]',
'LSA(Message)[1]'],
'Random Forest Classifier': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD(Message)',
'NUM_CHARACTERS(Message)',
'LSA(Message)[0]']}

Here, the Natural Language Featurizer takes in a single “Message” column, but then the next component in the pipeline,
the Imputer, receives five columns of input. These five columns are the result of featurizing the text-type “Message”
column. Most importantly, these featurized columns are what ends up passed in to the estimator.

If the dataset had any non-text columns, those would be left alone by this process. If the dataset had more than one text
column, each would be broken into these five feature columns independently.

The features, more directly

Rather than just checking the new column names, let’s examine the output of this component directly. We can see this
by running the component on its own.

[14]: natural_language_featurizer = evalml.pipelines.components.NaturalLanguageFeaturizer()
X_featurized = natural_language_featurizer.fit_transform(X_train)

Now we can compare the input data to the output from the Natural Language Featurizer:

[15]: X_train.head()

[15]: Message
296 Sunshine Hols. To claim ur med holiday send a ...
652 Yup ü not comin :-(
526 Hello hun how ru? Its here by the way. Im good...

(continues on next page)

56 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

571 I tagged MY friends that you seemed to count a...
472 What happened to our yo date?

[16]: X_featurized.head()

[16]: DIVERSITY_SCORE(Message) MEAN_CHARACTERS_PER_WORD(Message) \
296 1.0 4.344828
652 1.0 3.000000
526 1.0 3.363636
571 0.8 4.083333
472 1.0 3.833333

NUM_CHARACTERS(Message) NUM_WORDS(Message) POLARITY_SCORE(Message) \
296 154.0 29.0 0.003
652 16.0 4.0 0.000
526 143.0 33.0 0.162
571 60.0 12.0 0.681
472 28.0 6.0 0.000

LSA(Message)[0] LSA(Message)[1]
296 0.150556 -0.072443
652 0.017340 -0.005411
526 0.169954 0.022670
571 0.144713 0.036799
472 0.109373 -0.042754

These numeric values now represent important information about the original text that the estimator at the end of the
pipeline can successfully use to make predictions.

3.4.5 Why encode text this way?

To demonstrate the importance of text-specific modeling, let’s train a model with the same dataset, without letting
AutoMLSearch detect the text column. We can change this by explicitly setting the data type of the 'Message'
column in Woodwork to Categorical using the utility method infer_feature_types.

[17]: from evalml.utils import infer_feature_types

X = infer_feature_types(X, {"Message": "Categorical"})
X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(

X, y, problem_type="binary", test_size=0.2, random_seed=0
)

[18]: automl_no_text = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
max_batches=1,
optimize_thresholds=True,
verbose=True,

)

automl_no_text.search(interactive_plot=False)

3.4. Using Text Data with EvalML 57

EvalML Documentation, Release 0.80.0

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 14.658

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.249

Search finished after 6.02 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Natural Language Featurizer +␣
→˓Imputer + RF Classifier Select From Model
Best pipeline Log Loss Binary: 0.248763

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[18]: {1: {'Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer␣
→˓+ RF Classifier Select From Model': 5.368223667144775,
'Total time of batch': 5.497136116027832}}

Like before, we can look at the rankings and pick the best pipeline.

[19]: automl_no_text.rankings

[19]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Na... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.248763 0.248763 0.056686
1 14.657752 14.657752 0.104049

percent_better_than_baseline high_variance_cv \
0 98.302858 False

(continues on next page)

58 Chapter 3. Tutorials

EvalML Documentation, Release 0.80.0

(continued from previous page)

1 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

[20]: best_pipeline_no_text = automl_no_text.best_pipeline

Here, changing the data type of the text column removed the Natural Language Featurizer from the pipeline.

[21]: best_pipeline_no_text.graph()

[21]:

[22]: automl_no_text.describe_pipeline(automl_no_text.rankings.iloc[0]["id"])

* Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model *

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Natural Language Featurizer
3. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

4. RF Classifier Select From Model
* number_features : None
* n_estimators : 10
* max_depth : None
* percent_features : 0.5
* threshold : median
* n_jobs : -1

5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 5.3 seconds

(continues on next page)

3.4. Using Text Data with EvalML 59

EvalML Documentation, Release 0.80.0

(continued from previous page)

Cross Validation

Log Loss Binary MCC Binary Gini AUC Precision F1 Balanced Accuracy␣
→˓Binary Accuracy Binary # Training # Validation
0 0.251 0.793 0.917 0.958 0.930 0.868 ␣
→˓ 0.886 0.900 400 200
1 0.191 0.844 0.964 0.982 0.934 0.904 ␣
→˓ 0.917 0.925 400 200
2 0.304 0.782 0.900 0.950 0.886 0.870 ␣
→˓ 0.889 0.895 400 200
mean 0.249 0.806 0.927 0.963 0.917 0.881 ␣
→˓ 0.897 0.907 - -
std 0.057 0.033 0.033 0.017 0.027 0.020 ␣
→˓ 0.017 0.016 - -
coef of var 0.228 0.041 0.036 0.017 0.029 0.023 ␣
→˓ 0.019 0.018 - -

[23]: # get standard performance metrics on holdout data
scores = best_pipeline_no_text.score(

X_holdout, y_holdout, objectives=evalml.objectives.get_ranking_objectives("binary")
)
print(f'Accuracy Binary: {scores["Accuracy Binary"]}')

Accuracy Binary: 0.9333333333333333

Without the Natural Language Featurizer, the 'Message' column was treated as a categorical column, and
therefore the conversion of this text to numerical features happened in the One Hot Encoder. The best pipeline
encoded the top 10 most frequent “categories” of these texts, meaning 10 text messages were one-hot encoded and
all the others were dropped. Clearly, this removed almost all of the information from the dataset, as we can see the
best_pipeline_no_text performs very similarly to randomly guessing “ham” in every case.

60 Chapter 3. Tutorials

CHAPTER

FOUR

USER GUIDE

These guides include in-depth descriptions and explanations of EvalML’s features.

4.1 Automated Machine Learning (AutoML) Search

4.1.1 Background

Machine Learning

Machine learning (ML) is the process of constructing a mathematical model of a system based on a sample dataset
collected from that system.

One of the main goals of training an ML model is to teach the model to separate the signal present in the data from the
noise inherent in system and in the data collection process. If this is done effectively, the model can then be used to
make accurate predictions about the system when presented with new, similar data. Additionally, introspecting on an
ML model can reveal key information about the system being modeled, such as which inputs and transformations of
the inputs are most useful to the ML model for learning the signal in the data, and are therefore the most predictive.

There are a variety of ML problem types. Supervised learning describes the case where the collected data contains an
output value to be modeled and a set of inputs with which to train the model. EvalML focuses on training supervised
learning models.

EvalML supports three common supervised ML problem types. The first is regression, where the target value to model
is a continuous numeric value. Next are binary and multiclass classification, where the target value to model consists
of two or more discrete values or categories. The choice of which supervised ML problem type is most appropriate
depends on domain expertise and on how the model will be evaluated and used.

EvalML is currently building support for supervised time series problems: time series regression, time series binary
classification, and time series multiclass classification. While we’ve added some features to tackle these kinds of
problems, our functionality is still being actively developed so please be mindful of that before using it.

AutoML and Search

AutoML is the process of automating the construction, training and evaluation of ML models. Given a data and some
configuration, AutoML searches for the most effective and accurate ML model or models to fit the dataset. During the
search, AutoML will explore different combinations of model type, model parameters and model architecture.

An effective AutoML solution offers several advantages over constructing and tuning ML models by hand. AutoML can
assist with many of the difficult aspects of ML, such as avoiding overfitting and underfitting, imbalanced data, detecting
data leakage and other potential issues with the problem setup, and automatically applying best-practice data cleaning,
feature engineering, feature selection and various modeling techniques. AutoML can also leverage search algorithms to

61

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning#Approaches
https://en.wikipedia.org/wiki/Automated_machine_learning

EvalML Documentation, Release 0.80.0

optimally sweep the hyperparameter search space, resulting in model performance which would be difficult to achieve
by manual training.

4.1.2 AutoML in EvalML

EvalML supports all of the above and more.

In its simplest usage, the AutoML search interface requires only the input data, the target data and a problem_type
specifying what kind of supervised ML problem to model.

** Graphing methods, like verbose AutoMLSearch, on Jupyter Notebook and Jupyter Lab require ipywidgets to be
installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

[1]: import evalml
from evalml.utils import infer_feature_types

X, y = evalml.demos.load_fraud(n_rows=650)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 650
Targets
False 86.31%
True 13.69%
Name: count, dtype: object

To provide data to EvalML, it is recommended that you initialize a Woodwork accessor on your data. This allows you
to easily control how EvalML will treat each of your features before training a model.

EvalML also accepts pandas input, and will run type inference on top of the input pandas data. If you’d like to change
the types inferred by EvalML, you can use the infer_feature_types utility method, which takes pandas or numpy
input and converts it to a Woodwork data structure. The feature_types parameter can be used to specify what types
specific columns should be.

Feature types such as Natural Language must be specified in this way, otherwise Woodwork will infer it as Unknown
type and drop it during the AutoMLSearch.

In the example below, we reformat a couple features to make them easily consumable by the model, and then specify
that the provider, which would have otherwise been inferred as a column with natural language, is a categorical column.

[2]: X.ww["expiration_date"] = X["expiration_date"].apply(
lambda x: "20{}-01-{}".format(x.split("/")[1], x.split("/")[0])

)
X = infer_feature_types(

X,
feature_types={

"store_id": "categorical",
"expiration_date": "datetime",
"lat": "categorical",
"lng": "categorical",
"provider": "categorical",

(continues on next page)

62 Chapter 4. User Guide

https://ipywidgets.readthedocs.io/en/latest/user_install.html
https://plotly.com/python/getting-started/#jupyterlab-support-python-35
https://nodejs.org/en/download/
https://woodwork.alteryx.com/en/stable/

EvalML Documentation, Release 0.80.0

(continued from previous page)

},
)

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

[3]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2

)

Data Checks

Before calling AutoMLSearch.search, we should run some sanity checks on our data to ensure that the input data
being passed will not run into some common issues before running a potentially time-consuming search. EvalML has
various data checks that makes this easy. Each data check will return a collection of warnings and errors if it detects
potential issues with the input data. This allows users to inspect their data to avoid confusing errors that may arise
during the search process. You can learn about each of the data checks available through our data checks guide.

Here, we will run the DefaultDataChecks class, which contains a series of data checks that are generally useful.

[4]: from evalml.data_checks import DefaultDataChecks

data_checks = DefaultDataChecks("binary", "log loss binary")
data_checks.validate(X_train, y_train)

[4]: []

Since there were no warnings or errors returned, we can safely continue with the search process.

Holdout Set for Pipeline Ranking

If the holdout_set_size parameter is set and the input dataset has more than 500 rows, AutoMLSearch will create
a holdout set from holdout_set_size of the training data. Alternatively, a holdout set can be manually specified
by using the X_holdout and y_holdout parameters in AutoMLSearch(). In this example, the holdout set created
previously will be used by AutoML search.

During the AutoML search process, the mean of the objective scores of all cross validation folds (shown the
“mean_cv_score” column in the pipeline rankings), is calculated. This score is passed to the AutoML search tuner
to further optimize the hyperparameters of the next batch of pipelines.

After, the pipeline will be fitted on the entire training dataset and scored on this new holdout set. This score is repre-
sented under the “ranking_score” column on the pipeline rankings board and is used to rank pipeline performance.

If a dataset has less than 500 rows or holdout_set_size=0 (which is the default setting), the “mean_cv_score” will
be used as the ranking_score instead.

[5]: automl = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,
X_holdout=X_holdout,
y_holdout=y_holdout,
problem_type="binary",
verbose=True,

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 63

EvalML Documentation, Release 0.80.0

(continued from previous page)

)
automl.search(interactive_plot=False)

AutoMLSearch will use the holdout set to score and rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type
Using default limit of max_batches=2.

* Beginning pipeline search *

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 4.921
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 4.991

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.254
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.219

* Evaluating Batch Number 2 *

[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000092 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 450
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓20
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

64 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 65

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000083 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 445
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓22 (continues on next page)

66 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 67

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000081 seconds. (continues on next page)

68 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 449
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓21
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 69

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

70 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 89, number of negative: 359
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000117 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 575
[LightGBM] [Info] Number of data points in the train set: 448, number of used features:␣
→˓24
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
[LightGBM] [Info] Start training from score -1.394686
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 71

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

72 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.300
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.161

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.361
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.348

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.375
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.400

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.257
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.142

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.374
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.402

Search finished after 36.02 seconds
Best pipeline: XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer␣
→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select␣
→˓Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot␣
→˓Encoder + Oversampler (continues on next page)

4.1. Automated Machine Learning (AutoML) Search 73

EvalML Documentation, Release 0.80.0

(continued from previous page)

Best pipeline Log Loss Binary: 0.142417

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[5]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 6.526562213897705,
'Total time of batch': 6.657414436340332},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 4.0094428062438965,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 5.943113565444946,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 5.363128662109375,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 4.84464955329895,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 7.4569501876831055,
'Total time of batch': 28.425612926483154}}

With the verbose argument set to True, the AutoML search will log its progress, reporting each pipeline and parameter
set evaluated during the search. The search iteration plot shown during AutoML search tracks the current pipeline’s
validation score (tracked as the gray point) against the best pipeline validation score (tracked as the blue line).

There are a number of mechanisms to control the AutoML search time. One way is to set the max_batches parameter
which controls the maximum number of rounds of AutoML to evaluate, where each round may train and score a variable
number of pipelines. Another way is to set the max_iterations parameter which controls the maximum number of
candidate models to be evaluated during AutoML. By default, AutoML will search for a single batch. The first pipeline
to be evaluated will always be a baseline model representing a trivial solution.

The AutoML interface supports a variety of other parameters. For a comprehensive list, please refer to the API refer-
ence.

We also provide a standalone search method which does all of the above in a single line, and returns the AutoMLSearch
instance and data check results. If there were data check errors, AutoML will not be run and no AutoMLSearch instance
will be returned.

74 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

Detecting Problem Type

EvalML includes a simple method, detect_problem_type, to help determine the problem type given the target data.

This function can return the predicted problem type as a ProblemType enum, choosing from ProblemType.BINARY,
ProblemType.MULTICLASS, and ProblemType.REGRESSION. If the target data is invalid (for instance when there
is only 1 unique label), the function will throw an error instead.

[6]: import pandas as pd
from evalml.problem_types import detect_problem_type

y_binary = pd.Series([0, 1, 1, 0, 1, 1])
detect_problem_type(y_binary)

[6]: <ProblemTypes.BINARY: 'binary'>

Objective parameter

AutoMLSearch takes in an objective parameter to determine which objective to optimize for. By default,
this parameter is set to auto, which allows AutoML to choose LogLossBinary for binary classification problems,
LogLossMulticlass for multiclass classification problems, and R2 for regression problems.

It should be noted that the objective parameter is only used in ranking and helping choose the pipelines to iterate
over, but is not used to optimize each individual pipeline during fit-time.

To get the default objective for each problem type, you can use the get_default_primary_search_objective
function.

[7]: from evalml.automl import get_default_primary_search_objective

binary_objective = get_default_primary_search_objective("binary")
multiclass_objective = get_default_primary_search_objective("multiclass")
regression_objective = get_default_primary_search_objective("regression")

print(binary_objective.name)
print(multiclass_objective.name)
print(regression_objective.name)

Log Loss Binary
Log Loss Multiclass
R2

Using custom pipelines

EvalML’s AutoML algorithm generates a set of pipelines to search with. To provide a custom set instead, set al-
lowed_component_graphs to a dictionary of custom component graphs. AutoMLSearch will use these to generate
Pipeline instances. Note: this will prevent AutoML from generating other pipelines to search over.

[8]: from evalml.pipelines import MulticlassClassificationPipeline

automl_custom = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 75

EvalML Documentation, Release 0.80.0

(continued from previous page)

problem_type="multiclass",
verbose=True,
allowed_component_graphs={

"My_pipeline": ["Simple Imputer", "Random Forest Classifier"],
"My_other_pipeline": ["One Hot Encoder", "Random Forest Classifier"],

},
)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type
Using default limit of max_batches=2.

Stopping the search early

To stop the search early, hit Ctrl-C. This will bring up a prompt asking for confirmation. Responding with y will
immediately stop the search. Responding with n will continue the search.

Callback functions

AutoMLSearch supports several callback functions, which can be specified as parameters when initializing an
AutoMLSearch object. They are:

• start_iteration_callback

• add_result_callback

• error_callback

Start Iteration Callback

Users can set start_iteration_callback to set what function is called before each pipeline training iteration.
This callback function must take three positional parameters: the pipeline class, the pipeline parameters, and the
AutoMLSearch object.

[9]: ## start_iteration_callback example function
def start_iteration_callback_example(pipeline_class, pipeline_params, automl_obj):

print("Training pipeline with the following parameters:", pipeline_params)

Add Result Callback

Users can set add_result_callback to set what function is called after each pipeline training iteration. This callback
function must take three positional parameters: a dictionary containing the training results for the new pipeline, an
untrained_pipeline containing the parameters used during training, and the AutoMLSearch object.

[10]: ## add_result_callback example function
def add_result_callback_example(pipeline_results_dict, untrained_pipeline, automl_obj):

print(
(continues on next page)

76 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

"Results for trained pipeline with the following parameters:",
pipeline_results_dict,

)

Error Callback

Users can set the error_callback to set what function called when search() errors and raises an Exception. This
callback function takes three positional parameters: the Exception raised, the traceback, and the AutoMLSearch
object. This callback function must also accept kwargs, so AutoMLSearch is able to pass along other parameters
used by default.

Evalml defines several error callback functions, which can be found under evalml.automl.callbacks. They are:

• silent_error_callback

• raise_error_callback

• log_and_save_error_callback

• raise_and_save_error_callback

• log_error_callback (default used when error_callback is None)

[11]: # error_callback example; this is implemented in the evalml library
def raise_error_callback(exception, traceback, automl, **kwargs):

"""Raises the exception thrown by the AutoMLSearch object. Also logs the exception␣
→˓as an error."""

logger.error(f"AutoMLSearch raised a fatal exception: {str(exception)}")
logger.error("\n".join(traceback))
raise exception

4.1.3 View Rankings

A summary of all the pipelines built can be returned as a pandas DataFrame which is sorted by the validation score.

• For AutoML searches completed with a holdout set, the validation score is the holdout score of the pipeline fitted
using the entire training dataset.

• For AutoML searches completed without a holdout set, the validation score is the average score across all cross-
validation folds.

[12]: automl.rankings

[12]: id pipeline_name search_order \
0 5 XGBoost Classifier w/ Label Encoder + Select C... 5
1 2 LightGBM Classifier w/ Label Encoder + Select ... 2
2 1 Random Forest Classifier w/ Label Encoder + Dr... 1
3 3 Extra Trees Classifier w/ Label Encoder + Sele... 3
4 4 Elastic Net Classifier w/ Label Encoder + Sele... 4
5 6 Logistic Regression Classifier w/ Label Encode... 6
6 0 Mode Baseline Binary Classification Pipeline 0

ranking_score holdout_score mean_cv_score standard_deviation_cv_score \
0 0.142417 0.142417 0.256950 0.137180

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 77

EvalML Documentation, Release 0.80.0

(continued from previous page)

1 0.160955 0.160955 0.299971 0.206176
2 0.219145 0.219145 0.254382 0.045124
3 0.348408 0.348408 0.361341 0.021758
4 0.400375 0.400375 0.374725 0.050027
5 0.401581 0.401581 0.374364 0.049925
6 4.990660 4.990660 4.921248 0.112910

percent_better_than_baseline high_variance_cv \
0 94.778757 False
1 93.904575 False
2 94.830946 False
3 92.657543 False
4 92.385573 False
5 92.392914 False
6 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'N...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'D...
3 {'Label Encoder': {'positive_label': None}, 'N...
4 {'Label Encoder': {'positive_label': None}, 'N...
5 {'Label Encoder': {'positive_label': None}, 'N...
6 {'Label Encoder': {'positive_label': None}, 'B...

Recommendation Score

If you would like a more robust evaluation of the performance of your models, EvalML additionally provides a rec-
ommendation score alongside the selected objective. The recommendation score is a weighted average of a number of
default objectives for your problem type, normalized and scaled so that the final score can be interpreted as a percent-
age from 0 to 100. This weighted score provides a more holistic understanding of model performance, and prioritizes
model generalizability rather than one single objective which may not completely serve your use case.

[13]: automl.get_recommendation_scores(use_pipeline_names=True)

[13]: {'Baseline Classifier': 25.0,
'Random Forest Classifier': 89.20280594475338,
'LightGBM Classifier': 91.29441485901573,
'Extra Trees Classifier': 76.4891509448369,
'Elastic Net Classifier': 64.98618569828929,
'XGBoost Classifier': 93.1572081558569,
'Logistic Regression Classifier': 64.88094236798517}

[14]: automl.get_recommendation_scores(priority="F1", use_pipeline_names=True)

[14]: {'Baseline Classifier': 16.666666666666664,
'Random Forest Classifier': 87.42552654381409,
'LightGBM Classifier': 90.0296099060105,
'Extra Trees Classifier': 68.38407164438401,
'Elastic Net Classifier': 53.893229489916436,
'XGBoost Classifier': 92.40783574026823,
'Logistic Regression Classifier': 53.8230672697137}

78 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

To see what objectives are included in the recommendation score, you can use:

[15]: evalml.objectives.get_default_recommendation_objectives("binary")

[15]: {'AUC', 'Balanced Accuracy Binary', 'F1', 'Log Loss Binary'}

If you would like to automatically rank your pipelines by this recommendation score, you can set
use_recommendation=True when initializing AutoMLSearch.

[16]: automl_recommendation = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,
X_holdout=X_holdout,
y_holdout=y_holdout,
problem_type="binary",
use_recommendation=True,

)
automl_recommendation.search(interactive_plot=False)

automl_recommendation.rankings[
[

"id",
"pipeline_name",
"search_order",
"recommendation_score",
"holdout_score",
"mean_cv_score",

]
]

[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000081 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 450
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓20
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 79

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

80 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000082 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 445
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓22
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 81

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

82 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000085 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 449
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓21
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 83

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

84 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 89, number of negative: 359
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000106 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 575
[LightGBM] [Info] Number of data points in the train set: 448, number of used features:␣
→˓24
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
[LightGBM] [Info] Start training from score -1.394686
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 85

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

86 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[16]: id pipeline_name search_order \
0 5 XGBoost Classifier w/ Label Encoder + Select C... 5
1 2 LightGBM Classifier w/ Label Encoder + Select ... 2
2 1 Random Forest Classifier w/ Label Encoder + Dr... 1

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 87

EvalML Documentation, Release 0.80.0

(continued from previous page)

3 3 Extra Trees Classifier w/ Label Encoder + Sele... 3
4 4 Elastic Net Classifier w/ Label Encoder + Sele... 4
5 6 Logistic Regression Classifier w/ Label Encode... 6
6 0 Mode Baseline Binary Classification Pipeline 0

recommendation_score holdout_score mean_cv_score
0 93.157208 0.142417 0.256950
1 91.294415 0.160955 0.299971
2 89.202806 0.219145 0.254382
3 76.489151 0.348408 0.361341
4 64.986186 0.400375 0.374725
5 64.880942 0.401581 0.374364
6 25.000000 4.990660 4.921248

There is a helper function on the AutoMLSearch object to help you understand how the recommendation score was
calculated. It displays the raw scores of the objectives included within the score calculation. Here, we take a look at
pipeline with id=9, the Decision Tree pipeline:

[17]: automl_recommendation.get_recommendation_score_breakdown(3)

[17]: {'AUC': 0.845734126984127,
'Log Loss Binary': 0.3484078428021002,
'Balanced Accuracy Binary': 0.7619047619047619,
'F1': 0.5217391304347826}

4.1.4 Describe Pipeline

Each pipeline is given an id. We can get more information about any particular pipeline using that id. Here, we will
get more information about the pipeline with id = 1.

[18]: automl.describe_pipeline(1)

**
* Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model␣
→˓*
**

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Drop Columns Transformer

* columns : ['currency']
3. DateTime Featurizer

* features_to_extract : ['year', 'month', 'day_of_week', 'hour']
* encode_as_categories : False
* time_index : None

(continues on next page)

88 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

4. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

5. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

6. Oversampler
* sampling_ratio : 0.25
* k_neighbors_default : 5
* n_jobs : -1
* sampling_ratio_dict : None
* categorical_features : [3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

→˓ 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,␣
→˓44, 45, 46, 47, 48, 49]

* k_neighbors : 5
7. RF Classifier Select From Model

* number_features : None
* n_estimators : 10
* max_depth : None
* percent_features : 0.5
* threshold : median
* n_jobs : -1

8. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 6.5 seconds

Cross Validation

Log Loss Binary MCC Binary Gini AUC Precision F1 Balanced Accuracy␣
→˓Binary Accuracy Binary # Training # Validation
0 0.240 0.823 0.844 0.922 1.000 0.829 ␣
→˓ 0.854 0.960 346 174
1 0.305 0.524 0.493 0.747 1.000 0.467 ␣
→˓ 0.652 0.908 347 173
2 0.218 0.875 0.839 0.920 1.000 0.884 ␣
→˓ 0.896 0.971 347 173
mean 0.254 0.741 0.726 0.863 1.000 0.727 ␣
→˓ 0.801 0.946 - -

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 89

EvalML Documentation, Release 0.80.0

(continued from previous page)

std 0.045 0.189 0.201 0.101 0.000 0.227 ␣
→˓ 0.130 0.034 - -
coef of var 0.177 0.255 0.277 0.117 0.000 0.312 ␣
→˓ 0.163 0.036 - -

4.1.5 Get Pipeline

We can get the object of any pipeline via their id as well:

[19]: pipeline = automl.get_pipeline(1)
print(pipeline.name)
print(pipeline.parameters)

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
{'Label Encoder': {'positive_label': None}, 'Drop Columns Transformer': {'columns': [
→˓'currency']}, 'DateTime Featurizer': {'features_to_extract': ['year', 'month', 'day_of_
→˓week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer': {
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder': {'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features
→˓': [3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,␣
→˓30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], 'k_
→˓neighbors': 5}, 'RF Classifier Select From Model': {'number_features': None, 'n_
→˓estimators': 10, 'max_depth': None, 'percent_features': 0.5, 'threshold': 'median', 'n_
→˓jobs': -1}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_jobs':
→˓ -1}}

Get best pipeline

If you specifically want to get the best pipeline, there is a convenient accessor for that. The pipeline returned
is already fitted on the input X, y data that we passed to AutoMLSearch. To turn off this default behavior, set
train_best_pipeline=False when initializing AutoMLSearch.

[20]: best_pipeline = automl.best_pipeline
print(best_pipeline.name)
print(best_pipeline.parameters)
best_pipeline.predict(X_train)

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler
{'Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Select Columns By Type␣
→˓Transformer': {'column_types': ['category', 'EmailAddress', 'URL'], 'exclude': True},
→˓'Numeric Pipeline - Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Drop␣
→˓Columns Transformer': {'columns': ['currency']}, 'Numeric Pipeline - DateTime␣
→˓Featurizer': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_
→˓as_categories': False, 'time_index': None}, 'Numeric Pipeline - Imputer': {
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select Columns␣
→˓Transformer': {'columns': ['card_id', 'store_id', 'amount', 'customer_present', 'lat',
→˓'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour']}, 'Categorical␣
→˓Pipeline - Select Columns Transformer': {'columns': ['expiration_date', 'provider',
→˓'region', 'country']}, 'Categorical Pipeline - Label Encoder': {'positive_label': None}
→˓, 'Categorical Pipeline - Imputer': {'categorical_impute_strategy': 'most_frequent',
→˓'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent',
→˓'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value': None}
→˓, 'Categorical Pipeline - One Hot Encoder': {'top_n': 10, 'features_to_encode': None,
→˓'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing':
→˓'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_neighbors_default': 5, 'n_jobs': -
→˓1, 'sampling_ratio_dict': None, 'categorical_features': [3, 9, 10, 11, 12, 13, 14, 15,␣
→˓16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
→˓ 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], 'k_neighbors': 5}, 'XGBoost Classifier':
→˓{'eta': 0.1, 'max_depth': 6, 'min_child_weight': 1, 'n_estimators': 100, 'n_jobs': -1,
→˓'eval_metric': 'logloss'}}

(continues on next page)

90 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[20]: id
144 False
253 True
221 False
432 False
384 False

...
128 False
98 False
472 False
642 False
494 False
Name: fraud, Length: 520, dtype: bool

4.1.6 Training and Scoring Multiple Pipelines using AutoMLSearch

AutoMLSearch will automatically fit the best pipeline on the entire training data. It also provides an easy API for
training and scoring other pipelines.

If you’d like to train one or more pipelines on the entire training data, you can use the train_pipelines method.

Similarly, if you’d like to score one or more pipelines on a particular dataset, you can use the score_pipelines
method.

[21]: trained_pipelines = automl.train_pipelines([automl.get_pipeline(i) for i in [0, 1, 2]])
trained_pipelines

[LightGBM] [Info] Number of positive: 89, number of negative: 359
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000104 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 575
[LightGBM] [Info] Number of data points in the train set: 448, number of used features:␣
→˓24
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
[LightGBM] [Info] Start training from score -1.394686
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 91

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

92 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[21]: {'Mode Baseline Binary Classification Pipeline': pipeline =␣
→˓BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder', 'X',
→˓'y'], 'Baseline Classifier': ['Baseline Classifier', 'Label Encoder.x', 'Label Encoder.
→˓y']}, parameters={'Label Encoder':{'positive_label': None}, 'Baseline Classifier':{
→˓'strategy': 'mode'}}, custom_name='Mode Baseline Binary Classification Pipeline',␣
→˓random_seed=0),
'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label␣
→˓Encoder', 'X', 'y'], 'Drop Columns Transformer': ['Drop Columns Transformer', 'X',
→˓'Label Encoder.y'], 'DateTime Featurizer': ['DateTime Featurizer', 'Drop Columns␣
→˓Transformer.x', 'Label Encoder.y'], 'Imputer': ['Imputer', 'DateTime Featurizer.x',
→˓'Label Encoder.y'], 'One Hot Encoder': ['One Hot Encoder', 'Imputer.x', 'Label Encoder.
→˓y'], 'Oversampler': ['Oversampler', 'One Hot Encoder.x', 'Label Encoder.y'], 'RF␣
→˓Classifier Select From Model': ['RF Classifier Select From Model', 'Oversampler.x',
→˓'Oversampler.y'], 'Random Forest Classifier': ['Random Forest Classifier', 'RF␣
→˓Classifier Select From Model.x', 'Oversampler.y']}, parameters={'Label Encoder':{
→˓'positive_label': None}, 'Drop Columns Transformer':{'columns': ['currency']},
→˓'DateTime Featurizer':{'features_to_extract': ['year', 'month', 'day_of_week', 'hour'],
→˓ 'encode_as_categories': False, 'time_index': None}, 'Imputer':{'categorical_impute_
→˓strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
→˓': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10, 'features_to_encode':␣
→˓None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_
→˓missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_neighbors_default': 5,
→˓'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features': [3, 10, 11, 12, 13,␣
→˓14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
→˓ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], 'k_neighbors': 5}, 'RF␣
→˓Classifier Select From Model':{'number_features': None, 'n_estimators': 10, 'max_depth
→˓': None, 'percent_features': 0.5, 'threshold': 'median', 'n_jobs': -1}, 'Random Forest␣
→˓Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0),

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 93

EvalML Documentation, Release 0.80.0

(continued from previous page)

'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder':
→˓ ['Label Encoder', 'X', 'y'], 'Numeric Pipeline - Select Columns By Type Transformer':␣
→˓['Select Columns By Type Transformer', 'X', 'Label Encoder.y'], 'Numeric Pipeline -␣
→˓Label Encoder': ['Label Encoder', 'Numeric Pipeline - Select Columns By Type␣
→˓Transformer.x', 'Label Encoder.y'], 'Numeric Pipeline - Drop Columns Transformer': [
→˓'Drop Columns Transformer', 'Numeric Pipeline - Select Columns By Type Transformer.x',
→˓'Numeric Pipeline - Label Encoder.y'], 'Numeric Pipeline - DateTime Featurizer': [
→˓'DateTime Featurizer', 'Numeric Pipeline - Drop Columns Transformer.x', 'Numeric␣
→˓Pipeline - Label Encoder.y'], 'Numeric Pipeline - Imputer': ['Imputer', 'Numeric␣
→˓Pipeline - DateTime Featurizer.x', 'Numeric Pipeline - Label Encoder.y'], 'Numeric␣
→˓Pipeline - Select Columns Transformer': ['Select Columns Transformer', 'Numeric␣
→˓Pipeline - Imputer.x', 'Numeric Pipeline - Label Encoder.y'], 'Categorical Pipeline -␣
→˓Select Columns Transformer': ['Select Columns Transformer', 'X', 'Label Encoder.y'],
→˓'Categorical Pipeline - Label Encoder': ['Label Encoder', 'Categorical Pipeline -␣
→˓Select Columns Transformer.x', 'Label Encoder.y'], 'Categorical Pipeline - Imputer': [
→˓'Imputer', 'Categorical Pipeline - Select Columns Transformer.x', 'Categorical␣
→˓Pipeline - Label Encoder.y'], 'Categorical Pipeline - One Hot Encoder': ['One Hot␣
→˓Encoder', 'Categorical Pipeline - Imputer.x', 'Categorical Pipeline - Label Encoder.y
→˓'], 'Oversampler': ['Oversampler', 'Numeric Pipeline - Select Columns Transformer.x',
→˓'Categorical Pipeline - One Hot Encoder.x', 'Categorical Pipeline - Label Encoder.y'],
→˓'LightGBM Classifier': ['LightGBM Classifier', 'Oversampler.x', 'Oversampler.y']},␣
→˓parameters={'Label Encoder':{'positive_label': None}, 'Numeric Pipeline - Select␣
→˓Columns By Type Transformer':{'column_types': ['category', 'EmailAddress', 'URL'],
→˓'exclude': True}, 'Numeric Pipeline - Label Encoder':{'positive_label': None},
→˓'Numeric Pipeline - Drop Columns Transformer':{'columns': ['currency']}, 'Numeric␣
→˓Pipeline - DateTime Featurizer':{'features_to_extract': ['year', 'month', 'day_of_week
→˓', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Numeric Pipeline -␣
→˓Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy':
→˓'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None,
→˓'numeric_fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select␣
→˓Columns Transformer':{'columns': ['card_id', 'store_id', 'amount', 'customer_present',
→˓'lat', 'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour']},
→˓'Categorical Pipeline - Select Columns Transformer':{'columns': ['expiration_date',
→˓'provider', 'region', 'country']}, 'Categorical Pipeline - Label Encoder':{'positive_
→˓label': None}, 'Categorical Pipeline - Imputer':{'categorical_impute_strategy': 'most_
→˓frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent
→˓', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value':␣
→˓None}, 'Categorical Pipeline - One Hot Encoder':{'top_n': 10, 'features_to_encode':␣
→˓None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_
→˓missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_neighbors_default': 5,
→˓'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features': [3, 9, 10, 11, 12,␣
→˓13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
→˓ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], 'k_neighbors': 5}, 'LightGBM␣
→˓Classifier':{'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 100, 'max_
→˓depth': 0, 'num_leaves': 31, 'min_child_samples': 20, 'n_jobs': -1, 'bagging_freq': 0,
→˓'bagging_fraction': 0.9}}, random_seed=0)}

[22]: pipeline_holdout_scores = automl.score_pipelines(
[trained_pipelines[name] for name in trained_pipelines.keys()],

(continues on next page)

94 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

X_holdout,
y_holdout,
["Accuracy Binary", "F1", "AUC"],

)
pipeline_holdout_scores

[22]: {'Mode Baseline Binary Classification Pipeline': OrderedDict([('Accuracy Binary',
0.8615384615384616),

('F1', 0.0),
('AUC', 0.5)]),

'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': OrderedDict([('Accuracy Binary',

0.9615384615384616),
('F1', 0.8387096774193548),
('AUC', 0.9122023809523809)]),

'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': OrderedDict([('Accuracy Binary',

0.9692307692307692),
('F1', 0.8750000000000001),
('AUC', 0.9201388888888888)])}

4.1.7 Saving AutoMLSearch and pipelines from AutoMLSearch

There are two ways to save results from AutoMLSearch.

• You can save the AutoMLSearch object itself, calling .save(<filepath>) to do so. This will allow you to save
the AutoMLSearch state and reload all pipelines from this.

• If you want to save a pipeline from AutoMLSearch for future use, pipeline classes themselves have a .
save(<filepath>) method.

[23]: # saving the entire automl search
automl.save("automl.cloudpickle")
automl2 = evalml.automl.AutoMLSearch.load("automl.cloudpickle")
saving the best pipeline using .save()
best_pipeline.save("pipeline.cloudpickle")
best_pipeline_copy = evalml.pipelines.PipelineBase.load("pipeline.cloudpickle")

4.1.8 Limiting the AutoML Search Space

The AutoML search algorithm first trains each component in the pipeline with their default values. After the first
iteration, it then tweaks the parameters of these components using the pre-defined hyperparameter ranges that these
components have. To limit the search over certain hyperparameter ranges, you can specify a search_parameters ar-
gument with your AutoMLSearch parameters. These parameters will limit the hyperparameter search space or pipeline
parameter space.

Hyperparameter ranges can be found through the API reference for each component. Parameter arguments must be
specified as dictionaries, but the associated values must be skopt.space Real, Integer, Categorical objects for setting
hyperparameter ranges.

4.1. Automated Machine Learning (AutoML) Search 95

https://evalml.alteryx.com/en/stable/api_index.html

EvalML Documentation, Release 0.80.0

If however you’d like to specify certain values for the initial batch of the AutoML search algorithm, you can use the
search_parameters argument with non skopt.space objects. This will set the initial batch’s component parameters
to the values passed by this argument.

[24]: from evalml import AutoMLSearch
from evalml.demos import load_fraud
from skopt.space import Categorical
from evalml.model_family import ModelFamily
import woodwork as ww

X, y = load_fraud(n_rows=1000)

example of setting parameter to just one value
search_parameters = {"Imputer": {"numeric_impute_strategy": "mean"}}

limit the numeric impute strategy to include only `median` and `most_frequent`
`mean` is the default value for this argument, but it doesn't need to be included in␣
→˓the specified hyperparameter range for this to work
search_parameters = {

"Imputer": {"numeric_impute_strategy": Categorical(["median", "most_frequent"])}
}

using this custom hyperparameter means that our Imputer components in these pipelines␣
→˓will only search through
'median' and 'most_frequent' strategies for 'numeric_impute_strategy'
automl_constrained = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
search_parameters=search_parameters,
verbose=True,

)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 1000
Targets
False 85.90%
True 14.10%
Name: count, dtype: object
AutoMLSearch will use mean CV score to rank pipelines.
Using default limit of max_batches=2.

A skopt.space Integer, Real, or Categorical will set the hyperparameter space explored during search. All other
values will set the pipeline parameters directly. Setting pipeline parameters directly defines the initialization parameters
that a pipeline starts with during the first batch of AutoMLSearch. the hyperparameter range then defines the space of
possible new parameter values, which the tuner chooses.

Let’s walk through some examples to explain this. For instance,

96 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

search_parameters = {'Imputer': {
'numeric_impute_strategy': 'mean'

}}

then in the initial search, the algorithm would use mean as the impute strategy in batch 1. However, since Imputer.
numeric_impute_strategy has a valid hyperparameter range, if the algorithm suggests a different strategy, it can
and will change this value. To limit this to using mean only for the duration of the search, it is necessary to use the
skopt.space:

search_parameters = {'Imputer': {
'numeric_impute_strategy': Categorical(['mean'])

}}

However, if a value has no hyperparameter range associated, then the algorithm will use this value as the only parameter.
For instance,

search_parameters = {'Label Encoder': {
'positive_label': True

}}

Since Label Encoder.positive_label has no associated hyperparameter range, the algorithm will use this param-
eter for the entire duration of the search.

4.1.9 Imbalanced Data

The AutoML search algorithm now has functionality to handle imbalanced data during classification! AutoMLSearch
now provides two additional parameters, sampler_method and sampler_balanced_ratio, that allow you to let
AutoMLSearch know whether to sample imbalanced data, and how to do so. sampler_method takes in either
Undersampler, Oversampler, auto, or None as the sampler to use, and sampler_balanced_ratio specifies the
minority/majority ratio that you want to sample to. Details on the Undersampler and Oversampler components
can be found in the documentation.

This can be used for imbalanced datasets, like the fraud dataset, which has a ‘minority:majority’ ratio of < 0.2.

[25]: automl_auto = AutoMLSearch(
X_train=X, y_train=y, problem_type="binary", automl_algorithm="iterative"

)
automl_auto.allowed_pipelines[-1]

[25]: pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
→˓', 'X', 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],
→˓'Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':␣
→˓['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Oversampler': ['Oversampler',
→˓'One Hot Encoder.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra Trees␣
→˓Classifier', 'Oversampler.x', 'Oversampler.y']}, parameters={'Label Encoder':{
→˓'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year', 'month
→˓', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer
→˓':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None}, 'Extra Trees␣
→˓Classifier':{'n_estimators': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_
→˓split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}, random_seed=0)(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 97

https://evalml.alteryx.com/en/stable/api_index.html#transformers

EvalML Documentation, Release 0.80.0

(continued from previous page)

The Oversampler is chosen as the default sampling component here, since the sampler_balanced_ratio = 0.
25. If you specified a lower ratio, for instance sampler_balanced_ratio = 0.1, then there would be no sampling
component added here. This is because if a ratio of 0.1 would be considered balanced, then a ratio of 0.2 would also
be balanced.

The Oversampler uses SMOTE under the hood, and automatically selects whether to use SMOTE, SMOTEN, or SMO-
TENC based on the data it receives.

[26]: automl_auto_ratio = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
sampler_balanced_ratio=0.1,
automl_algorithm="iterative",

)
automl_auto_ratio.allowed_pipelines[-1]

[26]: pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
→˓', 'X', 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],
→˓'Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':␣
→˓['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra␣
→˓Trees Classifier', 'One Hot Encoder.x', 'Label Encoder.y']}, parameters={'Label Encoder
→˓':{'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year',
→˓'month', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None},
→˓'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy':
→˓'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None,
→˓'numeric_fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n':␣
→˓10, 'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_
→˓unknown': 'ignore', 'handle_missing': 'error'}, 'Extra Trees Classifier':{'n_estimators
→˓': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_
→˓fraction_leaf': 0.0, 'n_jobs': -1}}, random_seed=0)

Additionally, you can add more fine-grained sampling ratios by passing in a sampling_ratio_dict in pipeline pa-
rameters. For this dictionary, AutoMLSearch expects the keys to be int values from 0 to n-1 for the classes, and the
values would be the sampler_balanced__ratio associated with each target. This dictionary would override the
AutoML argument sampler_balanced_ratio. Below, you can see the scenario for Oversampler component on this
dataset. Note that the logic for Undersamplers is included in the commented section.

[27]: # In this case, the majority class is the negative class
for the oversampler, we don't want to oversample this class, so class 0 (majority) will␣
→˓have a ratio of 1 to itself
for the minority class 1, we want to oversample it to have a minority/majority ratio␣
→˓of 0.5, which means we want minority to have 1/2 the samples as the minority
sampler_ratio_dict = {0: 1, 1: 0.5}
search_parameters = {"Oversampler": {"sampler_balanced_ratio": sampler_ratio_dict}}
automl_auto_ratio_dict = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
search_parameters=search_parameters,
automl_algorithm="iterative",

)
(continues on next page)

98 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

automl_auto_ratio_dict.allowed_pipelines[-1]

Undersampler case
we don't want to undersample this class, so class 1 (minority) will have a ratio of 1␣
→˓to itself
for the majority class 0, we want to undersample it to have a minority/majority ratio␣
→˓of 0.5, which means we want majority to have 2x the samples as the minority
sampler_ratio_dict = {0: 0.5, 1: 1}
search_parameters = {"Oversampler": {"sampler_balanced_ratio": sampler_ratio_dict}}
automl_auto_ratio_dict = AutoMLSearch(X_train=X, y_train=y, problem_type='binary',␣
→˓search_parameters=search_parameters)

[27]: pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
→˓', 'X', 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],
→˓'Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':␣
→˓['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Oversampler': ['Oversampler',
→˓'One Hot Encoder.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra Trees␣
→˓Classifier', 'Oversampler.x', 'Oversampler.y']}, parameters={'Label Encoder':{
→˓'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year', 'month
→˓', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer
→˓':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'sampler_balanced_
→˓ratio': {0: 1, 1: 0.5}}, 'Extra Trees Classifier':{'n_estimators': 100, 'max_features':
→˓ 'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_
→˓jobs': -1}}, random_seed=0)

4.1.10 Adding ensemble methods to AutoML

Stacking

Stacking is an ensemble machine learning algorithm that involves training a model to best combine the predictions
of several base learning algorithms. First, each base learning algorithms is trained using the given data. Then, the
combining algorithm or meta-learner is trained on the predictions made by those base learning algorithms to make a
final prediction.

AutoML enables stacking using the ensembling flag during initalization; this is set to False by default. How en-
sembling runs is defined by the AutoML algorithm you choose. In the IterativeAlgorithm, the stacking ensemble
pipeline runs in its own batch after a whole cycle of training has occurred (each allowed pipeline trains for one batch).
Note that this means a large number of iterations may need to run before the stacking ensemble runs. It is also
important to note that only the first CV fold is calculated for stacking ensembles because the model internally uses
CV folds. See below in the AutoML Algorithms section to see how ensembling is run for DefaultAlgorithm. Please
do note that ensembling is currently unavailable for time series problems.

[28]: X, y = evalml.demos.load_breast_cancer()

automl_with_ensembling = AutoMLSearch(
X_train=X,
y_train=y,

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 99

https://en.wikipedia.org/wiki/Ensemble_learning#Stacking

EvalML Documentation, Release 0.80.0

(continued from previous page)

problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
max_batches=4,
ensembling=True,
automl_algorithm="iterative",
verbose=True,

)
automl_with_ensembling.search(interactive_plot=False)

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object
AutoMLSearch will use mean CV score to rank pipelines.
Generating pipelines to search over...
Ensembling will run every 3 batches.
2 pipelines ready for search.

* Beginning pipeline search *

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 4 batches for a total of 14 pipelines.
Allowed model families: linear_model, linear_model

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 13.429

* Evaluating Batch Number 1 *

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.077

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.077

* Evaluating Batch Number 2 *

(continues on next page)

100 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.090

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.085

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.081

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.097

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.093

* Evaluating Batch Number 3 *

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.076

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.079

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075

* Evaluating Batch Number 4 *

Stacked Ensemble Classification Pipeline:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.103

Search finished after 24.29 seconds
Best pipeline: Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler
Best pipeline Log Loss Binary: 0.075391

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.1. Automated Machine Learning (AutoML) Search 101

EvalML Documentation, Release 0.80.0

[28]: {1: {'Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
→˓6966469287872314,
'Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.

→˓884481430053711,
'Total time of batch': 3.790522575378418},

2: {'Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
→˓7397925853729248,
'Total time of batch': 9.396330118179321},

3: {'Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
→˓609971046447754,
'Total time of batch': 8.84861445426941},

4: {'Stacked Ensemble Classification Pipeline': 1.457606315612793,
'Total time of batch': 1.5739214420318604}}

We can view more information about the stacking ensemble pipeline (which was the best performing pipeline) by
calling .describe().

[29]: automl_with_ensembling.best_pipeline.describe()

* Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler *

Problem Type: binary
Model Family: Linear
Number of features: 30

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : knn
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

3. Standard Scaler
4. Elastic Net Classifier

* penalty : elasticnet
* C : 8.474044870453413
* l1_ratio : 0.6235636967859725
* n_jobs : -1
* multi_class : auto
* solver : saga

102 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

4.1.11 AutoML Algorithms

EvalML currently has two algorithms available for users to choose from. Below, we will run through how each algorithm
works and how to access them through AutoMLSearch as well as the top level search methods.

IterativeAlgorithm

IterativeAlgorithm is the first AutoML Algorithm created in EvalML and can be acessed with the
search_iterative method or specifiying AutoMLSearch(automl_algorithm='iterative'). The algorithm
works as follows:

• Every batch (after the initial baseline model) contains pipelines of all available estimators for the specified prob-
lem type

• Pipelines contain preprocessing (imputing, encoding, etc.) needed for machine learning but no feature selection
is applied

• Ensembling can be turned on by passing in the ensembling=True parameter and will be run after a whole cycle
of training has occurred (each allowed pipeline trains for one batch)

[30]: import evalml

X, y = evalml.demos.load_fraud(n_rows=250)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 250
Targets
False 88.40%
True 11.60%
Name: count, dtype: object

[31]: from evalml.automl import search_iterative

top level search method will run `AutoMLSearch` with `IterativeAlgorithm` as well as␣
→˓apply our default data checks
auto_iterative, messages_iterative = search_iterative(X, y, problem_type="binary")

[32]: from evalml import AutoMLSearch

auto_iterative = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
automl_algorithm="iterative",
verbose=True,

)
auto_iterative.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency', 'expiration_date'] because they are of 'Unknown' type

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 103

EvalML Documentation, Release 0.80.0

(continued from previous page)

Generating pipelines to search over...
6 pipelines ready for search.
Using default limit of max_batches=1.

* Beginning pipeline search *

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families: linear_model, linear_model, xgboost, lightgbm, random_forest,␣
→˓extra_trees

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 4.181

* Evaluating Batch Number 1 *

Elastic Net Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣
→˓+ Imputer + One Hot Encoder + Oversampler + Standard Scaler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.429

Logistic Regression Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.429

XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer +␣
→˓Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.266

[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000066 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

104 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 105

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000062 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12

(continues on next page)

106 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 107

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 118
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds. (continues on next page)

108 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 147, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389
[LightGBM] [Info] Start training from score -1.403389
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 109

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

110 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer +␣
→˓Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.325

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.287

Extra Trees Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣
→˓+ Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.347

Search finished after 20.50 seconds
Best pipeline: XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler
Best pipeline Log Loss Binary: 0.266464

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[32]: {1: {'Elastic Net Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler': 3.
→˓290501356124878,
'Logistic Regression Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣

→˓Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler': 3.
→˓316211462020874,
'XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣

→˓+ Imputer + One Hot Encoder + Oversampler': 2.945275068283081,
'LightGBM Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣

→˓+ Imputer + One Hot Encoder + Oversampler': 2.6253421306610107,
'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣

→˓Featurizer + Imputer + One Hot Encoder + Oversampler': 3.277402877807617,
'Extra Trees Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣

→˓Featurizer + Imputer + One Hot Encoder + Oversampler': 3.8431999683380127,
'Total time of batch': 19.91035509109497}}

DefaultAlgorithm

DefaultAlgorithm was designed to do three main things:

1. Abstract out more parameters and decisions from the user.

2. Perform deeper tuning for high performing pipelines.

3. Create a platform to introduce feature selection as well as other potential techniques/heuristics for AutoML.

DefaultAlgorithm does this by creating the concept of two modes: fast and long, where fast is a subset of long.
The algorithm runs as follows:

1. Run naive pipelines:

4.1. Automated Machine Learning (AutoML) Search 111

EvalML Documentation, Release 0.80.0

a. a random forest pipeline with the default preprocessing pipeline

2. Run the same pipelines, this time with feature selection. Subsequent pipelines will use the selected features with
a SelectedColumns transformer.

3. Run all pipelines with preprocessing components:

a. scan rest of estimators (IterativeAlgorithm batch 1).

4. First ensembling run

Fast mode ends here. Begin long mode.

6. Run top 3 estimators:

a. Generate 50 random parameter sets. Run all 150 in one batch

7. Second ensembling run

8. Repeat 8a and 8b indefinitely until the specified time in AutoMLSearch is met:

a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one batch

b. Run ensembling

To this end, it is recommended to use the top level search() method to run DefaultAlgorithm. This allows users to
specify running search with just the mode parameter, where fast is recommended for users who want a fast scan at how
EvalML pipelines will perform on their problem and where long is reserved for a deeper dive into high performing
pipelines. If one needs finer control over AutoML parameters, one can also specify automl_algorithm='default'
using AutoMLSearch and it will default to using fast mode. However, in this case ensembling will be defined
by the ensembling flag (if ensembling=False the abovementioned ensembling batches will be skipped). Users
are welcome to select max_batches according to the algorithm above (or other stopping criteria) but should be
aware that results may not be optimal if the algorithm does not run for the full length of fast mode. Note that the
allowed_model_families and excluded_model_families parameters are only applied to the non-naive batches
in the default algorithms. If users want to apply these to all estimators, use the iterative algorithm by specifying
automl_algorithm='iterative'.

[33]: from evalml.automl import search

top level search method will run `AutoMLSearch` with `IterativeAlgorithm` as well as␣
→˓apply our default data checks
auto_default, messages_default = search(X, y, problem_type="binary", mode="fast")

[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000093 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

112 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 113

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

114 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 115

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 118
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.

(continues on next page)

116 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 147, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389
[LightGBM] [Info] Start training from score -1.403389
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 117

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

118 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 44, number of negative: 177
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000070 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 296
[LightGBM] [Info] Number of data points in the train set: 221, number of used features:␣
→˓18
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.199095 -> initscore=-1.391960
[LightGBM] [Info] Start training from score -1.391960
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 119

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

120 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[34]: from evalml import AutoMLSearch

auto_default = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
automl_algorithm="default",
ensembling=True,
verbose=True,

)
auto_default.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency', 'expiration_date'] because they are of 'Unknown' type
Using default limit of max_batches=3.

* Beginning pipeline search *

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 3 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 4.181

* Evaluating Batch Number 1 *

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.282

* Evaluating Batch Number 2 *

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 121

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000377 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

122 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 123

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

124 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 125

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 118
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000322 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 147, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389
[LightGBM] [Info] Start training from score -1.403389
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

126 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 127

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.325

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.348

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.422

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.266

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.422

* Evaluating Batch Number 3 *

(continues on next page)

128 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

Stacked Ensemble Classification Pipeline:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.238

Search finished after 34.30 seconds
[LightGBM] [Info] Number of positive: 44, number of negative: 177
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000071 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 296
[LightGBM] [Info] Number of data points in the train set: 221, number of used features:␣
→˓18
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.199095 -> initscore=-1.391960
[LightGBM] [Info] Start training from score -1.391960
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 129

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

130 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
Best pipeline: Stacked Ensemble Classification Pipeline
Best pipeline Log Loss Binary: 0.238485

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[34]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 4.356227397918701,
'Total time of batch': 4.488199234008789},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.834508180618286,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 4.066455125808716,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 3.698127508163452,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.14319109916687,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.6026413440704346,
'Total time of batch': 18.148832082748413},
3: {'Stacked Ensemble Classification Pipeline': 10.924249649047852,
'Total time of batch': 11.075061559677124}}

4.1. Automated Machine Learning (AutoML) Search 131

EvalML Documentation, Release 0.80.0

4.1.12 Pipeline differences

Through the search output above, we can see how pipelines differ between IterativeAlgorithm
and DefaultAlgorithm. This is because DefaultAlgorithm utilizes new components such as
RFRegressorSelectFromModel and other column selectors for feature selection as well as a new pipeline
structure to handle feature selection for categorical and non-categorical features.

[35]: auto_iterative.get_pipeline(4).graph()

[35]:

[36]: auto_default.get_pipeline(6).graph()

[36]:

4.1.13 Access raw results

The AutoMLSearch class records detailed results information under the results field, including information about
the cross-validation scoring and parameters.

[37]: import pprint

pp = pprint.PrettyPrinter(indent=0, width=100, depth=3, compact=True, sort_dicts=False)

pp.pprint(automl.results)

{'pipeline_results': {0: {'id': 0,
'pipeline_name': 'Mode Baseline Binary Classification Pipeline',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Baseline Classifier w/ Label Encoder',
'parameters': {...},
'mean_cv_score': 4.921248270190403,
'standard_deviation_cv_score': 0.11291020093698304,
'high_variance_cv': False,
'training_time': 0.7588338851928711,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 0,
'ranking_score': 4.990659700031606,
'ranking_additional_objectives': {...},
'holdout_score': 4.990659700031606},

1: {'id': 1,
'pipeline_name': 'Random Forest Classifier w/ Label Encoder +␣

→˓Drop Columns '
'Transformer + DateTime Featurizer + Imputer +␣

→˓One Hot '
'Encoder + Oversampler + RF Classifier Select␣

→˓From Model',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Random Forest Classifier w/ Label Encoder +␣

→˓Drop '
'Columns Transformer + DateTime Featurizer +␣

→˓Imputer + '
(continues on next page)

132 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

'One Hot Encoder + Oversampler + RF␣
→˓Classifier Select '

'From Model',
'parameters': {...},
'mean_cv_score': 0.25438195931603735,
'standard_deviation_cv_score': 0.045124093951054996,
'high_variance_cv': False,
'training_time': 6.487484931945801,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 94.83094643168255,
'ranking_score': 0.21914451718965428,
'ranking_additional_objectives': {...},
'holdout_score': 0.21914451718965428},

2: {'id': 2,
'pipeline_name': 'LightGBM Classifier w/ Label Encoder + Select␣

→˓Columns By '
'Type Transformer + Label Encoder + Drop Columns

→˓'
'Transformer + DateTime Featurizer + Imputer +␣

→˓Select '
'Columns Transformer + Select Columns␣

→˓Transformer + Label '
'Encoder + Imputer + One Hot Encoder +␣

→˓Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'LightGBM Classifier w/ Label Encoder +␣

→˓Select Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns '
'Transformer + DateTime Featurizer + Imputer␣

→˓+ Select '
'Columns Transformer + Select Columns␣

→˓Transformer + '
'Label Encoder + Imputer + One Hot Encoder + '
'Oversampler',

'parameters': {...},
'mean_cv_score': 0.2999710030621828,
'standard_deviation_cv_score': 0.2061756997312182,
'high_variance_cv': False,
'training_time': 3.988393783569336,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 93.90457488440069,
'ranking_score': 0.1609546813582899,
'ranking_additional_objectives': {...},
'holdout_score': 0.1609546813582899},

3: {'id': 3,
'pipeline_name': 'Extra Trees Classifier w/ Label Encoder +␣

→˓Select Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns ' (continues on next page)

4.1. Automated Machine Learning (AutoML) Search 133

EvalML Documentation, Release 0.80.0

(continued from previous page)

'Transformer + DateTime Featurizer + Imputer +␣
→˓Select '

'Columns Transformer + Select Columns␣
→˓Transformer + Label '

'Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler',

'pipeline_class': <class 'evalml.pipelines.binary_classification_
→˓pipeline.BinaryClassificationPipeline'>,

'pipeline_summary': 'Extra Trees Classifier w/ Label Encoder +␣
→˓Select '

'Columns By Type Transformer + Label Encoder␣
→˓+ Drop '

'Columns Transformer + DateTime Featurizer +␣
→˓Imputer + '

'Select Columns Transformer + Select Columns '
'Transformer + Label Encoder + Imputer + One␣

→˓Hot '
'Encoder + Oversampler',

'parameters': {...},
'mean_cv_score': 0.36134054274378125,
'standard_deviation_cv_score': 0.021758185101253727,
'high_variance_cv': False,
'training_time': 5.9230005741119385,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.65754290567824,
'ranking_score': 0.3484078428021002,
'ranking_additional_objectives': {...},
'holdout_score': 0.3484078428021002},

4: {'id': 4,
'pipeline_name': 'Elastic Net Classifier w/ Label Encoder +␣

→˓Select Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns '
'Transformer + DateTime Featurizer + Imputer +␣

→˓Standard '
'Scaler + Select Columns Transformer + Select␣

→˓Columns '
'Transformer + Label Encoder + Imputer + One Hot␣

→˓Encoder + '
'Standard Scaler + Oversampler',

'pipeline_class': <class 'evalml.pipelines.binary_classification_
→˓pipeline.BinaryClassificationPipeline'>,

'pipeline_summary': 'Elastic Net Classifier w/ Label Encoder +␣
→˓Select '

'Columns By Type Transformer + Label Encoder␣
→˓+ Drop '

'Columns Transformer + DateTime Featurizer +␣
→˓Imputer + '

'Standard Scaler + Select Columns Transformer␣
→˓+ Select '

'Columns Transformer + Label Encoder +␣
→˓Imputer + One ' (continues on next page)

134 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

'Hot Encoder + Standard Scaler + Oversampler',
'parameters': {...},
'mean_cv_score': 0.37472485974788244,
'standard_deviation_cv_score': 0.050026569255638,
'high_variance_cv': False,
'training_time': 5.342469215393066,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.38557294461829,
'ranking_score': 0.4003754206567058,
'ranking_additional_objectives': {...},
'holdout_score': 0.4003754206567058},

5: {'id': 5,
'pipeline_name': 'XGBoost Classifier w/ Label Encoder + Select␣

→˓Columns By '
'Type Transformer + Label Encoder + Drop Columns

→˓'
'Transformer + DateTime Featurizer + Imputer +␣

→˓Select '
'Columns Transformer + Select Columns␣

→˓Transformer + Label '
'Encoder + Imputer + One Hot Encoder +␣

→˓Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'XGBoost Classifier w/ Label Encoder + Select␣

→˓Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns '
'Transformer + DateTime Featurizer + Imputer␣

→˓+ Select '
'Columns Transformer + Select Columns␣

→˓Transformer + '
'Label Encoder + Imputer + One Hot Encoder + '
'Oversampler',

'parameters': {...},
'mean_cv_score': 0.2569503163235051,
'standard_deviation_cv_score': 0.13717967037488366,
'high_variance_cv': False,
'training_time': 4.824225664138794,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 94.77875729456821,
'ranking_score': 0.14241700777377544,
'ranking_additional_objectives': {...},
'holdout_score': 0.14241700777377544},

6: {'id': 6,
'pipeline_name': 'Logistic Regression Classifier w/ Label Encoder␣

→˓+ Select '
'Columns By Type Transformer + Label Encoder +␣

→˓Drop '
'Columns Transformer + DateTime Featurizer +␣

→˓Imputer + ' (continues on next page)

4.1. Automated Machine Learning (AutoML) Search 135

EvalML Documentation, Release 0.80.0

(continued from previous page)

'Standard Scaler + Select Columns Transformer +␣
→˓Select '

'Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot '

'Encoder + Standard Scaler + Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Logistic Regression Classifier w/ Label␣

→˓Encoder + '
'Select Columns By Type Transformer + Label␣

→˓Encoder + '
'Drop Columns Transformer + DateTime␣

→˓Featurizer + '
'Imputer + Standard Scaler + Select Columns␣

→˓Transformer '
'+ Select Columns Transformer + Label Encoder␣

→˓+ Imputer '
'+ One Hot Encoder + Standard Scaler +␣

→˓Oversampler',
'parameters': {...},
'mean_cv_score': 0.3743635904964204,
'standard_deviation_cv_score': 0.04992524856036527,
'high_variance_cv': False,
'training_time': 7.436560392379761,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.39291395307035,
'ranking_score': 0.40158056138768455,
'ranking_additional_objectives': {...},
'holdout_score': 0.40158056138768455}},

'search_order': [0, 1, 2, 3, 4, 5, 6]}

If there are errors, such as with the Iterative Algorithm example above, we can examine these closer by accessing the
errors field. There is one dictionary entry per pipeline fold that failed, and each entry contains the pipeline parameters
with the error that was thrown and its full traceback.

[38]: auto_iterative.errors

[38]: {}

136 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

4.1.14 Parallel AutoML

By default, all pipelines in an AutoML batch are evaluated in series. Pipelines can be evaluated in parallel to improve
performance during AutoML search. This is accomplished by a futures style submission and evaluation of pipelines
in a batch. As of this writing, the pipelines use a threaded model for concurrent evaluation. This is similar to the
currently implemented n_jobs parameter in the estimators, which uses increased numbers of threads to train and
evaluate estimators.

Quick Start

To quickly use some parallelism to enhance the pipeline searching, a string can be passed through to AutoMLSearch
during initialization to setup the parallel engine and client within the AutoMLSearch object. The current options are
“cf_threaded”, “cf_process”, “dask_threaded” and “dask_process” and indicate the futures backend to use and whether
to use threaded- or process-level parallelism.

[39]: automl_cf_threaded = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine="cf_threaded",

)
automl_cf_threaded.search(interactive_plot=False)
automl_cf_threaded.close_engine()

Parallelism with Concurrent Futures

The EngineBase class is robust and extensible enough to support futures-like implementations from a variety
of libraries. The CFEngine extends the EngineBase to use the native Python concurrent.futures library. The
CFEngine supports both thread- and process-level parallelism. The type of parallelism can be chosen using either
the ThreadPoolExecutor or the ProcessPoolExecutor. If either executor is passed a max_workers parameter,
it will set the number of processes and threads spawned. If not, the default number of processes will be equal to the
number of processors available and the number of threads set to five times the number of processors available.

Here, the CFEngine is invoked with default parameters, which is threaded parallelism using all available threads.

[40]: from concurrent.futures import ThreadPoolExecutor

from evalml.automl.engine.cf_engine import CFEngine, CFClient

cf_engine = CFEngine(CFClient(ThreadPoolExecutor(max_workers=4)))
automl_cf_threaded = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=cf_engine,

)
automl_cf_threaded.search(interactive_plot=False)
automl_cf_threaded.close_engine()

Note: the cell demonstrating process-level parallelism is a markdown due to incompatibility with our ReadTheDocs
build. It can be run successfully locally.

4.1. Automated Machine Learning (AutoML) Search 137

https://docs.python.org/3/library/concurrent.futures.html

EvalML Documentation, Release 0.80.0

from concurrent.futures import ProcessPoolExecutor

Repeat the process but using process-level parallelism\
cf_engine = CFEngine(CFClient(ProcessPoolExecutor(max_workers=2)))
automl_cf_process = AutoMLSearch(X_train=X, y_train=y,

problem_type="binary",
engine="cf_process")

automl_cf_process.search(interactive_plot = False)
automl_cf_process.close_engine()

Parallelism with Dask

Thread or process level parallelism can be explicitly invoked for the DaskEngine (as well as the CFEngine). The
processes can be set to True and the number of processes set using n_workers. If processes is set to False, then
the resulting parallelism will be threaded and n_workers will represent the threads used. Examples of both follow.

[41]: from dask.distributed import LocalCluster

from evalml.automl.engine import DaskEngine

dask_engine_p2 = DaskEngine(cluster=LocalCluster(processes=True, n_workers=2))
automl_dask_p2 = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=dask_engine_p2,

)
automl_dask_p2.search(interactive_plot=False)

Explicitly shutdown the automl object's LocalCluster
automl_dask_p2.close_engine()

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

(continues on next page)

138 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.

[42]: dask_engine_t4 = DaskEngine(cluster=LocalCluster(processes=False, n_workers=4))

automl_dask_t4 = AutoMLSearch(
X_train=X,
y_train=y,

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 139

EvalML Documentation, Release 0.80.0

(continued from previous page)

problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=dask_engine_t4,

)
automl_dask_t4.search(interactive_plot=False)
automl_dask_t4.close_engine()

As we can see, a significant performance gain can result from simply using something other than the default
SequentialEngine, ranging from a 100% speed up with multiple processes to 500% speedup with multiple threads!

[43]: print("Sequential search duration: %s" % str(automl.search_duration))
print(

"Concurrent futures (threaded) search duration: %s"
% str(automl_cf_threaded.search_duration)

)
print("Dask (two processes) search duration: %s" % str(automl_dask_p2.search_duration))
print("Dask (four threads)search duration: %s" % str(automl_dask_t4.search_duration))

Sequential search duration: 36.022363901138306
Concurrent futures (threaded) search duration: 13.98148226737976
Dask (two processes) search duration: 21.20076012611389
Dask (four threads)search duration: 16.483511209487915

4.2 Pipelines

EvalML pipelines represent a sequence of operations to be applied to data, where each operation is either a data trans-
formation or an ML modeling algorithm.

A pipeline holds a combination of one or more components, which will be applied to new input data in sequence.

Each component and pipeline supports a set of parameters which configure its behavior. The AutoML search process
seeks to find the combination of pipeline structure and pipeline parameters which perform the best on the data.

4.2.1 Defining a Pipeline Instance

Pipeline instances can be instantiated using any of the following classes:

• RegressionPipeline

• BinaryClassificationPipeline

• MulticlassClassificationPipeline

• TimeSeriesRegressionPipeline

• TimeSeriesBinaryClassificationPipeline

• TimeSeriesMulticlassClassificationPipeline

The class you want to use will depend on your problem type. The only required parameter input for instantiating a
pipeline instance is component_graph, which can be a ComponentGraph instance, a list, or a dictionary containing a
sequence of components to be fit and evaluated.

A component_graph list is the default representation, which represents a linear order of transforming components
with an estimator as the final component. A component_graph dictionary is used to represent a non-linear graph of

140 Chapter 4. User Guide

https://evalml.alteryx.com/en/stable/autoapi/evalml/pipelines/index.html#evalml.pipelines.ComponentGraph

EvalML Documentation, Release 0.80.0

components, where the key is a unique name for each component and the value is a list with the component’s class
as the first element and any parents of the component as the following element(s). For these two component_graph
formats, each component can be provided as a reference to the component class for custom components, and as either
a string name or as a reference to the component class for components defined in EvalML.

If you choose to provide a ComponentGraph instance and want to set custom parameters for your pipeline, set it through
the pipeline initialization rather than ComponentGraph.instantiate().

[1]: from evalml.pipelines import MulticlassClassificationPipeline, ComponentGraph

component_graph_as_list = ["Imputer", "Random Forest Classifier"]
MulticlassClassificationPipeline(component_graph=component_graph_as_list)

[1]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'Random Forest Classifier': ['Random Forest Classifier', 'Imputer.x', 'y']},␣
→˓parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_
→˓strategy': 'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value
→˓': None, 'numeric_fill_value': None, 'boolean_fill_value': None}, 'Random Forest␣
→˓Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

[2]: component_graph_as_dict = {
"Imputer": ["Imputer", "X", "y"],
"Encoder": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest Clf": ["Random Forest Classifier", "Encoder.x", "y"],
"Elastic Net Clf": ["Elastic Net Classifier", "Encoder.x", "y"],
"Final Estimator": [

"Logistic Regression Classifier",
"Random Forest Clf.x",
"Elastic Net Clf.x",
"y",

],
}

MulticlassClassificationPipeline(component_graph=component_graph_as_dict)

[2]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Random Forest Clf': ['Random␣
→˓Forest Classifier', 'Encoder.x', 'y'], 'Elastic Net Clf': ['Elastic Net Classifier',
→˓'Encoder.x', 'y'], 'Final Estimator': ['Logistic Regression Classifier', 'Random␣
→˓Forest Clf.x', 'Elastic Net Clf.x', 'y']}, parameters={'Imputer':{'categorical_impute_
→˓strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
→˓': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓'boolean_fill_value': None}, 'Encoder':{'top_n': 10, 'features_to_encode': None,
→˓'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing':
→˓'error'}, 'Random Forest Clf':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1},
→˓'Elastic Net Clf':{'penalty': 'elasticnet', 'C': 1.0, 'l1_ratio': 0.15, 'n_jobs': -1,
→˓'multi_class': 'auto', 'solver': 'saga'}, 'Final Estimator':{'penalty': 'l2', 'C': 1.0,
→˓ 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

[3]: cg = ComponentGraph(component_graph_as_dict)

set parameters in the pipeline rather than through cg.instantiate()
MulticlassClassificationPipeline(component_graph=cg, parameters={})

4.2. Pipelines 141

EvalML Documentation, Release 0.80.0

[3]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Random Forest Clf': ['Random␣
→˓Forest Classifier', 'Encoder.x', 'y'], 'Elastic Net Clf': ['Elastic Net Classifier',
→˓'Encoder.x', 'y'], 'Final Estimator': ['Logistic Regression Classifier', 'Random␣
→˓Forest Clf.x', 'Elastic Net Clf.x', 'y']}, parameters={'Imputer':{'categorical_impute_
→˓strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
→˓': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓'boolean_fill_value': None}, 'Encoder':{'top_n': 10, 'features_to_encode': None,
→˓'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing':
→˓'error'}, 'Random Forest Clf':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1},
→˓'Elastic Net Clf':{'penalty': 'elasticnet', 'C': 1.0, 'l1_ratio': 0.15, 'n_jobs': -1,
→˓'multi_class': 'auto', 'solver': 'saga'}, 'Final Estimator':{'penalty': 'l2', 'C': 1.0,
→˓ 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

If you’re using your own custom components you can refer to them like so:

[4]: from evalml.pipelines.components import Transformer

class NewTransformer(Transformer):
name = "New Transformer"
hyperparameter_ranges = {"parameter_1": ["a", "b", "c"]}

def __init__(self, parameter_1=1, random_seed=0):
parameters = {"parameter_1": parameter_1}
super().__init__(parameters=parameters, random_seed=random_seed)

def transform(self, X, y=None):
Your code here!
return X

MulticlassClassificationPipeline([NewTransformer, "Random Forest Classifier"])

[4]: pipeline = MulticlassClassificationPipeline(component_graph={'New Transformer':␣
→˓[NewTransformer, 'X', 'y'], 'Random Forest Classifier': ['Random Forest Classifier',
→˓'New Transformer.x', 'y']}, parameters={'New Transformer':{'parameter_1': 1}, 'Random␣
→˓Forest Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

4.2.2 Pipeline Usage

All pipelines define the following methods:

• fit fits each component on the provided training data, in order.

• predict computes the predictions of the component graph on the provided data.

• score computes the value of an objective on the provided data.

[5]: from evalml.demos import load_wine

X, y = load_wine()

pipeline = MulticlassClassificationPipeline(
(continues on next page)

142 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

component_graph={
"Label Encoder": ["Label Encoder", "X", "y"],
"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Random Forest Classifier": [

"Random Forest Classifier",
"Imputer.x",
"Label Encoder.y",

],
}

)
pipeline.fit(X, y)
print(pipeline.predict(X))
print(pipeline.score(X, y, objectives=["log loss multiclass"]))

Number of Features
Numeric 13

Number of training examples: 178
Targets
class_1 39.89%
class_0 33.15%
class_2 26.97%
Name: count, dtype: object
0 class_0
1 class_0
2 class_0
3 class_0
4 class_0

...
173 class_2
174 class_2
175 class_2
176 class_2
177 class_2
Length: 178, dtype: category
Categories (3, object): ['class_0', 'class_1', 'class_2']
OrderedDict([('Log Loss Multiclass', 0.04132737017536072)])

4.2.3 Custom Name

By default, a pipeline’s name is created using the component graph that makes up the pipeline. E.g. A pipeline with
an imputer, one-hot encoder, and logistic regression classifier will have the name ‘Logistic Regression Classifier w/
Imputer + One Hot Encoder’.

If you’d like to override the pipeline’s name attribute, you can set the custom_name parameter when initalizing a
pipeline, like so:

[6]: component_graph = ["Imputer", "One Hot Encoder", "Logistic Regression Classifier"]
pipeline = MulticlassClassificationPipeline(component_graph)
print("Pipeline with default name:", pipeline.name)

(continues on next page)

4.2. Pipelines 143

EvalML Documentation, Release 0.80.0

(continued from previous page)

pipeline_with_name = MulticlassClassificationPipeline(
component_graph, custom_name="My cool custom pipeline"

)
print("Pipeline with custom name:", pipeline_with_name.name)

Pipeline with default name: Logistic Regression Classifier w/ Imputer + One Hot Encoder
Pipeline with custom name: My cool custom pipeline

4.2.4 Pipeline Parameters

You can also pass in custom parameters by using the parameters parameter, which will then be used when instan-
tiating each component in component_graph. The parameters dictionary needs to be in the format of a two-layered
dictionary where the key-value pairs are the component name and corresponding component parameters dictionary.
The component parameters dictionary consists of (parameter name, parameter values) key-value pairs.

An example will be shown below. The API reference for component parameters can also be found here.

[7]: parameters = {
"Imputer": {

"categorical_impute_strategy": "most_frequent",
"numeric_impute_strategy": "median",

},
"Logistic Regression Classifier": {

"penalty": "l2",
"C": 1.0,

},
}
component_graph = [

"Imputer",
"One Hot Encoder",
"Standard Scaler",
"Logistic Regression Classifier",

]
MulticlassClassificationPipeline(component_graph=component_graph, parameters=parameters)

[7]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'One Hot Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Standard Scaler': [
→˓'Standard Scaler', 'One Hot Encoder.x', 'y'], 'Logistic Regression Classifier': [
→˓'Logistic Regression Classifier', 'Standard Scaler.x', 'y']}, parameters={'Imputer':{
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'median',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Logistic Regression Classifier':{'penalty': 'l2
→˓', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

144 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

4.2.5 Pipeline Description

You can call .graph() to see each component and its parameters. Each component takes in data and feeds it to the
next.

[8]: component_graph = [
"Imputer",
"One Hot Encoder",
"Standard Scaler",
"Logistic Regression Classifier",

]
pipeline = MulticlassClassificationPipeline(

component_graph=component_graph, parameters=parameters
)
pipeline.graph()

[8]:

[9]: component_graph_as_dict = {
"Imputer": ["Imputer", "X", "y"],
"Encoder": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest Clf": ["Random Forest Classifier", "Encoder.x", "y"],
"Elastic Net Clf": ["Elastic Net Classifier", "Encoder.x", "y"],
"Final Estimator": [

"Logistic Regression Classifier",
"Random Forest Clf.x",
"Elastic Net Clf.x",
"y",

],
}

nonlinear_pipeline = MulticlassClassificationPipeline(
component_graph=component_graph_as_dict

)
nonlinear_pipeline.graph()

[9]:

You can see a textual representation of the pipeline by calling .describe():

[10]: pipeline.describe()

* Logistic Regression Classifier w/ Imputer + One Hot Encoder + Standard Scaler *

Problem Type: multiclass
Model Family: Linear

Pipeline Steps
==============
1. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : median
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None

(continues on next page)

4.2. Pipelines 145

EvalML Documentation, Release 0.80.0

(continued from previous page)

* numeric_fill_value : None
* boolean_fill_value : None

2. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

3. Standard Scaler
4. Logistic Regression Classifier

* penalty : l2
* C : 1.0
* n_jobs : -1
* multi_class : auto
* solver : lbfgs

[11]: nonlinear_pipeline.describe()

* Logistic Regression Classifier w/ Imputer + One Hot Encoder + Random Forest Classifier␣
→˓+ Elastic Net Classifier *

Problem Type: multiclass
Model Family: Linear

Pipeline Steps
==============
1. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

2. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

3. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

4. Elastic Net Classifier
* penalty : elasticnet
* C : 1.0
* l1_ratio : 0.15

(continues on next page)

146 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

* n_jobs : -1
* multi_class : auto
* solver : saga

5. Logistic Regression Classifier
* penalty : l2
* C : 1.0
* n_jobs : -1
* multi_class : auto
* solver : lbfgs

4.2.6 Component Graph

You can use pipeline.get_component(name) and provide the component name to access any component (API
reference here):

[12]: pipeline.get_component("Imputer")

[12]: Imputer(categorical_impute_strategy='most_frequent', numeric_impute_strategy='median',␣
→˓boolean_impute_strategy='most_frequent', categorical_fill_value=None, numeric_fill_
→˓value=None, boolean_fill_value=None)

[13]: nonlinear_pipeline.get_component("Elastic Net Clf")

[13]: ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15, n_jobs=-1, multi_class=
→˓'auto', solver='saga')

Alternatively, you can index directly into the pipeline to get a component

[14]: first_component = pipeline[0]
print(first_component.name)

Imputer

[15]: nonlinear_pipeline["Final Estimator"]

[15]: LogisticRegressionClassifier(penalty='l2', C=1.0, n_jobs=-1, multi_class='auto', solver=
→˓'lbfgs')

4.2.7 Pipeline Estimator

EvalML enforces that the last component of a linear pipeline is an estimator. You can access this estimator directly by
using pipeline.estimator.

[16]: pipeline.estimator

[16]: LogisticRegressionClassifier(penalty='l2', C=1.0, n_jobs=-1, multi_class='auto', solver=
→˓'lbfgs')

4.2. Pipelines 147

EvalML Documentation, Release 0.80.0

4.2.8 Input Feature Names

After a pipeline is fitted, you can access a pipeline’s input_feature_names attribute to obtain a dictionary containing
a list of feature names passed to each component of the pipeline. This could be especially useful for debugging where
a feature might have been dropped or detecting unexpected behavior.

[17]: pipeline = MulticlassClassificationPipeline(["Imputer", "Random Forest Classifier"])
pipeline.fit(X, y)
pipeline.input_feature_names

[17]: {'Imputer': ['alcohol',
'malic_acid',
'ash',
'alcalinity_of_ash',
'magnesium',
'total_phenols',
'flavanoids',
'nonflavanoid_phenols',
'proanthocyanins',
'color_intensity',
'hue',
'od280/od315_of_diluted_wines',
'proline'],
'Random Forest Classifier': ['alcohol',
'malic_acid',
'ash',
'alcalinity_of_ash',
'magnesium',
'total_phenols',
'flavanoids',
'nonflavanoid_phenols',
'proanthocyanins',
'color_intensity',
'hue',
'od280/od315_of_diluted_wines',
'proline']}

4.2.9 Binary Classification Pipeline Thresholds

For binary classification pipelines, you can choose to tune the decision boundary threshold, which allows the pipeline
to distinguish predictions from positive to negative. The default boundary, if none is set, is 0.5, which means that
predictions with a probability of >= 0.5 are classified as the positive class, while all others are negative.

You can use the binary classification pipeline’s optimize_thresholds method to choose the best threshold for
an objective, or it can be manually set. EvalML’s AutoMLSearch uses optimize_thresholds by default for
binary problems, and it uses F1 as the default objective to optimize on. This can be turned off by pass-
ing in optimize_thresholds=False, or you can changed the objective used by changing the objective or
alternate_thresholding_objective arguments.

[18]: from evalml.demos import load_breast_cancer
from evalml.pipelines import BinaryClassificationPipeline

X, y = load_breast_cancer()
(continues on next page)

148 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

X_to_predict = X.tail(10)

bcp = BinaryClassificationPipeline(
{

"Imputer": ["Imputer", "X", "y"],
"Label Encoder": ["Label Encoder", "Imputer.x", "y"],
"RFC": ["Random Forest Classifier", "Imputer.x", "Label Encoder.y"],

}
)
bcp.fit(X, y)

predict_proba = bcp.predict_proba(X_to_predict)
predict_proba

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object

[18]: benign malignant
559 0.925711 0.074289
560 0.939512 0.060488
561 0.991177 0.008823
562 0.010155 0.989845
563 0.000155 0.999845
564 0.000100 0.999900
565 0.000155 0.999845
566 0.011528 0.988472
567 0.000155 0.999845
568 0.994452 0.005548

[19]: # view the current threshold
print("The threshold is {}".format(bcp.threshold))

view the first few predictions
print(bcp.predict(X_to_predict))

The threshold is None
559 benign
560 benign
561 benign
562 malignant
563 malignant
564 malignant
565 malignant
566 malignant
567 malignant
568 benign
dtype: category

(continues on next page)

4.2. Pipelines 149

EvalML Documentation, Release 0.80.0

(continued from previous page)

Categories (2, object): ['benign', 'malignant']

Note that the default threshold above is None, which means that the pipeline defaults to using 0.5 as the threshold.

You can manually set the threshold as well:

[20]: # you can manually set the threshold
bcp.threshold = 0.99
view the threshold
print("The threshold is {}".format(bcp.threshold))

view the first few predictions
print(bcp.predict(X_to_predict))

The threshold is 0.99
559 benign
560 benign
561 benign
562 benign
563 malignant
564 malignant
565 malignant
566 benign
567 malignant
568 benign
Name: malignant, dtype: category
Categories (2, object): ['benign', 'malignant']

However, the best way to set the threshold is by using the pipeline’s optimize_threshold method. This takes in the
predicted values, as well as the true values and objective to optimize with, and it finds the best threshold to maximize
this objective value.

This method is best used with validation data, since optimizing on training data could lead to overfitting and optimizing
on test data would introduce large biases.

Below walks through threshold tuning using the F1 objective.

[21]: from evalml.objectives import F1

get predictions for positive class only
predict_proba = predict_proba.iloc[:, -1]
bcp.optimize_threshold(X_to_predict, y.tail(10), predict_proba, F1())

print("The new threshold is {}".format(bcp.threshold))

view the first few predictions
print(bcp.predict(X_to_predict))

The new threshold is 0.13521817340545206
559 benign
560 benign
561 benign
562 malignant
563 malignant
564 malignant

(continues on next page)

150 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

565 malignant
566 malignant
567 malignant
568 benign
Name: malignant, dtype: category
Categories (2, object): ['benign', 'malignant']

4.2.10 Grabbing rows near the decision boundary

For binary classification problems, you can also look at the rows closest to the decision boundary by using
rows_of_interest. This method returns the indices of interest, which can then be used to obtain the subset of
the data that falls closest to the decision boundary. This can help with further analysis of the model, and can give you
better understanding of what rows the model could be having trouble with.

rows_of_interest takes in an epsilon parameter (defaulted to 0.1), which determines which rows to return. The
rows that are returned are the rows where the probability of it being in the positive class fall between the threshold
+- epsilon range. Increase the epsilon value to get more rows, and decrease it to get fewer rows.

Below is a walkthrough of using rows_of_interest, building off the previous pipeline which is already thresholded.

[22]: from evalml.pipelines.utils import rows_of_interest

indices = rows_of_interest(bcp, X, y, types="all")
X.iloc[indices].head()

[22]: mean radius mean texture mean perimeter mean area mean smoothness \
375 16.17 16.07 106.30 788.5 0.09880
472 14.92 14.93 96.45 686.9 0.08098
191 12.77 21.41 82.02 507.4 0.08749
290 14.41 19.73 96.03 651.0 0.08757
413 14.99 22.11 97.53 693.7 0.08515

mean compactness mean concavity mean concave points mean symmetry \
375 0.14380 0.06651 0.05397 0.1990
472 0.08549 0.05539 0.03221 0.1687
191 0.06601 0.03112 0.02864 0.1694
290 0.16760 0.13620 0.06602 0.1714
413 0.10250 0.06859 0.03876 0.1944

mean fractal dimension ... worst radius worst texture \
375 0.06572 ... 16.97 19.14
472 0.05669 ... 17.18 18.22
191 0.06287 ... 13.75 23.50
290 0.07192 ... 15.77 22.13
413 0.05913 ... 16.76 31.55

worst perimeter worst area worst smoothness worst compactness \
375 113.10 861.5 0.12350 0.25500
472 112.00 906.6 0.10650 0.27910
191 89.04 579.5 0.09388 0.08978
290 101.70 767.3 0.09983 0.24720
413 110.20 867.1 0.10770 0.33450

(continues on next page)

4.2. Pipelines 151

EvalML Documentation, Release 0.80.0

(continued from previous page)

worst concavity worst concave points worst symmetry \
375 0.21140 0.12510 0.3153
472 0.31510 0.11470 0.2688
191 0.05186 0.04773 0.2179
290 0.22200 0.10210 0.2272
413 0.31140 0.13080 0.3163

worst fractal dimension
375 0.08960
472 0.08273
191 0.06871
290 0.08799
413 0.09251

[5 rows x 30 columns]

You can see what the probabilities are for these rows to determine how close they are to the new pipeline threshold. X
is used here for brevity.

[23]: pred_proba = bcp.predict_proba(X)
pos_value_proba = pred_proba.iloc[:, -1]
pos_value_proba.iloc[indices].head()

[23]: 375 0.133328
472 0.130808
191 0.128998
290 0.127939
413 0.149718
Name: malignant, dtype: float64

4.2.11 Saving and Loading Pipelines

You can save and load trained or untrained pipeline instances using the Python pickle format, like so:

[24]: import pickle

pipeline_to_pickle = BinaryClassificationPipeline(
["Imputer", "Random Forest Classifier"]

)

with open("pipeline.pkl", "wb") as f:
pickle.dump(pipeline_to_pickle, f)

pickled_pipeline = None
with open("pipeline.pkl", "rb") as f:

pickled_pipeline = pickle.load(f)

assert pickled_pipeline == pipeline_to_pickle
pickled_pipeline.fit(X, y)

[24]: pipeline = BinaryClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X', 'y
→˓'], 'Random Forest Classifier': ['Random Forest Classifier', 'Imputer.x', 'y']},␣
→˓parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_
→˓strategy': 'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value
→˓': None, 'numeric_fill_value': None, 'boolean_fill_value': None}, 'Random Forest␣
→˓Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

(continues on next page)

152 Chapter 4. User Guide

https://docs.python.org/3/library/pickle.html#:~:text=%E2%80%9CPickling%E2%80%9D%20is%20the%20process%20whereby,back%20into%20an%20object%20hierarchy.

EvalML Documentation, Release 0.80.0

(continued from previous page)

4.2.12 Generate Code

Once you have instantiated a pipeline, you can generate string Python code to recreate this pipeline, which can then be
saved and run elsewhere with EvalML. generate_pipeline_code requires a pipeline instance as the input. It can
also handle custom components, but it won’t return the code required to define the component. Note that any external
libraries used in creating the pipeline instance will also need to be imported to execute the returned code.

Code generation is not yet supported for nonlinear pipelines.

[25]: from evalml.pipelines.utils import generate_pipeline_code
from evalml.pipelines import BinaryClassificationPipeline
import pandas as pd
from evalml.utils import infer_feature_types
from skopt.space import Integer

class MyDropNullColumns(Transformer):
"""Transformer to drop features whose percentage of NaN values exceeds a specified␣

→˓threshold"""

name = "My Drop Null Columns Transformer"
hyperparameter_ranges = {}

def __init__(self, pct_null_threshold=1.0, random_seed=0, **kwargs):
"""Initalizes an transformer to drop features whose percentage of NaN values␣

→˓exceeds a specified threshold.

Args:
pct_null_threshold(float): The percentage of NaN values in an input feature␣

→˓to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop␣

→˓columns with any null values.
If equal to 1.0, will drop columns with all null values. Defaults to 0.

→˓95.
"""
if pct_null_threshold < 0 or pct_null_threshold > 1:

raise ValueError(
"pct_null_threshold must be a float between 0 and 1, inclusive."

)
parameters = {"pct_null_threshold": pct_null_threshold}
parameters.update(kwargs)

self._cols_to_drop = None
super().__init__(

parameters=parameters, component_obj=None, random_seed=random_seed
)

def fit(self, X, y=None):
pct_null_threshold = self.parameters["pct_null_threshold"]
X = infer_feature_types(X)

(continues on next page)

4.2. Pipelines 153

EvalML Documentation, Release 0.80.0

(continued from previous page)

percent_null = X.isnull().mean()
if pct_null_threshold == 0.0:

null_cols = percent_null[percent_null > 0]
else:

null_cols = percent_null[percent_null >= pct_null_threshold]
self._cols_to_drop = list(null_cols.index)
return self

def transform(self, X, y=None):
"""Transforms data X by dropping columns that exceed the threshold of null␣

→˓values.
Args:

X (pd.DataFrame): Data to transform
y (pd.Series, optional): Targets

Returns:
pd.DataFrame: Transformed X

"""

X = infer_feature_types(X)
return X.drop(columns=self._cols_to_drop)

pipeline_instance = BinaryClassificationPipeline(
[

"Imputer",
MyDropNullColumns,
"DateTime Featurizer",
"Natural Language Featurizer",
"One Hot Encoder",
"Random Forest Classifier",

],
custom_name="Pipeline with Custom Component",
random_seed=20,

)

code = generate_pipeline_code(pipeline_instance)
print(code)

This string can then be pasted into a separate window and run, although since the␣
→˓pipeline has custom component `MyDropNullColumns`,
the code for that component must also be included
from evalml.demos import load_fraud

X, y = load_fraud(1000)
exec(code)
pipeline.fit(X, y)

from evalml.pipelines.binary_classification_pipeline import BinaryClassificationPipeline

pipeline = BinaryClassificationPipeline(
component_graph={

"Imputer": ["Imputer", "X", "y"],
(continues on next page)

154 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

"My Drop Null Columns Transformer": [MyDropNullColumns, "Imputer.x", "y"],
"DateTime Featurizer": [

"DateTime Featurizer",
"My Drop Null Columns Transformer.x",
"y",

],
"Natural Language Featurizer": [

"Natural Language Featurizer",
"DateTime Featurizer.x",
"y",

],
"One Hot Encoder": ["One Hot Encoder", "Natural Language Featurizer.x", "y"],
"Random Forest Classifier": [

"Random Forest Classifier",
"One Hot Encoder.x",
"y",

],
},
parameters={

"Imputer": {
"categorical_impute_strategy": "most_frequent",
"numeric_impute_strategy": "mean",
"boolean_impute_strategy": "most_frequent",
"categorical_fill_value": None,
"numeric_fill_value": None,
"boolean_fill_value": None,

},
"My Drop Null Columns Transformer": {"pct_null_threshold": 1.0},
"DateTime Featurizer": {

"features_to_extract": ["year", "month", "day_of_week", "hour"],
"encode_as_categories": False,
"time_index": None,

},
"One Hot Encoder": {

"top_n": 10,
"features_to_encode": None,
"categories": None,
"drop": "if_binary",
"handle_unknown": "ignore",
"handle_missing": "error",

},
"Random Forest Classifier": {"n_estimators": 100, "max_depth": 6, "n_jobs": -1},

},
custom_name="Pipeline with Custom Component",
random_seed=20,

)

Number of Features
Boolean 1
Categorical 6
Numeric 5

(continues on next page)

4.2. Pipelines 155

EvalML Documentation, Release 0.80.0

(continued from previous page)

Number of training examples: 1000
Targets
False 85.90%
True 14.10%
Name: count, dtype: object

[25]: pipeline = BinaryClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X', 'y
→˓'], 'My Drop Null Columns Transformer': [MyDropNullColumns, 'Imputer.x', 'y'],
→˓'DateTime Featurizer': ['DateTime Featurizer', 'My Drop Null Columns Transformer.x', 'y
→˓'], 'Natural Language Featurizer': ['Natural Language Featurizer', 'DateTime␣
→˓Featurizer.x', 'y'], 'One Hot Encoder': ['One Hot Encoder', 'Natural Language␣
→˓Featurizer.x', 'y'], 'Random Forest Classifier': ['Random Forest Classifier', 'One Hot␣
→˓Encoder.x', 'y']}, parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent
→˓', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent',
→˓'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value': None}
→˓, 'My Drop Null Columns Transformer':{'pct_null_threshold': 1.0}, 'DateTime Featurizer
→˓':{'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_as_
→˓categories': False, 'time_index': None}, 'One Hot Encoder':{'top_n': 10, 'features_to_
→˓encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore',
→˓'handle_missing': 'error'}, 'Random Forest Classifier':{'n_estimators': 100, 'max_depth
→˓': 6, 'n_jobs': -1}}, custom_name='Pipeline with Custom Component', random_seed=20)

4.3 Component Graphs

EvalML component graphs represent and describe the flow of data in a collection of related components. A component
graph is comprised of nodes representing components, and edges between pairs of nodes representing where the inputs
and outputs of each component should go. It is the backbone of the features offered by the EvalML pipeline, but is
also a powerful data structure on its own. EvalML currently supports component graphs as linear and directed acyclic
graphs (DAG).

4.3.1 Defining a Component Graph

Component graphs can be defined by specifying the dictionary of components and edges that describe the graph.

In this dictionary, each key is a reference name for a component. Each corresponding value is a list, where the first
element is the component itself, and the remaining elements are the input edges that should be connected to that
component. The component as listed in the value can either be the component object itself or its string name.

This stucture is very similar to that of Dask computation graphs.

For example, in the code example below, we have a simple component graph made up of two components: an Imputer
and a Random Forest Classifer. The names used to reference these two components are given by the keys, “My Im-
puter” and “RF Classifier” respectively. Each value in the dictionary is a list where the first element is the component
corresponding to the component name, and the remaining elements are the inputs, e.g. “My Imputer” represents an
Imputer component which has inputs “X” (the original features matrix) and “y” (the original target).

Feature edges are specified as "X" or "{component_name}.x". For example, {"My Component": [MyComponent,
"Imputer.x", ...]} indicates that we should use the feature output of the Imputer as as part of the feature in-
put for MyComponent. Similarly, target edges are specified as "y" or "{component_name}.y". {"My Component
": [MyComponent, "Target Imputer.y", ...]} indicates that we should use the target output of the Target
Imputer as a target input for MyComponent.

156 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.dask.org/en/latest/spec.html

EvalML Documentation, Release 0.80.0

Each component can have a number of feature inputs, but can only have one target input. All input edges must be
explicitly defined.

Using a real example, we define a simple component graph consisting of three nodes: an Imputer (“My Imputer”), an
One-Hot Encoder (“OHE”), and a Random Forest Classifier (“RF Classifier”).

• “My Imputer” takes the original X as a features input, and the original y as the target input

• “OHE” also takes the original X as a features input, and the original y as the target input

• “RF Classifer” takes the concatted feature outputs from “My Imputer” and “OHE” as a features input, and the
original y as the target input.

[1]: from evalml.pipelines import ComponentGraph

component_dict = {
"My Imputer": ["Imputer", "X", "y"],
"OHE": ["One Hot Encoder", "X", "y"],
"RF Classifier": [

"Random Forest Classifier",
"My Imputer.x",
"OHE.x",
"y",

], # takes in multiple feature inputs
}
cg_simple = ComponentGraph(component_dict)

All component graphs must end with one final or terminus node. This can either be a transformer or an estimator.
Below, the component graph is invalid because has two terminus nodes: the “RF Classifier” and the “EN Classifier”.

[2]: # Can't instantiate a component graph with more than one terminus node (here: RF␣
→˓Classifier, EN Classifier)
component_dict = {

"My Imputer": ["Imputer", "X", "y"],
"RF Classifier": ["Random Forest Classifier", "My Imputer.x", "y"],
"EN Classifier": ["Elastic Net Classifier", "My Imputer.x", "y"],

}

Once we have defined a component graph, we can instantiate the graph with specific parameter values for each compo-
nent using .instantiate(parameters). All components in a component graph must be instantiated before fitting,
transforming, or predicting.

Below, we instantiate our graph and set the value of our Imputer’s numeric_impute_strategy to “most_frequent”.

[3]: cg_simple.instantiate({"My Imputer": {"numeric_impute_strategy": "most_frequent"}})

[3]: {'My Imputer': ['Imputer', 'X', 'y'], 'OHE': ['One Hot Encoder', 'X', 'y'], 'RF␣
→˓Classifier': ['Random Forest Classifier', 'My Imputer.x', 'OHE.x', 'y']}

4.3. Component Graphs 157

EvalML Documentation, Release 0.80.0

4.3.2 Components in the Component Graph

You can use .get_component(name) and provide the unique component name to access any component in the com-
ponent graph. Below, we can grab our Imputer component and confirm that numeric_impute_strategy has indeed
been set to “most_frequent”.

[4]: cg_simple.get_component("My Imputer")

[4]: Imputer(categorical_impute_strategy='most_frequent', numeric_impute_strategy='most_
→˓frequent', boolean_impute_strategy='most_frequent', categorical_fill_value=None,␣
→˓numeric_fill_value=None, boolean_fill_value=None)

You can also .get_inputs(name) and provide the unique component name to to retrieve all inputs for that component.

Below, we can grab our “RF Classifier” component and confirm that we use "My Imputer.x" as our features input
and "y" as target input.

[5]: cg_simple.get_inputs("RF Classifier")

[5]: ['My Imputer.x', 'OHE.x', 'y']

4.3.3 Component Graph Computation Order

Upon initalization, each component graph will generate a topological order. We can access this generated order by call-
ing the .compute_order attribute. This attribute is used to determine the order that components should be evaluated
during calls to fit and transform.

[6]: cg_simple.compute_order

[6]: ['My Imputer', 'OHE', 'RF Classifier']

4.3.4 Visualizing Component Graphs

We can get more information about an instantiated component graph by calling .describe(). This method will
pretty-print each of the components in the graph and its parameters.

[7]: # Using a more involved component graph with more complex edges
component_dict = {

"Imputer": ["Imputer", "X", "y"],
"Target Imputer": ["Target Imputer", "X", "y"],
"OneHot_RandomForest": ["One Hot Encoder", "Imputer.x", "Target Imputer.y"],
"OneHot_ElasticNet": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest": ["Random Forest Classifier", "OneHot_RandomForest.x", "y"],
"Elastic Net": [

"Elastic Net Classifier",
"OneHot_ElasticNet.x",
"Target Imputer.y",

],
"Logistic Regression": [

"Logistic Regression Classifier",
"Random Forest.x",
"Elastic Net.x",
"y",

(continues on next page)

158 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

],
}
cg_with_estimators = ComponentGraph(component_dict)
cg_with_estimators.instantiate({})
cg_with_estimators.describe()

1. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

2. Target Imputer
* impute_strategy : most_frequent
* fill_value : None

3. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

4. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

6. Elastic Net Classifier
* penalty : elasticnet
* C : 1.0
* l1_ratio : 0.15
* n_jobs : -1
* multi_class : auto
* solver : saga

7. Logistic Regression Classifier
* penalty : l2
* C : 1.0
* n_jobs : -1
* multi_class : auto
* solver : lbfgs

We can also visualize a component graph by calling .graph().

[8]: cg_with_estimators.graph()

4.3. Component Graphs 159

EvalML Documentation, Release 0.80.0

[8]:

4.3.5 Component graph methods

Similar to the pipeline structure, we can call fit, transform or predict.

We can also call fit_features which will fit all but the final component and
compute_final_component_features which will transform all but the final component. These two meth-
ods may be useful in cases where you want to understand what transformed features are being passed into the last
component.

[9]: from evalml.demos import load_breast_cancer

X, y = load_breast_cancer()
component_dict = {

"My Imputer": ["Imputer", "X", "y"],
"OHE": ["One Hot Encoder", "My Imputer.x", "y"],

}
cg_with_final_transformer = ComponentGraph(component_dict)
cg_with_final_transformer.instantiate({})
cg_with_final_transformer.fit(X, y)

We can call `transform` for ComponentGraphs with a final transformer
cg_with_final_transformer.transform(X, y)

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object

[9]: mean radius mean texture mean perimeter mean area mean smoothness \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960
3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030
..
564 21.56 22.39 142.00 1479.0 0.11100
565 20.13 28.25 131.20 1261.0 0.09780
566 16.60 28.08 108.30 858.1 0.08455
567 20.60 29.33 140.10 1265.0 0.11780
568 7.76 24.54 47.92 181.0 0.05263

mean compactness mean concavity mean concave points mean symmetry \
0 0.27760 0.30010 0.14710 0.2419
1 0.07864 0.08690 0.07017 0.1812
2 0.15990 0.19740 0.12790 0.2069
3 0.28390 0.24140 0.10520 0.2597
4 0.13280 0.19800 0.10430 0.1809
..

(continues on next page)

160 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

564 0.11590 0.24390 0.13890 0.1726
565 0.10340 0.14400 0.09791 0.1752
566 0.10230 0.09251 0.05302 0.1590
567 0.27700 0.35140 0.15200 0.2397
568 0.04362 0.00000 0.00000 0.1587

mean fractal dimension ... worst radius worst texture \
0 0.07871 ... 25.380 17.33
1 0.05667 ... 24.990 23.41
2 0.05999 ... 23.570 25.53
3 0.09744 ... 14.910 26.50
4 0.05883 ... 22.540 16.67
..
564 0.05623 ... 25.450 26.40
565 0.05533 ... 23.690 38.25
566 0.05648 ... 18.980 34.12
567 0.07016 ... 25.740 39.42
568 0.05884 ... 9.456 30.37

worst perimeter worst area worst smoothness worst compactness \
0 184.60 2019.0 0.16220 0.66560
1 158.80 1956.0 0.12380 0.18660
2 152.50 1709.0 0.14440 0.42450
3 98.87 567.7 0.20980 0.86630
4 152.20 1575.0 0.13740 0.20500
..
564 166.10 2027.0 0.14100 0.21130
565 155.00 1731.0 0.11660 0.19220
566 126.70 1124.0 0.11390 0.30940
567 184.60 1821.0 0.16500 0.86810
568 59.16 268.6 0.08996 0.06444

worst concavity worst concave points worst symmetry \
0 0.7119 0.2654 0.4601
1 0.2416 0.1860 0.2750
2 0.4504 0.2430 0.3613
3 0.6869 0.2575 0.6638
4 0.4000 0.1625 0.2364
..
564 0.4107 0.2216 0.2060
565 0.3215 0.1628 0.2572
566 0.3403 0.1418 0.2218
567 0.9387 0.2650 0.4087
568 0.0000 0.0000 0.2871

worst fractal dimension
0 0.11890
1 0.08902
2 0.08758
3 0.17300
4 0.07678
.. ...

(continues on next page)

4.3. Component Graphs 161

EvalML Documentation, Release 0.80.0

(continued from previous page)

564 0.07115
565 0.06637
566 0.07820
567 0.12400
568 0.07039

[569 rows x 30 columns]

[10]: cg_with_estimators.fit(X, y)

We can call `predict` for ComponentGraphs with a final transformer
cg_with_estimators.predict(X)

[10]: 0 malignant
1 malignant
2 malignant
3 malignant
4 malignant

...
564 malignant
565 malignant
566 malignant
567 malignant
568 benign
Length: 569, dtype: category
Categories (2, object): ['benign', 'malignant']

4.4 Components

Components are the lowest level of building blocks in EvalML. Each component represents a fundamental operation
to be applied to data.

All components accept parameters as keyword arguments to their __init__ methods. These parameters can be used
to configure behavior.

Each component class definition must include a human-readable name for the component. Additionally, each compo-
nent class may expose parameters for AutoML search by defining a hyperparameter_ranges attribute containing
the parameters in question.

EvalML splits components into two categories: transformers and estimators.

4.4.1 Transformers

Transformers subclass the Transformer class, and define a fit method to learn information from training data and a
transform method to apply a learned transformation to new data.

For example, an imputer is configured with the desired impute strategy to follow, for instance the mean value. The
imputers fit method would learn the mean from the training data, and the transform method would fill the learned
mean value in for any missing values in new data.

All transformers can execute fit and transform separately or in one step by calling fit_transform. Defining a
custom fit_transform method can facilitate useful performance optimizations in some cases.

162 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

[1]: import numpy as np
import pandas as pd
from evalml.pipelines.components import SimpleImputer

X = pd.DataFrame([[1, 2, 3], [1, np.nan, 3]])
display(X)

0 1 2
0 1 2.0 3
1 1 NaN 3

[2]: import woodwork as ww

imp = SimpleImputer(impute_strategy="mean")

X.ww.init()
X = imp.fit_transform(X)
display(X)

0 1 2
0 1 2.0 3
1 1 2.0 3

Below is a list of all transformers included with EvalML:

[3]: from evalml.pipelines.components.utils import all_components, Estimator, Transformer

for component in all_components():
if issubclass(component, Transformer):

print(f"Transformer: {component.name}")

Transformer: Time Series Regularizer
Transformer: Drop NaN Rows Transformer
Transformer: Replace Nullable Types Transformer
Transformer: Drop Rows Transformer
Transformer: URL Featurizer
Transformer: Email Featurizer
Transformer: Log Transformer
Transformer: STL Decomposer
Transformer: Polynomial Decomposer
Transformer: DFS Transformer
Transformer: Time Series Featurizer
Transformer: Natural Language Featurizer
Transformer: LSA Transformer
Transformer: Drop Null Columns Transformer
Transformer: DateTime Featurizer
Transformer: PCA Transformer
Transformer: Linear Discriminant Analysis Transformer
Transformer: Select Columns By Type Transformer
Transformer: Select Columns Transformer
Transformer: Drop Columns Transformer
Transformer: Oversampler
Transformer: Undersampler
Transformer: Standard Scaler

(continues on next page)

4.4. Components 163

EvalML Documentation, Release 0.80.0

(continued from previous page)

Transformer: Time Series Imputer
Transformer: Target Imputer
Transformer: Imputer
Transformer: KNN Imputer
Transformer: Per Column Imputer
Transformer: Simple Imputer
Transformer: RFE Selector with RF Regressor
Transformer: RFE Selector with RF Classifier
Transformer: RF Regressor Select From Model
Transformer: RF Classifier Select From Model
Transformer: Ordinal Encoder
Transformer: Label Encoder
Transformer: Target Encoder
Transformer: One Hot Encoder

4.4.2 Estimators

Each estimator wraps an ML algorithm. Estimators subclass the Estimator class, and define a fitmethod to learn in-
formation from training data and a predictmethod for generating predictions from new data. Classification estimators
should also define a predict_proba method for generating predicted probabilities.

Estimator classes each define a model_family attribute indicating what type of model is used.

Here’s an example of using the LogisticRegressionClassifier estimator to fit and predict on a simple dataset:

[4]: from evalml.pipelines.components import LogisticRegressionClassifier

clf = LogisticRegressionClassifier()

X = X
y = [1, 0]

clf.fit(X, y)
clf.predict(X)

[4]: 0 0
1 0
dtype: int64

Below is a list of all estimators included with EvalML:

[5]: from evalml.pipelines.components.utils import all_components, Estimator, Transformer

for component in all_components():
if issubclass(component, Estimator):

print(f"Estimator: {component.name}")

Estimator: Stacked Ensemble Regressor
Estimator: Stacked Ensemble Classifier
Estimator: Vowpal Wabbit Regressor
Estimator: VARMAX Regressor
Estimator: ARIMA Regressor
Estimator: Exponential Smoothing Regressor

(continues on next page)

164 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

Estimator: SVM Regressor
Estimator: Prophet Regressor
Estimator: Multiseries Time Series Baseline Regressor
Estimator: Time Series Baseline Estimator
Estimator: Decision Tree Regressor
Estimator: Baseline Regressor
Estimator: Extra Trees Regressor
Estimator: XGBoost Regressor
Estimator: CatBoost Regressor
Estimator: Random Forest Regressor
Estimator: LightGBM Regressor
Estimator: Linear Regressor
Estimator: Elastic Net Regressor
Estimator: Vowpal Wabbit Multiclass Classifier
Estimator: Vowpal Wabbit Binary Classifier
Estimator: SVM Classifier
Estimator: KNN Classifier
Estimator: Decision Tree Classifier
Estimator: LightGBM Classifier
Estimator: Baseline Classifier
Estimator: Extra Trees Classifier
Estimator: Elastic Net Classifier
Estimator: CatBoost Classifier
Estimator: XGBoost Classifier
Estimator: Random Forest Classifier
Estimator: Logistic Regression Classifier

4.4.3 Defining Custom Components

EvalML allows you to easily create your own custom components by following the steps below.

Custom Transformers

Your transformer must inherit from the correct subclass. In this case Transformer for components that transform data.
Next we will use EvalML’s DropNullColumns as an example.

[6]: from evalml.pipelines.components import Transformer
from evalml.utils import (

infer_feature_types,
)

class DropNullColumns(Transformer):
"""Transformer to drop features whose percentage of NaN values exceeds a specified␣

→˓threshold"""

name = "Drop Null Columns Transformer"
hyperparameter_ranges = {}

def __init__(self, pct_null_threshold=1.0, random_seed=0, **kwargs):
(continues on next page)

4.4. Components 165

EvalML Documentation, Release 0.80.0

(continued from previous page)

"""Initalizes an transformer to drop features whose percentage of NaN values␣
→˓exceeds a specified threshold.

Args:
pct_null_threshold(float): The percentage of NaN values in an input feature␣

→˓to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop␣

→˓columns with any null values.
If equal to 1.0, will drop columns with all null values. Defaults to 0.

→˓95.
"""
if pct_null_threshold < 0 or pct_null_threshold > 1:

raise ValueError(
"pct_null_threshold must be a float between 0 and 1, inclusive."

)
parameters = {"pct_null_threshold": pct_null_threshold}
parameters.update(kwargs)

self._cols_to_drop = None
super().__init__(

parameters=parameters, component_obj=None, random_seed=random_seed
)

def fit(self, X, y=None):
"""Fits DropNullColumns component to data

Args:
X (pd.DataFrame): The input training data of shape [n_samples, n_features]
y (pd.Series, optional): The target training data of length [n_samples]

Returns:
self

"""
pct_null_threshold = self.parameters["pct_null_threshold"]
X_t = infer_feature_types(X)
percent_null = X_t.isnull().mean()
if pct_null_threshold == 0.0:

null_cols = percent_null[percent_null > 0]
else:

null_cols = percent_null[percent_null >= pct_null_threshold]
self._cols_to_drop = list(null_cols.index)
return self

def transform(self, X, y=None):
"""Transforms data X by dropping columns that exceed the threshold of null␣

→˓values.

Args:
X (pd.DataFrame): Data to transform
y (pd.Series, optional): Ignored.

Returns:

(continues on next page)

166 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

pd.DataFrame: Transformed X
"""
X_t = infer_feature_types(X)
return X_t.drop(self._cols_to_drop)

Required fields

• name: A human-readable name.

• modifies_features: A boolean that specifies whether this component modifies (subsets or transforms) the
features variable during transform.

• modifies_target: A boolean that specifies whether this component modifies (subsets or transforms) the target
variable during transform.

Required methods

Likewise, there are select methods you need to override as Transformer is an abstract base class:

• __init__(): The __init__() method of your transformer will need to call super().__init__() and pass
three parameters in: a parameters dictionary holding the parameters to the component, the component_obj,
and the random_seed value. You can see that component_obj is set to None above and we will discuss
component_obj in depth later on.

• fit(): The fit() method is responsible for fitting your component on training data. It should return the
component object.

• transform(): After fitting a component, the transform() method will take in new data and transform ac-
cordingly. It should return a pandas dataframe with woodwork initialized. Note: a component must call fit()
before transform().

You can also call or override fit_transform() that combines fit() and transform() into one method.

Custom Estimators

Your estimator must inherit from the correct subclass. In this case Estimator for components that predict new target
values. Next we will use EvalML’s BaselineRegressor as an example.

[7]: import numpy as np
import pandas as pd

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes

class BaselineRegressor(Estimator):
"""Regressor that predicts using the specified strategy.

This is useful as a simple baseline regressor to compare with other regressors.
"""

(continues on next page)

4.4. Components 167

EvalML Documentation, Release 0.80.0

(continued from previous page)

name = "Baseline Regressor"
hyperparameter_ranges = {}
model_family = ModelFamily.BASELINE
supported_problem_types = [

ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,

]

def __init__(self, strategy="mean", random_seed=0, **kwargs):
"""Baseline regressor that uses a simple strategy to make predictions.

Args:
strategy (str): Method used to predict. Valid options are "mean", "median".␣

→˓Defaults to "mean".
random_seed (int): Seed for the random number generator. Defaults to 0.

"""
if strategy not in ["mean", "median"]:

raise ValueError(
"'strategy' parameter must equal either 'mean' or 'median'"

)
parameters = {"strategy": strategy}
parameters.update(kwargs)

self._prediction_value = None
self._num_features = None
super().__init__(

parameters=parameters, component_obj=None, random_seed=random_seed
)

def fit(self, X, y=None):
if y is None:

raise ValueError("Cannot fit Baseline regressor if y is None")
X = infer_feature_types(X)
y = infer_feature_types(y)

if self.parameters["strategy"] == "mean":
self._prediction_value = y.mean()

elif self.parameters["strategy"] == "median":
self._prediction_value = y.median()

self._num_features = X.shape[1]
return self

def predict(self, X):
X = infer_feature_types(X)
predictions = pd.Series([self._prediction_value] * len(X))
return infer_feature_types(predictions)

@property
def feature_importance(self):

"""Returns importance associated with each feature. Since baseline regressors do␣
→˓not use input features to calculate predictions, returns an array of zeroes.

(continues on next page)

168 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

Returns:
np.ndarray (float): An array of zeroes

"""
return np.zeros(self._num_features)

Required fields

• name: A human-readable name.

• model_family - EvalML model_family that this component belongs to

• supported_problem_types - list of EvalML problem_types that this component supports

• modifies_features: A boolean that specifies whether the return value from predict or predict_proba
should be used as features.

• modifies_target: A boolean that specifies whether the return value from predict or predict_proba should
be used as the target variable.

Model families and problem types include:

[8]: from evalml.model_family import ModelFamily
from evalml.problem_types import ProblemTypes

print("Model Families:\n", [m.value for m in ModelFamily])
print("Problem Types:\n", [p.value for p in ProblemTypes])

Model Families:
['k_neighbors', 'random_forest', 'svm', 'xgboost', 'lightgbm', 'linear_model', 'catboost
→˓', 'extra_trees', 'ensemble', 'decision_tree', 'exponential_smoothing', 'arima',
→˓'varmax', 'baseline', 'prophet', 'vowpal_wabbit', 'none']
Problem Types:
['binary', 'multiclass', 'regression', 'time series regression', 'time series binary',
→˓'time series multiclass', 'multiseries time series regression']

Required methods

• __init__() - the __init__() method of your estimator will need to call super().__init__() and pass
three parameters in: a parameters dictionary holding the parameters to the component, the component_obj,
and the random_seed value.

• fit() - the fit() method is responsible for fitting your component on training data.

• predict() - after fitting a component, the predict() method will take in new data and predict new target
values. Note: a component must call fit() before predict().

• feature_importance - feature_importance is a Python property that returns a list of importances associ-
ated with each feature.

If your estimator handles classification problems it also requires an additonal method:

• predict_proba() - this method predicts probability estimates for classification labels

4.4. Components 169

https://docs.python.org/3/library/functions.html#property

EvalML Documentation, Release 0.80.0

Components Wrapping Third-Party Objects

The component_obj parameter is used for wrapping third-party objects and using them in component implementation.
If you’re using a component_obj you will need to define __init__() and pass in the relevant object that has also
implemented the required methods mentioned above. However, if the component_obj does not follow EvalML com-
ponent conventions, you may need to override methods as needed. Below is an example of EvalML’s LinearRegressor.

[9]: from sklearn.linear_model import LinearRegression as SKLinearRegression

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes

class LinearRegressor(Estimator):
"""Linear Regressor."""

name = "Linear Regressor"
model_family = ModelFamily.LINEAR_MODEL
supported_problem_types = [ProblemTypes.REGRESSION]

def __init__(
self, fit_intercept=True, normalize=False, n_jobs=-1, random_seed=0, **kwargs

):
parameters = {

"fit_intercept": fit_intercept,
"normalize": normalize,
"n_jobs": n_jobs,

}
parameters.update(kwargs)
linear_regressor = SKLinearRegression(**parameters)
super().__init__(

parameters=parameters,
component_obj=linear_regressor,
random_seed=random_seed,

)

@property
def feature_importance(self):

return self._component_obj.coef_

Hyperparameter Ranges for AutoML

hyperparameter_ranges is a dictionary mapping the parameter name (str) to an allowed range (SkOpt Space) for
that parameter. Both lists and skopt.space.Categorical values are accepted for categorical spaces.

AutoML will perform a search over the allowed ranges for each parameter to select models which produce
optimal performance within those ranges. AutoML gets the allowed ranges for each component from the
component’s hyperparameter_ranges class attribute. Any component parameter you add an entry for in
hyperparameter_ranges will be included in the AutoML search. If parameters are omitted, AutoML will use the
default value in all pipelines.

170 Chapter 4. User Guide

https://scikit-optimize.github.io/stable/modules/classes.html#module-skopt.space.space

EvalML Documentation, Release 0.80.0

4.4.4 Generate Component Code

Once you have a component defined in EvalML, you can generate string Python code to recreate this component, which
can then be saved and run elsewhere with EvalML. generate_component_code requires a component instance as
the input. This method works for custom components as well, although it won’t return the code required to define the
custom component.

[10]: from evalml.pipelines.components import LogisticRegressionClassifier
from evalml.pipelines.components.utils import generate_component_code

lr = LogisticRegressionClassifier(C=5)
code = generate_component_code(lr)
print(code)

from evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier␣
→˓import LogisticRegressionClassifier

logisticRegressionClassifier = LogisticRegressionClassifier(**{'penalty': 'l2', 'C': 5,
→˓'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'})

[11]: # this string can then be copy and pasted into a separate window and executed as python␣
→˓code
exec(code)

[12]: # We can also do this for custom components
from evalml.pipelines.components.utils import generate_component_code

myDropNull = DropNullColumns()
print(generate_component_code(myDropNull))

dropNullColumnsTransformer = DropNullColumns(**{'pct_null_threshold': 1.0})

Expectations for Custom Classification Components

EvalML expects the following from custom classification component implementations:

• Classification targets will range from 0 to n-1 and are integers.

• For classification estimators, the order of predict_proba’s columns must match the order of the target, and the
column names must be integers ranging from 0 to n-1

4.5 Objectives

4.5.1 Overview

One of the key choices to make when training an ML model is what metric to choose by which to measure the efficacy
of the model at learning the signal. Such metrics are useful for comparing how well the trained models generalize to
new similar data.

This choice of metric is a key component of AutoML because it defines the cost function the AutoML search will
seek to optimize. In EvalML, these metrics are called objectives. AutoML will seek to minimize (or maximize) the
objective score as it explores more pipelines and parameters and will use the feedback from scoring pipelines to tune the

4.5. Objectives 171

EvalML Documentation, Release 0.80.0

available hyperparameters and continue the search. Therefore, it is critical to have an objective function that represents
how the model will be applied in the intended domain of use.

EvalML supports a variety of objectives from traditional supervised ML including mean squared error for regression
problems and cross entropy or area under the ROC curve for classification problems. EvalML also allows the user to
define a custom objective using their domain expertise, so that AutoML can search for models which provide the most
value for the user’s problem.

Optimization vs Ranking Objectives

There are many common objectives used for evaluating model performance. However, not all of these objectives should
be used to optimize AutoMLSearch. Consider the popular objective recall, which is the number of true positives
divided by the number of true positives and false negatives. If the model has no false negatives, the recall ends up
being a perfect score of 1. During automatic optimization, models can exploit this by predicting the positive label in
every case, making a completely useless but seemingly highly performant model. However, this objective is still useful
when trying to evaluate performance after a model has been trained.

Due to this potential issue, we define two types of objectives: optimization and ranking. Optimization objectives
are those that can be used within AutoMLSearch to train performant models. Ranking objectives can be used after
AutoMLSearch has been run, to rank or otherwise evaluate model performance. These include all of the optimization
metrics, as well as all other important metrics such as recall that are excluded from optimization.

Note that we also define a third class of objectives, non-core objectives, which are domain-specific and require addi-
tional configuration before they can be used.

4.5.2 Optimization Objectives

Use the get_optimization_objectives method to get a list of which objectives can be used for optimization in
AutoMLSearch for each problem type:

[1]: from evalml.objectives import get_optimization_objectives
from evalml.problem_types import ProblemTypes

for objective in get_optimization_objectives(ProblemTypes.BINARY):
print(objective.name)

MCC Binary
Log Loss Binary
Gini
AUC
Precision
F1
Balanced Accuracy Binary
Accuracy Binary

172 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

EvalML Documentation, Release 0.80.0

4.5.3 Ranking Objectives

Use the get_ranking_objectives method to get a list of which objectives are included with EvalML for each prob-
lem type:

[2]: from evalml.objectives import get_ranking_objectives

for objective in get_ranking_objectives(ProblemTypes.BINARY):
print(objective.name)

MCC Binary
Log Loss Binary
Gini
AUC
Recall
Precision
F1
Balanced Accuracy Binary
Accuracy Binary

EvalML defines a base objective class for each problem type: RegressionObjective,
BinaryClassificationObjective and MulticlassClassificationObjective. All EvalML objectives
are a subclass of one of these.

Binary Classification Objectives and Thresholds

All binary classification objectives have a threshold property. Some binary classification objectives like log loss and
AUC are unaffected by the choice of binary classification threshold, because they score based on predicted probabilities
or examine a range of threshold values. These metrics are defined with score_needs_proba set to False. For all
other binary classification objectives, we can compute the optimal binary classification threshold from the predicted
probabilities and the target.

[3]: from evalml.pipelines import BinaryClassificationPipeline
from evalml.demos import load_fraud
from evalml.objectives import F1

X, y = load_fraud(n_rows=100)
X.ww.init(

logical_types={
"provider": "Categorical",
"region": "Categorical",
"currency": "Categorical",
"expiration_date": "Categorical",

}
)
objective = F1()
pipeline = BinaryClassificationPipeline(

component_graph=[
"Imputer",
"DateTime Featurizer",
"One Hot Encoder",
"Random Forest Classifier",

]
(continues on next page)

4.5. Objectives 173

EvalML Documentation, Release 0.80.0

(continued from previous page)

)
pipeline.fit(X, y)
print(pipeline.threshold)
print(pipeline.score(X, y, objectives=[objective]))

y_pred_proba = pipeline.predict_proba(X)[True]
pipeline.threshold = objective.optimize_threshold(y_pred_proba, y)
print(pipeline.threshold)
print(pipeline.score(X, y, objectives=[objective]))

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 100
Targets
False 91.00%
True 9.00%
Name: count, dtype: object
None
OrderedDict([('F1', 1.0)])
0.37905689607742854
OrderedDict([('F1', 1.0)])

4.5.4 Custom Objectives

Often times, the objective function is very specific to the use-case or business problem. To get the right objective
to optimize requires thinking through the decisions or actions that will be taken using the model and assigning a
cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a
custom objective function.

Defining a Custom Objective Function

To create a custom objective class, we must define several elements:

• name: The printable name of this objective.

• objective_function: This function takes the predictions, true labels, and an optional reference to the inputs,
and returns a score of how well the model performed.

• greater_is_better: True if a higher objective_function value represents a better solution, and otherwise
False.

• score_needs_proba: Only for classification objectives. True if the objective is intended to function with
predicted probabilities as opposed to predicted values (example: cross entropy for classifiers).

• decision_function: Only for binary classification objectives. This function takes predicted probabilities that
were output from the model and a binary classification threshold, and returns predicted values.

• perfect_score: The score achieved by a perfect model on this objective.

174 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

• expected_range: The expected range of values we want this objective to output, which doesn’t necessarily
have to be equal to the possible range of values. For example, our expected R2 range is from [-1, 1], although
the actual range is (-inf, 1].

Example: Fraud Detection

To give a concrete example, let’s look at how the fraud detection objective function is built.

[4]: from evalml.objectives.binary_classification_objective import (
BinaryClassificationObjective,

)
import pandas as pd

class FraudCost(BinaryClassificationObjective):
"""Score the percentage of money lost of the total transaction amount process due to␣

→˓fraud"""

name = "Fraud Cost"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0

def __init__(
self,
retry_percentage=0.5,
interchange_fee=0.02,
fraud_payout_percentage=1.0,
amount_col="amount",

):
"""Create instance of FraudCost

Args:
retry_percentage (float): What percentage of customers that will retry a␣

→˓transaction if it
is declined. Between 0 and 1. Defaults to .5

interchange_fee (float): How much of each successful transaction you can␣
→˓collect.

Between 0 and 1. Defaults to .02

fraud_payout_percentage (float): Percentage of fraud you will not be able to␣
→˓collect.

Between 0 and 1. Defaults to 1.0

amount_col (str): Name of column in data that contains the amount. Defaults␣
→˓to "amount"

"""
self.retry_percentage = retry_percentage
self.interchange_fee = interchange_fee
self.fraud_payout_percentage = fraud_payout_percentage
self.amount_col = amount_col

(continues on next page)

4.5. Objectives 175

EvalML Documentation, Release 0.80.0

(continued from previous page)

def decision_function(self, ypred_proba, threshold=0.0, X=None):
"""Determine if a transaction is fraud given predicted probabilities, threshold,␣

→˓and dataframe with transaction amount

Args:
ypred_proba (pd.Series): Predicted probablities
X (pd.DataFrame): Dataframe containing transaction amount
threshold (float): Dollar threshold to determine if transaction is fraud

Returns:
pd.Series: Series of predicted fraud labels using X and threshold

"""
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)

if not isinstance(ypred_proba, pd.Series):
ypred_proba = pd.Series(ypred_proba)

transformed_probs = ypred_proba.values * X[self.amount_col]
return transformed_probs > threshold

def objective_function(self, y_true, y_predicted, X):
"""Calculate amount lost to fraud per transaction given predictions, true values,

→˓ and dataframe with transaction amount

Args:
y_predicted (pd.Series): predicted fraud labels
y_true (pd.Series): true fraud labels
X (pd.DataFrame): dataframe with transaction amounts

Returns:
float: amount lost to fraud per transaction

"""
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)

if not isinstance(y_predicted, pd.Series):
y_predicted = pd.Series(y_predicted)

if not isinstance(y_true, pd.Series):
y_true = pd.Series(y_true)

extract transaction using the amount columns in users data
try:

transaction_amount = X[self.amount_col]
except KeyError:

raise ValueError("`{}` is not a valid column in X.".format(self.amount_col))

amount paid if transaction is fraud
fraud_cost = transaction_amount * self.fraud_payout_percentage

money made from interchange fees on transaction

(continues on next page)

176 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

interchange_cost = (
transaction_amount * (1 - self.retry_percentage) * self.interchange_fee

)

calculate cost of missing fraudulent transactions
false_negatives = (y_true & ~y_predicted) * fraud_cost

calculate money lost from fees
false_positives = (~y_true & y_predicted) * interchange_cost

loss = false_negatives.sum() + false_positives.sum()

loss_per_total_processed = loss / transaction_amount.sum()

return loss_per_total_processed

4.6 Model Understanding

Simply examining a model’s performance metrics is not enough to select a model and promote it for use in a production
setting. While developing an ML algorithm, it is important to understand how the model behaves on the data, to examine
the key factors influencing its predictions and to consider where it may be deficient. Determination of what “success”
may mean for an ML project depends first and foremost on the user’s domain expertise.

EvalML includes a variety of tools for understanding models, from graphing utilities to methods for explaining predic-
tions.

** Graphing methods on Jupyter Notebook and Jupyter Lab require ipywidgets to be installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

4.6.1 Explaining Feature Influence

The EvalML package offers a variety of methods for understanding which features in a dataset have an impact on the
output of the model. We can investigate this either through feature importance or through permutation importance, and
leverage either in generating more readable explanations.

First, let’s train a pipeline on some data.

[1]: import evalml
from evalml.pipelines import BinaryClassificationPipeline

X, y = evalml.demos.load_breast_cancer()

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

pipeline_binary = BinaryClassificationPipeline(
component_graph={

"Label Encoder": ["Label Encoder", "X", "y"],
(continues on next page)

4.6. Model Understanding 177

https://ipywidgets.readthedocs.io/en/latest/user_install.html
https://plotly.com/python/getting-started/#jupyterlab-support-python-35
https://nodejs.org/en/download/

EvalML Documentation, Release 0.80.0

(continued from previous page)

"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Random Forest Classifier": [

"Random Forest Classifier",
"Imputer.x",
"Label Encoder.y",

],
}

)
pipeline_binary.fit(X_train, y_train)
print(pipeline_binary.score(X_holdout, y_holdout, objectives=["log loss binary"]))

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object
OrderedDict([('Log Loss Binary', 0.1686746297113362)])

Feature Importance

We can get the importance associated with each feature of the resulting pipeline

[2]: pipeline_binary.feature_importance

[2]: feature importance
0 mean concave points 0.138857
1 worst perimeter 0.137780
2 worst concave points 0.117782
3 worst radius 0.100584
4 mean concavity 0.086402
5 worst area 0.072027
6 mean perimeter 0.046500
7 worst concavity 0.043408
8 mean radius 0.037664
9 mean area 0.033683
10 radius error 0.025036
11 area error 0.019324
12 worst texture 0.014754
13 worst compactness 0.014462
14 mean texture 0.013856
15 worst smoothness 0.013710
16 worst symmetry 0.011395
17 perimeter error 0.010284
18 mean compactness 0.008162
19 mean smoothness 0.008154
20 worst fractal dimension 0.007034
21 fractal dimension error 0.005502
22 compactness error 0.004953
23 smoothness error 0.004728

(continues on next page)

178 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

24 texture error 0.004384
25 symmetry error 0.004250
26 mean fractal dimension 0.004164
27 concavity error 0.004089
28 mean symmetry 0.003997
29 concave points error 0.003076

We can also create a bar plot of the feature importances

[3]: pipeline_binary.graph_feature_importance()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

If we have a linear model, we can also view feature importance by simply inspecting the coefficients of the model.

[4]: from evalml.model_understanding import get_linear_coefficients

pipeline_linear = BinaryClassificationPipeline(
component_graph={

"Label Encoder": ["Label Encoder", "X", "y"],
"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Logistic Regression Classifier": [

"Logistic Regression Classifier",
"Imputer.x",
"Label Encoder.y",

],
}

)
pipeline_linear.fit(X_train, y_train)

get_linear_coefficients(pipeline_linear.estimator, features=X.columns)

[4]: Intercept -0.352325
worst radius -1.841560
mean radius -1.734090
texture error -0.769215
perimeter error -0.301213
radius error -0.078451
mean texture -0.064298
mean perimeter -0.041579
mean area 0.001247
fractal dimension error 0.005983
smoothness error 0.006360
symmetry error 0.019811
mean fractal dimension 0.020884
worst area 0.023366
concave points error 0.023432
compactness error 0.060427
mean smoothness 0.076231
concavity error 0.087974
mean symmetry 0.090586

(continues on next page)

4.6. Model Understanding 179

EvalML Documentation, Release 0.80.0

(continued from previous page)

worst fractal dimension 0.102868
area error 0.114724
worst smoothness 0.131197
mean concave points 0.190348
worst texture 0.251384
worst perimeter 0.284895
worst symmetry 0.285985
mean compactness 0.320826
worst concave points 0.361658
mean concavity 0.439937
worst compactness 0.981815
worst concavity 1.235671
dtype: float64

Permutation Importance

We can also compute and plot the permutation importance of the pipeline.

[5]: from evalml.model_understanding import calculate_permutation_importance

calculate_permutation_importance(
pipeline_binary, X_holdout, y_holdout, "log loss binary"

)

[5]: feature importance
0 worst perimeter 0.063657
1 worst area 0.045759
2 worst radius 0.041926
3 mean concave points 0.029325
4 worst concave points 0.021045
5 worst concavity 0.010105
6 worst texture 0.010044
7 mean texture 0.006178
8 mean symmetry 0.005857
9 mean area 0.004745
10 worst smoothness 0.003190
11 area error 0.003113
12 mean perimeter 0.002478
13 mean fractal dimension 0.001981
14 compactness error 0.001968
15 concavity error 0.001947
16 texture error 0.000291
17 smoothness error -0.000206
18 mean smoothness -0.000745
19 fractal dimension error -0.000835
20 worst compactness -0.002392
21 mean concavity -0.003188
22 mean compactness -0.005377
23 radius error -0.006229
24 mean radius -0.006870
25 worst fractal dimension -0.007415

(continues on next page)

180 Chapter 4. User Guide

https://scikit-learn.org/stable/modules/permutation_importance.html

EvalML Documentation, Release 0.80.0

(continued from previous page)

26 symmetry error -0.008175
27 perimeter error -0.008980
28 concave points error -0.010415
29 worst symmetry -0.018645

[6]: from evalml.model_understanding import graph_permutation_importance

graph_permutation_importance(pipeline_binary, X_holdout, y_holdout, "log loss binary")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Human Readable Importance

We can generate a more human-comprehensible understanding of either the feature or permutation importance by using
readable_explanation(pipeline). This picks out a subset of features that have the highest impact on the output
of the model, sorting them into either “heavily” or “somewhat” influential on the model. These features are selected
either by feature importance or permutation importance with a given objective. If there are any features that actively
decrease the performance of the pipeline, this function highlights those and recommends removal.

Note that permutation importance runs on the original input features, while feature importance runs on the features as
they were passed in to the final estimator, having gone through a number of preprocessing steps. The two methods will
highlight different features as being important, and feature names may vary as well.

[7]: from evalml.model_understanding import readable_explanation

readable_explanation(
pipeline_binary,
X_holdout,
y_holdout,
objective="log loss binary",
importance_method="permutation",

)

Random Forest Classifier: The output as measured by log loss binary is heavily␣
→˓influenced by worst perimeter, and is somewhat influenced by worst area, worst radius,␣
→˓mean concave points, and worst concave points.
The features smoothness error, mean smoothness, fractal dimension error, worst␣
→˓compactness, mean concavity, mean compactness, radius error, mean radius, worst␣
→˓fractal dimension, symmetry error, perimeter error, concave points error, and worst␣
→˓symmetry detracted from model performance. We suggest removing these features.

[8]: readable_explanation(
pipeline_binary, importance_method="feature"

) # feature importance doesn't require X and y

Random Forest Classifier: The output is somewhat influenced by mean concave points,␣
→˓worst perimeter, worst concave points, worst radius, and mean concavity.

We can adjust the number of most important features visible with the max_features argument, or modify the minimum
threshold for “importance” with min_importance_threshold. However, these values will not affect any detrimental
features displayed, as this function always displays all of them.

4.6. Model Understanding 181

EvalML Documentation, Release 0.80.0

4.6.2 Metrics for Model Understanding

Confusion Matrix

For binary or multiclass classification, we can view a confusion matrix of the classifier’s predictions. In the DataFrame
output of confusion_matrix(), the column header represents the predicted labels while row header represents the
actual labels.

[9]: from evalml.model_understanding.metrics import confusion_matrix

y_pred = pipeline_binary.predict(X_holdout)
confusion_matrix(y_holdout, y_pred)

[9]: benign malignant
benign 0.930556 0.069444
malignant 0.023810 0.976190

[10]: from evalml.model_understanding.metrics import graph_confusion_matrix

y_pred = pipeline_binary.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Precision-Recall Curve

For binary classification, we can view the precision-recall curve of the pipeline.

[11]: from evalml.model_understanding.metrics import graph_precision_recall_curve

get the predicted probabilities associated with the "true" label
import woodwork as ww

y_encoded = y_holdout.ww.map({"benign": 0, "malignant": 1})
y_pred_proba = pipeline_binary.predict_proba(X_holdout)["malignant"]
graph_precision_recall_curve(y_encoded, y_pred_proba)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

ROC Curve

For binary and multiclass classification, we can view the Receiver Operating Characteristic (ROC) curve of the pipeline.

[12]: from evalml.model_understanding.metrics import graph_roc_curve

get the predicted probabilities associated with the "malignant" label
y_pred_proba = pipeline_binary.predict_proba(X_holdout)["malignant"]
graph_roc_curve(y_encoded, y_pred_proba)

182 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

EvalML Documentation, Release 0.80.0

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

The ROC curve can also be generated for multiclass classification problems. For multiclass problems, the graph will
show a one-vs-many ROC curve for each class.

[13]: from evalml.pipelines import MulticlassClassificationPipeline

X_multi, y_multi = evalml.demos.load_wine()

pipeline_multi = MulticlassClassificationPipeline(
["Simple Imputer", "Random Forest Classifier"]

)
pipeline_multi.fit(X_multi, y_multi)

y_pred_proba = pipeline_multi.predict_proba(X_multi)
graph_roc_curve(y_multi, y_pred_proba)

Number of Features
Numeric 13

Number of training examples: 178
Targets
class_1 39.89%
class_0 33.15%
class_2 26.97%
Name: count, dtype: object

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.6.3 Visualizations

Binary Objective Score vs. Threshold Graph

Some binary classification objectives (objectives that have score_needs_proba set to False) are sensitive to a decision
threshold. For those objectives, we can obtain and graph the scores for thresholds from zero to one, calculated at evenly-
spaced intervals determined by steps.

[14]: from evalml.model_understanding.visualizations import binary_objective_vs_threshold

binary_objective_vs_threshold(pipeline_binary, X_holdout, y_holdout, "f1", steps=10)

[14]: threshold score
0 0.0 0.538462
1 0.1 0.811881
2 0.2 0.891304
3 0.3 0.901099
4 0.4 0.931818
5 0.5 0.931818
6 0.6 0.941176

(continues on next page)

4.6. Model Understanding 183

EvalML Documentation, Release 0.80.0

(continued from previous page)

7 0.7 0.951220
8 0.8 0.936709
9 0.9 0.923077
10 1.0 0.000000

[15]: from evalml.model_understanding.visualizations import (
graph_binary_objective_vs_threshold,

)

graph_binary_objective_vs_threshold(
pipeline_binary, X_holdout, y_holdout, "f1", steps=100

)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Predicted Vs Actual Values Graph for Regression Problems

We can also create a scatterplot comparing predicted vs actual values for regression problems. We can specify an
outlier_threshold to color values differently if the absolute difference between the actual and predicted values are
outside of a given threshold.

[16]: from evalml.model_understanding.visualizations import graph_prediction_vs_actual
from evalml.pipelines import RegressionPipeline

X_regress, y_regress = evalml.demos.load_diabetes()
X_train_reg, X_test_reg, y_train_reg, y_test_reg = evalml.preprocessing.split_data(

X_regress, y_regress, problem_type="regression"
)

pipeline_regress = RegressionPipeline(["One Hot Encoder", "Linear Regressor"])
pipeline_regress.fit(X_train_reg, y_train_reg)

y_pred = pipeline_regress.predict(X_test_reg)
graph_prediction_vs_actual(y_test_reg, y_pred, outlier_threshold=50)

Number of Features
Numeric 10

Number of training examples: 442
Targets
200 1.36%
72 1.36%
90 1.13%
178 1.13%
71 1.13%

...
73 0.23%
222 0.23%
86 0.23%
79 0.23%

(continues on next page)

184 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

57 0.23%
Name: count, Length: 214, dtype: object

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Tree Visualization

Now let’s train a decision tree on some data. We can visualize the structure of the Decision Tree that was fit to that
data, and save it if necessary.

[17]: pipeline_dt = BinaryClassificationPipeline(
["Simple Imputer", "Decision Tree Classifier"]

)
pipeline_dt.fit(X_train, y_train)

[17]: pipeline = BinaryClassificationPipeline(component_graph={'Simple Imputer': ['Simple␣
→˓Imputer', 'X', 'y'], 'Decision Tree Classifier': ['Decision Tree Classifier', 'Simple␣
→˓Imputer.x', 'y']}, parameters={'Simple Imputer':{'impute_strategy': 'most_frequent',
→˓'fill_value': None}, 'Decision Tree Classifier':{'criterion': 'gini', 'max_features':
→˓'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0}},␣
→˓random_seed=0)

[18]: from evalml.model_understanding.visualizations import visualize_decision_tree

visualize_decision_tree(
pipeline_dt.estimator, max_depth=2, rotate=False, filled=True, filepath=None

)

[18]:

Confusion Matrix and Thresholds for Binary Classification Pipelines

For binary classification pipelines, EvalML also provides the ability to compare the actual positive and actual negative
histograms, as well as obtaining the confusion matrices and ideal thresholds per objective.

[19]: from evalml.model_understanding import find_confusion_matrix_per_thresholds

df, objective_thresholds = find_confusion_matrix_per_thresholds(
pipeline_binary, X, y, n_bins=10

)
df.head(10)

[19]: true_pos_count true_neg_count true_positives true_negatives \
0.1 1 309 211 309
0.2 0 35 211 344
0.3 0 5 211 349
0.4 0 3 211 352
0.5 0 0 211 352
0.6 3 2 208 354
0.7 2 2 206 356
0.8 9 1 197 357

(continues on next page)

4.6. Model Understanding 185

EvalML Documentation, Release 0.80.0

(continued from previous page)

0.9 15 0 182 357
1.0 182 0 0 357

false_positives false_negatives data_in_bins
0.1 48 1 [19, 20, 21, 37, 46]
0.2 13 1 [68, 92, 123, 133, 147]
0.3 8 1 [112, 157, 484, 491, 505]
0.4 5 1 [208, 340, 465]
0.5 5 1 []
0.6 3 4 [40, 89, 128, 263, 297]
0.7 1 6 [13, 81, 385, 421]
0.8 0 15 [38, 41, 54, 73, 86]
0.9 0 30 [39, 44, 91, 99, 100]
1.0 0 212 [0, 1, 2, 3, 4]

[20]: objective_thresholds

[20]: {'accuracy': {'objective score': 0.9894551845342706, 'threshold value': 0.4},
'balanced_accuracy': {'objective score': 0.9906387083135141,
'threshold value': 0.4},
'precision': {'objective score': 1.0, 'threshold value': 0.8},
'f1': {'objective score': 0.9859813084112149, 'threshold value': 0.4}}

In the above results, the first dataframe contains the histograms for the actual positive and negative classes, indicated by
true_pos_count and true_neg_count. The columns true_positives, true_negatives, false_positives,
and false_negatives contain the confusion matrix information for the associated threshold, and the data_in_bins
holds a random subset of row indices (both postive and negative) that belong in each bin. The index of the dataframe
represents the associated threshold. For instance, at index 0.1, there is 1 positive and 309 negative rows that fall
between [0.0, 0.1].

The returned objective_thresholds dictionary has the objective measure as the key, and the dictionary value as-
sociated contains both the best objective score and the threshold that results in the associated score.

Visualize high dimensional data in lower space

We can use T-SNE to visualize data with many features on a 2D plot, making it easier to see relationships in your data.

[21]: # Our data is highly dimensional, we can't plot this in a way we understand
print(len(X.columns))

30

[22]: from evalml.model_understanding import graph_t_sne

fig = graph_t_sne(X)
fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

186 Chapter 4. User Guide

https://evalml.alteryx.com/en/stable/autoapi/evalml/model_understanding/index.html#evalml.model_understanding.graph_t_sne

EvalML Documentation, Release 0.80.0

4.6.4 Partial Dependence Plots

We can calculate the one-way partial dependence plots for a feature.

[23]: from evalml.model_understanding import partial_dependence

partial_dependence(
pipeline_binary, X_holdout, features="mean radius", grid_resolution=5

)

[23]: feature_values partial_dependence class_label
0 9.69092 0.392453 malignant
1 12.40459 0.395962 malignant
2 15.11826 0.417396 malignant
3 17.83193 0.429542 malignant
4 20.54560 0.429717 malignant

[24]: from evalml.model_understanding import graph_partial_dependence

graph_partial_dependence(
pipeline_binary, X_holdout, features="mean radius", grid_resolution=5

)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

We can also compute the partial dependence for a categorical feature. We will demonstrate this on the fraud dataset.

[25]: X_fraud, y_fraud = evalml.demos.load_fraud(100, verbose=False)
X_fraud.ww.init(

logical_types={
"provider": "Categorical",
"region": "Categorical",
"currency": "Categorical",
"expiration_date": "Categorical",

}
)

fraud_pipeline = BinaryClassificationPipeline(
["DateTime Featurizer", "One Hot Encoder", "Random Forest Classifier"]

)
fraud_pipeline.fit(X_fraud, y_fraud)

graph_partial_dependence(fraud_pipeline, X_fraud, features="provider")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Two-way partial dependence plots are also possible and invoke the same API.

[26]: partial_dependence(
pipeline_binary,
X_holdout,

(continues on next page)

4.6. Model Understanding 187

https://christophm.github.io/interpretable-ml-book/pdp.html

EvalML Documentation, Release 0.80.0

(continued from previous page)

features=("worst perimeter", "worst radius"),
grid_resolution=5,

)

[26]: 10.6876 14.404924999999999 18.12225 21.839575 25.5569 \
69.140700 0.279038 0.282898 0.435179 0.435355 0.435355
94.334275 0.304335 0.308194 0.458283 0.458458 0.458458
119.527850 0.464455 0.468314 0.612137 0.616932 0.616932
144.721425 0.483437 0.487297 0.631120 0.635915 0.635915
169.915000 0.483437 0.487297 0.631120 0.635915 0.635915

class_label
69.140700 malignant
94.334275 malignant
119.527850 malignant
144.721425 malignant
169.915000 malignant

[27]: graph_partial_dependence(
pipeline_binary,
X_holdout,
features=("worst perimeter", "worst radius"),
grid_resolution=5,

)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.6.5 Explaining Predictions

We can explain why the model made certain predictions with the explain_predictions function. This can use either
the Shapley Additive Explanations (SHAP) algorithm or the Local Interpretable Model-agnostic Explanations (LIME)
algorithm to identify the top features that explain the predicted value.

This function can explain both classification and regression models - all you need to do is provide the pipeline, the input
features, and a list of rows corresponding to the indices of the input features you want to explain. The function will
return a table that you can print summarizing the top 3 most positive and negative contributing features to the predicted
value.

In the example below, we explain the prediction for the third data point in the data set. We see that the worst concave
points feature increased the estimated probability that the tumor is malignant by 20% while the worst radius feature
decreased the probability the tumor is malignant by 5%.

[28]: from evalml.model_understanding.prediction_explanations import explain_predictions

table = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[3],
top_k_features=6,

(continues on next page)

188 Chapter 4. User Guide

https://github.com/slundberg/shap
https://github.com/marcotcr/lime

EvalML Documentation, Release 0.80.0

(continued from previous page)

include_explainer_values=True,
)
print(table)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 1

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓===

worst concavity 0.18 - -0.
→˓02

mean concavity 0.04 - -0.
→˓03

worst area 599.50 - -0.
→˓03

worst radius 14.04 - -0.
→˓05

mean concave points 0.03 - -0.
→˓05

worst perimeter 92.80 - -0.
→˓06

The interpretation of the table is the same for regression problems - but the SHAP value now corresponds to the
change in the estimated value of the dependent variable rather than a change in probability. For multiclass classification
problems, a table will be output for each possible class.

Below is an example of how you would explain three predictions with explain_predictions.

[29]: from evalml.model_understanding.prediction_explanations import explain_predictions

report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=y_holdout,
indices_to_explain=[0, 4, 9],
include_explainer_values=True,
output_format="text",

)
print(report)

Random Forest Classifier w/ Label Encoder + Imputer

(continues on next page)

4.6. Model Understanding 189

EvalML Documentation, Release 0.80.0

(continued from previous page)

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 3

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

worst perimeter 101.20 - -0.
→˓04

worst concave points 0.06 - -0.
→˓05

mean concave points 0.01 - -0.
→˓05

2 of 3

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓===

worst radius 11.94 - -0.
→˓05

worst perimeter 80.78 - -0.
→˓06

mean concave points 0.02 - -0.
→˓06

3 of 3

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

worst concave points 0.10 - -0.
→˓05

worst perimeter 99.21 - -0.
→˓06

mean concave points 0.03 - -0.
→˓08

The above examples used the SHAP algorithm, since that is what explain_predictions uses by default. If you
would like to use LIME instead, you can change that with the algorithm="lime" argument.

190 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

[30]: from evalml.model_understanding.prediction_explanations import explain_predictions

table = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[3],
top_k_features=6,
include_explainer_values=True,
algorithm="lime",

)
print(table)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 1

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==

worst radius 14.04 + 0.
→˓06

worst perimeter 92.80 + 0.
→˓06

worst area 599.50 + 0.
→˓05

mean concave points 0.03 + 0.
→˓04

worst concave points 0.12 + 0.
→˓04

worst concavity 0.18 + 0.
→˓03

[31]: from evalml.model_understanding.prediction_explanations import explain_predictions

report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[0, 4, 9],
include_explainer_values=True,
output_format="text",
algorithm="lime",

(continues on next page)

4.6. Model Understanding 191

EvalML Documentation, Release 0.80.0

(continued from previous page)

)
print(report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 3

Feature Name Feature Value Contribution to Prediction LIME Value
===
worst perimeter 101.20 + 0.06
worst radius 15.14 + 0.06
worst area 718.90 + 0.05

2 of 3

Feature Name Feature Value Contribution to Prediction LIME Value
===
worst perimeter 80.78 + 0.06
worst radius 11.94 + 0.06
worst area 433.10 + 0.05

3 of 3

Feature Name Feature Value Contribution to Prediction LIME Value
===
worst radius 14.42 + 0.06
worst perimeter 99.21 + 0.06
worst area 634.30 + 0.05

Explaining Best and Worst Predictions

When debugging machine learning models, it is often useful to analyze the best and worst predictions the model made.
The explain_predictions_best_worst function can help us with this.

This function will display the output of explain_predictions for the best 2 and worst 2 predictions. By default, the best
and worst predictions are determined by the absolute error for regression problems and cross entropy for classification
problems.

We can specify our own ranking function by passing in a function to the metric parameter. This function will be called
on y_true and y_pred. By convention, lower scores are better.

At the top of each table, we can see the predicted probabilities, target value, error, and row index for that prediction.
For a regression problem, we would see the predicted value instead of predicted probabilities.

192 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Cross_entropy

EvalML Documentation, Release 0.80.0

[32]: from evalml.model_understanding.prediction_explanations import (
explain_predictions_best_worst,

)

shap_report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
include_explainer_values=True,
top_k_features=6,
num_to_explain=2,

)

print(shap_report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

Best 1 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 502

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

mean concavity 0.06 - -0.
→˓03

worst area 552.00 - -0.
→˓03

worst concave points 0.08 - -0.
→˓05

worst radius 13.57 - -0.
→˓05

mean concave points 0.03 - -0.
→˓05

worst perimeter 86.67 - -0.
→˓06

Best 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign

(continues on next page)

4.6. Model Understanding 193

EvalML Documentation, Release 0.80.0

(continued from previous page)

Target Value: benign
Cross Entropy: 0.0
Index ID: 52

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

mean concavity 0.02 - -0.
→˓02

worst area 527.20 - -0.
→˓03

worst radius 13.10 - -0.
→˓04

worst concave points 0.06 - -0.
→˓04

mean concave points 0.01 - -0.
→˓05

worst perimeter 83.67 - -0.
→˓06

Worst 1 of 2

Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
Cross Entropy: 1.325
Index ID: 363

Feature Name Feature Value Contribution to Prediction SHAP Value
===
worst perimeter 117.20 + 0.13
worst radius 18.13 + 0.12
worst area 1009.00 + 0.11
mean area 838.10 + 0.06
mean radius 16.50 + 0.05

worst concavity 0.17 - -0.05

Worst 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
Cross Entropy: 7.987
Index ID: 135

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

(continues on next page)

194 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

mean concavity 0.05 - -0.
→˓03

worst area 653.60 - -0.
→˓04

worst concave points 0.09 - -0.
→˓05

worst radius 14.49 - -0.
→˓05

worst perimeter 92.04 - -0.
→˓06

mean concave points 0.03 - -0.
→˓06

[33]: lime_report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
include_explainer_values=True,
top_k_features=6,
num_to_explain=2,
algorithm="lime",

)

print(lime_report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

Best 1 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 502

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==

worst radius 13.57 + 0.
→˓06

worst perimeter 86.67 + 0.
→˓06

(continues on next page)

4.6. Model Understanding 195

EvalML Documentation, Release 0.80.0

(continued from previous page)

worst area 552.00 + 0.
→˓05

mean concave points 0.03 + 0.
→˓04

worst concave points 0.08 + 0.
→˓04

worst concavity 0.19 + 0.
→˓03

Best 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 52

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==

worst radius 13.10 + 0.
→˓06

worst perimeter 83.67 + 0.
→˓06

worst area 527.20 + 0.
→˓05

mean concave points 0.01 + 0.
→˓04

worst concave points 0.06 + 0.
→˓04

worst concavity 0.09 + 0.
→˓03

Worst 1 of 2

Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
Cross Entropy: 1.325
Index ID: 363

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==

worst concavity 0.17 - -0.
→˓03

worst concave points 0.09 - -0.
→˓04

(continues on next page)

196 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

mean concave points 0.05 - -0.
→˓04

worst area 1009.00 - -0.
→˓05

worst perimeter 117.20 - -0.
→˓06

worst radius 18.13 - -0.
→˓06

Worst 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
Cross Entropy: 7.987
Index ID: 135

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==

worst radius 14.49 + 0.
→˓06

worst perimeter 92.04 + 0.
→˓06

worst area 653.60 + 0.
→˓05

mean concave points 0.03 + 0.
→˓04

worst concave points 0.09 + 0.
→˓04

worst concavity 0.22 + 0.
→˓03

We use a custom metric (hinge loss) for selecting the best and worst predictions. See this example:

[34]: import numpy as np

def hinge_loss(y_true, y_pred_proba):
probabilities = np.clip(y_pred_proba.iloc[:, 1], 0.001, 0.999)
y_true[y_true == 0] = -1

return np.clip(
1 - y_true * np.log(probabilities / (1 - probabilities)), a_min=0, a_max=None

)

(continues on next page)

4.6. Model Understanding 197

https://en.wikipedia.org/wiki/Hinge_loss

EvalML Documentation, Release 0.80.0

(continued from previous page)

report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X,
y_true=y,
include_explainer_values=True,
num_to_explain=5,
metric=hinge_loss,

)

print(report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

Best 1 of 5

Predicted Probabilities: [benign: 0.03, malignant: 0.97]
Predicted Value: malignant
Target Value: malignant
hinge_loss: 0.0
Index ID: 0

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

worst concave points 0.27 + 0.
→˓08

worst perimeter 184.60 + 0.
→˓08

mean concave points 0.15 + 0.
→˓08

Best 2 of 5

Predicted Probabilities: [benign: 0.998, malignant: 0.002]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 388

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

worst concave points 0.08 - -0.
→˓05

(continues on next page)

198 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

mean concave points 0.03 - -0.
→˓06

worst perimeter 79.73 - -0.
→˓07

Best 3 of 5

Predicted Probabilities: [benign: 0.988, malignant: 0.012]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 387

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

worst perimeter 99.66 - -0.
→˓05

worst concave points 0.05 - -0.
→˓05

mean concave points 0.01 - -0.
→˓05

Best 4 of 5

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 386

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓===

worst radius 13.13 - -0.
→˓04

worst perimeter 87.65 - -0.
→˓06

mean concave points 0.03 - -0.
→˓06

Best 5 of 5

Predicted Probabilities: [benign: 0.969, malignant: 0.031]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0

(continues on next page)

4.6. Model Understanding 199

EvalML Documentation, Release 0.80.0

(continued from previous page)

Index ID: 384

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

worst concave points 0.09 - -0.
→˓04

worst perimeter 96.59 - -0.
→˓05

mean concave points 0.03 - -0.
→˓06

Worst 1 of 5

Predicted Probabilities: [benign: 0.409, malignant: 0.591]
Predicted Value: malignant
Target Value: benign
hinge_loss: 1.369
Index ID: 128

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

mean concave points 0.09 + 0.
→˓10

worst concave points 0.14 + 0.
→˓09

mean concavity 0.11 + 0.
→˓08

Worst 2 of 5

Predicted Probabilities: [benign: 0.39, malignant: 0.61]
Predicted Value: malignant
Target Value: benign
hinge_loss: 1.446
Index ID: 421

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓===

mean concave points 0.06 + 0.
→˓08

mean concavity 0.14 + 0.
→˓07

worst perimeter 114.10 + 0.
→˓07

(continues on next page)

200 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

Worst 3 of 5

Predicted Probabilities: [benign: 0.343, malignant: 0.657]
Predicted Value: malignant
Target Value: benign
hinge_loss: 1.652
Index ID: 81

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==

worst concave points 0.17 ++ 0.
→˓15

mean concave points 0.07 + 0.
→˓11

worst compactness 0.48 + 0.
→˓07

Worst 4 of 5

Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
hinge_loss: 2.016
Index ID: 363

Feature Name Feature Value Contribution to Prediction SHAP Value
===
worst perimeter 117.20 + 0.13
worst radius 18.13 + 0.12
worst area 1009.00 + 0.11

Worst 5 of 5

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
hinge_loss: 7.907
Index ID: 135

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓===

worst radius 14.49 - -0.
→˓05

worst perimeter 92.04 - -0.
→˓06 (continues on next page)

4.6. Model Understanding 201

EvalML Documentation, Release 0.80.0

(continued from previous page)

mean concave points 0.03 - -0.
→˓06

Changing Output Formats

Instead of getting the prediction explanations as text, you can get the report as a python dictionary or pandas
dataframe. All you have to do is pass output_format="dict" or output_format="dataframe" to either
explain_prediction, explain_predictions, or explain_predictions_best_worst.

Single prediction as a dictionary

[35]: import json

single_prediction_report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
indices_to_explain=[3],
y=y_holdout,
top_k_features=6,
include_explainer_values=True,
output_format="dict",

)
print(json.dumps(single_prediction_report, indent=2))

{
"explanations": [
{
"explanations": [
{
"feature_names": [
"worst concavity",
"mean concavity",
"worst area",
"worst radius",
"mean concave points",
"worst perimeter"

],
"feature_values": [
0.1791,
0.038,
599.5,
14.04,
0.034,
92.8

],
"qualitative_explanation": [
"-",

(continues on next page)

202 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

"-",
"-",
"-",
"-",
"-"

],
"quantitative_explanation": [
-0.023008481104309524,
-0.02621982146725469,
-0.033821592020020774,
-0.04666659740586632,
-0.0541511910494414,
-0.05523688273171911

],
"drill_down": {},
"class_name": "malignant",
"expected_value": 0.3711208791208791

}
]

}
]

}

Single prediction as a dataframe

[36]: single_prediction_report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
indices_to_explain=[3],
y=y_holdout,
top_k_features=6,
include_explainer_values=True,
output_format="dataframe",

)
single_prediction_report

[36]: feature_names feature_values qualitative_explanation \
0 worst concavity 0.1791 -
1 mean concavity 0.0380 -
2 worst area 599.5000 -
3 worst radius 14.0400 -
4 mean concave points 0.0340 -
5 worst perimeter 92.8000 -

quantitative_explanation class_name prediction_number
0 -0.023008 malignant 0
1 -0.026220 malignant 0
2 -0.033822 malignant 0
3 -0.046667 malignant 0
4 -0.054151 malignant 0
5 -0.055237 malignant 0

4.6. Model Understanding 203

EvalML Documentation, Release 0.80.0

Best and worst predictions as a dictionary

[37]: report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X,
y_true=y,
num_to_explain=1,
top_k_features=6,
include_explainer_values=True,
output_format="dict",

)
print(json.dumps(report, indent=2))

{
"explanations": [
{
"rank": {
"prefix": "best",
"index": 1

},
"predicted_values": {
"probabilities": {
"benign": 1.0,
"malignant": 0.0

},
"predicted_value": "benign",
"target_value": "benign",
"error_name": "Cross Entropy",
"error_value": 0.0001970443507070075,
"index_id": 475

},
"explanations": [
{
"feature_names": [
"mean concavity",
"worst area",
"worst radius",
"worst concave points",
"worst perimeter",
"mean concave points"

],
"feature_values": [
0.05835,
605.8,
14.09,
0.09783,
93.22,
0.03078

],
"qualitative_explanation": [
"-",
"-",
"-",

(continues on next page)

204 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

"-",
"-",
"-"

],
"quantitative_explanation": [
-0.028481050954786636,
-0.03050522196002462,
-0.042922079201003216,
-0.04429366151003684,
-0.05486784013962313,
-0.05639460900233733

],
"drill_down": {},
"class_name": "malignant",
"expected_value": 0.3711208791208791

}
]

},
{
"rank": {
"prefix": "worst",
"index": 1

},
"predicted_values": {
"probabilities": {
"benign": 1.0,
"malignant": 0.0

},
"predicted_value": "benign",
"target_value": "malignant",
"error_name": "Cross Entropy",
"error_value": 7.986911819330411,
"index_id": 135

},
"explanations": [
{
"feature_names": [
"mean concavity",
"worst area",
"worst concave points",
"worst radius",
"worst perimeter",
"mean concave points"

],
"feature_values": [
0.04711,
653.6,
0.09331,
14.49,
92.04,
0.02704

],

(continues on next page)

4.6. Model Understanding 205

EvalML Documentation, Release 0.80.0

(continued from previous page)

"qualitative_explanation": [
"-",
"-",
"-",
"-",
"-",
"-"

],
"quantitative_explanation": [
-0.029936744551331215,
-0.03748357654576422,
-0.04553126236476177,
-0.0483274199182721,
-0.06039220265366764,
-0.060441902449258976

],
"drill_down": {},
"class_name": "malignant",
"expected_value": 0.3711208791208791

}
]

}
]

}

Best and worst predictions as a dataframe

[38]: report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
num_to_explain=1,
top_k_features=6,
include_explainer_values=True,
output_format="dataframe",

)
report

[38]: feature_names feature_values qualitative_explanation \
0 mean concavity 0.05928 -
1 worst area 552.00000 -
2 worst concave points 0.08411 -
3 worst radius 13.57000 -
4 mean concave points 0.03279 -
5 worst perimeter 86.67000 -
6 mean concavity 0.04711 -
7 worst area 653.60000 -
8 worst concave points 0.09331 -
9 worst radius 14.49000 -
10 worst perimeter 92.04000 -
11 mean concave points 0.02704 -

(continues on next page)

206 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

quantitative_explanation class_name label_benign_probability \
0 -0.029022 malignant 1.0
1 -0.034112 malignant 1.0
2 -0.046896 malignant 1.0
3 -0.046928 malignant 1.0
4 -0.052902 malignant 1.0
5 -0.064320 malignant 1.0
6 -0.029937 malignant 1.0
7 -0.037484 malignant 1.0
8 -0.045531 malignant 1.0
9 -0.048327 malignant 1.0
10 -0.060392 malignant 1.0
11 -0.060442 malignant 1.0

label_malignant_probability predicted_value target_value error_name \
0 0.0 benign benign Cross Entropy
1 0.0 benign benign Cross Entropy
2 0.0 benign benign Cross Entropy
3 0.0 benign benign Cross Entropy
4 0.0 benign benign Cross Entropy
5 0.0 benign benign Cross Entropy
6 0.0 benign malignant Cross Entropy
7 0.0 benign malignant Cross Entropy
8 0.0 benign malignant Cross Entropy
9 0.0 benign malignant Cross Entropy
10 0.0 benign malignant Cross Entropy
11 0.0 benign malignant Cross Entropy

error_value index_id rank prefix
0 0.000197 502 1 best
1 0.000197 502 1 best
2 0.000197 502 1 best
3 0.000197 502 1 best
4 0.000197 502 1 best
5 0.000197 502 1 best
6 7.986912 135 1 worst
7 7.986912 135 1 worst
8 7.986912 135 1 worst
9 7.986912 135 1 worst
10 7.986912 135 1 worst
11 7.986912 135 1 worst

4.6. Model Understanding 207

EvalML Documentation, Release 0.80.0

4.6.6 Force Plots

Force plots can be generated to predict single or multiple rows for binary, multiclass and regression problem types.
These use the SHAP algorithm. Here’s an example of predicting a single row on a binary classification dataset. The
force plots show the predictive power of each of the features in making the negative (“Class: 0”) prediction and the
positive (“Class: 1”) prediction.

[39]: import shap

from evalml.model_understanding.force_plots import graph_force_plot

rows_to_explain = [0] # Should be a list of integer indices of the rows to explain.

results = graph_force_plot(
pipeline_binary,
rows_to_explain=rows_to_explain,
training_data=X_holdout,
y=y_holdout,

)

for result in results:
for cls in result:

print("Class:", cls)
display(result[cls]["plot"])

<IPython.core.display.HTML object>

Class: malignant

<shap.plots._force.AdditiveForceVisualizer at 0x7f170995a640>

Here’s an example of a force plot explaining multiple predictions on a multiclass problem. These plots show the force
plots for each row arranged as consecutive columns that can be ordered by the dropdown above. Clicking the column
indicates which row explanation is underneath.

[40]: rows_to_explain = [
0,
1,
2,
3,
4,

] # Should be a list of integer indices of the rows to explain.

results = graph_force_plot(
pipeline_multi, rows_to_explain=rows_to_explain, training_data=X_multi, y=y_multi

)

for idx, result in enumerate(results):
print("Row:", idx)
for cls in result:

print("Class:", cls)
display(result[cls]["plot"])

<IPython.core.display.HTML object>

208 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

Row: 0
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b8b0>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b9d0>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b190>

Row: 1
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b1f0>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ecf160>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ecfaf0>

Row: 2
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b100>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8bf10>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304340>

Row: 3
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304430>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304400>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304460>

Row: 4
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304220>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b610>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ede790>

4.6. Model Understanding 209

EvalML Documentation, Release 0.80.0

4.7 Data Checks

EvalML provides data checks to help guide you in achieving the highest performing model. These utility functions
help deal with problems such as overfitting, abnormal data, and missing data. These data checks can be found un-
der evalml/data_checks. Below we will cover examples for each available data check in EvalML, as well as the
DefaultDataChecks collection of data checks.

4.7.1 Missing Data

Missing data or rows with NaN values provide many challenges for machine learning pipelines. In the worst case,
many algorithms simply will not run with missing data! EvalML pipelines contain imputation components to ensure
that doesn’t happen. Imputation works by approximating missing values with existing values. However, if a column
contains a high number of missing values, a large percentage of the column would be approximated by a small per-
centage. This could potentially create a column without useful information for machine learning pipelines. By using
NullDataCheck, EvalML will alert you to this potential problem by returning the columns that pass the missing values
threshold.

[1]: import numpy as np
import pandas as pd

from evalml.data_checks import NullDataCheck

X = pd.DataFrame(
[[1, 2, 3], [0, 4, np.nan], [1, 4, np.nan], [9, 4, np.nan], [8, 6, np.nan]]

)

null_check = NullDataCheck(pct_null_col_threshold=0.8, pct_null_row_threshold=0.8)
messages = null_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Column(s) '2' are 80.0% or more null

4.7.2 Abnormal Data

EvalML provides a few data checks to check for abnormal data:

• NoVarianceDataCheck

• ClassImbalanceDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck

• IDColumnsDataCheck

• OutliersDataCheck

210 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

• HighVarianceCVDataCheck

• MulticollinearityDataCheck

• UniquenessDataCheck

• TargetDistributionDataCheck

• DateTimeFormatDataCheck

• TimeSeriesParametersDataCheck

• TimeSeriesSplittingDataCheck

Zero Variance

Data with zero variance indicates that all values are identical. If a feature has zero variance, it is not likely to be a useful
feature. Similarly, if the target has zero variance, there is likely something wrong. NoVarianceDataCheck checks if
the target or any feature has only one unique value and alerts you to any such columns.

[2]: from evalml.data_checks import NoVarianceDataCheck

X = pd.DataFrame({"no var col": [0, 0, 0], "good col": [0, 4, 1]})
y = pd.Series([1, 0, 1])
no_variance_data_check = NoVarianceDataCheck()
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

Warning: 'no var col' has 1 unique value.

Note that you can set NaN to count as an unique value, but NoVarianceDataCheck will still return a warning if there
is only one unique non-NaN value in a given column.

[3]: from evalml.data_checks import NoVarianceDataCheck

X = pd.DataFrame(
{

"no var col": [0, 0, 0],
"no var col with nan": [1, np.nan, 1],
"good col": [0, 4, 1],

}
)
y = pd.Series([1, 0, 1])

no_variance_data_check = NoVarianceDataCheck(count_nan_as_value=True)
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

4.7. Data Checks 211

EvalML Documentation, Release 0.80.0

Warning: 'no var col' has 1 unique value.
Warning: 'no var col with nan' has two unique values including nulls. Consider encoding␣
→˓the nulls for this column to be useful for machine learning.

Class Imbalance

For classification problems, the distribution of examples across each class can vary. For small variations, this is normal
and expected. However, when the number of examples for each class label is disproportionately biased or skewed
towards a particular class (or classes), it can be difficult for machine learning models to predict well. In addition, having
a low number of examples for a given class could mean that one or more of the CV folds generated for the training data
could only have few or no examples from that class. This may cause the model to only predict the majority class and
ultimately resulting in a poor-performant model.

ClassImbalanceDataCheck checks if the target labels are imbalanced beyond a specified threshold for a certain
number of CV folds. It returns DataCheckError messages for any classes that have less samples than double the
number of CV folds specified (since that indicates the likelihood of having at little to no samples of that class in a given
fold), and DataCheckWarning messages for any classes that fall below the set threshold percentage.

[4]: from evalml.data_checks import ClassImbalanceDataCheck

X = pd.DataFrame([[1, 2, 0, 1], [4, 1, 9, 0], [4, 4, 8, 3], [9, 2, 7, 1]])
y = pd.Series([0, 1, 1, 1, 1])

class_imbalance_check = ClassImbalanceDataCheck(threshold=0.25, num_cv_folds=4)
messages = class_imbalance_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: The following labels fall below 25% of the target: [0]
Warning: The following labels in the target have severe class imbalance because they␣
→˓fall under 25% of the target and have less than 100 samples: [0]
Error: The number of instances of these targets is less than 2 * the number of cross␣
→˓folds = 8 instances: [0, 1]

Target Leakage

Target leakage, also known as data leakage, can occur when you train your model on a dataset that includes information
that should not be available at the time of prediction. This causes the model to score suspiciously well, but perform
poorly in production. TargetLeakageDataCheck checks for features that could potentially be “leaking” information
by calculating the Pearson correlation coefficient between each feature and the target to warn users if there are features
are highly correlated with the target. Currently, only numerical features are considered.

[5]: from evalml.data_checks import TargetLeakageDataCheck

X = pd.DataFrame(
(continues on next page)

212 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Leakage_(machine_learning)#:~:text=In%20statistics%20and%20machine%20learning,run%20in%20a%20production%20environment.

EvalML Documentation, Release 0.80.0

(continued from previous page)

{
"leak": [10, 42, 31, 51, 61] * 5,
"x": [42, 54, 12, 64, 12] * 5,
"y": [12, 5, 13, 74, 24] * 5,

}
)
y = pd.Series([10, 42, 31, 51, 40] * 5)

target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8)
messages = target_leakage_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns 'leak', 'x', 'y' are 80.0% or more correlated with the target

Invalid Target Data

The InvalidTargetDataCheck checks if the target data contains any missing or invalid values. Specifically:

• if any of the target values are missing, a DataCheckError message is returned

• if the specified problem type is a binary classification problem but there is more or less than two unique values
in the target, a DataCheckError message is returned

• if binary classification target classes are numeric values not equal to {0, 1}, a DataCheckError message is
returned because it can cause unpredictable behavior when passed to pipelines

[6]: from evalml.data_checks import InvalidTargetDataCheck

X = pd.DataFrame({})
y = pd.Series([0, 1, None, None])

invalid_target_check = InvalidTargetDataCheck("binary", "Log Loss Binary")
messages = invalid_target_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Input target and features have different lengths
Warning: Input target and features have mismatched indices. Details will include the␣
→˓first 10 mismatched indices.

(continues on next page)

4.7. Data Checks 213

EvalML Documentation, Release 0.80.0

(continued from previous page)

Error: 2 row(s) (50.0%) of target values are null

ID Columns

ID columns in your dataset provide little to no benefit to a machine learning pipeline as the pipeline cannot extrapolate
useful information from unique identifiers. Thus, IDColumnsDataCheck reminds you if these columns exists. In the
given example, ‘user_number’ and ‘revenue_id’ columns are both identified as potentially being unique identifiers that
should be removed.

[7]: from evalml.data_checks import IDColumnsDataCheck

X = pd.DataFrame(
[[0, 53, 6325, 5], [1, 90, 6325, 10], [2, 90, 18, 20]],
columns=["user_number", "cost", "revenue", "revenue_id"],

)

id_col_check = IDColumnsDataCheck(id_threshold=0.9)
messages = id_col_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns 'user_number', 'revenue_id' are 90.0% or more likely to be an ID column

Primary key columns however, can be useful. Primary key columns are typically the first column in the dataset, have
all unique values, and are either named ID or a name that ends with _id. Though they are ignored from the modeling
process, they can be used as an identifier to query on before or after the modeling process. IDColumnsDataCheck will
also remind you if it finds that the first column of the DataFrame is a primary key. In the given example, user_id is
identified as a primary key, while revenue_id was identified as a regular unique identifier.

[8]: from evalml.data_checks import IDColumnsDataCheck

X = pd.DataFrame(
[[0, 53, 6325, 5], [1, 90, 6325, 10], [2, 90, 18, 20]],
columns=["user_id", "cost", "revenue", "revenue_id"],

)

id_col_check = IDColumnsDataCheck(id_threshold=0.9)
messages = id_col_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

(continues on next page)

214 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

for error in errors:
print("Error:", error["message"])

Warning: The first column 'user_id' is likely to be the primary key
Warning: Columns 'revenue_id' are 90.0% or more likely to be an ID column

Multicollinearity

The MulticollinearityDataCheck data check is used in to detect if are any set of features that are likely to be
multicollinear. Multicollinear features affect the performance of a model, but more importantly, it may greatly impact
model interpretation. EvalML uses mutual information to determine collinearity.

[9]: from evalml.data_checks import MulticollinearityDataCheck

y = pd.Series([1, 0, 2, 3, 4] * 5)
X = pd.DataFrame(

{
"col_1": y,
"col_2": y * 3,
"col_3": ~y,
"col_4": y / 2,
"col_5": y + 1,
"not_collinear": [0, 1, 0, 0, 0] * 5,

}
)

multi_check = MulticollinearityDataCheck(threshold=0.95)
messages = multi_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns are likely to be correlated: [('col_1', 'col_2'), ('col_1', 'col_3'), (
→˓'col_1', 'col_4'), ('col_1', 'col_5'), ('col_2', 'col_3'), ('col_2', 'col_4'), ('col_2
→˓', 'col_5'), ('col_3', 'col_4'), ('col_3', 'col_5'), ('col_4', 'col_5')]

4.7. Data Checks 215

EvalML Documentation, Release 0.80.0

Uniqueness

The UniquenessDataCheck is used to detect columns with either too unique or not unique enough values. For re-
gression type problems, the data is checked for a lower limit of uniqueness. For multiclass type problems, the data is
checked for an upper limit.

[10]: import pandas as pd
from evalml.data_checks import UniquenessDataCheck

X = pd.DataFrame(
{

"most_unique": [float(x) for x in range(10)], # [0,1,2,3,4,5,6,7,8,9]
"more_unique": [x % 5 for x in range(10)], # [0,1,2,3,4,0,1,2,3,4]
"unique": [x % 3 for x in range(10)], # [0,1,2,0,1,2,0,1,2,0]
"less_unique": [x % 2 for x in range(10)], # [0,1,0,1,0,1,0,1,0,1]
"not_unique": [float(1) for x in range(10)],

}
) # [1,1,1,1,1,1,1,1,1,1]

uniqueness_check = UniquenessDataCheck(problem_type="regression", threshold=0.5)
messages = uniqueness_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Input columns 'not_unique' for regression problem type are not unique enough.

Sparsity

The SparsityDataCheck is used to identify features that contain a sparsity of values.

[11]: from evalml.data_checks import SparsityDataCheck

X = pd.DataFrame(
{

"most_sparse": [float(x) for x in range(10)], # [0,1,2,3,4,5,6,7,8,9]
"more_sparse": [x % 5 for x in range(10)], # [0,1,2,3,4,0,1,2,3,4]
"sparse": [x % 3 for x in range(10)], # [0,1,2,0,1,2,0,1,2,0]
"less_sparse": [x % 2 for x in range(10)], # [0,1,0,1,0,1,0,1,0,1]
"not_sparse": [float(1) for x in range(10)],

}
) # [1,1,1,1,1,1,1,1,1,1]

sparsity_check = SparsityDataCheck(
problem_type="multiclass", threshold=0.4, unique_count_threshold=3

)
(continues on next page)

216 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

messages = sparsity_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Input columns ('most_sparse', 'more_sparse', 'sparse') for multiclass problem␣
→˓type are too sparse.

Outliers

Outliers are observations that differ significantly from other observations in the same sample. Many machine learning
pipelines suffer in performance if outliers are not dropped from the training set as they are not representative of the
data. OutliersDataCheck() uses IQR to notify you if a sample can be considered an outlier.

Below we generate a random dataset with some outliers.

[12]: data = np.tile(np.arange(10) * 0.01, (100, 10))
X = pd.DataFrame(data=data)

generate some outliers in columns 3, 25, 55, and 72
X.iloc[0, 3] = -10000
X.iloc[3, 25] = 10000
X.iloc[5, 55] = 10000
X.iloc[10, 72] = -10000

We then utilize OutliersDataCheck() to rediscover these outliers.

[13]: from evalml.data_checks import OutliersDataCheck

outliers_check = OutliersDataCheck()
messages = outliers_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Column(s) '3', '25', '55', '72' are likely to have outlier data.

4.7. Data Checks 217

EvalML Documentation, Release 0.80.0

Target Distribution

Target data can come in a variety of distributions, such as Gaussian or Lognormal. When we work with machine
learning models, we feed data into an estimator that learns from the training data provided. Sometimes the data can
be significantly spread out with a long tail or outliers, which could lead to a lognormal distribution. This can cause
machine learning model performance to suffer.

To help the estimators better understand the underlying relationships in the data between the features and the target, we
can use the TargetDistributionDataCheck to identify such a distribution.

[14]: from scipy.stats import lognorm
from evalml.data_checks import TargetDistributionDataCheck

data = np.tile(np.arange(10) * 0.01, (100, 10))
X = pd.DataFrame(data=data)
y = pd.Series(lognorm.rvs(s=0.4, loc=1, scale=1, size=100))

target_dist_check = TargetDistributionDataCheck()
messages = target_dist_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Target may have a lognormal distribution.

Datetime Format

Datetime information is a necessary component of time series problems, but sometimes the data we deal with may
contain flaws that make it impossible for time series models to work with them. For example, in order to identify a
frequency in the datetime information there has to be equal interval spacing between data points i.e. January 1, 2021,
January 3, 2021, January 5, 2021, . . . etc which are separated by two days. If instead there are random jumps in the
datetime data i.e. January 1, 2021, January 3, 2021, January 12, 2021, then a frequency can’t be inferred. Another com-
mon issue with time series models are that they can’t handle datetime information that isn’t properly sorted. Datetime
values that aren’t monotonically increasing (sorted in ascending order) will encounter this issue and their frequency
cannot be inferred.

To make it easy to verify that the datetime column you’re working with is properly spaced and sorted, we can leverage
the DatetimeFormatDataCheck. When initializing the data check, pass in the name of the column that contains your
datetime information (or pass in “index” if it’s found in either your X or y indices).

[15]: from evalml.data_checks import DateTimeFormatDataCheck

X = pd.DataFrame(
pd.date_range("January 1, 2021", periods=8, freq="2D"), columns=["dates"]

)
y = pd.Series([1, 2, 4, 2, 1, 2, 3, 1])

Replaces the last entry with January 16th instead of January 15th
(continues on next page)

218 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

so that the data is no longer evenly spaced.
X.iloc[7] = "January 16, 2021"

datetime_format_check = DateTimeFormatDataCheck(datetime_column="dates")
messages = datetime_format_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

print("--------------------------------")

Reverses the order of the index datetime values to be decreasing.
X = X[::-1]
messages = datetime_format_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Error: Column 'dates' has datetime values that do not align with the inferred frequency.
Error: A frequency was detected in column 'dates', but there are faulty datetime values␣
→˓that need to be addressed.

Error: Datetime values must be sorted in ascending order.
Error: No frequency could be detected in column 'dates', possibly due to uneven␣
→˓intervals or too many duplicate/missing values.

Time Series Parameters

In order to support time series problem types in AutoML, certain conditions have to be met. - The parameters gap,
max_delay, forecast_horizon, and time_index have to be passed in to problem_configuration. - The values
of gap, max_delay, forecast_horizon have to be appropriate for the size of the data.

For point 2 above, this means that the window size (as defined by gap + max_delay + forecast_horizon) has to be
less than the number of observations in the data divided by the number of splits + 1. For example, with 100 observations
and 3 splits, the split size would be 25. This means that the window size has to be less than 25.

[16]: from evalml.data_checks import TimeSeriesParametersDataCheck

X = pd.DataFrame(pd.date_range("1/1/21", periods=100), columns=["dates"])
y = pd.Series([i % 2 for i in range(100)])

(continues on next page)

4.7. Data Checks 219

EvalML Documentation, Release 0.80.0

(continued from previous page)

problem_config = {
"gap": 1,
"max_delay": 23,
"forecast_horizon": 1,
"time_index": "dates",

}

With 3 splits, the split size will be 25 (100/3+1)
Since gap + max_delay + forecast_horizon is 25, this will
throw an error for window size.
ts_params_data_check = TimeSeriesParametersDataCheck(

problem_configuration=problem_config, n_splits=3
)
messages = ts_params_data_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Time Series Splitting

Due to the nature of time series data, splitting cannot involve shuffling and has to be done in a sequential manner. This
means splitting the data into n_splits + 1 different sections and increasing the size of the training data by the split
size every iteration while keeping the test size equal to the split size.

For every split in the data, the training and validation segments must contain target data that has an example of every
class found in the entire target set for time series binary and time series multiclass problems. The reason for this is that
many classification machine learning models run into issues if they’re trained on data that doesn’t contain an instance
of a class but then the model is expected to be able to predict for it. For example, with 3 splits and a split size of 25,
this means that every training/validation split: (0:25)/(25:50), (0:50)/(50:75), (0:75)/(75:100) must contain at least one
instance of all unique target classes in the training and validation set. - At least one instance of both classes in a time
series binary problem. - At least one instance of all classes in a time series multiclass problem.

[17]: from evalml.data_checks import TimeSeriesSplittingDataCheck

X = None
y = pd.Series([0 if i < 50 else i % 2 for i in range(100)])

ts_splitting_check = TimeSeriesSplittingDataCheck("time series binary", 3)
messages = ts_splitting_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
(continues on next page)

220 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Error: Time Series Binary and Time Series Multiclass problem types require every␣
→˓training and validation split to have at least one instance of all the target classes.␣
→˓The following splits are invalid: [1, 2]

4.7.3 Data Check Messages

Each data check’s validate method returns a list of DataCheckMessage objects indicating warnings or errors found;
warnings are stored as a DataCheckWarning object and errors are stored as a DataCheckError object. You can filter
the messages returned by a data check by checking for the type of message returned. Below, NoVarianceDataCheck
returns a list containing a DataCheckWarning and a DataCheckError message. We can determine which is which
by checking the type of each message.

[18]: from evalml.data_checks import NoVarianceDataCheck, DataCheckWarning

X = pd.DataFrame(
{

"no var col": [0, 0, 0],
"no var col with nan": [1, np.nan, 1],
"good col": [0, 4, 1],

}
)
y = pd.Series([1, 0, 1])

no_variance_data_check = NoVarianceDataCheck(count_nan_as_value=True)
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

Warning: 'no var col' has 1 unique value.
Warning: 'no var col with nan' has two unique values including nulls. Consider encoding␣
→˓the nulls for this column to be useful for machine learning.

4.7.4 Writing Your Own Data Check

If you would prefer to write your own data check, you can do so by extending the DataCheck class and implementing
the validate(self, X, y) class method. Below, we’ve created a new DataCheck, ZeroVarianceDataCheck,
which is similar to NoVarianceDataCheck defined in EvalML. The validate(self, X, y) method should return
a dictionary with ‘warnings’ and ‘errors’ as keys mapping to list of warnings and errors, respectively.

[19]: from evalml.data_checks import DataCheck

class ZeroVarianceDataCheck(DataCheck):
(continues on next page)

4.7. Data Checks 221

EvalML Documentation, Release 0.80.0

(continued from previous page)

def validate(self, X, y):
messages = []
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)
warning_msg = "Column '{}' has zero variance"
messages.extend(

[
DataCheckError(warning_msg.format(column), self.name)
for column in X.columns
if len(X[column].unique()) == 1

]
)
return messages

4.7.5 Defining Collections of Data Checks

For convenience, EvalML provides a DataChecks class to represent a collection of data checks. We will go over
DefaultDataChecks (API reference), a collection defined to check for some of the most common data issues.

Default Data Checks

DefaultDataChecks is a collection of data checks defined to check for some of the most common data issues. They
include:

• NullDataCheck

• IDColumnsDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck

• TargetDistributionDataCheck (for regression problem types)

• ClassImbalanceDataCheck (for classification problem types)

• NoVarianceDataCheck

• DateTimeFormatDataCheck (for time series problem types)

• TimeSeriesParametersDataCheck (for time series problem types)

• TimeSeriesSplittingDataCheck (for time series classification problem types)

4.7.6 Writing Your Own Collection of Data Checks

If you would prefer to create your own collection of data checks, you could either write your own data checks class
by extending the DataChecks class and setting the self.data_checks attribute to the list of DataCheck classes or
objects, or you could pass that list of data checks to the constructor of the DataChecks class. Below, we create two
identical collections of data checks using the two different methods.

[20]: # Create a subclass of `DataChecks`
from evalml.data_checks import (

DataChecks,
(continues on next page)

222 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
ClassImbalanceDataCheck,
TargetLeakageDataCheck,

)
from evalml.problem_types import ProblemTypes, handle_problem_types

class MyCustomDataChecks(DataChecks):
data_checks = [

NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
TargetLeakageDataCheck,

]

def __init__(self, problem_type, objective):
"""
A collection of basic data checks.
Args:

problem_type (str): The problem type that is being validated. Can be␣
→˓regression, binary, or multiclass.

"""
if handle_problem_types(problem_type) == ProblemTypes.REGRESSION:

super().__init__(
self.data_checks,
data_check_params={

"InvalidTargetDataCheck": {
"problem_type": problem_type,
"objective": objective,

}
},

)
else:

super().__init__(
self.data_checks + [ClassImbalanceDataCheck],
data_check_params={

"InvalidTargetDataCheck": {
"problem_type": problem_type,
"objective": objective,

}
},

)

custom_data_checks = MyCustomDataChecks(
problem_type=ProblemTypes.REGRESSION, objective="R2"

)
for data_check in custom_data_checks.data_checks:

print(data_check.name)

4.7. Data Checks 223

EvalML Documentation, Release 0.80.0

NullDataCheck
InvalidTargetDataCheck
NoVarianceDataCheck
TargetLeakageDataCheck

[21]: # Pass list of data checks to the `data_checks` parameter of DataChecks
same_custom_data_checks = DataChecks(

data_checks=[
NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
TargetLeakageDataCheck,

],
data_check_params={

"InvalidTargetDataCheck": {
"problem_type": ProblemTypes.REGRESSION,
"objective": "R2",

}
},

)
for data_check in custom_data_checks.data_checks:

print(data_check.name)

NullDataCheck
InvalidTargetDataCheck
NoVarianceDataCheck
TargetLeakageDataCheck

4.8 Understanding Data Check Actions

EvalML streamlines the creation and implementation of machine learning models for tabular data. One of the many
features it offers is data checks, which help determine the health of our data before we train a model on it. These data
checks have associated actions with them and will be shown in this notebook. In our default data checks, we have the
following checks:

• NullDataCheck: Checks whether the rows or columns are null or highly null

• IDColumnsDataCheck: Checks for columns that could be ID columns

• TargetLeakageDataCheck: Checks if any of the input features have high association with the targets

• InvalidTargetDataCheck: Checks if there are null or other invalid values in the target

• NoVarianceDataCheck: Checks if either the target or any features have no variance

EvalML has additional data checks that can be seen here, with usage examples here. Below, we will walk through usage
of EvalML’s default data checks and actions.

First, we import the necessary requirements to demonstrate these checks.

[1]: import woodwork as ww
import pandas as pd
from evalml import AutoMLSearch
from evalml.demos import load_fraud
from evalml.preprocessing import split_data

224 Chapter 4. User Guide

https://evalml.alteryx.com/en/stable/user_guide/data_checks.html
https://evalml.alteryx.com/en/stable/api_index.html#data-checks
https://evalml.alteryx.com/en/stable/user_guide/data_checks.html

EvalML Documentation, Release 0.80.0

Let’s look at the input feature data. EvalML uses the Woodwork library to represent this data. The demo data that
EvalML returns is a Woodwork DataTable and DataColumn.

[2]: X, y = load_fraud(n_rows=1500)
X.head()

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 1500
Targets
False 86.60%
True 13.40%
Name: count, dtype: object

[2]: card_id store_id datetime amount currency customer_present \
id
0 32261 8516 2019-01-01 00:12:26 24900 CUC True
1 16434 8516 2019-01-01 09:42:03 15789 MYR False
2 23468 8516 2019-04-17 08:17:01 1883 AUD False
3 14364 8516 2019-01-30 11:54:30 82120 KRW True
4 29407 8516 2019-05-01 17:59:36 25745 MUR True

expiration_date provider lat lng region \
id
0 08/24 Mastercard 38.58894 -89.99038 Fairview Heights
1 11/21 Discover 38.58894 -89.99038 Fairview Heights
2 09/27 Discover 38.58894 -89.99038 Fairview Heights
3 09/20 JCB 16 digit 38.58894 -89.99038 Fairview Heights
4 09/22 American Express 38.58894 -89.99038 Fairview Heights

country
id
0 US
1 US
2 US
3 US
4 US

4.8.1 Adding noise and unclean data

This data is already clean and compatible with EvalML’s AutoMLSearch. In order to demonstrate EvalML default data
checks, we will add the following:

• A column of mostly null values (<0.5% non-null)

• A column with low/no variance

• A row of null values

• A missing target value

We will add the first two columns to the whole dataset and we will only add the last two to the training data. Note:
these only represent some of the scenarios that EvalML default data checks can catch.

4.8. Understanding Data Check Actions 225

https://woodwork.alteryx.com/en/stable/

EvalML Documentation, Release 0.80.0

[3]: # add a column with no variance in the data
X["no_variance"] = [1 for _ in range(X.shape[0])]

add a column with >99.5% null values
X["mostly_nulls"] = [None] * (X.shape[0] - 5) + [i for i in range(5)]

since we changed the data, let's reinitialize the woodwork datatable
X.ww.init()
let's split some training and validation data
X_train, X_valid, y_train, y_valid = split_data(X, y, problem_type="binary")

[4]: # make row 1 all nan values
X_train.iloc[1] = [None] * X_train.shape[1]

make one of the target values null
y_train[990] = None

X_train.ww.init()
y_train = ww.init_series(y_train, logical_type="Categorical")
Let's take another look at the new X_train data
X_train

[4]: card_id store_id datetime amount currency \
id
872 15492 2868 2019-08-03 02:50:04 80719 HNL
1477 <NA> <NA> NaT <NA> NaN
158 22440 6813 2019-07-12 11:07:25 1849 SEK
808 8096 8096 2019-06-11 21:33:36 41358 MOP
336 33270 1529 2019-03-23 21:44:00 32594 CUC
...
339 8484 5358 2019-01-10 07:47:28 89503 GMD
1383 17565 3929 2019-01-15 01:11:02 14264 DKK
893 108 44 2019-05-17 00:53:39 93218 SLL
385 29983 152 2019-06-09 06:50:29 41105 RWF
1074 26197 4927 2019-05-22 15:57:27 50481 MNT

customer_present expiration_date provider lat lng \
id
872 True 08/27 American Express 5.47090 100.24529
1477 <NA> NaN NaN NaN NaN
158 True 09/20 American Express 26.26490 81.54855
808 True 04/29 VISA 13 digit 59.37722 28.19028
336 False 04/22 Mastercard 51.39323 0.47713
...
339 False 11/24 Maestro 47.30997 8.52462
1383 True 06/20 VISA 13 digit 50.72043 11.34046
893 True 12/24 JCB 16 digit 15.72892 120.57224
385 False 07/20 JCB 16 digit -6.80000 39.25000
1074 False 05/26 JCB 15 digit 41.00510 -73.78458

region country no_variance mostly_nulls
id
872 Batu Feringgi MY 1 <NA>

(continues on next page)

226 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

1477 NaN NaN <NA> <NA>
158 Jais IN 1 <NA>
808 Narva EE 1 <NA>
336 Strood GB 1 <NA>
...
339 Adliswil CH 1 <NA>
1383 Rudolstadt DE 1 <NA>
893 Burgos PH 1 <NA>
385 Magomeni TZ 1 <NA>
1074 Scarsdale US 1 <NA>

[1200 rows x 14 columns]

If we call AutoMLSearch.search() on this data, the search will fail due to the columns and issues we’ve added above.
Note: we use a try/except here to catch the resulting ValueError that AutoMLSearch raises.

[5]: automl = AutoMLSearch(X_train=X_train, y_train=y_train, problem_type="binary")
try:

automl.search()
except ValueError as e:

to make the error message more distinct
print("=" * 80, "\n")
print("Search errored out! Message received is: {}".format(e))
print("=" * 80, "\n")

==

Search errored out! Message received is: Input y contains NaN.
==

We can use the search_iterative() function provided in EvalML to determine what potential health issues our
data has. We can see that this search_iterative function is a public method available through evalml.automl and is
different from the search function of the AutoMLSearch class in EvalML. This search_iterative() function allows
us to run the default data checks on the data, and, if there are no errors, automatically runs AutoMLSearch.search().

[6]: from evalml.automl import search_iterative

automl, messages = search_iterative(X_train, y_train, problem_type="binary")
automl, messages

[6]: (None,
[{'message': '1 out of 1200 rows are 95.0% or more null',
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': None,
'rows': [1477],
'pct_null_cols': id
1477 1.0
dtype: float64},
'code': 'HIGHLY_NULL_ROWS',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'NullDataCheck',

(continues on next page)

4.8. Understanding Data Check Actions 227

https://evalml.alteryx.com/en/latest/autoapi/evalml/automl/index.html#evalml.automl.search_iterative
https://evalml.alteryx.com/en/stable/autoapi/evalml/automl/index.html#evalml.automl.AutoMLSearch

EvalML Documentation, Release 0.80.0

(continued from previous page)

'metadata': {'columns': None, 'rows': [1477]},
'parameters': {}}]},

{'message': "Column(s) 'mostly_nulls' are 95.0% or more null",
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': ['mostly_nulls'],
'rows': None,
'pct_null_rows': {'mostly_nulls': 0.9966666666666667}},
'code': 'HIGHLY_NULL_COLS',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NullDataCheck',
'metadata': {'columns': ['mostly_nulls'], 'rows': None},
'parameters': {}}]},

{'message': '1 row(s) (0.08333333333333334%) of target values are null',
'data_check_name': 'InvalidTargetDataCheck',
'level': 'error',
'details': {'columns': None,
'rows': [990],
'num_null_rows': 1,
'pct_null_rows': 0.08333333333333334},
'code': 'TARGET_HAS_NULL',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'InvalidTargetDataCheck',
'metadata': {'columns': None, 'rows': [990], 'is_target': True},
'parameters': {}}]},

{'message': "'no_variance' has 1 unique value.",
'data_check_name': 'NoVarianceDataCheck',
'level': 'warning',
'details': {'columns': ['no_variance'], 'rows': None},
'code': 'NO_VARIANCE',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NoVarianceDataCheck',
'metadata': {'columns': ['no_variance'], 'rows': None},
'parameters': {}}]}])

The return value of the search_iterative function above is a tuple. The first element is the AutoMLSearch object
if it runs (and None otherwise), and the second element is a dictionary of potential warnings and errors that the default
data checks find on the passed-in X and y data. In this dictionary, warnings are suggestions that the data checks give
that can useful to address to make the search better but will not break AutoMLSearch. On the flip side, errors indicate
issues that will break AutoMLSearch and need to be addressed by the user.

Above, we can see that there were errors so search did not automatically run.

228 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

4.8.2 Addressing warnings and errors

We can automatically address the warnings and errors returned by search_iterative by using
make_pipeline_from_data_check_output, a utility method that creates a pipeline that will automatically
clean up our data. We just need to pass this method the messages from running DataCheck.validate() and our
problem type.

[7]: from evalml.pipelines.utils import make_pipeline_from_data_check_output

actions_pipeline = make_pipeline_from_data_check_output("binary", messages)
actions_pipeline.fit(X_train, y_train)
X_train_cleaned, y_train_cleaned = actions_pipeline.transform(X_train, y_train)
print(

"The new length of X_train is {} and y_train is {}".format(
len(X_train_cleaned), len(X_train_cleaned)

)
)

The new length of X_train is 1198 and y_train is 1198

Now, we can run search_iterative to completion.

[8]: results_cleaned = search_iterative(
X_train_cleaned, y_train_cleaned, problem_type="binary"

)

Note that this time, we get an AutoMLSearch object returned to us as the first element of the tuple. We can use and
inspect the AutoMLSearch object as needed.

[9]: automl_object = results_cleaned[0]
automl_object.rankings

[9]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Da... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.238873 0.238873 0.016718
1 4.843912 4.843912 0.049015

percent_better_than_baseline high_variance_cv \
0 95.06859 False
1 0.00000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'D...
1 {'Label Encoder': {'positive_label': None}, 'B...

If we check the second element in the tuple, we can see that there are no longer any warnings or errors detected!

[10]: data_check_results = results_cleaned[1]
data_check_results

[10]: []

4.8. Understanding Data Check Actions 229

EvalML Documentation, Release 0.80.0

4.8.3 Only addressing DataCheck errors

Previously, we used make_pipeline_from_actions to address all of the warnings and errors returned by
search_iterative. We will now show how we can also manually address errors to allow AutoMLSearch to run,
and how ignoring warnings will come at the expense of performance.

We can print out the errors first to make it easier to read, and then we’ll create new features and targets from the original
training data.

[11]: errors = [message for message in messages if message["level"] == "error"]
errors

[11]: [{'message': '1 row(s) (0.08333333333333334%) of target values are null',
'data_check_name': 'InvalidTargetDataCheck',
'level': 'error',
'details': {'columns': None,
'rows': [990],
'num_null_rows': 1,
'pct_null_rows': 0.08333333333333334},
'code': 'TARGET_HAS_NULL',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'InvalidTargetDataCheck',
'metadata': {'columns': None, 'rows': [990], 'is_target': True},
'parameters': {}}]}]

[12]: # copy the DataTables to new variables
X_train_no_errors = X_train.copy()
y_train_no_errors = y_train.copy()

We address the errors by looking at the resulting dictionary errors listed

let's address the `TARGET_HAS_NULL` error
y_train_no_errors.fillna(False, inplace=True)

let's reinitialize the Woodwork DataTable
X_train_no_errors.ww.init()
X_train_no_errors.head()

[12]: card_id store_id datetime amount currency \
id
872 15492 2868 2019-08-03 02:50:04 80719 HNL
1477 <NA> <NA> NaT <NA> NaN
158 22440 6813 2019-07-12 11:07:25 1849 SEK
808 8096 8096 2019-06-11 21:33:36 41358 MOP
336 33270 1529 2019-03-23 21:44:00 32594 CUC

customer_present expiration_date provider lat lng \
id
872 True 08/27 American Express 5.47090 100.24529
1477 <NA> NaN NaN NaN NaN
158 True 09/20 American Express 26.26490 81.54855
808 True 04/29 VISA 13 digit 59.37722 28.19028
336 False 04/22 Mastercard 51.39323 0.47713

region country no_variance mostly_nulls
(continues on next page)

230 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

id
872 Batu Feringgi MY 1 <NA>
1477 NaN NaN <NA> <NA>
158 Jais IN 1 <NA>
808 Narva EE 1 <NA>
336 Strood GB 1 <NA>

We can now run search on X_train_no_errors and y_train_no_errors. Note that the search here doesn’t fail since
we addressed the errors, but there will still exist warnings in the returned tuple. This search allows the mostly_nulls
column to remain in the features during search.

[13]: results_no_errors = search_iterative(
X_train_no_errors, y_train_no_errors, problem_type="binary"

)
results_no_errors

[13]: (<evalml.automl.automl_search.AutoMLSearch at 0x7f3a41b18340>,
[{'message': '1 out of 1200 rows are 95.0% or more null',
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': None,
'rows': [1477],
'pct_null_cols': id
1477 1.0
dtype: float64},
'code': 'HIGHLY_NULL_ROWS',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'NullDataCheck',
'metadata': {'columns': None, 'rows': [1477]},
'parameters': {}}]},

{'message': "Column(s) 'mostly_nulls' are 95.0% or more null",
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': ['mostly_nulls'],
'rows': None,
'pct_null_rows': {'mostly_nulls': 0.9966666666666667}},
'code': 'HIGHLY_NULL_COLS',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NullDataCheck',
'metadata': {'columns': ['mostly_nulls'], 'rows': None},
'parameters': {}}]},

{'message': "'no_variance' has 1 unique value.",
'data_check_name': 'NoVarianceDataCheck',
'level': 'warning',
'details': {'columns': ['no_variance'], 'rows': None},
'code': 'NO_VARIANCE',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NoVarianceDataCheck',
'metadata': {'columns': ['no_variance'], 'rows': None},
'parameters': {}}]}])

4.8. Understanding Data Check Actions 231

EvalML Documentation, Release 0.80.0

4.9 Utilities

4.9.1 Configuring Logging

EvalML uses the standard Python logging package. Default logging behavior prints WARNING level logs and above
(ERROR and CRITICAL) to stdout. To configure different behavior, please refer to the Python logging documentation.

To see up-to-date feedback as AutoMLSearch runs, use the argument verbose=True when instantiating the object.
This will temporarily set up a logging object to print INFO level logs and above to stdout, as well as display a graph of
the best score over pipeline iterations.

4.9.2 System Information

EvalML provides a command-line interface (CLI) tool prints the version of EvalML and core dependencies installed,
as well as some basic system information. To use this tool, just run evalml info in your shell or terminal. This could
be useful for debugging purposes or tracking down any version-related issues.

[1]: !evalml info

/usr/bin/sh: 1: evalml: not found

4.10 AutoMLSearch for time series problems

In this guide, we’ll show how you can use EvalML to perform an automated search of machine learning pipelines for
time series problems. Time series support is still being actively developed in EvalML so expect this page to improve
over time.

4.10.1 But first, what is a time series?

A time series is a series of measurements taken at different moments in time (Wikipedia). The main difference between
a time series dataset and a normal dataset is that the rows of a time series dataset are ordered chronologically, where the
relative time between rows is significant. This relationship between the rows does not exist in non-time series datasets.
In a non-time-series dataset, you can shuffle the rows and the dataset still has the same meaning. If you shuffle the rows
of a time series dataset, the relationship between the rows is completely different!

4.10.2 What does AutoMLSearch for time series do?

In a machine learning setting, we are usually interested in using past values of the time series to predict future values.
That is what EvalML’s time series functionality is built to do.

232 Chapter 4. User Guide

https://docs.python.org/3/library/logging.html
https://en.wikipedia.org/wiki/Time_series

EvalML Documentation, Release 0.80.0

4.10.3 Loading the data

In this guide, we work with daily minimum temperature recordings from Melbourne, Austrailia from the beginning of
1981 to end of 1990.

We start by loading the temperature data into two splits. The first split will be a training split consisting of data from
1981 to end of 1989. This is the data we’ll use to find the best pipeline with AutoML. The second split will be a testing
split consisting of data from 1990. This is the split we’ll use to evaluate how well our pipeline generalizes on unseen
data.

[2]: import pandas as pd
from evalml.demos import load_weather

X, y = load_weather()

Number of Features
Categorical 1

Number of training examples: 3650
Targets
10.0 1.40%
11.0 1.40%
13.0 1.32%
12.5 1.21%
10.5 1.21%

...
0.2 0.03%
24.0 0.03%
25.2 0.03%
22.7 0.03%
21.6 0.03%
Name: count, Length: 229, dtype: object

[3]: train_dates, test_dates = X.Date < "1990-01-01", X.Date >= "1990-01-01"
X_train, y_train = X.ww.loc[train_dates], y.ww.loc[train_dates]
X_test, y_test = X.ww.loc[test_dates], y.ww.loc[test_dates]

Visualizing the training set

[4]: import plotly.graph_objects as go

[5]: data = [
go.Scatter(

x=X_train["Date"],
y=y_train,
mode="lines+markers",
name="Temperature (C)",
line=dict(color="#1f77b4"),

)
]
Let plotly pick the best date format.
layout = go.Layout(

(continues on next page)

4.10. AutoMLSearch for time series problems 233

EvalML Documentation, Release 0.80.0

(continued from previous page)

title={"text": "Min Daily Temperature, Melbourne 1980-1989"},
xaxis={"title": "Time"},
yaxis={"title": "Temperature (C)"},

)

go.Figure(data=data, layout=layout)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.4 Fixing the data

Sometimes, the datasets we work with do not have perfectly consistent DateTime columns. We can use the
TimeSeriesRegularizer and TimeSeriesImputer to correct any discrepancies in our data in a time-series spe-
cific way.

To show an example of this, let’s create some discrepancies in our training data. We’ll also add a couple of extra
columns in the X DataFrame to highlight more of the options with these tools.

[6]: X["Categorical"] = [str(i % 4) for i in range(len(X))]
X["Categorical"] = X["Categorical"].astype("category")
X["Numeric"] = [i for i in range(len(X))]

Re-split the data since we modified X
X_train, y_train = X.loc[train_dates], y.ww.loc[train_dates]
X_test, y_test = X.loc[test_dates], y.ww.loc[test_dates]

[7]: X_train["Date"][500] = None
X_train["Date"][1042] = None
X_train["Date"][1043] = None
X_train["Date"][231] = pd.Timestamp("1981-08-19")

X_train.drop(1209, inplace=True)
X_train.drop(398, inplace=True)
y_train.drop(1209, inplace=True)
y_train.drop(398, inplace=True)

With these changes, there are now NaN values in the training data that our models won’t be able to recognize, and there
is no longer a clear frequency between the dates.

[8]: print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in date column: {X_train['Date'].isna().any()}")
print(

f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
→˓train['Numeric'].isna().any()}"
)
print(f"NaNs in target data: {y_train.isna().any()}")

Inferred frequency: None
NaNs in date column: True

(continues on next page)

234 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

NaNs in other training data columns: False
NaNs in target data: False

Time Series Regularizer

We can use the TimeSeriesRegularizer component to restore the missing and NaN DateTime values we’ve created
in our data. This component is designed to infer the proper frequency using Woodwork’s “infer_frequency” function
and generate a new DataFrame that follows it. In order to maintain as much original information from the input data
as possible, all rows with completely correct times are ported over into this new DataFrame. If there are any rows that
have the same timestamp as another, these will be dropped. The first occurrence of a date or time maintains priority.
If there are any values that don’t quite line up with the inferred frequency they will be shifted to any closely missing
datetimes, or dropped if there are none nearby.

[9]: from evalml.pipelines.components import TimeSeriesRegularizer

regularizer = TimeSeriesRegularizer(time_index="Date")
X_train, y_train = regularizer.fit_transform(X_train, y_train)

Now we can see that pandas has successfully inferred the frequency of the training data, and there are no more null
values within X_train. However, by adding values that were dropped before, we have created NaN values within the
target data, as well as the other columns in our training data.

[10]: print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in training data: {X_train['Date'].isna().any()}")
print(

f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
→˓train['Numeric'].isna().any()}"
)
print(f"NaNs in target data: {y_train.isna().any()}")

Inferred frequency: D
NaNs in training data: False
NaNs in other training data columns: True
NaNs in target data: True

Time Series Imputer

We could easily use the Imputer and TargetImputer components to fill in the missing gaps in our X and y
data. However, these tools are not built for time series problems. Their supported imputation strategies of “mean”,
“most_frequent”, or similar are all static. They don’t account for the passing of time, and how neighboring data points
may have more predictive power than simply taking the average. The TimeSeriesImputer solves this problem by
offering three different imputation strategies: - “forwards_fill”: fills in any NaN values with the same value as found
in the previous non-NaN cell. - “backwards_fill”: fills in any NaN values with the same value as found in the next
non-NaN cell. - “interpolate”: (numeric columns only) fills in any NaN values by linearly interpolating the values of
the previous and next non-NaN cells.

[11]: from evalml.pipelines.components import TimeSeriesImputer

ts_imputer = TimeSeriesImputer(
categorical_impute_strategy="forwards_fill",
numeric_impute_strategy="backwards_fill",

(continues on next page)

4.10. AutoMLSearch for time series problems 235

https://woodwork.alteryx.com/en/stable/generated/woodwork.statistics_utils.infer_frequency.html

EvalML Documentation, Release 0.80.0

(continued from previous page)

target_impute_strategy="interpolate",
)
X_train, y_train = ts_imputer.fit_transform(X_train, y_train)

Now, finally, we have a DataFrame that’s back in order without flaws, which we can use for running AutoMLSearch
and running models without issue.

[12]: print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in training data: {X_train['Date'].isna().any()}")
print(

f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
→˓train['Numeric'].isna().any()}"
)
print(f"NaNs in target data: {y_train.isna().any()}")

Inferred frequency: D
NaNs in training data: False
NaNs in other training data columns: False
NaNs in target data: False

4.10.5 Trending and Seasonality Decomposition

Decomposing a target signal into a trend and/or a cyclical signal is a common pre-processing step for time series
modeling. Having an understanding of the presence or absence of these component signals can provide additional
insight and decomposing the signal into these constituent components can enable non-time-series aware estimators to
perform better while attempting to model this data. We have two unique decomposers, the PolynomialDecompser
and the STLDecomposer.

Let’s first take a look at a year’s worth of the weather dataset.

[13]: import matplotlib.pyplot as plt

length = 365
X_train_time = X_train.set_index("Date").asfreq(pd.infer_freq(X_train["Date"]))
y_train_time = y_train.set_axis(X_train["Date"]).asfreq(pd.infer_freq(X_train["Date"]))
plt.plot(y_train_time[0:length], "bo")
plt.show()

236 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

With the knowledge that this is a weather dataset and the data itself is daily weather data, we can assume that the
seasonal data will have a period of approximately 365 data points. Let’s build and fit decomposers to detrend and
deseasonalize this data.

Polynomial Decomposer

[14]: from evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer import␣
→˓(

PolynomialDecomposer,
)

pdc = PolynomialDecomposer(degree=1, period=365)
X_t, y_t = pdc.fit_transform(X_train_time, y_train_time)

plt.plot(y_train_time, "bo", label="Signal")
plt.plot(y_t, "rx", label="Detrended/Deseasonalized Signal")
plt.legend()
plt.show()

4.10. AutoMLSearch for time series problems 237

EvalML Documentation, Release 0.80.0

The result is the residual signal, with the trend and seasonality removed. If we want to look at what the component
identified as the trend and seasonality, we can call the plot_decomposition() function.

[15]: res = pdc.plot_decomposition(X_train_time, y_train_time)

238 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

It is desirable to enhance the decomposer component with a guess at the period of the seasonal aspect of the signal
before decomposing it. To do that, we can use the determine_periodicity(X, y) function of the Decomposer
class.

[16]: period = pdc.determine_periodicity(X_train_time, y_train_time)
print(period)

351

The PolynomialDecomposer class, if not explicitly set in the constructor, will set its period parameter based on a
statsmodels function freq_to_period that considers the frequency of the datetime data. This will give a reasonable
guess as to what the frequency could be. For example, if the PolynomialDecomposer object is fit with period not
explicitly set, it will take on a default value of 7, which is good for daily data signals that have a known seasonal
component period that is weekly.

In this case where the seasonal period is not known beforehand, the set_period() convenience function will look at
the target data, determine a better guess for the period and set the Decomposer object appropriately.

[17]: pdc = PolynomialDecomposer()
pdc.fit(X_train_time, y_train_time)
assert pdc.period == 7
pdc.set_period(X_train_time, y_train_time)
assert 350 < pdc.period < 370

4.10. AutoMLSearch for time series problems 239

EvalML Documentation, Release 0.80.0

STLDecomposer

The STLDecomposer runs on statsmodels’ implementation of STL decomposition. Let’s take a look at how STL
decomposes the weather dataset.

[18]: from evalml.pipelines.components import STLDecomposer

stl = STLDecomposer()
X_t, y_t = stl.fit_transform(X_train_time, y_train_time)

res = stl.plot_decomposition(X_train_time, y_train_time)

This doesn’t look nearly as good as the PolynomialDecomposer did. This is because STL decomposition performs
best when the data has a small seasonal period, generally less than 14 time units. The weather dataset’s seasonal period
of ~365 days does not work as well since STL extracted a shorter term seasonality for decomposition.

We can generate some synthetic data that better highlights where STL performs well. For this example, we’ll generate
monthly data with an annual seasonal period.

[19]: import random
import numpy as np
from datetime import datetime
from sklearn.preprocessing import minmax_scale

(continues on next page)

240 Chapter 4. User Guide

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html
https://otexts.com/fpp3/stl.html

EvalML Documentation, Release 0.80.0

(continued from previous page)

def generate_synthetic_data(
period=12,
num_periods=25,
scale=10,
seasonal_scale=2,
trend_degree=1,
freq_str="M",

):
freq = 2 * np.pi / period
x = np.arange(0, period * num_periods, 1)
dts = pd.date_range(datetime.today(), periods=len(x), freq=freq_str)
X = pd.DataFrame({"x": x})
X = X.set_index(dts)

if trend_degree == 1:
y_trend = pd.Series(scale * minmax_scale(x + 2))

elif trend_degree == 2:
y_trend = pd.Series(scale * minmax_scale(x**2))

elif trend_degree == 3:
y_trend = pd.Series(scale * minmax_scale((x - 5) ** 3 + x**2))

y_seasonal = pd.Series(seasonal_scale * np.sin(freq * x))
y_random = pd.Series(np.random.normal(0, 1, len(X)))
y = y_trend + y_seasonal + y_random
return X, y

X_stl, y_stl = generate_synthetic_data()

Let’s see how the STLDecomposer does at decomposing this data.

[20]: stl = STLDecomposer()
X_t_stl, y_t_stl = stl.fit_transform(X_stl, y_stl)

res = stl.plot_decomposition(X_stl, y_stl)

4.10. AutoMLSearch for time series problems 241

EvalML Documentation, Release 0.80.0

On top of decomposing this type of data well, the statsmodels implementation of STL automatically determines the
seasonal period of the data, which is saved during fit time for this component.

[21]: stl = STLDecomposer()
assert stl.period == None
stl.fit(X_stl, y_stl)
print(stl.period)

12

4.10.6 Running AutoMLSearch

AutoMLSearch for time series problems works very similarly to the other problem types with the exception that users
need to pass in a new parameter called problem_configuration.

The problem_configuration is a dictionary specifying the following values:

• forecast_horizon: The number of time periods we are trying to forecast. In this example, we’re interested in
predicting weather for the next 7 days, so the value is 7.

• gap: The number of time periods between the end of the training set and the start of the test set. For example, in
our case we are interested in predicting the weather for the next 7 days with the data as it is “today”, so the gap

242 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

is 0. However, if we had to predict the weather for next Monday-Sunday with the data as it was on the previous
Friday, the gap would be 2 (Saturday and Sunday separate Monday from Friday). It is important to select a value
that matches the realistic delay between the forecast date and the most recently avaliable data that can be used to
make that forecast.

• max_delay: The maximum number of rows to look in the past from the current row in order to compute features.
In our example, we’ll say we can use the previous week’s weather to predict the current week’s.

• time_index: The column of the training dataset that contains the date corresponding to each observation. While
only some of the models we run during time series searches require the time_index, we require it to be passed
in to top level search so that the parameter can reach the models that need it.

Note that the values of these parameters must be in the same units as the training/testing data.

Visualization of forecast horizon and gap

[22]: from evalml.automl import AutoMLSearch

problem_config = {"gap": 0, "max_delay": 7, "forecast_horizon": 7, "time_index": "Date"}

automl = AutoMLSearch(
X_train,
y_train,
problem_type="time series regression",
max_batches=1,
problem_configuration=problem_config,
automl_algorithm="iterative",
allowed_model_families=[

"xgboost",
"random_forest",
"linear_model",
"extra_trees",

],
)

[23]: automl.search()

4.10. AutoMLSearch for time series problems 243

EvalML Documentation, Release 0.80.0

[23]: {1: {'Elastic Net Regressor w/ Imputer + Time Series Featurizer + STL Decomposer +␣
→˓DateTime Featurizer + One Hot Encoder + Drop NaN Rows Transformer + Standard Scaler':␣
→˓15.156692504882812,
'Elastic Net Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One␣

→˓Hot Encoder + Drop NaN Rows Transformer + Standard Scaler': 3.712909460067749,
'XGBoost Regressor w/ Imputer + Time Series Featurizer + STL Decomposer + DateTime␣

→˓Featurizer + One Hot Encoder': 17.164578199386597,
'XGBoost Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One Hot␣

→˓Encoder': 5.957250356674194,
'Random Forest Regressor w/ Imputer + Time Series Featurizer + STL Decomposer +␣

→˓DateTime Featurizer + One Hot Encoder + Drop NaN Rows Transformer': 18.46796202659607,
'Random Forest Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer +␣

→˓One Hot Encoder + Drop NaN Rows Transformer': 6.976490497589111,
'Extra Trees Regressor w/ Imputer + Time Series Featurizer + STL Decomposer + DateTime␣

→˓Featurizer + One Hot Encoder + Drop NaN Rows Transformer': 15.023889780044556,
'Extra Trees Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One␣

→˓Hot Encoder + Drop NaN Rows Transformer': 3.5976009368896484,
'Total time of batch': 86.87056303024292}}

4.10.7 Understanding what happened under the hood

This is great, AutoMLSearch is able to find a pipeline that scores an R2 value of 0.44 compared to a baseline pipeline
that is only able to score 0.07. But how did it do that?

Data Splitting

EvalML uses rolling origin cross validation for time series problems. Basically, we take successive cuts of the training
data while keeping the validation set size fixed at forecast_horizon number of time units. Note that the splits are
not separated by gap number of units. This is because we need access to all the data to generate features for every row
of the validation set. However, the feature engineering done by our pipelines respects the gap value. This is explained
more in the feature engineering section.

244 Chapter 4. User Guide

https://robjhyndman.com/hyndsight/tscv/

EvalML Documentation, Release 0.80.0

Baseline Pipeline

The most naive thing we can do in a time series problem is use the most recently available observation to predict the
next observation. In our example, this means we’ll use the measurement from 7 days ago as the prediction for the
current date.

[24]: import pandas as pd

baseline = automl.get_pipeline(0)
baseline.fit(X_train, y_train)
naive_baseline_preds = baseline.predict_in_sample(

X_test, y_test, objective=None, X_train=X_train, y_train=y_train
)
expected_preds = pd.Series(

pd.concat([y_train.iloc[-7:], y_test]).shift(7).iloc[7:], name="target"
)
pd.testing.assert_series_equal(expected_preds, naive_baseline_preds)

Feature Engineering

EvalML uses the values of gap, forecast_horizon, and max_delay to calculate a “window” of allowed dates that
can be used for engineering the features of each row in the validation/test set. The formula for computing the bounds
of the window is:

[t - (max_delay + forecast_horizon + gap), t - (forecast_horizon + gap)]

As an example, this is what the features for the first five days of August would look like in our current problem:

4.10. AutoMLSearch for time series problems 245

EvalML Documentation, Release 0.80.0

The estimator then takes these features to generate predictions:

Feature engineering components for time series

For an example of a time-series feature engineering component see TimeSeriesFeaturizer

4.10.8 Evaluate best pipeline on test data

Now that we have covered the mechanics of how EvalML runs AutoMLSearch for time series pipelines, we can compare
the performance on the test set of the best pipeline found during search and the baseline pipeline.

[25]: pl = automl.best_pipeline

pl.fit(X_train, y_train)

best_pipeline_score = pl.score(X_test, y_test, ["MedianAE"], X_train, y_train)[
"MedianAE"

]

246 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

[26]: best_pipeline_score

[26]: 1.903458595275879

[27]: baseline = automl.get_pipeline(0)
baseline.fit(X_train, y_train)
naive_baseline_score = baseline.score(X_test, y_test, ["MedianAE"], X_train, y_train)[

"MedianAE"
]

[28]: naive_baseline_score

[28]: 2.3

The pipeline found by AutoMLSearch has a 31% improvement over the naive forecast!

[29]: automl.objective.calculate_percent_difference(best_pipeline_score, naive_baseline_score)

[29]: 17.240930640179172

4.10.9 Visualize the predictions over time

[30]: from evalml.model_understanding import graph_prediction_vs_actual_over_time

fig = graph_prediction_vs_actual_over_time(
pl, X_test, y_test, X_train, y_train, dates=X_test["Date"]

)
fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.10 Predicting on unseen data

You’ll notice that in the code snippets here, we use the predict_in_sample pipeline method as opposed to the usual
predict method. What’s the difference?

• predict_in_sample is used when the target value is known on the dates we are predicting on. This is true in
cross validation. This method has an expected y parameter so that we can compute features using previous target
values for all of the observations on the holdout set.

• predict is used when the target value is not known, e.g. the test dataset. The y parameter is not expected as
only the target is observed in the training set. The test dataset must be separated by gap units from the training
dataset. For the moment, the test set size must be less than or equal to forecast_horizon.

Here is an example of these two methods in action:

4.10. AutoMLSearch for time series problems 247

EvalML Documentation, Release 0.80.0

predict_in_sample

[31]: pl.predict_in_sample(X_test, y_test, objective=None, X_train=X_train, y_train=y_train)

[31]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833

...
3647 13.354449
3648 13.750842
3649 13.747188
3650 14.131168
3651 12.356060
Name: target, Length: 365, dtype: float64

predict

[32]: pl.predict(X_test, objective=None, X_train=X_train, y_train=y_train)

[32]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833

...
3647 13.228288
3648 13.290761
3649 13.062471
3650 13.233994
3651 14.117554
Name: target, Length: 365, dtype: float64

4.10.11 Validating the holdout data

Before we predict on our holdout data, it is important to validate that it meets the requirements we summarized in the
second point above in Predicting on unseen data. We can call on validate_holdout_datasets in order to verify
the two requirements:

1. The holdout data is separated by gap units from the training dataset. This is determined by the time_index
column, not the index e.g. if your datetime frequency for the column “Date” is 2 days with a gap of 3, then the
holdout data must start 2 days x 3 = 6 days after the training data.

2. The length of the holdout data must be less than or equal to the forecast_horizon.

[33]: from evalml.utils.gen_utils import validate_holdout_datasets

Holdout dataset has 365 observations
validation_results = validate_holdout_datasets(X_test, X_train, problem_config)
assert not validation_results.is_valid
Holdout dataset has 7 observations

(continues on next page)

248 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

validation_results = validate_holdout_datasets(
X_test.iloc[: pl.forecast_horizon], X_train, problem_config

)
assert validation_results.is_valid

predict – Test set size matches forecast horizon

[34]: pl.predict(
X_test.iloc[: pl.forecast_horizon], objective=None, X_train=X_train, y_train=y_train

)

[34]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833
3292 11.532094
3293 12.126741
Name: target, dtype: float64

predict – Test set size is less than forecast horizon

[35]: pl.predict(
X_test.iloc[: pl.forecast_horizon - 2],
objective=None,
X_train=X_train,
y_train=y_train,

)

[35]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833
Name: target, dtype: float64

predict – Test set size index starts at 0

[36]: pl.predict(
X_test.iloc[: pl.forecast_horizon].reset_index(drop=True),
objective=None,
X_train=X_train,
y_train=y_train,

)

[36]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142

(continues on next page)

4.10. AutoMLSearch for time series problems 249

EvalML Documentation, Release 0.80.0

(continued from previous page)

3291 11.636833
3292 11.532094
3293 12.126741
Name: target, dtype: float64

4.10.12 Prediction Intervals

Getting Prediction Intervals

While predictions that are generated by EvalML pipelines aim to be accurate as possible, it is very rarely the case that
future results are the exact same values as predicted. Prediction intervals can help to contextualize a prediction by
showing the range a future prediction is expected to fall within a certain likelihood.

Given the preprocessed (transformed, ready for prediction) features, the corresponding predictions, and a fitted EvalML
estimator, the prediction intervals for this set of predictions is generated by calling get_prediction_intervals()
on the pipeline’s estimator. Here, we use the fitted estimator in our trained EvalML pipeline to generate the prediction
intervals:

[37]: X_trans = pl.transform_all_but_final(X_test, y_test)
y_pred = pl.predict(X_test, objective=None, X_train=X_train, y_train=y_train)
pl.estimator.get_prediction_intervals(X=X_trans, y=y_pred)

[37]: {'0.95_lower': 3287 16.468615
3288 16.504353
3289 16.688278
3290 16.811346
3291 16.942591

...
3647 12.070903
3648 12.418325
3649 12.379229
3650 12.787175
3651 11.024206
Length: 365, dtype: float64,
'0.95_upper': 3287 17.256910
3288 17.292648
3289 17.476574
3290 17.599642
3291 17.730886

...
3647 14.637996
3648 15.083359
3649 15.115146
3650 15.475162
3651 13.687914
Length: 365, dtype: float64}

By default, prediction intervals are calculated for the 95% upper and lower bound. In the above example, 95% of the
time, a prediction sometime in the future will fall in this range.

To generate prediction intervals for a custom value, use the coverage parameter. In the example below, the 80%
interval range is calculated below:

250 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

[38]: pl.estimator.get_prediction_intervals(X=X_trans, y=y_pred, coverage=[0.8])

[38]: {'0.8_lower': 3287 16.605043
3288 16.640781
3289 16.824707
3290 16.947775
3291 17.079019

...
3647 12.515183
3648 12.879556
3649 12.852728
3650 13.252378
3651 11.485208
Length: 365, dtype: float64,
'0.8_upper': 3287 17.120482
3288 17.156220
3289 17.340145
3290 17.463213
3291 17.594458

...
3647 14.193715
3648 14.622128
3649 14.641648
3650 15.009959
3651 13.226912
Length: 365, dtype: float64}

4.10.13 Forecasting Future Data

Unlike standard pipelines, time series pipelines are able to generate predictions out to the future. The number of
predictions out in the future is dependent on the forecast_horizon parameter set in the problem configuration of an
AutoML search.

To show that it is possible to generate brand new predictions in the future, the entire weather dataset (including the
holdout set) will be used. The code block below refit the pipeline on the entire dataset and generates a forecast.

[39]: X.ww.init()
y.ww.init()

pl.fit(X, y)
X_forecast_dates = pl.get_forecast_period(X=X).to_frame()
y_forecast = pl.get_forecast_predictions(X=X, y=y)
display("Forecast Dates:", X_forecast_dates)
display("Forecast Predictions:", y_forecast)

'Forecast Dates:'

Date
3652 1991-01-01
3653 1991-01-02
3654 1991-01-03
3655 1991-01-04
3656 1991-01-05

(continues on next page)

4.10. AutoMLSearch for time series problems 251

EvalML Documentation, Release 0.80.0

(continued from previous page)

3657 1991-01-06
3658 1991-01-07

'Forecast Predictions:'

3652 12.260047
3653 10.095071
3654 11.425120
3655 12.398380
3656 12.176962
3657 12.155176
3658 12.144207
Name: Temp, dtype: float64

Using these forecasted values, it is possible to generate the prediction intervals for each forecasted point.

[40]: res = pl.get_prediction_intervals(
X=pd.DataFrame(X_forecast_dates), y=y_forecast, X_train=X, y_train=y

)
display(res)

{'0.95_lower': 3652 8.390696
3653 4.622983
3654 4.723208
3655 4.659679
3656 3.524831
3657 2.677241
3658 1.906867
Name: 0.95_lower, dtype: float64,
'0.95_upper': 3652 16.129398
3653 15.567159
3654 18.127032
3655 20.137082
3656 20.829093
3657 21.633111
3658 22.381547
Name: 0.95_upper, dtype: float64}

[41]: y_lower = res["0.95_lower"]
y_upper = res["0.95_upper"]

Using the forecasted predictions and corresponding prediction intervals, we can plot this data. For this plot, only the
last 31 days of data will be used so that the forecasted data is visible.

[42]: X_before = X[-31:]
y_before = y[-31:]

[43]: fig = go.Figure(
[

Plot last 31 days of training data
go.Scatter(x=X_before["Date"], y=y_before, name="Training Data", mode="lines"),
Plot forecast data
go.Scatter(

(continues on next page)

252 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

x=X_forecast_dates["Date"], y=y_forecast, name="Forecast Data", mode="lines"
),
Plot prediction intervals
go.Scatter(

x=pd.concat([X_forecast_dates["Date"], X_forecast_dates["Date"][::-1]]),
y=pd.concat([y_upper, y_lower[::-1]]),
fill="toself",
fillcolor="rgba(255,0,0,0.2)",
line=dict(color="rgba(255,0,0,0.2)"),
name="Forecast Prediction Intervals",
showlegend=True,

),
],
layout={

"title": "Plot of Last Two Weeks of Data + Forecast Data With Prediction␣
→˓Intervals",

"xaxis": dict(title="Date"),
"yaxis": dict(title="Temperature (C)"),

},
)
fig.show()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.14 Forecasting into the future

Our previous examples have shown using a pipeline to predict on data we had at training time. However, we can also
use EvalML time series pipelines to forecast dates into the future as long we provide data that meets the requirements
of Predicting on unseen data as well.

To help figure out the dates we need in X_train to forecast dates into the future - we’ve provided
dates_needed_for_prediction and dates_needed_for_prediction_range.

[44]: forecast_date = pd.Timestamp("1991-01-07")
beginning_date, end_date = pl.dates_needed_for_prediction(forecast_date)

print("Dates needed:")
print(f"{beginning_date.strftime('%Y-%m-%d %X')} to {end_date.strftime('%Y-%m-%d %X')}")

Dates needed:
1990-12-23 00:00:00 to 1991-01-06 00:00:00

We can see how the dates are valid by generating some future dates and features with the above date range.

[45]: import random

dates = pd.date_range(
beginning_date,
end_date,
freq=pl.frequency.split("-")[0],

(continues on next page)

4.10. AutoMLSearch for time series problems 253

EvalML Documentation, Release 0.80.0

(continued from previous page)

)

X_train_forecast = pd.DataFrame(index=[i + 1 for i in range(len(dates))])
categorical_feature = pd.Series(

[random.randint(0, 3) for i in range(len(dates))], index=X_train_forecast.index
)
numeric_feature = pd.Series(

[i + 1 for i in range(len(dates))], index=X_train_forecast.index
)

X_train_forecast["Date"] = pd.Series(dates.values, index=X_train_forecast.index)
X_train_forecast["Categorical"] = pd.Series(

categorical_feature.values, index=X_train_forecast.index
)
X_train_forecast["Numeric"] = pd.Series(

numeric_feature.values, index=X_train_forecast.index
)
X_train_forecast.ww.init(

logical_types={"Categorical": "categorical", "Numeric": "integer"}
)

y_train_forecast = pd.Series(
X_train_forecast["Numeric"].values, index=X_train_forecast.index

)

[46]: X_test_forecast = pd.DataFrame(
{"Date": [forecast_date], "Categorical": [3], "Numeric": [53862]}

)

. . . and we succesfully have our prediction!

[47]: pl.predict(X_test_forecast, X_train=X_train_forecast, y_train=y_train_forecast)

[47]: 16 10.465612
Name: Temp, dtype: float64

[48]: forecast_start = pd.Timestamp("1991-01-07")
forecast_end = pd.Timestamp("1991-01-14")

dates = pl.dates_needed_for_prediction_range(forecast_start, forecast_end)
print("Dates needed:")
print(f"{dates[0].strftime('%Y-%m-%d %X')} to {dates[1].strftime('%Y-%m-%d %X')}")

Dates needed:
1990-12-23 00:00:00 to 1991-01-13 00:00:00

254 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

4.10.15 Known-in-advance features

In time series problems, the goal is to predict an unknown value of a data series corresponding to a future moment in
time. Since the state of the world is not known in the future, we create features from data in the past since those values
are known when we go make our prediction.

However, there are some features corresponding to dates in the future that can be known with certainty, either because
they can be derived from the forecast date or because the feature can be controlled by the modeler. This includes
features such as if the date is a US Holiday, or the location of a store in a sales dataset. With these sorts of features, we
don’t need to include them in our time-series specific preprocessing steps (such as Time Series Featurization).

To handle these features, EvalML will split them into a separate path through the component graph, bypassing the
unnecessary preprocessing steps. Let’s take a look at what that looks like, using some synthetic data.

[50]: X = pd.DataFrame(
{"features": range(101, 601), "date": pd.date_range("2010-10-01", periods=500)}

)
y = pd.Series(range(500))

X.ww.init()
X.ww["bool_feature"] = (

pd.Series([True, False]).sample(n=X.shape[0], replace=True).reset_index(drop=True)
)
X.ww["cat_feature"] = (

pd.Series(["a", "b", "c"]).sample(n=X.shape[0], replace=True).reset_index(drop=True)
)

automl = AutoMLSearch(
X,
y,
problem_type="time series regression",
problem_configuration={

"max_delay": 5,
"gap": 3,
"forecast_horizon": 2,
"time_index": "date",
"known_in_advance": ["bool_feature", "cat_feature"],

},
)
automl.search()

19:43:56 - cmdstanpy - INFO - Chain [1] start processing
19:43:56 - cmdstanpy - INFO - Chain [1] done processing
19:43:56 - cmdstanpy - INFO - Chain [1] start processing
19:43:56 - cmdstanpy - INFO - Chain [1] done processing
19:43:57 - cmdstanpy - INFO - Chain [1] start processing
19:43:57 - cmdstanpy - INFO - Chain [1] done processing

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000209 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 1997
[LightGBM] [Info] Number of data points in the train set: 494, number of used features:␣
→˓19
[LightGBM] [Info] Start training from score 246.500000

(continues on next page)

4.10. AutoMLSearch for time series problems 255

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000180 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 2006
[LightGBM] [Info] Number of data points in the train set: 496, number of used features:␣
→˓19
[LightGBM] [Info] Start training from score 247.500000
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000204 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 2015
[LightGBM] [Info] Number of data points in the train set: 498, number of used features:␣
→˓19 (continues on next page)

256 Chapter 4. User Guide

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Info] Start training from score 248.500000
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[50]: {1: {'Random Forest Regressor w/ Select Columns Transformer + Imputer + Time Series␣
→˓Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot␣
→˓Encoder + Drop NaN Rows Transformer': 2.265831708908081,
'Total time of batch': 2.411851406097412},

2: {'ARIMA Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣
→˓Select Columns Transformer + Imputer + One Hot Encoder': 38.40943789482117,
'Exponential Smoothing Regressor w/ Select Columns Transformer + Imputer + Time Series␣

→˓Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot␣
→˓Encoder': 1.1225345134735107,
'Prophet Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣

→˓Select Columns Transformer + Imputer + One Hot Encoder': 1.579469919204712,
'Extra Trees Regressor w/ Select Columns Transformer + Imputer + Time Series␣

→˓Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot␣
→˓Encoder + Drop NaN Rows Transformer': 1.5910940170288086,
'XGBoost Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣

→˓DateTime Featurizer + Select Columns Transformer + Imputer + One Hot Encoder': 1.
→˓9004225730895996,
'LightGBM Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣

→˓DateTime Featurizer + Select Columns Transformer + Imputer + One Hot Encoder': 1.
→˓3942763805389404,
'Elastic Net Regressor w/ Select Columns Transformer + Imputer + Time Series␣

→˓Featurizer + DateTime Featurizer + Standard Scaler + Select Columns Transformer +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Drop NaN Rows Transformer': 1.
→˓7085111141204834,
'Total time of batch': 48.71627402305603}}

[51]: pipeline = automl.best_pipeline
pipeline.graph()

4.10. AutoMLSearch for time series problems 257

EvalML Documentation, Release 0.80.0

[51]:

4.11 FAQ

4.11.1 Q: What is the difference between EvalML and other AutoML libraries?

EvalML optimizes machine learning pipelines on custom practical objectives instead of vague machine learning loss
functions so that it will find the best pipelines for your specific needs. Furthermore, EvalML pipelines are able to take
in all kinds of data (missing values, categorical, etc.) as long as the data are in a single table. EvalML also allows
you to build your own pipelines with existing or custom components so you can have more control over the AutoML
process. Moreover, EvalML also provides you with support in the form of data checks to ensure that you are aware of
potential issues your data may cause with machine learning algorithms.

4.11.2 Q: How does EvalML handle missing values?

EvalML contains imputation components in its pipelines so that missing values are taken care of. EvalML optimizes
over different types of imputation to search for the best possible pipeline. You can find more information about com-
ponents here and in the API reference here.

4.11.3 Q: How does EvalML handle categorical encoding?

EvalML provides a one-hot-encoding component in its pipelines for categorical variables. EvalML plans to support
other encoders in the future.

4.11.4 Q: How does EvalML handle feature selection?

EvalML currently utilizes scikit-learn’s SelectFromModel with a Random Forest classifier/regressor to handle feature
selection. EvalML plans on supporting more feature selectors in the future. You can find more information in the API
reference here.

4.11.5 Q: How is feature importance calculated?

Feature importance depends on the estimator used. Variable coefficients are used for regression-based estimators (Lo-
gistic Regression and Linear Regression) and Gini importance is used for tree-based estimators (Random Forest and
XGBoost).

4.11.6 Q: How does hyperparameter tuning work?

EvalML tunes hyperparameters for its pipelines through Bayesian optimization. In the future we plan to support more
optimization techniques such as random search.

258 Chapter 4. User Guide

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html

EvalML Documentation, Release 0.80.0

4.11.7 Q: Can I create my own objective metric?

Yes you can! You can create your own custom objective so that EvalML optimizes the best model for your needs.

4.11.8 Q: How does EvalML avoid overfitting?

EvalML provides data checks to combat overfitting. Such data checks include detecting label leakage, unstable
pipelines, hold-out datasets and cross validation. EvalML defaults to using Stratified K-Fold cross-validation for clas-
sification problems and K-Fold cross-validation for regression problems but allows you to utilize your own cross-
validation methods as well.

4.11.9 Q: Can I create my own pipeline for EvalML?

Yes! EvalML allows you to create custom pipelines using modular components. This allows you to customize EvalML
pipelines for your own needs or for AutoML.

4.11.10 Q: Does EvalML work with X algorithm?

EvalML is constantly improving and adding new components and will allow your own algorithms to be used as com-
ponents in our pipelines.

4.11. FAQ 259

EvalML Documentation, Release 0.80.0

260 Chapter 4. User Guide

CHAPTER

FIVE

API REFERENCE

5.1 Demo Datasets

load_breast_cancer Load breast cancer dataset. Binary classification prob-
lem.

load_churn Load churn dataset, which can be used for binary classi-
fication problems.

load_diabetes Load diabetes dataset. Used for regression problem.
load_fraud Load credit card fraud dataset.
load_weather Load the Australian daily-min-termperatures weather

dataset.
load_wine Load wine dataset. Multiclass problem.

5.2 Preprocessing

5.2.1 Preprocessing Utils

Utilities to preprocess data before using evalml.

load_data Load features and target from file.
number_of_features Get the number of features of each specific dtype in a

DataFrame.
split_data Split data into train and test sets.
target_distribution Get the target distributions.

5.2.2 Data Splitters

NoSplit Does not split the training data into training and valida-
tion sets.

KFold Wrapper class for sklearn's KFold splitter.
StratifiedKFold Wrapper class for sklearn's Stratified KFold splitter.
TrainingValidationSplit Split the training data into training and validation sets.
TimeSeriesSplit Rolling Origin Cross Validation for time series prob-

lems.

261

EvalML Documentation, Release 0.80.0

5.3 Exceptions

AutoMLSearchException Exception raised when all pipelines in an automl batch
return a score of NaN for the primary objective.

ComponentNotYetFittedError An exception to be raised when pre-
dict/predict_proba/transform is called on a component
without fitting first.

DataCheckInitError Exception raised when a data check can't initialize with
the parameters given.

MethodPropertyNotFoundError Exception to raise when a class is does not have an ex-
pected method or property.

MissingComponentError An exception raised when a component is not found in
all_components().

NoPositiveLabelException Exception when a particular classification label for the
'positive' class cannot be found in the column index or
unique values.

ObjectiveCreationError Exception when get_objective tries to instantiate an ob-
jective and required args are not provided.

ObjectiveNotFoundError Exception to raise when specified objective does not ex-
ist.

PartialDependenceError Exception raised for all errors that partial dependence
can raise.

PipelineError Exception raised for errors that can be raised when ap-
plying a pipeline.

PipelineNotFoundError An exception raised when a particular pipeline is not
found in automl search results.

PipelineNotYetFittedError An exception to be raised when pre-
dict/predict_proba/transform is called on a pipeline
without fitting first.

PipelineScoreError An exception raised when a pipeline errors while scoring
any objective in a list of objectives.

5.3.1 Warnings

NullsInColumnWarning Warning thrown when there are null values in the column
of interest.

ParameterNotUsedWarning Warning thrown when a pipeline parameter isn't used in
a defined pipeline's component graph during initializa-
tion.

262 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

5.3.2 Error Codes

PartialDependenceErrorCode Enum identifying the type of error encountered in partial
dependence.

PipelineErrorCodeEnum Enum identifying the type of error encountered while
applying a pipeline.

ValidationErrorCode Enum identifying the type of error encountered in hold-
out validation.

5.4 AutoML

5.4.1 AutoML Search Interface

AutoMLSearch Automated Pipeline search.

5.4.2 AutoML Utils

get_default_primary_search_objective Get the default primary search objective for a problem
type.

get_threshold_tuning_info Determine for a given automl config and pipeline what
the threshold tuning objective should be and whether or
not training data should be further split to achieve proper
threshold tuning.

make_data_splitter Given the training data and ML problem parameters,
compute a data splitting method to use during AutoML
search.

resplit_training_data Further split the training data for a given pipeline. This
is needed for binary pipelines in order to properly tune
the threshold.

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.
tune_binary_threshold Tunes the threshold of a binary pipeline to the X and y

thresholding data.

5.4.3 AutoML Algorithm Classes

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

IterativeAlgorithm An automl algorithm which first fits a base round of
pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

5.4. AutoML 263

EvalML Documentation, Release 0.80.0

5.4.4 AutoML Callbacks

log_error_callback Logs the exception thrown as an error.
raise_error_callback Raises the exception thrown by the AutoMLSearch ob-

ject.
silent_error_callback No-op.

5.4.5 AutoML Engines

CFEngine The concurrent.futures (CF) engine.
DaskEngine The dask engine.
EngineBase Base class for EvalML engines.
SequentialEngine The default engine for the AutoML search.

5.5 Pipelines

5.5.1 Pipeline Base Classes

BinaryClassificationPipeline Pipeline subclass for all binary classification pipelines.
ClassificationPipeline Pipeline subclass for all classification pipelines.
MulticlassClassificationPipeline Pipeline subclass for all multiclass classification

pipelines.
PipelineBase Machine learning pipeline.
RegressionPipeline Pipeline subclass for all regression pipelines.
TimeSeriesBinaryClassificationPipeline Pipeline base class for time series binary classification

problems.
TimeSeriesClassificationPipeline Pipeline base class for time series classification prob-

lems.
TimeSeriesMulticlassClassificationPipeline Pipeline base class for time series multiclass classifica-

tion problems.
TimeSeriesRegressionPipeline Pipeline base class for time series regression problems.

264 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

5.5.2 Pipeline Utils

get_actions_from_option_defaults Returns a list of actions based on the defaults parameters
of each option in the input DataCheckActionOption list.

generate_pipeline_code Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

generate_pipeline_example Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

make_pipeline Given input data, target data, an estimator class and the
problem type, generates a pipeline class with a prepro-
cessing chain which was recommended based on the in-
puts. The pipeline will be a subclass of the appropriate
pipeline base class for the specified problem_type.

make_pipeline_from_actions Creates a pipeline of components to address the input
DataCheckAction list.

make_pipeline_from_data_check_output Creates a pipeline of components to address warnings
and errors output from running data checks. Uses all
default suggestions.

rows_of_interest Get the row indices of the data that are closest to the
threshold. Works only for binary classification problems
and pipelines.

5.6 Component Graphs

ComponentGraph Component graph for a pipeline as a directed acyclic
graph (DAG).

5.7 Components

5.7.1 Component Base Classes

Components represent a step in a pipeline.

ComponentBase Base class for all components.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

Estimator A component that fits and predicts given data.

5.6. Component Graphs 265

EvalML Documentation, Release 0.80.0

5.7.2 Component Utils

allowed_model_families List the model types allowed for a particular problem
type.

estimator_unable_to_handle_nans If True, provided estimator class is unable to handle NaN
values as an input.

generate_component_code Creates and returns a string that contains the Python im-
ports and code required for running the EvalML compo-
nent.

get_estimators Returns the estimators allowed for a particular problem
type.

handle_component_class Standardizes input from a string name to a Component-
Base subclass if necessary.

make_balancing_dictionary Makes dictionary for oversampler components. Find ra-
tio of each class to the majority. If the ratio is smaller
than the sampling_ratio, we want to oversample, other-
wise, we don't want to sample at all, and we leave the
data as is.

5.7.3 Transformers

Transformers are components that take in data as input and output transformed data.

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

DFSTransformer Featuretools DFS component that generates features for
the input features.

DropColumns Drops specified columns in input data.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
EmailFeaturizer Transformer that can automatically extract features from

emails.
Imputer Imputes missing data according to a specified imputation

strategy.
LabelEncoder A transformer that encodes target labels using values be-

tween 0 and num_classes - 1.
LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-

criminant Analysis.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

continues on next page

266 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 1 – continued from previous page
Oversampler SMOTE Oversampler component. Will automatically

select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

ReplaceNullableTypes Transformer to replace features with the new nullable
dtypes with a dtype that is compatible in EvalML.

RFClassifierRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Classifier.

RFClassifierSelectFromModel Selects top features based on importance weights using
a Random Forest classifier.

RFRegressorRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Regressor.

RFRegressorSelectFromModel Selects top features based on importance weights using
a Random Forest regressor.

SelectByType Selects columns by specified Woodwork logical type or
semantic tag in input data.

SelectColumns Selects specified columns in input data.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TargetImputer Imputes missing target data according to a specified im-

putation strategy.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Undersampler Initializes an undersampling transformer to downsample

the majority classes in the dataset.
URLFeaturizer Transformer that can automatically extract features from

URL.

5.7. Components 267

EvalML Documentation, Release 0.80.0

5.7.4 Estimators

Classifiers

Classifiers are components that output a predicted class label.

BaselineClassifier Classifier that predicts using the specified strategy.
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeClassifier Decision Tree Classifier.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ExtraTreesClassifier Extra Trees Classifier.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LogisticRegressionClassifier Logistic Regression Classifier.
RandomForestClassifier Random Forest Classifier.
StackedEnsembleClassifier Stacked Ensemble Classifier.
SVMClassifier Support Vector Machine Classifier.
VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
XGBoostClassifier XGBoost Classifier.

Regressors

Regressors are components that output a predicted target value.

268 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineRegressor Baseline regressor that uses a simple strategy to make
predictions. This is useful as a simple baseline regressor
to compare with other regressors.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeRegressor Decision Tree Regressor.
ElasticNetRegressor Elastic Net Regressor.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesRegressor Extra Trees Regressor.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestRegressor Random Forest Regressor.
StackedEnsembleRegressor Stacked Ensemble Regressor.
SVMRegressor Support Vector Machine Regressor.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostRegressor XGBoost Regressor.

5.7. Components 269

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

5.8 Model Understanding

5.8.1 Metrics

binary_objective_vs_threshold Computes objective score as a function of potential bi-
nary classification decision thresholds for a fitted binary
classification pipeline.

calculate_permutation_importance Calculates permutation importance for features.
calculate_permutation_importance_one_column Calculates permutation importance for one column in

the original dataframe.
confusion_matrix Confusion matrix for binary and multiclass classifica-

tion.
find_confusion_matrix_per_thresholds Gets the confusion matrix and histogram bins for each

threshold as well as the best threshold per objective.
Only works with Binary Classification Pipelines.

get_linear_coefficients Returns a dataframe showing the features with the great-
est predictive power for a linear model.

get_prediction_vs_actual_data Combines y_true and y_pred into a single
dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

get_prediction_vs_actual_over_time_data Get the data needed for the predic-
tion_vs_actual_over_time plot.

normalize_confusion_matrix Normalizes a confusion matrix.
partial_dependence Calculates one or two-way partial dependence.
precision_recall_curve Given labels and binary classifier predicted proba-

bilities, compute and return the data representing a
precision-recall curve.

roc_curve Given labels and classifier predicted probabilities, com-
pute and return the data representing a Receiver Operat-
ing Characteristic (ROC) curve. Works with binary or
multiclass problems.

t_sne Get the transformed output after fitting X to the embed-
ded space using t-SNE.

get_influential_features Finds the most influential features as well as any detri-
mental features from a dataframe of feature importances.

readable_explanation Outputs a human-readable explanation of trained
pipeline behavior.

270 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

5.8.2 Visualization Methods

graph_binary_objective_vs_threshold Generates a plot graphing objective score vs. decision
thresholds for a fitted binary classification pipeline.

graph_confusion_matrix Generate and display a confusion matrix plot.
graph_partial_dependence Create an one-way or two-way partial dependence plot.
graph_permutation_importance Generate a bar graph of the pipeline's permutation im-

portance.
graph_precision_recall_curve Generate and display a precision-recall plot.
graph_prediction_vs_actual Generate a scatter plot comparing the true and predicted

values. Used for regression plotting.
graph_prediction_vs_actual_over_time Plot the target values and predictions against time on the

x-axis.
graph_roc_curve Generate and display a Receiver Operating Characteris-

tic (ROC) plot for binary and multiclass classification
problems.

graph_t_sne Plot high dimensional data into lower dimensional space
using t-SNE.

5.8.3 Prediction Explanations

explain_predictions Creates a report summarizing the top contributing fea-
tures for each data point in the input features.

explain_predictions_best_worst Creates a report summarizing the top contributing fea-
tures for the best and worst points in the dataset as mea-
sured by error to true labels.

5.9 Objectives

5.9.1 Objective Base Classes

ObjectiveBase Base class for all objectives.
BinaryClassificationObjective Base class for all binary classification objectives.
MulticlassClassificationObjective Base class for all multiclass classification objectives.
RegressionObjective Base class for all regression objectives.

5.9. Objectives 271

EvalML Documentation, Release 0.80.0

5.9.2 Domain-Specific Objectives

CostBenefitMatrix Score using a cost-benefit matrix. Scores quantify the
benefits of a given value, so greater numeric scores rep-
resents a better score. Costs and scores can be negative,
indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score
represents loss of cash flow.

FraudCost Score the percentage of money lost of the total transac-
tion amount process due to fraud.

LeadScoring Lead scoring.
SensitivityLowAlert Sensitivity at Low Alert Rates.

272 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

5.9.3 Classification Objectives

AccuracyBinary Accuracy score for binary classification.
AccuracyMulticlass Accuracy score for multiclass classification.
AUC AUC score for binary classification.
AUCMacro AUC score for multiclass classification using macro av-

eraging.
AUCMicro AUC score for multiclass classification using micro av-

eraging.
AUCWeighted AUC Score for multiclass classification using weighted

averaging.
Gini Gini coefficient for binary classification.
BalancedAccuracyBinary Balanced accuracy score for binary classification.
BalancedAccuracyMulticlass Balanced accuracy score for multiclass classification.
F1 F1 score for binary classification.
F1Micro F1 score for multiclass classification using micro aver-

aging.
F1Macro F1 score for multiclass classification using macro aver-

aging.
F1Weighted F1 score for multiclass classification using weighted av-

eraging.
LogLossBinary Log Loss for binary classification.
LogLossMulticlass Log Loss for multiclass classification.
MCCBinary Matthews correlation coefficient for binary classifica-

tion.
MCCMulticlass Matthews correlation coefficient for multiclass classifi-

cation.
Precision Precision score for binary classification.
PrecisionMicro Precision score for multiclass classification using micro

averaging.
PrecisionMacro Precision score for multiclass classification using

macro-averaging.
PrecisionWeighted Precision score for multiclass classification using

weighted averaging.
Recall Recall score for binary classification.
RecallMicro Recall score for multiclass classification using micro av-

eraging.
RecallMacro Recall score for multiclass classification using macro av-

eraging.
RecallWeighted Recall score for multiclass classification using weighted

averaging.

5.9. Objectives 273

EvalML Documentation, Release 0.80.0

5.9.4 Regression Objectives

ExpVariance Explained variance score for regression.
MAE Mean absolute error for regression.
MASE Mean absolute scaled error for time series regression.
MAPE Mean absolute percentage error for time series regres-

sion. Scaled by 100 to return a percentage.
SMAPE Symmetric mean absolute percentage error for time se-

ries regression. Scaled by 100 to return a percentage.
MSE Mean squared error for regression.
MeanSquaredLogError Mean squared log error for regression.
MedianAE Median absolute error for regression.
MaxError Maximum residual error for regression.
R2 Coefficient of determination for regression.
RootMeanSquaredError Root mean squared error for regression.
RootMeanSquaredLogError Root mean squared log error for regression.

5.9.5 Objective Utils

get_all_objective_names Get a list of the names of all objectives.
get_core_objectives Returns all core objective instances associated with the

given problem type.
get_core_objective_names Get a list of all valid core objectives.
get_default_recommendation_objectives Get the default recommendation score metrics for the

given problem type.
get_non_core_objectives Get non-core objective classes.
get_objective Returns the Objective class corresponding to a given ob-

jective name.
get_optimization_objectives Get objectives for optimization.
get_ranking_objectives Get objectives for pipeline rankings.
normalize_objectives Converts objectives from a [0, inf) scale to [0, 1] given

a max and min for each objective.
organize_objectives Generate objectives to consider, with optional modifica-

tions to the defaults.
ranking_only_objectives Get ranking-only objective classes.
recommendation_score Computes a recommendation score for a model given

scores for a group of objectives.

274 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

5.10 Problem Types

detect_problem_type Determine the type of problem is being solved based on
the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

handle_problem_types Handles problem_type by either returning the Problem-
Types or converting from a str.

is_binary Determines if the provided problem_type is a binary
classification problem type.

is_classification Determines if the provided problem_type is a classifica-
tion problem type.

is_multiclass Determines if the provided problem_type is a multiclass
classification problem type.

is_regression Determines if the provided problem_type is a regression
problem type.

is_time_series Determines if the provided problem_type is a time series
problem type.

ProblemTypes Enum defining the supported types of machine learning
problems.

5.11 Model Family

handle_model_family Handles model_family by either returning the Mod-
elFamily or converting from a string.

ModelFamily Enum for family of machine learning models.

5.12 Tuners

Tuner Base Tuner class.
SKOptTuner Bayesian Optimizer.
GridSearchTuner Grid Search Optimizer, which generates all of the possi-

ble points to search for using a grid.
RandomSearchTuner Random Search Optimizer.

5.10. Problem Types 275

EvalML Documentation, Release 0.80.0

5.13 Data Checks

5.13.1 Data Check Classes

ClassImbalanceDataCheck Check if any of the target labels are imbalanced, or if the
number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

DateTimeFormatDataCheck Check if the datetime column has equally spaced inter-
vals and is monotonically increasing or decreasing in or-
der to be supported by time series estimators.

IDColumnsDataCheck Check if any of the features are likely to be ID columns.
InvalidTargetDataCheck Check if the target data is considered invalid.
MulticollinearityDataCheck Check if any set features are likely to be multicollinear.
NoVarianceDataCheck Check if the target or any of the features have no vari-

ance.
NullDataCheck Check if there are any highly-null numerical, boolean,

categorical, natural language, and unknown columns
and rows in the input.

OutliersDataCheck Checks if there are any outliers in input data by using
IQR to determine score anomalies.

SparsityDataCheck Check if there are any columns with sparsely populated
values in the input.

TargetDistributionDataCheck Check if the target data contains certain distributions that
may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when
the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

TargetLeakageDataCheck Check if any of the features are highly correlated with the
target by using mutual information, Pearson correlation,
and other correlation metrics.

TimeSeriesParametersDataCheck Checks whether the time series parameters are compati-
ble with data splitting.

TimeSeriesSplittingDataCheck Checks whether the time series target data is compatible
with splitting.

UniquenessDataCheck Check if there are any columns in the input that are ei-
ther too unique for classification problems or not unique
enough for regression problems.

DataCheck Base class for all data checks.
DataChecks A collection of data checks.
DefaultDataChecks A collection of basic data checks that is used by AutoML

by default.

276 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

5.13.2 Data Check Messages

DataCheckMessage Base class for a message returned by a DataCheck,
tagged by name.

DataCheckError DataCheckMessage subclass for errors returned by data
checks.

DataCheckWarning DataCheckMessage subclass for warnings returned by
data checks.

5.13.3 Data Check Message Types

DataCheckMessageType Enum for type of data check message: WARNING or
ERROR.

5.13.4 Data Check Message Codes

DataCheckMessageCode Enum for data check message code.

5.13.5 Data Check Actions

DataCheckAction A recommended action returned by a DataCheck.
DataCheckActionCode Enum for data check action code.
DataCheckActionOption A recommended action option returned by a DataCheck.

5.13. Data Checks 277

EvalML Documentation, Release 0.80.0

5.14 Utils

5.14.1 General Utils

convert_to_seconds Converts a string describing a length of time to its length
in seconds.

downcast_nullable_types Downcasts IntegerNullable, BooleanNullable types to
Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

drop_rows_with_nans Drop rows that have any NaNs in all dataframes or series.
get_importable_subclasses Get importable subclasses of a base class. Used to

list all of our estimators, transformers, components and
pipelines dynamically.

get_logger Get the logger with the associated name.
get_time_index Determines the column in the given data that should be

used as the time index.
import_or_raise Attempts to import the requested library by name. If the

import fails, raises an ImportError or warning.
infer_feature_types Create a Woodwork structure from the given list, pan-

das, or numpy input, with specified types for columns.
If a column's type is not specified, it will be inferred by
Woodwork.

is_all_numeric Checks if the given DataFrame contains only numeric
values.

get_random_state Generates a numpy.random.RandomState instance using
seed.

get_random_seed Given a numpy.random.RandomState object, generate
an int representing a seed value for another random num-
ber generator. Or, if given an int, return that int.

pad_with_nans Pad the beginning num_to_pad rows with nans.
safe_repr Convert the given value into a string that can safely be

used for repr.
save_plot Saves fig to filepath if specified, or to a default location

if not.

Evalml

EvalML.

Subpackages

Automl

AutoMLSearch and related modules.

278 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Subpackages

automl_algorithm

AutoML algorithms that power EvalML.

Submodules

automl_algorithm

Base class for the AutoML algorithms which power EvalML.

Module Contents

Classes Summary

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

Exceptions Summary

Contents

class evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm(allowed_pipelines=None,
al-
lowed_model_families=None,
ex-
cluded_model_families=None,
al-
lowed_component_graphs=None,
search_parameters=None,
tuner_class=None,
text_in_ensembling=False,
random_seed=0,
n_jobs=- 1)

Base class for the AutoML algorithms which power EvalML.

This class represents an automated machine learning (AutoML) algorithm. It encapsulates the decision-making
logic behind an automl search, by both deciding which pipelines to evaluate next and by deciding what set of
parameters to configure the pipeline with.

To use this interface, you must define a next_batch method which returns the next group of pipelines to evaluate
on the training data. That method may access state and results recorded from the previous batches, although that
information is not tracked in a general way in this base class. Overriding add_result is a convenient way to record
pipeline evaluation info if necessary.

Parameters

5.14. Utils 279

EvalML Documentation, Release 0.80.0

• allowed_pipelines (list(class)) – A list of PipelineBase subclasses indicating the
pipelines allowed in the search. The default of None indicates all pipelines for this problem
type are allowed.

• search_parameters (dict) – Search parameter ranges specified for pipelines to iterate
over.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Methods

add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

Raises PipelineNotFoundError – If pipeline is not allowed in search.

property batch_number(self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

abstract next_batch(self)
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

abstract num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

280 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type int

property pipeline_number(self)
Returns the number of pipelines which have been recommended so far.

exception evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithmException

Exception raised when an error is encountered during the computation of the automl algorithm.

default_algorithm

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.

Module Contents

Classes Summary

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

Contents

class evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm(X, y, problem_type,
sampler_name, al-
lowed_model_families=None,
ex-
cluded_model_families=None,
tuner_class=None,
random_seed=0,
search_parameters=None,
n_jobs=1,
text_in_ensembling=False,
top_n=3,
ensembling=False,
num_long_explore_pipelines=50,
num_long_pipelines_per_batch=10,
al-
low_long_running_models=False,
features=None,
run_feature_selection=True,
verbose=False, ex-
clude_featurizers=None)

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.

1. Naive pipelines:
a. run baseline with default preprocessing pipeline

b. run naive linear model with default preprocessing pipeline

c. run basic RF pipeline with default preprocessing pipeline

2. Naive pipelines with feature selection

5.14. Utils 281

EvalML Documentation, Release 0.80.0

a. subsequent pipelines will use the selected features with a SelectedColumns transformer

At this point we have a single pipeline candidate for preprocessing and feature selection

3. Pipelines with preprocessing components:
a. scan rest of estimators (our current batch 1).

4. First ensembling run

Fast mode ends here. Begin long mode.

6. Run top 3 estimators:
a. Generate 50 random parameter sets. Run all 150 in one batch

7. Second ensembling run

8. Repeat these indefinitely until stopping criterion is met:
a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one

batch

b. Run ensembling

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• top_n (int) – top n number of pipelines to use for long mode.

• num_long_explore_pipelines (int) – number of pipelines to explore for each top n
pipeline at the start of long mode.

• num_long_pipelines_per_batch (int) – number of pipelines per batch for each top n
pipeline through long mode.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

282 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature has not been computed yet.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from the
pipelines built by DefaultAlgorithm. Valid options are “DatetimeFeaturizer”, “EmailFeatur-
izer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. For default
algorithm, this only applies to estimators in the non-naive batches.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

Methods

add_result Register results from evaluating a pipeline. In batch
number 2, the selected column names from the fea-
ture selector are taken to be used in a column selec-
tor. Information regarding the best pipeline is up-
dated here as well.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline. In batch number 2, the selected column names from the feature
selector are taken to be used in a column selector. Information regarding the best pipeline is updated here
as well.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

5.14. Utils 283

EvalML Documentation, Release 0.80.0

• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

property batch_number(self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self)
Get the next batch of pipelines to evaluate.

Returns a list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list(PipelineBase)

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self)
Returns the number of pipelines which have been recommended so far.

iterative_algorithm

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of parameter
tuning on each pipeline in order of performance.

Module Contents

Classes Summary

IterativeAlgorithm An automl algorithm which first fits a base round of
pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

Contents

284 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm(X, y,
problem_type,
sam-
pler_name=None,
al-
lowed_model_families=None,
ex-
cluded_model_families=None,
al-
lowed_component_graphs=None,
max_batches=None,
max_iterations=None,
tuner_class=None,
random_seed=0,
pipelines_per_batch=5,
n_jobs=- 1, num-
ber_features=None,
ensem-
bling=False,
text_in_ensembling=False,
search_parameters=None,
_estima-
tor_family_order=None,
al-
low_long_running_models=False,
features=None,
verbose=False,
ex-
clude_featurizers=None)

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of performance.

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing. Defaults to None.

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: [ComponentGraph(. . .)] }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

5.14. Utils 285

EvalML Documentation, Release 0.80.0

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• max_batches (int) – The maximum number of batches to be evaluated. Used to determine
ensembling. Defaults to None.

• max_iterations (int) – The maximum number of iterations to be evaluated. Used to
determine ensembling. Defaults to None.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• pipelines_per_batch (int) – The number of pipelines to be evaluated in each batch,
after the first batch. Defaults to 5.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to None.

• number_features (int) – The number of columns in the input features. Defaults to None.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. Defaults to False.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• _estimator_family_order (list(ModelFamily) or None) – specify the sort order
for the first batch. Defaults to None, which uses _ESTIMATOR_FAMILY_ORDER.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature itself is not in input.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by IterativeAlgorithm. Valid options are “DatetimeFeaturizer”, “Email-
Featurizer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

Methods

286 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

Raises ValueError – If default parameters are not in the acceptable hyperparameter ranges.

property batch_number(self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self)
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

Raises AutoMLAlgorithmException – If no results were reported from the first batch.

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self)
Returns the number of pipelines which have been recommended so far.

5.14. Utils 287

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

IterativeAlgorithm An automl algorithm which first fits a base round of
pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

Exceptions Summary

Contents

class evalml.automl.automl_algorithm.AutoMLAlgorithm(allowed_pipelines=None,
allowed_model_families=None,
excluded_model_families=None,
allowed_component_graphs=None,
search_parameters=None, tuner_class=None,
text_in_ensembling=False, random_seed=0,
n_jobs=- 1)

Base class for the AutoML algorithms which power EvalML.

This class represents an automated machine learning (AutoML) algorithm. It encapsulates the decision-making
logic behind an automl search, by both deciding which pipelines to evaluate next and by deciding what set of
parameters to configure the pipeline with.

To use this interface, you must define a next_batch method which returns the next group of pipelines to evaluate
on the training data. That method may access state and results recorded from the previous batches, although that
information is not tracked in a general way in this base class. Overriding add_result is a convenient way to record
pipeline evaluation info if necessary.

Parameters
• allowed_pipelines (list(class)) – A list of PipelineBase subclasses indicating the

pipelines allowed in the search. The default of None indicates all pipelines for this problem
type are allowed.

• search_parameters (dict) – Search parameter ranges specified for pipelines to iterate
over.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

288 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

Raises PipelineNotFoundError – If pipeline is not allowed in search.

property batch_number(self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

abstract next_batch(self)
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

abstract num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self)
Returns the number of pipelines which have been recommended so far.

exception evalml.automl.automl_algorithm.AutoMLAlgorithmException

Exception raised when an error is encountered during the computation of the automl algorithm.

5.14. Utils 289

EvalML Documentation, Release 0.80.0

class evalml.automl.automl_algorithm.DefaultAlgorithm(X, y, problem_type, sampler_name,
allowed_model_families=None,
excluded_model_families=None,
tuner_class=None, random_seed=0,
search_parameters=None, n_jobs=1,
text_in_ensembling=False, top_n=3,
ensembling=False,
num_long_explore_pipelines=50,
num_long_pipelines_per_batch=10,
allow_long_running_models=False,
features=None, run_feature_selection=True,
verbose=False, exclude_featurizers=None)

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.

1. Naive pipelines:
a. run baseline with default preprocessing pipeline

b. run naive linear model with default preprocessing pipeline

c. run basic RF pipeline with default preprocessing pipeline

2. Naive pipelines with feature selection
a. subsequent pipelines will use the selected features with a SelectedColumns transformer

At this point we have a single pipeline candidate for preprocessing and feature selection

3. Pipelines with preprocessing components:
a. scan rest of estimators (our current batch 1).

4. First ensembling run

Fast mode ends here. Begin long mode.

6. Run top 3 estimators:
a. Generate 50 random parameter sets. Run all 150 in one batch

7. Second ensembling run

8. Repeat these indefinitely until stopping criterion is met:
a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one

batch

b. Run ensembling

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

290 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• top_n (int) – top n number of pipelines to use for long mode.

• num_long_explore_pipelines (int) – number of pipelines to explore for each top n
pipeline at the start of long mode.

• num_long_pipelines_per_batch (int) – number of pipelines per batch for each top n
pipeline through long mode.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature has not been computed yet.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from the
pipelines built by DefaultAlgorithm. Valid options are “DatetimeFeaturizer”, “EmailFeatur-
izer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. For default
algorithm, this only applies to estimators in the non-naive batches.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

Methods

5.14. Utils 291

EvalML Documentation, Release 0.80.0

add_result Register results from evaluating a pipeline. In batch
number 2, the selected column names from the fea-
ture selector are taken to be used in a column selec-
tor. Information regarding the best pipeline is up-
dated here as well.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline. In batch number 2, the selected column names from the feature
selector are taken to be used in a column selector. Information regarding the best pipeline is updated here
as well.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

property batch_number(self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self)
Get the next batch of pipelines to evaluate.

Returns a list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list(PipelineBase)

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self)
Returns the number of pipelines which have been recommended so far.

292 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.automl.automl_algorithm.IterativeAlgorithm(X, y, problem_type, sampler_name=None,
allowed_model_families=None,
excluded_model_families=None,
allowed_component_graphs=None,
max_batches=None, max_iterations=None,
tuner_class=None, random_seed=0,
pipelines_per_batch=5, n_jobs=- 1,
number_features=None,
ensembling=False,
text_in_ensembling=False,
search_parameters=None,
_estimator_family_order=None,
allow_long_running_models=False,
features=None, verbose=False,
exclude_featurizers=None)

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of performance.

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing. Defaults to None.

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: [ComponentGraph(. . .)] }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• max_batches (int) – The maximum number of batches to be evaluated. Used to determine
ensembling. Defaults to None.

• max_iterations (int) – The maximum number of iterations to be evaluated. Used to
determine ensembling. Defaults to None.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• pipelines_per_batch (int) – The number of pipelines to be evaluated in each batch,
after the first batch. Defaults to 5.

5.14. Utils 293

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to None.

• number_features (int) – The number of columns in the input features. Defaults to None.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. Defaults to False.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• _estimator_family_order (list(ModelFamily) or None) – specify the sort order
for the first batch. Defaults to None, which uses _ESTIMATOR_FAMILY_ORDER.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature itself is not in input.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by IterativeAlgorithm. Valid options are “DatetimeFeaturizer”, “Email-
Featurizer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

Methods

add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

294 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

Raises ValueError – If default parameters are not in the acceptable hyperparameter ranges.

property batch_number(self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self)
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

Raises AutoMLAlgorithmException – If no results were reported from the first batch.

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self)
Returns the number of pipelines which have been recommended so far.

engine

EvalML Engine classes used to evaluate pipelines in AutoMLSearch.

Submodules

cf_engine

Custom CFClient API to match Dask’s CFClient and allow context management.

Module Contents

Classes Summary

CFClient Custom CFClient API to match Dask's CFClient and al-
low context management.

CFComputation A Future-like wrapper around jobs created by the
CFEngine.

CFEngine The concurrent.futures (CF) engine.

5.14. Utils 295

EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.engine.cf_engine.CFClient(pool)
Custom CFClient API to match Dask’s CFClient and allow context management.

Parameters pool (cf.ThreadPoolExecutor or cf.ProcessPoolExecutor) – The resource
pool to execute the futures work on.

Methods

close Closes the underlying Executor.
is_closed Property that determines whether the Engine's

Client's resources are closed.
submit Pass through to imitate Dask's Client API.

close(self)
Closes the underlying Executor.

property is_closed(self)
Property that determines whether the Engine’s Client’s resources are closed.

submit(self, *args, **kwargs)
Pass through to imitate Dask’s Client API.

class evalml.automl.engine.cf_engine.CFComputation(future)
A Future-like wrapper around jobs created by the CFEngine.

Parameters future (cf.Future) – The concurrent.futures.Future that is desired to be executed.

Methods

cancel Cancel the current computation.
done Returns whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.
is_cancelled Returns whether computation was cancelled.

cancel(self)
Cancel the current computation.

Returns
False if the call is currently being executed or finished running and cannot be cancelled.

True if the call can be canceled.

Return type bool

done(self)
Returns whether the computation is done.

get_result(self)
Gets the computation result. Will block until the computation is finished.

Raises
• Exception – If computation fails. Returns traceback.

• cf.TimeoutError – If computation takes longer than default timeout time.

296 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• cf.CancelledError – If computation was canceled before completing.

Returns The result of the requested job.

property is_cancelled(self)
Returns whether computation was cancelled.

class evalml.automl.engine.cf_engine.CFEngine(client=None)
The concurrent.futures (CF) engine.

Parameters client (None or CFClient) – If None, creates a threaded pool for processing. De-
faults to None.

Methods

close Function to properly shutdown the Engine's Client's
resources.

is_closed Property that determines whether the Engine's
Client's resources are shutdown.

setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self)
Function to properly shutdown the Engine’s Client’s resources.

property is_closed(self)
Property that determines whether the Engine’s Client’s resources are shutdown.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters

5.14. Utils 297

EvalML Documentation, Release 0.80.0

• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – Objectives to score on.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool.

Return type CFComputation

submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

dask_engine

A Future-like wrapper around jobs created by the DaskEngine.

Module Contents

Classes Summary

DaskComputation A Future-like wrapper around jobs created by the
DaskEngine.

DaskEngine The dask engine.

298 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.engine.dask_engine.DaskComputation(dask_future)
A Future-like wrapper around jobs created by the DaskEngine.

Parameters dask_future (callable) – Computation to do.

Methods

cancel Cancel the current computation.
done Returns whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.
is_cancelled Returns whether computation was cancelled.

cancel(self)
Cancel the current computation.

done(self)
Returns whether the computation is done.

get_result(self)
Gets the computation result. Will block until the computation is finished.

Raises Exception – If computation fails. Returns traceback.

Returns Computation results.

property is_cancelled(self)
Returns whether computation was cancelled.

class evalml.automl.engine.dask_engine.DaskEngine(cluster=None)
The dask engine.

Parameters cluster (None or dd.Client) – If None, creates a local, threaded Dask client for
processing. Defaults to None.

Methods

close Closes the underlying cluster.
is_closed Property that determines whether the Engine's

Client's resources are shutdown.
send_data_to_cluster Send data to the cluster.
setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self)
Closes the underlying cluster.

property is_closed(self)
Property that determines whether the Engine’s Client’s resources are shutdown.

5.14. Utils 299

EvalML Documentation, Release 0.80.0

send_data_to_cluster(self, X, y)
Send data to the cluster.

The implementation uses caching so the data is only sent once. This follows dask best practices.

Parameters
• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns The modeling data.

Return type dask.Future

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

300 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

engine_base

Base class for EvalML engines.

Module Contents

Classes Summary

EngineBase Base class for EvalML engines.
EngineComputation Wrapper around the result of a (possibly asynchronous)

engine computation.
JobLogger Mimic the behavior of a python logging.Logger but

stores all messages rather than actually logging them.

Functions

evaluate_pipeline Function submitted to the submit_evaluation_job engine
method.

score_pipeline Wrap around pipeline.score method to make it easy to
score pipelines with dask.

train_and_score_pipeline Given a pipeline, config and data, train and score the
pipeline and return the CV or TV scores.

train_pipeline Train a pipeline and tune the threshold if necessary.

5.14. Utils 301

EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.engine.engine_base.EngineBase

Base class for EvalML engines.

Methods

setup_job_log Set up logger for job.
submit_evaluation_job Submit job for pipeline evaluation during Au-

toMLSearch.
submit_scoring_job Submit job for pipeline scoring.
submit_training_job Submit job for pipeline training.

static setup_job_log()

Set up logger for job.

abstract submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None,
y_holdout=None)

Submit job for pipeline evaluation during AutoMLSearch.

abstract submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None,
y_train=None)

Submit job for pipeline scoring.

abstract submit_training_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit job for pipeline training.

class evalml.automl.engine.engine_base.EngineComputation

Wrapper around the result of a (possibly asynchronous) engine computation.

Methods

cancel Cancel the computation.
done Whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.

abstract cancel(self)
Cancel the computation.

abstract done(self)
Whether the computation is done.

abstract get_result(self)
Gets the computation result. Will block until the computation is finished.

Raises Exception: If computation fails. Returns traceback.

evalml.automl.engine.engine_base.evaluate_pipeline(pipeline, automl_config, X, y, logger,
X_holdout=None, y_holdout=None)

Function submitted to the submit_evaluation_job engine method.

Parameters
• pipeline (PipelineBase) – The pipeline to score.

302 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• automl_config (AutoMLConfig) – The AutoMLSearch object, used to access config and
the error callback.

• X (pd.DataFrame) – Training features.

• y (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.

Return type tuple of three items

class evalml.automl.engine.engine_base.JobLogger

Mimic the behavior of a python logging.Logger but stores all messages rather than actually logging them.

This is used during engine jobs so that log messages are recorded after the job completes. This is desired so that
all of the messages for a single job are grouped together in the log.

Methods

debug Store message at the debug level.
error Store message at the error level.
info Store message at the info level.
warning Store message at the warning level.
write_to_logger Write all the messages to the logger, first in, first out

(FIFO) order.

debug(self, msg)
Store message at the debug level.

error(self, msg)
Store message at the error level.

info(self, msg)
Store message at the info level.

warning(self, msg)
Store message at the warning level.

write_to_logger(self, logger)
Write all the messages to the logger, first in, first out (FIFO) order.

evalml.automl.engine.engine_base.score_pipeline(pipeline, X, y, objectives, X_train=None,
y_train=None, X_schema=None, y_schema=None)

Wrap around pipeline.score method to make it easy to score pipelines with dask.

Parameters
• pipeline (PipelineBase) – The pipeline to score.

• X (pd.DataFrame) – Features to score on.

• y (pd.Series) – Target used to calculate scores.

5.14. Utils 303

EvalML Documentation, Release 0.80.0

• objectives (list[ObjectiveBase]) – List of objectives to score on.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• X_schema (ww.TableSchema) – Schema for features. Defaults to None.

• y_schema (ww.ColumnSchema) – Schema for columns. Defaults to None.

Returns Dictionary object containing pipeline scores.

Return type dict

evalml.automl.engine.engine_base.train_and_score_pipeline(pipeline, automl_config, full_X_train,
full_y_train, logger, X_holdout=None,
y_holdout=None)

Given a pipeline, config and data, train and score the pipeline and return the CV or TV scores.

Parameters
• pipeline (PipelineBase) – The pipeline to score.

• automl_config (AutoMLSearch) – The AutoMLSearch object, used to access config and
the error callback.

• full_X_train (pd.DataFrame) – Training features.

• full_y_train (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Raises Exception – If there are missing target values in the training set after data split.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.

Return type tuple of three items

evalml.automl.engine.engine_base.train_pipeline(pipeline, X, y, automl_config, schema=True,
get_hashes=False)

Train a pipeline and tune the threshold if necessary.

Parameters
• pipeline (PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Features to train on.

• y (pd.Series) – Target to train on.

• automl_config (AutoMLSearch) – The AutoMLSearch object, used to access config and
the error callback.

• schema (bool) – Whether to use the schemas for X and y. Defaults to True.

• get_hashes (bool) – Whether to return the hashes of the data used to train (and potentially
threshold). Defaults to False

304 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A trained pipeline instance. hash (optional): The hash of the input data indices, only re-
turned when get_hashes is True.

Return type pipeline (PipelineBase)

sequential_engine

A Future-like api for jobs created by the SequentialEngine, an Engine that sequentially computes the submitted jobs.

Module Contents

Classes Summary

SequentialComputation A Future-like api for jobs created by the Sequen-
tialEngine, an Engine that sequentially computes the
submitted jobs.

SequentialEngine The default engine for the AutoML search.

Contents

class evalml.automl.engine.sequential_engine.SequentialComputation(work, **kwargs)
A Future-like api for jobs created by the SequentialEngine, an Engine that sequentially computes the submitted
jobs.

In order to separate the engine from the AutoMLSearch loop, we need the sequential computations to behave the
same way as concurrent computations from AutoMLSearch’s point-of-view. One way to do this is by delaying
the computation in the sequential engine until get_result is called. Since AutoMLSearch will call get_result only
when the computation is “done”, by always returning True in done() we make sure that get_result is called in the
order that the jobs are submitted. So the computations happen sequentially!

Parameters work (callable) – Computation that should be done by the engine.

Methods

cancel Cancel the current computation.
done Whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.

cancel(self)
Cancel the current computation.

done(self)
Whether the computation is done.

Returns Always returns True.

Return type bool

get_result(self)
Gets the computation result. Will block until the computation is finished.

Raises Exception – If computation fails. Returns traceback.

5.14. Utils 305

EvalML Documentation, Release 0.80.0

Returns Computation results.

class evalml.automl.engine.sequential_engine.SequentialEngine

The default engine for the AutoML search.

Trains and scores pipelines locally and sequentially.

Methods

close No-op.
setup_job_log Set up logger for job.
submit_evaluation_job Submit a job to evaluate a pipeline.
submit_scoring_job Submit a job to score a pipeline.
submit_training_job Submit a job to train a pipeline.

close(self)
No-op.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit a job to evaluate a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns Computation result.

Return type SequentialComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Submit a job to score a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns Computation result.

Return type SequentialComputation

306 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

submit_training_job(self, automl_config, pipeline, X, y)
Submit a job to train a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns Computation result.

Return type SequentialComputation

Package Contents

Classes Summary

CFEngine The concurrent.futures (CF) engine.
DaskEngine The dask engine.
EngineBase Base class for EvalML engines.
EngineComputation Wrapper around the result of a (possibly asynchronous)

engine computation.
SequentialEngine The default engine for the AutoML search.

Functions

evaluate_pipeline Function submitted to the submit_evaluation_job engine
method.

train_and_score_pipeline Given a pipeline, config and data, train and score the
pipeline and return the CV or TV scores.

train_pipeline Train a pipeline and tune the threshold if necessary.

Contents

class evalml.automl.engine.CFEngine(client=None)
The concurrent.futures (CF) engine.

Parameters client (None or CFClient) – If None, creates a threaded pool for processing. De-
faults to None.

Methods

5.14. Utils 307

EvalML Documentation, Release 0.80.0

close Function to properly shutdown the Engine's Client's
resources.

is_closed Property that determines whether the Engine's
Client's resources are shutdown.

setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self)
Function to properly shutdown the Engine’s Client’s resources.

property is_closed(self)
Property that determines whether the Engine’s Client’s resources are shutdown.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – Objectives to score on.

Returns

308 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

An object wrapping a reference to a future-like computation occurring in the resource
pool.

Return type CFComputation

submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

class evalml.automl.engine.DaskEngine(cluster=None)
The dask engine.

Parameters cluster (None or dd.Client) – If None, creates a local, threaded Dask client for
processing. Defaults to None.

Methods

close Closes the underlying cluster.
is_closed Property that determines whether the Engine's

Client's resources are shutdown.
send_data_to_cluster Send data to the cluster.
setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self)
Closes the underlying cluster.

property is_closed(self)
Property that determines whether the Engine’s Client’s resources are shutdown.

send_data_to_cluster(self, X, y)
Send data to the cluster.

The implementation uses caching so the data is only sent once. This follows dask best practices.

Parameters
• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns The modeling data.

Return type dask.Future

5.14. Utils 309

EvalML Documentation, Release 0.80.0

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns

310 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

An object wrapping a reference to a future-like computation occurring in the dask clus-
ter.

Return type DaskComputation

class evalml.automl.engine.EngineBase

Base class for EvalML engines.

Methods

setup_job_log Set up logger for job.
submit_evaluation_job Submit job for pipeline evaluation during Au-

toMLSearch.
submit_scoring_job Submit job for pipeline scoring.
submit_training_job Submit job for pipeline training.

static setup_job_log()

Set up logger for job.

abstract submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None,
y_holdout=None)

Submit job for pipeline evaluation during AutoMLSearch.

abstract submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None,
y_train=None)

Submit job for pipeline scoring.

abstract submit_training_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit job for pipeline training.

class evalml.automl.engine.EngineComputation

Wrapper around the result of a (possibly asynchronous) engine computation.

Methods

cancel Cancel the computation.
done Whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.

abstract cancel(self)
Cancel the computation.

abstract done(self)
Whether the computation is done.

abstract get_result(self)
Gets the computation result. Will block until the computation is finished.

Raises Exception: If computation fails. Returns traceback.

evalml.automl.engine.evaluate_pipeline(pipeline, automl_config, X, y, logger, X_holdout=None,
y_holdout=None)

Function submitted to the submit_evaluation_job engine method.

Parameters

5.14. Utils 311

EvalML Documentation, Release 0.80.0

• pipeline (PipelineBase) – The pipeline to score.

• automl_config (AutoMLConfig) – The AutoMLSearch object, used to access config and
the error callback.

• X (pd.DataFrame) – Training features.

• y (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.

Return type tuple of three items

class evalml.automl.engine.SequentialEngine

The default engine for the AutoML search.

Trains and scores pipelines locally and sequentially.

Methods

close No-op.
setup_job_log Set up logger for job.
submit_evaluation_job Submit a job to evaluate a pipeline.
submit_scoring_job Submit a job to score a pipeline.
submit_training_job Submit a job to train a pipeline.

close(self)
No-op.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit a job to evaluate a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns Computation result.

Return type SequentialComputation

312 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Submit a job to score a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns Computation result.

Return type SequentialComputation

submit_training_job(self, automl_config, pipeline, X, y)
Submit a job to train a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns Computation result.

Return type SequentialComputation

evalml.automl.engine.train_and_score_pipeline(pipeline, automl_config, full_X_train, full_y_train,
logger, X_holdout=None, y_holdout=None)

Given a pipeline, config and data, train and score the pipeline and return the CV or TV scores.

Parameters
• pipeline (PipelineBase) – The pipeline to score.

• automl_config (AutoMLSearch) – The AutoMLSearch object, used to access config and
the error callback.

• full_X_train (pd.DataFrame) – Training features.

• full_y_train (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Raises Exception – If there are missing target values in the training set after data split.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.

5.14. Utils 313

EvalML Documentation, Release 0.80.0

Return type tuple of three items

evalml.automl.engine.train_pipeline(pipeline, X, y, automl_config, schema=True, get_hashes=False)
Train a pipeline and tune the threshold if necessary.

Parameters
• pipeline (PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Features to train on.

• y (pd.Series) – Target to train on.

• automl_config (AutoMLSearch) – The AutoMLSearch object, used to access config and
the error callback.

• schema (bool) – Whether to use the schemas for X and y. Defaults to True.

• get_hashes (bool) – Whether to return the hashes of the data used to train (and potentially
threshold). Defaults to False

Returns A trained pipeline instance. hash (optional): The hash of the input data indices, only re-
turned when get_hashes is True.

Return type pipeline (PipelineBase)

Submodules

automl_search

EvalML’s core AutoML object.

Module Contents

Classes Summary

AutoMLSearch Automated Pipeline search.

Functions

build_engine_from_str Function that converts a convenience string for an paral-
lel engine type and returns an instance of that engine.

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.

314 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.automl_search.AutoMLSearch(X_train=None, y_train=None, X_holdout=None,
y_holdout=None, problem_type=None,
objective='auto', max_iterations=None,
max_time=None, patience=None, tolerance=None,
data_splitter=None,
allowed_component_graphs=None,
allowed_model_families=None,
excluded_model_families=None, features=None,
run_feature_selection=True,
start_iteration_callback=None,
add_result_callback=None, error_callback=None,
additional_objectives=None,
alternate_thresholding_objective='F1',
random_seed=0, n_jobs=- 1, tuner_class=None,
optimize_thresholds=True, ensembling=False,
max_batches=None, problem_configuration=None,
train_best_pipeline=True, search_parameters=None,
sampler_method='auto',
sampler_balanced_ratio=0.25,
allow_long_running_models=False,
_pipelines_per_batch=5, automl_algorithm='default',
engine='sequential', verbose=False, timing=False,
exclude_featurizers=None, holdout_set_size=0,
use_recommendation=False,
include_recommendation=None,
exclude_recommendation=None)

Automated Pipeline search.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• X_holdout (pd.DataFrame) – The input holdout data of shape [n_samples, n_features].

• y_holdout (pd.Series) – The target holdout data of length [n_samples].

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• max_iterations (int) – Maximum number of iterations to search. If max_iterations and
max_time is not set, then max_iterations will default to max_iterations of 5.

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

5.14. Utils 315

EvalML Documentation, Release 0.80.0

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: ComponentGraph(. . .) }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored. For default algorithm, this
only applies to estimators in the non-naive batches.

• features (list) – List of features to run DFS on AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the search input
and if the feature itself is not in search input. If features is an empty list, the DFS Transformer
will not be included in pipelines.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm, setting is no-op for iterative algorithm.

• data_splitter (sklearn.model_selection.BaseCrossValidator) – Data splitting
method to use. Defaults to StratifiedKFold.

• tuner_class – The tuner class to use. Defaults to SKOptTuner.

• optimize_thresholds (bool) – Whether or not to optimize the binary pipeline threshold.
Defaults to True.

• start_iteration_callback (callable) – Function called before each pipeline training
iteration. Callback function takes three positional parameters: The pipeline instance and the
AutoMLSearch object.

• add_result_callback (callable) – Function called after each pipeline training iteration.
Callback function takes three positional parameters: A dictionary containing the training
results for the new pipeline, an untrained_pipeline containing the parameters used during
training, and the AutoMLSearch object.

• error_callback (callable) – Function called when search() errors and raises an Excep-
tion. Callback function takes three positional parameters: the Exception raised, the trace-
back, and the AutoMLSearch object. Must also accepts kwargs, so AutoMLSearch is able
to pass along other appropriate parameters by default. Defaults to None, which will call
log_error_callback.

• additional_objectives (list) – Custom set of objectives to score on. Will override
default objectives for problem type if not empty.

• alternate_thresholding_objective (str) – The objective to use for thresholding bi-
nary classification pipelines if the main objective provided isn’t tuneable. Defaults to F1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

316 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. If the number of unique pipelines to search over per
batch is one, ensembling will not run. Defaults to False.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, forecast_horizon, and max_delay variables. For multiseries time series problems, the
values passed in should also include the name of a series_id column.

• train_best_pipeline (boolean) – Whether or not to train the best pipeline before re-
turning it. Defaults to True.

• search_parameters (dict) – A dict of the hyperparameter ranges or pipeline parame-
ters used to iterate over during search. Keys should consist of the component names and
values should specify a singular value/list for pipeline parameters, or skopt.Space for hy-
perparameter ranges. In the example below, the Imputer parameters would be passed to the
hyperparameter ranges, and the Label Encoder parameters would be used as the component
parameter.

e.g. search_parameters = { ‘Imputer’ [{ ‘numeric_impute_strategy’: Categori-
cal([‘most_frequent’, ‘median’]) },] ’Label Encoder’: {‘positive_label’: True} }

• sampler_method (str) – The data sampling component to use in the pipelines if the prob-
lem type is classification and the target balance is smaller than the sampler_balanced_ratio.
Either ‘auto’, which will use our preferred sampler for the data, ‘Undersampler’, ‘Oversam-
pler’, or None. Defaults to ‘auto’.

• sampler_balanced_ratio (float) – The minority:majority class ratio that we consider
balanced, so a 1:4 ratio would be equal to 0.25. If the class balance is larger than this provided
value, then we will not add a sampler since the data is then considered balanced. Overrides
the sampler_ratio of the samplers. Defaults to 0.25.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• _ensembling_split_size (float) – The amount of the training data we’ll set aside for
training ensemble metalearners. Only used when ensembling is True. Must be between 0
and 1, exclusive. Defaults to 0.2

• _pipelines_per_batch (int) – The number of pipelines to train for every batch after the
first one. The first batch will train a baseline pipline + one of each pipeline family allowed
in the search.

• automl_algorithm (str) – The automl algorithm to use. Currently the two choices are
‘iterative’ and ‘default’. Defaults to default.

• engine (EngineBase or str) – The engine instance used to evaluate pipelines. Dask or
concurrent.futures engines can also be chosen by providing a string from the list [“sequen-
tial”, “cf_threaded”, “cf_process”, “dask_threaded”, “dask_process”]. If a parallel engine is

5.14. Utils 317

EvalML Documentation, Release 0.80.0

selected this way, the maximum amount of parallelism, as determined by the engine, will be
used. Defaults to “sequential”.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by search. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”,
“URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

• holdout_set_size (float) – The size of the holdout set that AutoML search will take for
datasets larger than 500 rows. If set to 0, holdout set will not be taken regardless of number
of rows. Must be between 0 and 1, exclusive. Defaults to 0.1.

• use_recommendation (bool) – Whether or not to use a recommendation score to rank
pipelines instead of optimization objective. Defaults to False.

• include_recommendation (list[str]) – A list of objectives to include beyond the de-
faults in the recommendation score. Defaults to None.

• exclude_recommendation (list[str]) – A list of objectives to exclude from the defaults
in the recommendation score. Defaults to None.

Methods

318 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

add_to_rankings Fits and evaluates a given pipeline then adds the re-
sults to the automl rankings with the requirement that
automl search has been run.

best_pipeline Returns a trained instance of the best pipeline
and parameters found during automl search. If
train_best_pipeline is set to False, returns an un-
trained pipeline instance.

close_engine Function to explicitly close the engine, client, parallel
resources.

describe_pipeline Describe a pipeline.
full_rankings Returns a pandas.DataFrame with scoring results

from all pipelines searched.
get_ensembler_input_pipelines Returns a list of input pipeline IDs given an ensem-

bler pipeline ID.
get_pipeline Given the ID of a pipeline training result, returns an

untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during
automl search.

get_recommendation_score_breakdown Reports the scores for the objectives used in the given
pipeline's recommendation score calculation.

get_recommendation_scores Calculates recommendation scores for all pipelines in
the search results.

load Loads AutoML object at file path.
plot Return an instance of the plot with the latest scores.
rankings Returns a pandas.DataFrame with scoring results

from the highest-scoring set of parameters used with
each pipeline.

results Class that allows access to a copy of the results from
automl_search.

save Saves AutoML object at file path.
score_pipelines Score a list of pipelines on the given holdout data.
search Find the best pipeline for the data set.
train_pipelines Train a list of pipelines on the training data.

add_to_rankings(self, pipeline)
Fits and evaluates a given pipeline then adds the results to the automl rankings with the requirement that
automl search has been run.

Parameters pipeline (PipelineBase) – pipeline to train and evaluate.

property best_pipeline(self)
Returns a trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Returns A trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Return type PipelineBase

Raises PipelineNotFoundError – If this is called before .search() is called.

close_engine(self)
Function to explicitly close the engine, client, parallel resources.

5.14. Utils 319

EvalML Documentation, Release 0.80.0

describe_pipeline(self, pipeline_id, return_dict=False)
Describe a pipeline.

Parameters
• pipeline_id (int) – pipeline to describe

• return_dict (bool) – If True, return dictionary of information about pipeline. Defaults
to False.

Returns Description of specified pipeline. Includes information such as type of pipeline compo-
nents, problem, training time, cross validation, etc.

Raises PipelineNotFoundError – If pipeline_id is not a valid ID.

property full_rankings(self)
Returns a pandas.DataFrame with scoring results from all pipelines searched.

get_ensembler_input_pipelines(self, ensemble_pipeline_id)
Returns a list of input pipeline IDs given an ensembler pipeline ID.

Parameters ensemble_pipeline_id (id) – Ensemble pipeline ID to get input pipeline IDs
from.

Returns A list of ensemble input pipeline IDs.

Return type list[int]

Raises ValueError – If ensemble_pipeline_id does not correspond to a valid ensemble pipeline
ID.

get_pipeline(self, pipeline_id)
Given the ID of a pipeline training result, returns an untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during automl search.

Parameters pipeline_id (int) – Pipeline to retrieve.

Returns Untrained pipeline instance associated with the provided ID.

Return type PipelineBase

Raises PipelineNotFoundError – if pipeline_id is not a valid ID.

get_recommendation_score_breakdown(self, pipeline_id)
Reports the scores for the objectives used in the given pipeline’s recommendation score calculation.

Note that these scores are reported in their raw form, not scaled to be between 0 and 1.

Parameters pipeline_id (int) – The id of the pipeline to get the recommendation score break-
down for.

Returns A dictionary of the scores for each objective used in the recommendation score calcu-
lation.

Return type dict

get_recommendation_scores(self, priority=None, custom_weights=None, use_pipeline_names=False)
Calculates recommendation scores for all pipelines in the search results.

Parameters
• priority (str) – An optional name of a priority objective that should be given heavier

weight (of 0.5) than the other objectives contributing to the score. Defaults to None, where
all objectives are weighted equally.

320 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. Should not be used at the same time as priori-
tized_objective. Defaults to None.

• use_pipeline_names (bool) – Whether or not to return the pipeline names instead of
ids as the keys to the recommendation score dictionary. Defaults to False.

Returns A dictionary mapping pipeline IDs to recommendation scores

static load(file_path, pickle_type='cloudpickle')
Loads AutoML object at file path.

Parameters
• file_path (str) – Location to find file to load

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use. Currently
not used since the standard pickle library can handle cloudpickles.

Returns AutoSearchBase object

property plot(self)
Return an instance of the plot with the latest scores.

property rankings(self)
Returns a pandas.DataFrame with scoring results from the highest-scoring set of parameters used with each
pipeline.

property results(self)
Class that allows access to a copy of the results from automl_search.

Returns
Dictionary containing pipeline_results, a dict with results from each pipeline, and

search_order, a list describing the order the pipelines were searched.

Return type dict

save(self, file_path, pickle_type='cloudpickle', pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves AutoML object at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use.

• pickle_protocol (int) – The pickle data stream format.

Raises ValueError – If pickle_type is not “pickle” or “cloudpickle”.

score_pipelines(self, pipelines, X_holdout, y_holdout, objectives)
Score a list of pipelines on the given holdout data.

Parameters
• pipelines (list[PipelineBase]) – List of pipelines to train.

• X_holdout (pd.DataFrame) – Holdout features.

• y_holdout (pd.Series) – Holdout targets for scoring.

• objectives (list[str], list[ObjectiveBase]) – Objectives used for scoring.

5.14. Utils 321

EvalML Documentation, Release 0.80.0

Returns Dictionary keyed by pipeline name that maps to a dictionary of scores. Note that the any
pipelines that error out during scoring will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type dict[str, Dict[str, float]]

search(self, interactive_plot=True)
Find the best pipeline for the data set.

Parameters interactive_plot (boolean, True) – Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Raises AutoMLSearchException – If all pipelines in the current AutoML batch produced a
score of np.nan on the primary objective.

Returns Dictionary keyed by batch number that maps to the timings for pipelines run in that
batch, as well as the total time for each batch. Pipelines within a batch are labeled by pipeline
name.

Return type Dict[int, Dict[str, Timestamp]]

train_pipelines(self, pipelines)
Train a list of pipelines on the training data.

This can be helpful for training pipelines once the search is complete.

Parameters pipelines (list[PipelineBase]) – List of pipelines to train.

Returns Dictionary keyed by pipeline name that maps to the fitted pipeline. Note that the any
pipelines that error out during training will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type Dict[str, PipelineBase]

evalml.automl.automl_search.build_engine_from_str(engine_str)
Function that converts a convenience string for an parallel engine type and returns an instance of that engine.

Parameters engine_str (str) – String representing the requested engine.

Returns Instance of the requested engine.

Return type (EngineBase)

Raises ValueError – If engine_str is not a valid engine.

evalml.automl.automl_search.search(X_train=None, y_train=None, problem_type=None, objective='auto',
mode='fast', max_time=None, patience=None, tolerance=None,
problem_configuration=None, n_splits=3, verbose=False,
timing=False)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

322 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• mode (str) – mode for DefaultAlgorithm. There are two modes: fast and long, where fast
is a subset of long. Please look at DefaultAlgorithm for more details.

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

Returns The automl search object containing pipelines and rankings, and the results from running
the data checks. If the data check results contain errors, automl search will not be run and an
automl search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If search configuration is not valid.

evalml.automl.automl_search.search_iterative(X_train=None, y_train=None, problem_type=None,
objective='auto', problem_configuration=None,
n_splits=3, timing=False, **kwargs)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

5.14. Utils 323

EvalML Documentation, Release 0.80.0

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• **kwargs – Other keyword arguments which are provided will be passed to AutoMLSearch.

Returns the automl search object containing pipelines and rankings, and the results from running the
data checks. If the data check results contain errors, automl search will not be run and an automl
search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If the search configuration is invalid.

callbacks

Callbacks available to pass to AutoML.

Module Contents

Functions

log_error_callback Logs the exception thrown as an error.
raise_error_callback Raises the exception thrown by the AutoMLSearch ob-

ject.
silent_error_callback No-op.

Attributes Summary

logger

324 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

evalml.automl.callbacks.log_error_callback(exception, traceback, automl, **kwargs)
Logs the exception thrown as an error.

Will not throw. This is the default behavior for AutoMLSearch.

Parameters
• exception – Exception to log.

• traceback – Exception traceback to log.

• automl – AutoMLSearch object.

• **kwargs – Other relevant keyword arguments to log.

evalml.automl.callbacks.logger

evalml.automl.callbacks.raise_error_callback(exception, traceback, automl, **kwargs)
Raises the exception thrown by the AutoMLSearch object.

Also logs the exception as an error.

Parameters
• exception – Exception to log and raise.

• traceback – Exception traceback to log.

• automl – AutoMLSearch object.

• **kwargs – Other relevant keyword arguments to log.

Raises exception – Raises the input exception.

evalml.automl.callbacks.silent_error_callback(exception, traceback, automl, **kwargs)
No-op.

pipeline_search_plots

Plots displayed during pipeline search.

Module Contents

Classes Summary

PipelineSearchPlots Plots for the AutoMLSearch class during search.
SearchIterationPlot Search iteration plot.

5.14. Utils 325

EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.pipeline_search_plots.PipelineSearchPlots(results, objective)
Plots for the AutoMLSearch class during search.

Parameters
• results (dict) – Dictionary of current results.

• objective (ObjectiveBase) – Objective that AutoML is optimizing for.

Methods

search_iteration_plot Shows a plot of the best score at each iteration using
data gathered during training.

search_iteration_plot(self, interactive_plot=False)
Shows a plot of the best score at each iteration using data gathered during training.

Parameters interactive_plot (bool) – Whether or not to show an interactive plot. Defaults
to False.

Returns plot

Raises ValueError – If engine_str is not a valid engine.

class evalml.automl.pipeline_search_plots.SearchIterationPlot(results, objective)
Search iteration plot.

Parameters
• results (dict) – Dictionary of current results.

• objective (ObjectiveBase) – Objective that AutoML is optimizing for.

Methods

update Update the search plot.

update(self, results, objective)
Update the search plot.

progress

Progress abstraction holding stopping criteria and progress information.

Module Contents

Classes Summary

Progress Progress object holding stopping criteria and progress
information.

326 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.progress.Progress(max_time=None, max_batches=None, max_iterations=None,
patience=None, tolerance=None, automl_algorithm=None,
objective=None, verbose=False)

Progress object holding stopping criteria and progress information.

Parameters
• max_time (int) – Maximum time to search for pipelines.

• max_iterations (int) – Maximum number of iterations to search.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• patience (int) – Number of iterations without improvement to stop search early.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping.

• automl_algorithm (str) – The automl algorithm to use. Used to calculate iterations if
max_batches is selected as stopping criteria.

• objective (str, ObjectiveBase) – The objective used in search.

• verbose (boolean) – Whether or not to log out stopping information.

Methods

elapsed Return time elapsed using the start time and current
time.

return_progress Return information about current and end state of
each stopping criteria in order of priority.

should_continue Given AutoML Results, return whether or not the
search should continue.

start_timing Sets start time to current time.

elapsed(self)
Return time elapsed using the start time and current time.

return_progress(self)
Return information about current and end state of each stopping criteria in order of priority.

Returns list of dictionaries containing information of each stopping criteria.

Return type List[Dict[str, unit]]

should_continue(self, results, interrupted=False, mid_batch=False)
Given AutoML Results, return whether or not the search should continue.

Parameters
• results (dict) – AutoMLSearch results.

• interrupted (bool) – whether AutoMLSearch was given an keyboard interrupt. Defaults
to False.

• mid_batch (bool) – whether this method was called while in the middle of a batch or not.
Defaults to False.

5.14. Utils 327

EvalML Documentation, Release 0.80.0

Returns True if search should continue, False otherwise.

Return type bool

start_timing(self)
Sets start time to current time.

utils

Utilities useful in AutoML.

Module Contents

Functions

check_all_pipeline_names_unique Checks whether all the pipeline names are unique.
get_best_sampler_for_data Returns the name of the sampler component to use for

AutoMLSearch.
get_default_primary_search_objective Get the default primary search objective for a problem

type.
get_pipelines_from_component_graphs Returns created pipelines from passed component

graphs based on the specified problem type.
get_threshold_tuning_info Determine for a given automl config and pipeline what

the threshold tuning objective should be and whether or
not training data should be further split to achieve proper
threshold tuning.

make_data_splitter Given the training data and ML problem parameters,
compute a data splitting method to use during AutoML
search.

resplit_training_data Further split the training data for a given pipeline. This
is needed for binary pipelines in order to properly tune
the threshold.

tune_binary_threshold Tunes the threshold of a binary pipeline to the X and y
thresholding data.

Attributes Summary

AutoMLConfig

328 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

evalml.automl.utils.AutoMLConfig

evalml.automl.utils.check_all_pipeline_names_unique(pipelines)
Checks whether all the pipeline names are unique.

Parameters pipelines (list[PipelineBase]) – List of pipelines to check if all names are
unique.

Raises ValueError – If any pipeline names are duplicated.

evalml.automl.utils.get_best_sampler_for_data(X, y, sampler_method, sampler_balanced_ratio)
Returns the name of the sampler component to use for AutoMLSearch.

Parameters
• X (pd.DataFrame) – The input feature data

• y (pd.Series) – The input target data

• sampler_method (str) – The sampler_type argument passed to AutoMLSearch

• sampler_balanced_ratio (float) – The ratio of min:majority targets that we would con-
sider balanced, or should balance the classes to.

Returns The string name of the sampling component to use, or None if no sampler is necessary

Return type str, None

evalml.automl.utils.get_default_primary_search_objective(problem_type)
Get the default primary search objective for a problem type.

Parameters problem_type (str or ProblemType) – Problem type of interest.

Returns primary objective instance for the problem type.

Return type ObjectiveBase

evalml.automl.utils.get_pipelines_from_component_graphs(component_graphs_dict, problem_type,
parameters=None, random_seed=0)

Returns created pipelines from passed component graphs based on the specified problem type.

Parameters
• component_graphs_dict (dict) – The dict of component graphs.

• problem_type (str or ProblemType) – The problem type for which pipelines will be
created.

• parameters (dict) – Pipeline-level parameters that should be passed to the proposed
pipelines. Defaults to None.

• random_seed (int) – Random seed. Defaults to 0.

Returns List of pipelines made from the passed component graphs.

Return type list

evalml.automl.utils.get_threshold_tuning_info(automl_config, pipeline)
Determine for a given automl config and pipeline what the threshold tuning objective should be and whether or
not training data should be further split to achieve proper threshold tuning.

Can also be used after automl search has been performed to determine whether the full training data was used to
train the pipeline.

5.14. Utils 329

EvalML Documentation, Release 0.80.0

Parameters
• automl_config (AutoMLConfig) – The AutoMLSearch’s config object. Used to determine

threshold tuning objective and whether data needs resplitting.

• pipeline (Pipeline) – The pipeline instance to Threshold.

Returns threshold_tuning_objective, data_needs_resplitting (str, bool)

evalml.automl.utils.make_data_splitter(X, y, problem_type, problem_configuration=None, n_splits=3,
shuffle=True, random_seed=0)

Given the training data and ML problem parameters, compute a data splitting method to use during AutoML
search.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

• problem_type (ProblemType) – The type of machine learning problem.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, and max_delay variables. Defaults to None.

• n_splits (int, None) – The number of CV splits, if applicable. Defaults to 3.

• shuffle (bool) – Whether or not to shuffle the data before splitting, if applicable. Defaults
to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Data splitting method.

Return type sklearn.model_selection.BaseCrossValidator

Raises ValueError – If problem_configuration is not given for a time-series problem.

evalml.automl.utils.resplit_training_data(pipeline, X_train, y_train)
Further split the training data for a given pipeline. This is needed for binary pipelines in order to properly tune
the threshold.

Can be used after automl search has been performed to recreate the data that was used to train a pipeline.

Parameters
• pipeline (PipelineBase) – the pipeline whose training data we are splitting

• X_train (pd.DataFrame or np.ndarray) – training data of shape [n_samples,
n_features]

• y_train (pd.Series, or np.ndarray) – training target data of length [n_samples]

Returns Feature and target data each split into train and threshold tuning sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.automl.utils.tune_binary_threshold(pipeline, objective, problem_type, X_threshold_tuning,
y_threshold_tuning, X=None, y=None)

Tunes the threshold of a binary pipeline to the X and y thresholding data.

Parameters
• pipeline (Pipeline) – Pipeline instance to threshold.

330 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• objective (ObjectiveBase) – The objective we want to tune with. If not tuneable and
best_pipeline is True, will use F1.

• problem_type (ProblemType) – The problem type of the pipeline.

• X_threshold_tuning (pd.DataFrame) – Features to which the pipeline will be tuned.

• y_threshold_tuning (pd.Series) – Target data to which the pipeline will be tuned.

• X (pd.DataFrame) – Features to which the pipeline will be trained (used for time series
binary). Defaults to None.

• y (pd.Series) – Target to which the pipeline will be trained (used for time series binary).
Defaults to None.

Package Contents

Classes Summary

AutoMLSearch Automated Pipeline search.
EngineBase Base class for EvalML engines.
Progress Progress object holding stopping criteria and progress

information.
SequentialEngine The default engine for the AutoML search.

Functions

get_default_primary_search_objective Get the default primary search objective for a problem
type.

get_threshold_tuning_info Determine for a given automl config and pipeline what
the threshold tuning objective should be and whether or
not training data should be further split to achieve proper
threshold tuning.

make_data_splitter Given the training data and ML problem parameters,
compute a data splitting method to use during AutoML
search.

resplit_training_data Further split the training data for a given pipeline. This
is needed for binary pipelines in order to properly tune
the threshold.

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.
tune_binary_threshold Tunes the threshold of a binary pipeline to the X and y

thresholding data.

5.14. Utils 331

EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.AutoMLSearch(X_train=None, y_train=None, X_holdout=None, y_holdout=None,
problem_type=None, objective='auto', max_iterations=None,
max_time=None, patience=None, tolerance=None, data_splitter=None,
allowed_component_graphs=None, allowed_model_families=None,
excluded_model_families=None, features=None,
run_feature_selection=True, start_iteration_callback=None,
add_result_callback=None, error_callback=None,
additional_objectives=None, alternate_thresholding_objective='F1',
random_seed=0, n_jobs=- 1, tuner_class=None,
optimize_thresholds=True, ensembling=False, max_batches=None,
problem_configuration=None, train_best_pipeline=True,
search_parameters=None, sampler_method='auto',
sampler_balanced_ratio=0.25, allow_long_running_models=False,
_pipelines_per_batch=5, automl_algorithm='default',
engine='sequential', verbose=False, timing=False,
exclude_featurizers=None, holdout_set_size=0,
use_recommendation=False, include_recommendation=None,
exclude_recommendation=None)

Automated Pipeline search.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• X_holdout (pd.DataFrame) – The input holdout data of shape [n_samples, n_features].

• y_holdout (pd.Series) – The target holdout data of length [n_samples].

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• max_iterations (int) – Maximum number of iterations to search. If max_iterations and
max_time is not set, then max_iterations will default to max_iterations of 5.

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: ComponentGraph(. . .) }

332 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored. For default algorithm, this
only applies to estimators in the non-naive batches.

• features (list) – List of features to run DFS on AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the search input
and if the feature itself is not in search input. If features is an empty list, the DFS Transformer
will not be included in pipelines.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm, setting is no-op for iterative algorithm.

• data_splitter (sklearn.model_selection.BaseCrossValidator) – Data splitting
method to use. Defaults to StratifiedKFold.

• tuner_class – The tuner class to use. Defaults to SKOptTuner.

• optimize_thresholds (bool) – Whether or not to optimize the binary pipeline threshold.
Defaults to True.

• start_iteration_callback (callable) – Function called before each pipeline training
iteration. Callback function takes three positional parameters: The pipeline instance and the
AutoMLSearch object.

• add_result_callback (callable) – Function called after each pipeline training iteration.
Callback function takes three positional parameters: A dictionary containing the training
results for the new pipeline, an untrained_pipeline containing the parameters used during
training, and the AutoMLSearch object.

• error_callback (callable) – Function called when search() errors and raises an Excep-
tion. Callback function takes three positional parameters: the Exception raised, the trace-
back, and the AutoMLSearch object. Must also accepts kwargs, so AutoMLSearch is able
to pass along other appropriate parameters by default. Defaults to None, which will call
log_error_callback.

• additional_objectives (list) – Custom set of objectives to score on. Will override
default objectives for problem type if not empty.

• alternate_thresholding_objective (str) – The objective to use for thresholding bi-
nary classification pipelines if the main objective provided isn’t tuneable. Defaults to F1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. If the number of unique pipelines to search over per
batch is one, ensembling will not run. Defaults to False.

5.14. Utils 333

EvalML Documentation, Release 0.80.0

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, forecast_horizon, and max_delay variables. For multiseries time series problems, the
values passed in should also include the name of a series_id column.

• train_best_pipeline (boolean) – Whether or not to train the best pipeline before re-
turning it. Defaults to True.

• search_parameters (dict) – A dict of the hyperparameter ranges or pipeline parame-
ters used to iterate over during search. Keys should consist of the component names and
values should specify a singular value/list for pipeline parameters, or skopt.Space for hy-
perparameter ranges. In the example below, the Imputer parameters would be passed to the
hyperparameter ranges, and the Label Encoder parameters would be used as the component
parameter.

e.g. search_parameters = { ‘Imputer’ [{ ‘numeric_impute_strategy’: Categori-
cal([‘most_frequent’, ‘median’]) },] ’Label Encoder’: {‘positive_label’: True} }

• sampler_method (str) – The data sampling component to use in the pipelines if the prob-
lem type is classification and the target balance is smaller than the sampler_balanced_ratio.
Either ‘auto’, which will use our preferred sampler for the data, ‘Undersampler’, ‘Oversam-
pler’, or None. Defaults to ‘auto’.

• sampler_balanced_ratio (float) – The minority:majority class ratio that we consider
balanced, so a 1:4 ratio would be equal to 0.25. If the class balance is larger than this provided
value, then we will not add a sampler since the data is then considered balanced. Overrides
the sampler_ratio of the samplers. Defaults to 0.25.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• _ensembling_split_size (float) – The amount of the training data we’ll set aside for
training ensemble metalearners. Only used when ensembling is True. Must be between 0
and 1, exclusive. Defaults to 0.2

• _pipelines_per_batch (int) – The number of pipelines to train for every batch after the
first one. The first batch will train a baseline pipline + one of each pipeline family allowed
in the search.

• automl_algorithm (str) – The automl algorithm to use. Currently the two choices are
‘iterative’ and ‘default’. Defaults to default.

• engine (EngineBase or str) – The engine instance used to evaluate pipelines. Dask or
concurrent.futures engines can also be chosen by providing a string from the list [“sequen-
tial”, “cf_threaded”, “cf_process”, “dask_threaded”, “dask_process”]. If a parallel engine is
selected this way, the maximum amount of parallelism, as determined by the engine, will be
used. Defaults to “sequential”.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

334 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by search. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”,
“URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

• holdout_set_size (float) – The size of the holdout set that AutoML search will take for
datasets larger than 500 rows. If set to 0, holdout set will not be taken regardless of number
of rows. Must be between 0 and 1, exclusive. Defaults to 0.1.

• use_recommendation (bool) – Whether or not to use a recommendation score to rank
pipelines instead of optimization objective. Defaults to False.

• include_recommendation (list[str]) – A list of objectives to include beyond the de-
faults in the recommendation score. Defaults to None.

• exclude_recommendation (list[str]) – A list of objectives to exclude from the defaults
in the recommendation score. Defaults to None.

Methods

add_to_rankings Fits and evaluates a given pipeline then adds the re-
sults to the automl rankings with the requirement that
automl search has been run.

best_pipeline Returns a trained instance of the best pipeline
and parameters found during automl search. If
train_best_pipeline is set to False, returns an un-
trained pipeline instance.

close_engine Function to explicitly close the engine, client, parallel
resources.

describe_pipeline Describe a pipeline.
full_rankings Returns a pandas.DataFrame with scoring results

from all pipelines searched.
get_ensembler_input_pipelines Returns a list of input pipeline IDs given an ensem-

bler pipeline ID.
get_pipeline Given the ID of a pipeline training result, returns an

untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during
automl search.

get_recommendation_score_breakdown Reports the scores for the objectives used in the given
pipeline's recommendation score calculation.

get_recommendation_scores Calculates recommendation scores for all pipelines in
the search results.

load Loads AutoML object at file path.
plot Return an instance of the plot with the latest scores.
rankings Returns a pandas.DataFrame with scoring results

from the highest-scoring set of parameters used with
each pipeline.

results Class that allows access to a copy of the results from
automl_search.

save Saves AutoML object at file path.
score_pipelines Score a list of pipelines on the given holdout data.
search Find the best pipeline for the data set.
train_pipelines Train a list of pipelines on the training data.

5.14. Utils 335

EvalML Documentation, Release 0.80.0

add_to_rankings(self, pipeline)
Fits and evaluates a given pipeline then adds the results to the automl rankings with the requirement that
automl search has been run.

Parameters pipeline (PipelineBase) – pipeline to train and evaluate.

property best_pipeline(self)
Returns a trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Returns A trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Return type PipelineBase

Raises PipelineNotFoundError – If this is called before .search() is called.

close_engine(self)
Function to explicitly close the engine, client, parallel resources.

describe_pipeline(self, pipeline_id, return_dict=False)
Describe a pipeline.

Parameters
• pipeline_id (int) – pipeline to describe

• return_dict (bool) – If True, return dictionary of information about pipeline. Defaults
to False.

Returns Description of specified pipeline. Includes information such as type of pipeline compo-
nents, problem, training time, cross validation, etc.

Raises PipelineNotFoundError – If pipeline_id is not a valid ID.

property full_rankings(self)
Returns a pandas.DataFrame with scoring results from all pipelines searched.

get_ensembler_input_pipelines(self, ensemble_pipeline_id)
Returns a list of input pipeline IDs given an ensembler pipeline ID.

Parameters ensemble_pipeline_id (id) – Ensemble pipeline ID to get input pipeline IDs
from.

Returns A list of ensemble input pipeline IDs.

Return type list[int]

Raises ValueError – If ensemble_pipeline_id does not correspond to a valid ensemble pipeline
ID.

get_pipeline(self, pipeline_id)
Given the ID of a pipeline training result, returns an untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during automl search.

Parameters pipeline_id (int) – Pipeline to retrieve.

Returns Untrained pipeline instance associated with the provided ID.

Return type PipelineBase

Raises PipelineNotFoundError – if pipeline_id is not a valid ID.

336 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_recommendation_score_breakdown(self, pipeline_id)
Reports the scores for the objectives used in the given pipeline’s recommendation score calculation.

Note that these scores are reported in their raw form, not scaled to be between 0 and 1.

Parameters pipeline_id (int) – The id of the pipeline to get the recommendation score break-
down for.

Returns A dictionary of the scores for each objective used in the recommendation score calcu-
lation.

Return type dict

get_recommendation_scores(self, priority=None, custom_weights=None, use_pipeline_names=False)
Calculates recommendation scores for all pipelines in the search results.

Parameters
• priority (str) – An optional name of a priority objective that should be given heavier

weight (of 0.5) than the other objectives contributing to the score. Defaults to None, where
all objectives are weighted equally.

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. Should not be used at the same time as priori-
tized_objective. Defaults to None.

• use_pipeline_names (bool) – Whether or not to return the pipeline names instead of
ids as the keys to the recommendation score dictionary. Defaults to False.

Returns A dictionary mapping pipeline IDs to recommendation scores

static load(file_path, pickle_type='cloudpickle')
Loads AutoML object at file path.

Parameters
• file_path (str) – Location to find file to load

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use. Currently
not used since the standard pickle library can handle cloudpickles.

Returns AutoSearchBase object

property plot(self)
Return an instance of the plot with the latest scores.

property rankings(self)
Returns a pandas.DataFrame with scoring results from the highest-scoring set of parameters used with each
pipeline.

property results(self)
Class that allows access to a copy of the results from automl_search.

Returns
Dictionary containing pipeline_results, a dict with results from each pipeline, and

search_order, a list describing the order the pipelines were searched.

Return type dict

save(self, file_path, pickle_type='cloudpickle', pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves AutoML object at file path.

Parameters

5.14. Utils 337

EvalML Documentation, Release 0.80.0

• file_path (str) – Location to save file.

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use.

• pickle_protocol (int) – The pickle data stream format.

Raises ValueError – If pickle_type is not “pickle” or “cloudpickle”.

score_pipelines(self, pipelines, X_holdout, y_holdout, objectives)
Score a list of pipelines on the given holdout data.

Parameters
• pipelines (list[PipelineBase]) – List of pipelines to train.

• X_holdout (pd.DataFrame) – Holdout features.

• y_holdout (pd.Series) – Holdout targets for scoring.

• objectives (list[str], list[ObjectiveBase]) – Objectives used for scoring.

Returns Dictionary keyed by pipeline name that maps to a dictionary of scores. Note that the any
pipelines that error out during scoring will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type dict[str, Dict[str, float]]

search(self, interactive_plot=True)
Find the best pipeline for the data set.

Parameters interactive_plot (boolean, True) – Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Raises AutoMLSearchException – If all pipelines in the current AutoML batch produced a
score of np.nan on the primary objective.

Returns Dictionary keyed by batch number that maps to the timings for pipelines run in that
batch, as well as the total time for each batch. Pipelines within a batch are labeled by pipeline
name.

Return type Dict[int, Dict[str, Timestamp]]

train_pipelines(self, pipelines)
Train a list of pipelines on the training data.

This can be helpful for training pipelines once the search is complete.

Parameters pipelines (list[PipelineBase]) – List of pipelines to train.

Returns Dictionary keyed by pipeline name that maps to the fitted pipeline. Note that the any
pipelines that error out during training will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type Dict[str, PipelineBase]

class evalml.automl.EngineBase

Base class for EvalML engines.

Methods

338 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

setup_job_log Set up logger for job.
submit_evaluation_job Submit job for pipeline evaluation during Au-

toMLSearch.
submit_scoring_job Submit job for pipeline scoring.
submit_training_job Submit job for pipeline training.

static setup_job_log()

Set up logger for job.

abstract submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None,
y_holdout=None)

Submit job for pipeline evaluation during AutoMLSearch.

abstract submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None,
y_train=None)

Submit job for pipeline scoring.

abstract submit_training_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit job for pipeline training.

evalml.automl.get_default_primary_search_objective(problem_type)
Get the default primary search objective for a problem type.

Parameters problem_type (str or ProblemType) – Problem type of interest.

Returns primary objective instance for the problem type.

Return type ObjectiveBase

evalml.automl.get_threshold_tuning_info(automl_config, pipeline)
Determine for a given automl config and pipeline what the threshold tuning objective should be and whether or
not training data should be further split to achieve proper threshold tuning.

Can also be used after automl search has been performed to determine whether the full training data was used to
train the pipeline.

Parameters
• automl_config (AutoMLConfig) – The AutoMLSearch’s config object. Used to determine

threshold tuning objective and whether data needs resplitting.

• pipeline (Pipeline) – The pipeline instance to Threshold.

Returns threshold_tuning_objective, data_needs_resplitting (str, bool)

evalml.automl.make_data_splitter(X, y, problem_type, problem_configuration=None, n_splits=3,
shuffle=True, random_seed=0)

Given the training data and ML problem parameters, compute a data splitting method to use during AutoML
search.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

• problem_type (ProblemType) – The type of machine learning problem.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, and max_delay variables. Defaults to None.

5.14. Utils 339

EvalML Documentation, Release 0.80.0

• n_splits (int, None) – The number of CV splits, if applicable. Defaults to 3.

• shuffle (bool) – Whether or not to shuffle the data before splitting, if applicable. Defaults
to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Data splitting method.

Return type sklearn.model_selection.BaseCrossValidator

Raises ValueError – If problem_configuration is not given for a time-series problem.

class evalml.automl.Progress(max_time=None, max_batches=None, max_iterations=None, patience=None,
tolerance=None, automl_algorithm=None, objective=None, verbose=False)

Progress object holding stopping criteria and progress information.

Parameters
• max_time (int) – Maximum time to search for pipelines.

• max_iterations (int) – Maximum number of iterations to search.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• patience (int) – Number of iterations without improvement to stop search early.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping.

• automl_algorithm (str) – The automl algorithm to use. Used to calculate iterations if
max_batches is selected as stopping criteria.

• objective (str, ObjectiveBase) – The objective used in search.

• verbose (boolean) – Whether or not to log out stopping information.

Methods

elapsed Return time elapsed using the start time and current
time.

return_progress Return information about current and end state of
each stopping criteria in order of priority.

should_continue Given AutoML Results, return whether or not the
search should continue.

start_timing Sets start time to current time.

elapsed(self)
Return time elapsed using the start time and current time.

return_progress(self)
Return information about current and end state of each stopping criteria in order of priority.

Returns list of dictionaries containing information of each stopping criteria.

Return type List[Dict[str, unit]]

should_continue(self, results, interrupted=False, mid_batch=False)
Given AutoML Results, return whether or not the search should continue.

Parameters

340 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• results (dict) – AutoMLSearch results.

• interrupted (bool) – whether AutoMLSearch was given an keyboard interrupt. Defaults
to False.

• mid_batch (bool) – whether this method was called while in the middle of a batch or not.
Defaults to False.

Returns True if search should continue, False otherwise.

Return type bool

start_timing(self)
Sets start time to current time.

evalml.automl.resplit_training_data(pipeline, X_train, y_train)
Further split the training data for a given pipeline. This is needed for binary pipelines in order to properly tune
the threshold.

Can be used after automl search has been performed to recreate the data that was used to train a pipeline.

Parameters
• pipeline (PipelineBase) – the pipeline whose training data we are splitting

• X_train (pd.DataFrame or np.ndarray) – training data of shape [n_samples,
n_features]

• y_train (pd.Series, or np.ndarray) – training target data of length [n_samples]

Returns Feature and target data each split into train and threshold tuning sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.automl.search(X_train=None, y_train=None, problem_type=None, objective='auto', mode='fast',
max_time=None, patience=None, tolerance=None, problem_configuration=None,
n_splits=3, verbose=False, timing=False)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• mode (str) – mode for DefaultAlgorithm. There are two modes: fast and long, where fast
is a subset of long. Please look at DefaultAlgorithm for more details.

5.14. Utils 341

EvalML Documentation, Release 0.80.0

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

Returns The automl search object containing pipelines and rankings, and the results from running
the data checks. If the data check results contain errors, automl search will not be run and an
automl search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If search configuration is not valid.

evalml.automl.search_iterative(X_train=None, y_train=None, problem_type=None, objective='auto',
problem_configuration=None, n_splits=3, timing=False, **kwargs)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

342 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• **kwargs – Other keyword arguments which are provided will be passed to AutoMLSearch.

Returns the automl search object containing pipelines and rankings, and the results from running the
data checks. If the data check results contain errors, automl search will not be run and an automl
search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If the search configuration is invalid.

class evalml.automl.SequentialEngine

The default engine for the AutoML search.

Trains and scores pipelines locally and sequentially.

Methods

close No-op.
setup_job_log Set up logger for job.
submit_evaluation_job Submit a job to evaluate a pipeline.
submit_scoring_job Submit a job to score a pipeline.
submit_training_job Submit a job to train a pipeline.

close(self)
No-op.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit a job to evaluate a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns Computation result.

Return type SequentialComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Submit a job to score a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

5.14. Utils 343

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns Computation result.

Return type SequentialComputation

submit_training_job(self, automl_config, pipeline, X, y)
Submit a job to train a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns Computation result.

Return type SequentialComputation

evalml.automl.tune_binary_threshold(pipeline, objective, problem_type, X_threshold_tuning,
y_threshold_tuning, X=None, y=None)

Tunes the threshold of a binary pipeline to the X and y thresholding data.

Parameters
• pipeline (Pipeline) – Pipeline instance to threshold.

• objective (ObjectiveBase) – The objective we want to tune with. If not tuneable and
best_pipeline is True, will use F1.

• problem_type (ProblemType) – The problem type of the pipeline.

• X_threshold_tuning (pd.DataFrame) – Features to which the pipeline will be tuned.

• y_threshold_tuning (pd.Series) – Target data to which the pipeline will be tuned.

• X (pd.DataFrame) – Features to which the pipeline will be trained (used for time series
binary). Defaults to None.

• y (pd.Series) – Target to which the pipeline will be trained (used for time series binary).
Defaults to None.

Data Checks

Data checks.

344 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Submodules

class_imbalance_data_check

Data check that checks if any of the target labels are imbalanced, or if the number of values for each target are below 2
times the number of CV folds.

Use for classification problems.

Module Contents

Classes Summary

ClassImbalanceDataCheck Check if any of the target labels are imbalanced, or if the
number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

Contents

class evalml.data_checks.class_imbalance_data_check.ClassImbalanceDataCheck(threshold=0.1,
min_samples=100,
num_cv_folds=3,
test_size=None)

Check if any of the target labels are imbalanced, or if the number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

Parameters
• threshold (float) – The minimum threshold allowed for class imbalance before a warning

is raised. This threshold is calculated by comparing the number of samples in each class to
the sum of samples in that class and the majority class. For example, a multiclass case with
[900, 900, 100] samples per classes 0, 1, and 2, respectively, would have a 0.10 threshold for
class 2 (100 / (900 + 100)). Defaults to 0.10.

• min_samples (int) – The minimum number of samples per accepted class. If the minority
class is both below the threshold and min_samples, then we consider this severely imbal-
anced. Must be greater than 0. Defaults to 100.

• num_cv_folds (int) – The number of cross-validation folds. Must be positive. Choose 0
to ignore this warning. Defaults to 3.

• test_size (None, float, int) – Percentage of test set size. Used to calculate class
imbalance prior to splitting the data into training and validation/test sets.

Raises
• ValueError – If threshold is not within 0 and 0.5

• ValueError – If min_samples is not greater than 0

• ValueError – If number of cv folds is negative

• ValueError – If test_size is not between 0 and 1

5.14. Utils 345

EvalML Documentation, Release 0.80.0

Methods

name Return a name describing the data check.
validate Check if any target labels are imbalanced beyond a

threshold for binary and multiclass problems.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if any target labels are imbalanced beyond a threshold for binary and multiclass problems.

Ignores NaN values in target labels if they appear.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.

• y (pd.Series, np.ndarray) – Target labels to check for imbalanced data.

Returns
Dictionary with DataCheckWarnings if imbalance in classes is less than the threshold,

and DataCheckErrors if the number of values for each target is below 2 * num_cv_folds.

Return type dict

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame()
>>> y = pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

In this binary example, the target class 0 is present in fewer than 10% (threshold=0.10) of instances, and
fewer than 2 * the number of cross folds (2 * 3 = 6). Therefore, both a warning and an error are returned
as part of the Class Imbalance Data Check. In addition, if a target is present with fewer than min_samples
occurrences (default is 100) and is under the threshold, a severe class imbalance warning will be raised.

>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.10)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The number of instances of these targets is less than 2␣
→˓* the number of cross folds = 6 instances: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "error",
... "code": "CLASS_IMBALANCE_BELOW_FOLDS",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels fall below 10% of the target: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",

(continues on next page)

346 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "details": {"target_values": [0], "rows": None, "columns": None},

... "action_options": []

... },

... {

... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 10% of the target and have less than 100␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
...]

In this multiclass example, the target class 0 is present in fewer than 30% of observations, however with 1
cv fold, the minimum number of instances required is 2 * 1 = 2. Therefore a warning, but not an error, is
raised.

>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, min_samples=5, num_
→˓cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The following labels fall below 30% of the target: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 30% of the target and have less than 5␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
...]
...
>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, num_cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == []

5.14. Utils 347

EvalML Documentation, Release 0.80.0

data_check

Base class for all data checks.

Module Contents

Classes Summary

DataCheck Base class for all data checks.

Contents

class evalml.data_checks.data_check.DataCheck

Base class for all data checks.

Data checks are a set of heuristics used to determine if there are problems with input data.

Methods

name Return a name describing the data check.
validate Inspect and validate the input data, runs any neces-

sary calculations or algorithms, and returns a list of
warnings and errors if applicable.

name(cls)
Return a name describing the data check.

abstract validate(self, X, y=None)
Inspect and validate the input data, runs any necessary calculations or algorithms, and returns a list of
warnings and errors if applicable.

Parameters
• X (pd.DataFrame) – The input data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target data of length [n_samples]

Returns Dictionary of DataCheckError and DataCheckWarning messages

Return type dict (DataCheckMessage)

data_check_action

Recommended action returned by a DataCheck.

348 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

DataCheckAction A recommended action returned by a DataCheck.

Contents

class evalml.data_checks.data_check_action.DataCheckAction(action_code, data_check_name,
metadata=None)

A recommended action returned by a DataCheck.

Parameters
• action_code (str, DataCheckActionCode) – Action code associated with the action.

• data_check_name (str) – Name of data check.

• metadata (dict, optional) – Additional useful information associated with the action.
Defaults to None.

Methods

convert_dict_to_action Convert a dictionary into a DataCheckAction.
to_dict Return a dictionary form of the data check action.

static convert_dict_to_action(action_dict)
Convert a dictionary into a DataCheckAction.

Parameters action_dict – Dictionary to convert into action. Should have keys “code”,
“data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckAction object from the input dictionary.

to_dict(self)
Return a dictionary form of the data check action.

data_check_action_code

Enum for data check action code.

5.14. Utils 349

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

DataCheckActionCode Enum for data check action code.

Contents

class evalml.data_checks.data_check_action_code.DataCheckActionCode

Enum for data check action code.

Attributes

DROP_COL Action code for dropping a column.
DROP_ROWS Action code for dropping rows.
IM-
PUTE_COL

Action code for imputing a column.

REGULAR-
IZE_AND_IMPUTE_DATASET

Action code for regularizing and imputing all features and target time series data.

SET_FIRST_COL_IDAction code for setting the first column as an id column.
TRANS-
FORM_TARGET

Action code for transforming the target data.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

data_check_action_option

Recommended action returned by a DataCheck.

Module Contents

Classes Summary

DataCheckActionOption A recommended action option returned by a DataCheck.
DCAOParameterAllowedValuesType Enum for data check action option parameter allowed

values type.
DCAOParameterType Enum for data check action option parameter type.

350 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.data_checks.data_check_action_option.DataCheckActionOption(action_code,
data_check_name,
parameters=None,
metadata=None)

A recommended action option returned by a DataCheck.

It contains an action code that indicates what the action should be, a data check name that indicates
what data check was used to generate the action, and parameters and metadata which can be used to
further refine the action.

Parameters
• action_code (DataCheckActionCode) – Action code associated with the action option.

• data_check_name (str) – Name of the data check that produced this option.

• parameters (dict) – Parameters associated with the action option. Defaults to None.

• metadata (dict, optional) – Additional useful information associated with the action
option. Defaults to None.

Examples

>>> parameters = {
... "global_parameter_name": {
... "parameter_type": "global",
... "type": "float",
... "default_value": 0.0,
... },
... "column_parameter_name": {
... "parameter_type": "column",
... "columns": {
... "a": {
... "impute_strategy": {
... "categories": ["mean", "most_frequent"],
... "type": "category",
... "default_value": "mean",
... },
... "constant_fill_value": {"type": "float", "default_value": 0},
... },
... },
... },
... }
>>> data_check_action = DataCheckActionOption(DataCheckActionCode.DROP_COL, None,␣
→˓metadata={}, parameters=parameters)

Methods

convert_dict_to_option Convert a dictionary into a DataCheckActionOption.
get_action_from_defaults Returns an action based on the defaults parameters.
to_dict Return a dictionary form of the data check action op-

tion.

5.14. Utils 351

EvalML Documentation, Release 0.80.0

static convert_dict_to_option(action_dict)
Convert a dictionary into a DataCheckActionOption.

Parameters action_dict – Dictionary to convert into an action option. Should have keys
“code”, “data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckActionOption object from the input dictionary.

get_action_from_defaults(self)
Returns an action based on the defaults parameters.

Returns An based on the defaults parameters the option.

Return type DataCheckAction

to_dict(self)
Return a dictionary form of the data check action option.

class evalml.data_checks.data_check_action_option.DCAOParameterAllowedValuesType

Enum for data check action option parameter allowed values type.

Attributes

CATEGOR-
ICAL

Categorical allowed values type. Parameters that have a set of allowed values.

NUMERI-
CAL

Numerical allowed values type. Parameters that have a range of allowed values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

class evalml.data_checks.data_check_action_option.DCAOParameterType

Enum for data check action option parameter type.

Attributes

COLUMN Column parameter type. Parameters that apply to a specific column in the data set.
GLOBAL Global parameter type. Parameters that apply to the entire data set.

Methods

352 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

all_parameter_types Get a list of all defined parameter types.
handle_dcao_parameter_type Handles the data check action option parameter type

by either returning the DCAOParameterType enum or
converting from a str.

name The name of the Enum member.
value The value of the Enum member.

all_parameter_types(cls)
Get a list of all defined parameter types.

Returns List of all defined parameter types.

Return type list(DCAOParameterType)

static handle_dcao_parameter_type(dcao_parameter_type)
Handles the data check action option parameter type by either returning the DCAOParameterType enum or
converting from a str.

Parameters dcao_parameter_type (str or DCAOParameterType) – Data check action op-
tion parameter type that needs to be handled.

Returns DCAOParameterType enum

Raises
• KeyError – If input is not a valid DCAOParameterType enum value.

• ValueError – If input is not a string or DCAOParameterType object.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

data_check_message

Messages returned by a DataCheck, tagged by name.

Module Contents

Classes Summary

DataCheckError DataCheckMessage subclass for errors returned by data
checks.

DataCheckMessage Base class for a message returned by a DataCheck,
tagged by name.

DataCheckWarning DataCheckMessage subclass for warnings returned by
data checks.

5.14. Utils 353

EvalML Documentation, Release 0.80.0

Contents

class evalml.data_checks.data_check_message.DataCheckError(message, data_check_name,
message_code=None, details=None,
action_options=None)

DataCheckMessage subclass for errors returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.ERROR

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self)
Return a dictionary form of the data check message.

class evalml.data_checks.data_check_message.DataCheckMessage(message, data_check_name,
message_code=None, details=None,
action_options=None)

Base class for a message returned by a DataCheck, tagged by name.

Parameters
• message (str) – Message string.

• data_check_name (str) – Name of the associated data check.

• message_code (DataCheckMessageCode, optional) – Message code associated with
the message. Defaults to None.

• details (dict, optional) – Additional useful information associated with the message.
Defaults to None.

• action_options (list, optional) – A list of `DataCheckActionOption`s associated
with the message. Defaults to None.

Attributes

mes-
sage_type

None

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self)
Return a dictionary form of the data check message.

class evalml.data_checks.data_check_message.DataCheckWarning(message, data_check_name,
message_code=None, details=None,
action_options=None)

354 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

DataCheckMessage subclass for warnings returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.WARNING

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self)
Return a dictionary form of the data check message.

data_check_message_code

Enum for data check message code.

Module Contents

Classes Summary

DataCheckMessageCode Enum for data check message code.

Contents

class evalml.data_checks.data_check_message_code.DataCheckMessageCode

Enum for data check message code.

Attributes

CLASS_IMBALANCE_BELOW_FOLDSMessage code for when the number of values for each target is below 2 * number of CV folds.
CLASS_IMBALANCE_BELOW_THRESHOLDMessage code for when balance in classes is less than the threshold.
CLASS_IMBALANCE_SEVEREMessage code for when balance in classes is less than the threshold and minimum class is

less than minimum number of accepted samples.
COLS_WITH_NULLMessage code for columns with null values.
DATE-
TIME_HAS_MISALIGNED_VALUES

Message code for when datetime information has values that are not aligned with the inferred
frequency.

DATE-
TIME_HAS_NAN

Message code for when input datetime columns contain NaN values.

DATE-
TIME_HAS_REDUNDANT_ROW

Message code for when datetime information has more than one row per datetime.

DATE-
TIME_HAS_UNEVEN_INTERVALS

Message code for when the datetime values have uneven intervals.

DATE-
TIME_INFORMATION_NOT_FOUND

Message code for when datetime information can not be found or is in an unaccepted format.

continues on next page

5.14. Utils 355

EvalML Documentation, Release 0.80.0

Table 2 – continued from previous page
DATE-
TIME_IS_MISSING_VALUES

Message code for when datetime feature has values missing between the start and end dates.

DATE-
TIME_IS_NOT_MONOTONIC

Message code for when the datetime values are not monotonically increasing.

DATE-
TIME_NO_FREQUENCY_INFERRED

Message code for when no frequency can be inferred in the datetime values through Wood-
work’s infer_frequency.

HAS_ID_COLUMNMessage code for data that has ID columns.
HAS_ID_FIRST_COLUMNMessage code for data that has an ID column as the first column.
HAS_OUTLIERSMessage code for when outliers are detected.
HIGH_VARIANCEMessage code for when high variance is detected for cross-validation.
HIGHLY_NULL_COLSMessage code for highly null columns.
HIGHLY_NULL_ROWSMessage code for highly null rows.
IS_MULTICOLLINEARMessage code for when data is potentially multicollinear.
MIS-
MATCHED_INDICES

Message code for when input target and features have mismatched indices.

MIS-
MATCHED_INDICES_ORDER

Message code for when input target and features have mismatched indices order. The two
inputs have the same index values, but shuffled.

MIS-
MATCHED_LENGTHS

Message code for when input target and features have different lengths.

NATU-
RAL_LANGUAGE_HAS_NAN

Message code for when input natural language columns contain NaN values.

NO_VARIANCEMessage code for when data has no variance (1 unique value).
NO_VARIANCE_WITH_NULLMessage code for when data has one unique value and NaN values.
NO_VARIANCE_ZERO_UNIQUEMessage code for when data has no variance (0 unique value)
NOT_UNIQUE_ENOUGHMessage code for when data does not possess enough unique values.
TAR-
GET_BINARY_NOT_TWO_UNIQUE_VALUES

Message code for target data for a binary classification problem that does not have two unique
values.

TAR-
GET_HAS_NULL

Message code for target data that has null values.

TAR-
GET_INCOMPATIBLE_OBJECTIVE

Message code for target data that has incompatible values for the specified objective

TAR-
GET_IS_EMPTY_OR_FULLY_NULL

Message code for target data that is empty or has all null values.

TAR-
GET_IS_NONE

Message code for when target is None.

TAR-
GET_LEAKAGE

Message code for when target leakage is detected.

TAR-
GET_LOGNORMAL_DISTRIBUTION

Message code for target data with a lognormal distribution.

TAR-
GET_MULTICLASS_HIGH_UNIQUE_CLASS

Message code for target data for a multi classification problem that has an abnormally large
number of unique classes relative to the number of target values.

TAR-
GET_MULTICLASS_NOT_ENOUGH_CLASSES

Message code for target data for a multi classification problem that does not have more than
two unique classes.

TAR-
GET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS

Message code for target data for a multi classification problem that does not have two exam-
ples per class.

TAR-
GET_UNSUPPORTED_PROBLEM_TYPE

Message code for target data that is being checked against an unsupported problem type.

TAR-
GET_UNSUPPORTED_TYPE

Message code for target data that is of an unsupported type.

TAR-
GET_UNSUPPORTED_TYPE_REGRESSION

Message code for target data that is incompatible with regression

continues on next page

356 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 2 – continued from previous page
TIME-
SERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT

Message code when the time series parameters are too large for the smallest data split.

TIME-
SERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT

Message code when any training and validation split of the time series target doesn’t contain
all classes.

TOO_SPARSE Message code for when multiclass data has values that are too sparsely populated.
TOO_UNIQUEMessage code for when data possesses too many unique values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

data_check_message_type

Enum for type of data check message.

Module Contents

Classes Summary

DataCheckMessageType Enum for type of data check message: WARNING or
ERROR.

Contents

class evalml.data_checks.data_check_message_type.DataCheckMessageType

Enum for type of data check message: WARNING or ERROR.

Attributes

ERROR Error message returned by a data check.
WARNING Warning message returned by a data check.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

5.14. Utils 357

EvalML Documentation, Release 0.80.0

value(self)
The value of the Enum member.

data_checks

A collection of data checks.

Module Contents

Classes Summary

DataChecks A collection of data checks.

Contents

class evalml.data_checks.data_checks.DataChecks(data_checks=None, data_check_params=None)
A collection of data checks.

Parameters
• data_checks (list (DataCheck)) – List of DataCheck objects.

• data_check_params (dict) – Parameters for passed DataCheck objects.

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

datetime_format_data_check

Data check that checks if the datetime column has equally spaced intervals and is monotonically increasing or decreasing
in order to be supported by time series estimators.

358 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

DateTimeFormatDataCheck Check if the datetime column has equally spaced inter-
vals and is monotonically increasing or decreasing in or-
der to be supported by time series estimators.

Contents

class evalml.data_checks.datetime_format_data_check.DateTimeFormatDataCheck(datetime_column='index',
nan_duplicate_threshold=0.75)

Check if the datetime column has equally spaced intervals and is monotonically increasing or decreasing in order
to be supported by time series estimators.

Parameters
• datetime_column (str, int) – The name of the datetime column. If the datetime values

are in the index, then pass “index”.

• nan_duplicate_threshold (float) – The percentage of values in the datetime_column
that must not be duplicate or nan before DATETIME_NO_FREQUENCY_INFERRED is re-
turned instead of DATETIME_HAS_UNEVEN_INTERVALS. For example, if this is set to
0.80, then only 20% of the values in datetime_column can be duplicate or nan. Defaults to
0.75.

Methods

name Return a name describing the data check.
validate Checks if the target data has equal intervals and is

monotonically increasing.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Checks if the target data has equal intervals and is monotonically increasing.

Will return a DataCheckError if the data is not a datetime type, is not increasing, has redundant or missing
row(s), contains invalid (NaN or None) values, or has values that don’t align with the assumed frequency.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Target data.

Returns List with DataCheckErrors if unequal intervals are found in the datetime column.

Return type dict (DataCheckError)

5.14. Utils 359

EvalML Documentation, Release 0.80.0

Examples

>>> import pandas as pd

The column ‘dates’ has a set of two dates with daily frequency, two dates with hourly frequency, and two
dates with monthly frequency.

>>> X = pd.DataFrame(pd.date_range("2015-01-01", periods=2).append(pd.date_
→˓range("2015-01-08", periods=2, freq="H").append(pd.date_range("2016-03-02",␣
→˓periods=2, freq="M"))), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "No frequency could be detected in column 'dates',␣
→˓possibly due to uneven intervals or too many duplicate/missing values.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_NO_FREQUENCY_INFERRED",
... "details": {"columns": None, "rows": None},
... "action_options": []
... }
...]

The column “dates” has a gap in the values, which implies there are many dates missing.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-31", periods=50)), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has datetime values missing between␣
→˓start and end date.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_IS_MISSING_VALUES",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',

(continues on next page)

360 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... 'metadata': {

... 'columns': None,

... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'dates',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

...]

... }

...]

The column “dates” has a repeat of the date 2021-01-09 appended to the end, which is considered redundant
and will raise an error.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-09", periods=1)), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has more than one row with the same␣
→˓datetime value.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_REDUNDANT_ROW",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',

(continues on next page)

5.14. Utils 361

EvalML Documentation, Release 0.80.0

(continued from previous page)

... 'metadata': {

... 'columns': None,

... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'dates',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

...]

... }

...]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,

(continues on next page)

362 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'Weeks',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

...]

... }

...]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None

(continues on next page)

5.14. Utils 363

EvalML Documentation, Release 0.80.0

(continued from previous page)

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'Weeks',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

...]

... }

...]

The column “Weeks” passed integers instead of datetime data, which will raise an error.

>>> X = pd.DataFrame([1, 2, 3, 4], columns=["Weeks"])
>>> y = pd.Series([0] * 4)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Datetime information could not be found in the data, or␣
→˓was not in a supported datetime format.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_INFORMATION_NOT_FOUND",
... "action_options": []
... }
...]

Converting that same integer data to datetime, however, is valid.

>>> X = pd.DataFrame(pd.to_datetime([1, 2, 3, 4]), columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=10),␣
→˓columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

While the data passed in is of datetime type, time series requires the datetime information in date-
time_column to be monotonically increasing (ascending).

>>> X = X.iloc[::-1]
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [

(continues on next page)

364 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... {

... "message": "Datetime values must be sorted in ascending order.",

... "data_check_name": "DateTimeFormatDataCheck",

... "level": "error",

... "details": {"columns": None, "rows": None},

... "code": "DATETIME_IS_NOT_MONOTONIC",

... "action_options": []

... }

...]

The first value in the column “index” is replaced with NaT, which will raise an error in this data check.

>>> dates = [["2-1-21", "3-1-21"],
... ["2-2-21", "3-2-21"],
... ["2-3-21", "3-3-21"],
... ["2-4-21", "3-4-21"],
... ["2-5-21", "3-5-21"],
... ["2-6-21", "3-6-21"],
... ["2-7-21", "3-7-21"],
... ["2-8-21", "3-8-21"],
... ["2-9-21", "3-9-21"],
... ["2-10-21", "3-10-21"],
... ["2-11-21", "3-11-21"],
... ["2-12-21", "3-12-21"]]
>>> dates[0][0] = None
>>> df = pd.DataFrame(dates, columns=["days", "days2"])
>>> ww_payload = infer_frequency(pd.to_datetime(df["days"]), debug=True, window_
→˓length=5, threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="days")
>>> assert datetime_format_dc.validate(df, y) == [
... {
... "message": "Input datetime column 'days' contains NaN values.␣
→˓Please impute NaN values or drop these rows.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_NAN",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'days', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,

(continues on next page)

5.14. Utils 365

EvalML Documentation, Release 0.80.0

(continued from previous page)

... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'days',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

...]

... }

...]

...

default_data_checks

A default set of data checks that can be used for a variety of datasets.

Module Contents

Classes Summary

DefaultDataChecks A collection of basic data checks that is used by AutoML
by default.

Contents

class evalml.data_checks.default_data_checks.DefaultDataChecks(problem_type, objective,
n_splits=3,
problem_configuration=None)

A collection of basic data checks that is used by AutoML by default.

Includes:

• NullDataCheck

• HighlyNullRowsDataCheck

• IDColumnsDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck

366 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• NoVarianceDataCheck

• ClassImbalanceDataCheck (for classification problem types)

• TargetDistributionDataCheck (for regression problem types)

• DateTimeFormatDataCheck (for time series problem types)

• ‘TimeSeriesParametersDataCheck’ (for time series problem types)

• TimeSeriesSplittingDataCheck (for time series classification problem types)

Parameters
• problem_type (str) – The problem type that is being validated. Can be regression, binary,

or multiclass.

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_splits (int) – The number of splits as determined by the data splitter being used. De-
faults to 3.

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index,

• gap –

• forecast_horizon –

• max_delay. (and) –

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

id_columns_data_check

Data check that checks if any of the features are likely to be ID columns.

5.14. Utils 367

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

IDColumnsDataCheck Check if any of the features are likely to be ID columns.

Contents

class evalml.data_checks.id_columns_data_check.IDColumnsDataCheck(id_threshold=1.0,
exclude_time_index=True)

Check if any of the features are likely to be ID columns.

Parameters
• id_threshold (float) – The probability threshold to be considered an ID column. De-

faults to 1.0.

• exclude_time_index (bool) – If True, the column set as the time index will not be in-
cluded in the data check. Default is True.

Methods

name Return a name describing the data check.
validate Check if any of the features are likely to be ID

columns. Currently performs a number of simple
checks.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.

Checks performed are:

• column name is “id”

• column name ends in “_id”

• column contains all unique values (and is categorical / integer type)

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series) – The target. Defaults to None. Ignored.

Returns A dictionary of features with column name or index and their probability of being ID
columns

Return type dict

368 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Examples

>>> import pandas as pd

Columns that end in “_id” and are completely unique are likely to be ID columns.

>>> df = pd.DataFrame({
... "profits": [25, 15, 15, 31, 19],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'customer_id' are 100.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
...]
... }
...]

Columns named “ID” with all unique values will also be identified as ID columns.

>>> df = df.rename(columns={"customer_id": "ID"})
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'ID' are 100.0% or more likely to be an ID␣
→˓column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["ID"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["ID"], "rows": None}
... }
...]
... }
...]

5.14. Utils 369

EvalML Documentation, Release 0.80.0

Despite being all unique, “Country_Rank” will not be identified as an ID column as id_threshold is set to
1.0 by default and its name doesn’t indicate that it’s an ID.

>>> df = pd.DataFrame({
... "humidity": ["high", "very high", "low", "low", "high"],
... "Country_Rank": [1, 2, 3, 4, 5],
... "Sales": ["very high", "high", "high", "medium", "very low"]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == []

However lowering the threshold will cause this column to be identified as an ID.

>>> id_col_check = IDColumnsDataCheck()
>>> id_col_check = IDColumnsDataCheck(id_threshold=0.95)
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'Country_Rank' are 95.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "details": {"columns": ["Country_Rank"], "rows": None},
... "code": "HAS_ID_COLUMN",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["Country_Rank"], "rows": None}
... }
...]
... }
...]

If the first column of the dataframe has all unique values and is named either ‘ID’ or a name that ends with
‘_id’, it is probably the primary key. The other ID columns should be dropped.

>>> df = pd.DataFrame({
... "sales_id": [0, 1, 2, 3, 4],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "The first column 'sales_id' is likely to be the primary␣
→˓key",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_FIRST_COLUMN",
... "details": {"columns": ["sales_id"], "rows": None},
... "action_options": [

(continues on next page)

370 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... {

... "code": "SET_FIRST_COL_ID",

... "data_check_name": "IDColumnsDataCheck",

... "parameters": {},

... "metadata": {"columns": ["sales_id"], "rows": None}

... }

...]

... },

... {

... "message": "Columns 'customer_id' are 100.0% or more likely to be an␣
→˓ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
...]
... }
...]

invalid_target_data_check

Data check that checks if the target data contains missing or invalid values.

Module Contents

Classes Summary

InvalidTargetDataCheck Check if the target data is considered invalid.

Contents

class evalml.data_checks.invalid_target_data_check.InvalidTargetDataCheck(problem_type,
objective,
n_unique=100,
null_strategy='drop')

Check if the target data is considered invalid.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.

5.14. Utils 371

EvalML Documentation, Release 0.80.0

• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_unique (int) – Number of unique target values to store when problem type is binary and
target incorrectly has more than 2 unique values. Non-negative integer. If None, stores all
unique values. Defaults to 100.

• null_strategy (str) – The type of action option that should be returned if the target is
partially null. The options are impute and drop (default). impute - Will return a DataCheck-
ActionOption for imputing the target column. drop - Will return a DataCheckActionOption
for dropping the null rows in the target column.

Attributes

multi-
class_continuous_threshold

0.05

Methods

name Return a name describing the data check.
validate Check if the target data is considered invalid. If the

input features argument is not None, it will be used
to check that the target and features have the same
dimensions and indices.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data is considered invalid. If the input features argument is not None, it will be used to
check that the target and features have the same dimensions and indices.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.

• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters

372 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame, np.ndarray) – Features. If not None, will be used to check that the
target and features have the same dimensions and indices.

• y (pd.Series, np.ndarray) – Target data to check for invalid values.

Returns List with DataCheckErrors if any invalid values are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Target values must be integers, doubles, or booleans.

>>> X = pd.DataFrame({"col": [1, 2, 3, 1]})
>>> y = pd.Series(["cat_1", "cat_2", "cat_1", "cat_2"])
>>> target_check = InvalidTargetDataCheck("regression", "R2", null_strategy=
→˓"impute")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is unsupported Unknown type. Valid Woodwork␣
→˓logical types include: integer, double, boolean, age, age_fractional, integer_
→˓nullable, boolean_nullable, age_nullable",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"unknown"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []
... },
... {
... "message": "Target data type should be numeric for regression type␣
→˓problems.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_UNSUPPORTED_TYPE_REGRESSION",
... "action_options": []
... }
...]

The target cannot have null values.

>>> y = pd.Series([None, pd.NA, pd.NaT, None])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is either empty or fully null.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_IS_EMPTY_OR_FULLY_NULL",
... "action_options": []
... }

(continues on next page)

5.14. Utils 373

EvalML Documentation, Release 0.80.0

(continued from previous page)

...]

...

...
>>> y = pd.Series([1, None, 3, None])
>>> assert target_check.validate(None, y) == [
... {
... "message": "2 row(s) (50.0%) of target values are null",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {
... "columns": None,
... "rows": [1, 3],
... "num_null_rows": 2,
... "pct_null_rows": 50.0
... },
... "code": "TARGET_HAS_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "InvalidTargetDataCheck",
... "parameters": {
... "impute_strategy": {
... "parameter_type": "global",
... "type": "category",
... "categories": ["mean", "most_frequent"],
... "default_value": "mean"
... }
... },
... "metadata": {"columns": None, "rows": None, "is_target":␣
→˓True},
... }
...],
... }
...]

If the target values don’t match the problem type passed, an error will be raised. In this instance, only two
values exist in the target column, but multiclass has been passed as the problem type.

>>> X = pd.DataFrame([i for i in range(50)])
>>> y = pd.Series([i%2 for i in range(50)])
>>> target_check = InvalidTargetDataCheck("multiclass", "Log Loss Multiclass")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target has two or less classes, which is too few for␣
→˓multiclass problems. Consider changing to binary.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "num_classes": 2},
... "code": "TARGET_MULTICLASS_NOT_ENOUGH_CLASSES",
... "action_options": []
... }
...]

374 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

If the length of X and y differ, a warning will be raised. A warning will also be raised for indices that don”t
match.

>>> target_check = InvalidTargetDataCheck("regression", "R2")
>>> X = pd.DataFrame([i for i in range(5)])
>>> y = pd.Series([1, 2, 4, 3], index=[1, 2, 4, 3])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Input target and features have different lengths",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",
... "details": {"columns": None, "rows": None, "features_length": 5,
→˓"target_length": 4},
... "code": "MISMATCHED_LENGTHS",
... "action_options": []
... },
... {
... "message": "Input target and features have mismatched indices.␣
→˓Details will include the first 10 mismatched indices.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",
... "details": {
... "columns": None,
... "rows": None,
... "indices_not_in_features": [],
... "indices_not_in_target": [0]
... },
... "code": "MISMATCHED_INDICES",
... "action_options": []
... }
...]

multicollinearity_data_check

Data check to check if any set features are likely to be multicollinear.

Module Contents

Classes Summary

MulticollinearityDataCheck Check if any set features are likely to be multicollinear.

5.14. Utils 375

EvalML Documentation, Release 0.80.0

Contents

class evalml.data_checks.multicollinearity_data_check.MulticollinearityDataCheck(threshold=0.9)
Check if any set features are likely to be multicollinear.

Parameters threshold (float) – The threshold to be considered. Defaults to 0.9.

Methods

name Return a name describing the data check.
validate Check if any set of features are likely to be multi-

collinear.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any set of features are likely to be multicollinear.

Parameters
• X (pd.DataFrame) – The input features to check.

• y (pd.Series) – The target. Ignored.

Returns dict with a DataCheckWarning if there are any potentially multicollinear columns.

Return type dict

Example

>>> import pandas as pd

Columns in X that are highly correlated with each other will be identified using mutual information.

>>> col = pd.Series([1, 0, 2, 3, 4] * 15)
>>> X = pd.DataFrame({"col_1": col, "col_2": col * 3})
>>> y = pd.Series([1, 0, 0, 1, 0] * 15)
...
>>> multicollinearity_check = MulticollinearityDataCheck(threshold=1.0)
>>> assert multicollinearity_check.validate(X, y) == [
... {
... "message": "Columns are likely to be correlated: [('col_1', 'col_2
→˓')]",
... "data_check_name": "MulticollinearityDataCheck",
... "level": "warning",
... "code": "IS_MULTICOLLINEAR",
... "details": {"columns": [("col_1", "col_2")], "rows": None},
... "action_options": []
... }
...]

376 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

no_variance_data_check

Data check that checks if the target or any of the features have no variance.

Module Contents

Classes Summary

NoVarianceDataCheck Check if the target or any of the features have no vari-
ance.

Contents

class evalml.data_checks.no_variance_data_check.NoVarianceDataCheck(count_nan_as_value=False)
Check if the target or any of the features have no variance.

Parameters count_nan_as_value (bool) – If True, missing values will be counted as their own
unique value. Additionally, if true, will return a DataCheckWarning instead of an error if the
feature has mostly missing data and only one unique value. Defaults to False.

Methods

name Return a name describing the data check.
validate Check if the target or any of the features have no vari-

ance (1 unique value).

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the target or any of the features have no variance (1 unique value).

Parameters
• X (pd.DataFrame, np.ndarray) – The input features.

• y (pd.Series, np.ndarray) – Optional, the target data.

Returns A dict of warnings/errors corresponding to features or target with no variance.

Return type dict

Examples

>>> import pandas as pd

Columns or target data that have only one unique value will raise an error.

>>> X = pd.DataFrame([2, 2, 2, 2, 2, 2, 2, 2], columns=["First_Column"])
>>> y = pd.Series([1, 1, 1, 1, 1, 1, 1, 1])
...

(continues on next page)

5.14. Utils 377

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> novar_dc = NoVarianceDataCheck()
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NoVarianceDataCheck",
... "parameters": {},
... "metadata": {"columns": ["First_Column"], "rows": None}
... },
...]
... },
... {
... "message": "Y has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": []
... }
...]

By default, NaNs will not be counted as distinct values. In the first example, there are still two distinct
values besides None. In the second, there are no distinct values as the target is entirely null.

>>> X["First_Column"] = [2, 2, 2, 3, 3, 3, None, None]
>>> y = pd.Series([1, 1, 1, 2, 2, 2, None, None])
>>> assert novar_dc.validate(X, y) == []
...
...
>>> y = pd.Series([None] * 7)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "Y has 0 unique values.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE_ZERO_UNIQUE",
... "action_options":[]
... }
...]

As None is not considered a distinct value by default, there is only one unique value in X and y.

>>> X["First_Column"] = [2, 2, 2, 2, None, None, None, None]
>>> y = pd.Series([1, 1, 1, 1, None, None, None, None])
>>> assert novar_dc.validate(X, y) == [

(continues on next page)

378 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... {

... "message": "'First_Column' has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["First_Column"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": [

... {

... "code": "DROP_COL",

... "data_check_name": "NoVarianceDataCheck",

... "parameters": {},

... "metadata": {"columns": ["First_Column"], "rows": None}

... },

...]

... },

... {

... "message": "Y has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": []

... }

...]

If count_nan_as_value is set to True, then NaNs are counted as unique values. In the event that there is
an adequate number of unique values only because count_nan_as_value is set to True, a warning will be
raised so the user can encode these values.

>>> novar_dc = NoVarianceDataCheck(count_nan_as_value=True)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has two unique values including nulls.␣
→˓Consider encoding the nulls for this column to be useful for machine learning.
→˓",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE_WITH_NULL",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NoVarianceDataCheck",
... "parameters": {},
... "metadata": {"columns": ["First_Column"], "rows": None}
... },
...]
... },
... {
... "message": "Y has two unique values including nulls. Consider␣
→˓encoding the nulls for this column to be useful for machine learning.",
... "data_check_name": "NoVarianceDataCheck",

(continues on next page)

5.14. Utils 379

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE_WITH_NULL",

... "action_options": []

... }

...]

null_data_check

Data check that checks if there are any highly-null columns and rows in the input.

Module Contents

Classes Summary

NullDataCheck Check if there are any highly-null numerical, boolean,
categorical, natural language, and unknown columns
and rows in the input.

Contents

class evalml.data_checks.null_data_check.NullDataCheck(pct_null_col_threshold=0.95,
pct_moderately_null_col_threshold=0.2,
pct_null_row_threshold=0.95)

Check if there are any highly-null numerical, boolean, categorical, natural language, and unknown columns and
rows in the input.

Parameters
• pct_null_col_threshold (float) – If the percentage of NaN values in an input feature

exceeds this amount, that column will be considered highly-null. Defaults to 0.95.

• pct_moderately_null_col_threshold (float) – If the percentage of NaN values
in an input feature exceeds this amount but is less than the percentage specified in
pct_null_col_threshold, that column will be considered moderately-null. Defaults to 0.20.

• pct_null_row_threshold (float) – If the percentage of NaN values in an input row
exceeds this amount, that row will be considered highly-null. Defaults to 0.95.

Methods

get_null_column_information Finds columns that are considered highly null (per-
centage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and
dictionary mapping column name to null indices.

get_null_row_information Finds rows that are considered highly null (percent-
age null is greater than threshold).

name Return a name describing the data check.
validate Check if there are any highly-null columns or rows in

the input.

380 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static get_null_column_information(X, pct_null_col_threshold=0.0)
Finds columns that are considered highly null (percentage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and dictionary mapping column name to null indices.

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null columns.

• pct_null_col_threshold (float) – Percentage threshold for a column to be considered
null. Defaults to 0.0.

Returns Tuple containing: dictionary mapping column name to its null percentage and dictionary
mapping column name to null indices in that column.

Return type tuple

static get_null_row_information(X, pct_null_row_threshold=0.0)
Finds rows that are considered highly null (percentage null is greater than threshold).

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null rows.

• pct_null_row_threshold (float) – Percentage threshold for a row to be considered
null. Defaults to 0.0.

Returns Series containing the percentage null for each row.

Return type pd.Series

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if there are any highly-null columns or rows in the input.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckWarning if there are any highly-null columns or rows.

Return type dict

Examples

>>> import pandas as pd
...
>>> class SeriesWrap():
... def __init__(self, series):
... self.series = series
...
... def __eq__(self, series_2):
... return all(self.series.eq(series_2.series))

With pct_null_col_threshold set to 0.50, any column that has 50% or more of its observations set to
null will be included in the warning, as well as the percentage of null values identified (“all_null”: 1.0,
“lots_of_null”: 0.8).

5.14. Utils 381

EvalML Documentation, Release 0.80.0

>>> df = pd.DataFrame({
... "all_null": [None, pd.NA, None, None, None],
... "lots_of_null": [None, None, None, None, 5],
... "few_null": [1, 2, None, 2, 3],
... "no_null": [1, 2, 3, 4, 5]
... })
...
>>> highly_null_dc = NullDataCheck(pct_null_col_threshold=0.50)
>>> assert highly_null_dc.validate(df) == [
... {
... "message": "Column(s) 'all_null', 'lots_of_null' are 50.0% or more␣
→˓null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": ["all_null", "lots_of_null"],
... "rows": None,
... "pct_null_rows": {"all_null": 1.0, "lots_of_null": 0.8}
... },
... "code": "HIGHLY_NULL_COLS",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NullDataCheck",
... "parameters": {},
... "metadata": {"columns": ["all_null", "lots_of_null"], "rows
→˓": None}
... }
...]
... },
... {
... "message": "Column(s) 'few_null' have between 20.0% and 50.0% null␣
→˓values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["few_null"], "rows": None, "is_
→˓target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "few_null": {
... "impute_strategy": {"categories": ["mean",
→˓"most_frequent"], "type": "category", "default_value": "mean"}
... }
... }
... }

(continues on next page)

382 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

... }

...]

... }

...]

With pct_null_row_threshold set to 0.50, any row with 50% or more of its respective column values set to
null will included in the warning, as well as the offending rows (“rows”: [0, 1, 2, 3]). Since the default
value for pct_null_col_threshold is 0.95, “all_null” is also included in the warnings since the percentage of
null values in that row is over 95%. Since the default value for pct_moderately_null_col_threshold is 0.20,
“few_null” is included as a “moderately null” column as it has a null column percentage of 20%.

>>> highly_null_dc = NullDataCheck(pct_null_row_threshold=0.50)
>>> validation_messages = highly_null_dc.validate(df)
>>> validation_messages[0]["details"]["pct_null_cols"] = SeriesWrap(validation_
→˓messages[0]["details"]["pct_null_cols"])
>>> highly_null_rows = SeriesWrap(pd.Series([0.5, 0.5, 0.75, 0.5]))
>>> assert validation_messages == [
... {
... "message": "4 out of 5 rows are 50.0% or more null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": None,
... "rows": [0, 1, 2, 3],
... "pct_null_cols": highly_null_rows
... },
... "code": "HIGHLY_NULL_ROWS",
... "action_options": [
... {
... "code": "DROP_ROWS",
... "data_check_name": "NullDataCheck",
... "parameters": {},
... "metadata": {"columns": None, "rows": [0, 1, 2, 3]}
... }
...]
... },
... {
... "message": "Column(s) 'all_null' are 95.0% or more null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": ["all_null"],
... "rows": None,
... "pct_null_rows": {"all_null": 1.0}
... },
... "code": "HIGHLY_NULL_COLS",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["all_null"], "rows": None},

(continues on next page)

5.14. Utils 383

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "parameters": {}

... }

...]

... },

... {

... "message": "Column(s) 'lots_of_null', 'few_null' have between 20.0%␣
→˓and 95.0% null values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["lots_of_null", "few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["lots_of_null", "few_null"], "rows":
→˓ None, "is_target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "lots_of_null": {"impute_strategy": {"categories
→˓": ["mean", "most_frequent"], "type": "category", "default_value": "mean"}},
... "few_null": {"impute_strategy": {"categories": [
→˓"mean", "most_frequent"], "type": "category", "default_value": "mean"}}
... }
... }
... }
... }
...]
... }
...]

outliers_data_check

Data check that checks if there are any outliers in input data by using IQR to determine score anomalies.

Module Contents

Classes Summary

OutliersDataCheck Checks if there are any outliers in input data by using
IQR to determine score anomalies.

384 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.data_checks.outliers_data_check.OutliersDataCheck

Checks if there are any outliers in input data by using IQR to determine score anomalies.

Columns with score anomalies are considered to contain outliers.

Methods

get_boxplot_data Returns box plot information for the given data.
name Return a name describing the data check.
validate Check if there are any outliers in a dataframe by using

IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

static get_boxplot_data(data_)
Returns box plot information for the given data.

Parameters data (pd.Series, np.ndarray) – Input data.

Returns A payload of box plot statistics.

Return type dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
>>> box_plot_data = OutliersDataCheck.get_boxplot_data(df["z"])
>>> box_plot_data["score"] = round(box_plot_data["score"], 2)
>>> assert box_plot_data == {
... "score": 0.89,
... "pct_outliers": 0.2,
... "values": {"q1": -4.0,
... "median": -3.0,
... "q3": -2.0,
... "low_bound": -7.0,
... "high_bound": -1.0,
... "low_values": [-1201],
... "high_values": [],
... "low_indices": [3],
... "high_indices": []}
... }

name(cls)
Return a name describing the data check.

5.14. Utils 385

EvalML Documentation, Release 0.80.0

validate(self, X, y=None)
Check if there are any outliers in a dataframe by using IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

Parameters
• X (pd.DataFrame, np.ndarray) – Input features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns A dictionary with warnings if any columns have outliers.

Return type dict

Examples

>>> import pandas as pd

The column “z” has an outlier so a warning is added to alert the user of its location.

>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
...
>>> outliers_check = OutliersDataCheck()
>>> assert outliers_check.validate(df) == [
... {
... "message": "Column(s) 'z' are likely to have outlier data.",
... "data_check_name": "OutliersDataCheck",
... "level": "warning",
... "code": "HAS_OUTLIERS",
... "details": {"columns": ["z"], "rows": [3], "column_indices": {"z":␣
→˓[3]}},
... "action_options": [
... {
... "code": "DROP_ROWS",
... "data_check_name": "OutliersDataCheck",
... "parameters": {},
... "metadata": {"rows": [3], "columns": None}
... }
...]
... }
...]

386 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

sparsity_data_check

Data check that checks if there are any columns with sparsely populated values in the input.

Module Contents

Classes Summary

SparsityDataCheck Check if there are any columns with sparsely populated
values in the input.

Attributes Summary

warning_too_unique

Contents

class evalml.data_checks.sparsity_data_check.SparsityDataCheck(problem_type, threshold,
unique_count_threshold=10)

Check if there are any columns with sparsely populated values in the input.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

‘multiclass’ or ‘time series multiclass’ is the only accepted problem type.

• threshold (float) – The threshold value, or percentage of each column’s unique values,
below which, a column exhibits sparsity. Should be between 0 and 1.

• unique_count_threshold (int) – The minimum number of times a unique value has to
be present in a column to not be considered “sparse.” Defaults to 10.

Methods

name Return a name describing the data check.
sparsity_score Calculate a sparsity score for the given value counts

by calculating the percentage of unique values that
exceed the count_threshold.

validate Calculate what percentage of each column's unique
values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class
instance.

name(cls)
Return a name describing the data check.

static sparsity_score(col, count_threshold=10)
Calculate a sparsity score for the given value counts by calculating the percentage of unique values that
exceed the count_threshold.

5.14. Utils 387

EvalML Documentation, Release 0.80.0

Parameters
• col (pd.Series) – Feature values.

• count_threshold (int) – The number of instances below which a value is considered
sparse. Default is 10.

Returns Sparsity score, or the percentage of the unique values that exceed count_threshold.

Return type (float)

validate(self, X, y=None)
Calculate what percentage of each column’s unique values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class instance.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored.

Returns dict with a DataCheckWarning if there are any sparse columns.

Return type dict

Examples

>>> import pandas as pd

For multiclass problems, if a column doesn’t have enough representation from unique values, it will be
considered sparse.

>>> df = pd.DataFrame({
... "sparse": [float(x) for x in range(100)],
... "not_sparse": [float(1) for x in range(100)]
... })
...
>>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=0.5,
→˓ unique_count_threshold=10)
>>> assert sparsity_check.validate(df) == [
... {
... "message": "Input columns ('sparse') for multiclass problem type␣
→˓are too sparse.",
... "data_check_name": "SparsityDataCheck",
... "level": "warning",
... "code": "TOO_SPARSE",
... "details": {
... "columns": ["sparse"],
... "sparsity_score": {"sparse": 0.0},
... "rows": None
... },
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "SparsityDataCheck",
... "parameters": {},
... "metadata": {"columns": ["sparse"], "rows": None}

(continues on next page)

388 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

...]

... }

...]

. . . >>> df[“sparse”] = [float(x % 10) for x in range(100)] >>> sparsity_check = Sparsi-
tyDataCheck(problem_type=”multiclass”, threshold=1, unique_count_threshold=5) >>> assert spar-
sity_check.validate(df) == [] . . . >>> sparse_array = pd.Series([1, 1, 1, 2, 2, 3] * 3) >>> assert Sparsi-
tyDataCheck.sparsity_score(sparse_array, count_threshold=5) == 0.6666666666666666

evalml.data_checks.sparsity_data_check.warning_too_unique = Input columns ({}) for {}
problem type are too sparse.

target_distribution_data_check

Data check that checks if the target data contains certain distributions that may need to be transformed prior training to
improve model performance.

Module Contents

Classes Summary

TargetDistributionDataCheck Check if the target data contains certain distributions that
may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when
the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

Contents

class evalml.data_checks.target_distribution_data_check.TargetDistributionDataCheck

Check if the target data contains certain distributions that may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

Methods

name Return a name describing the data check.
validate Check if the target data has a certain distribution.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data has a certain distribution.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.

5.14. Utils 389

EvalML Documentation, Release 0.80.0

• y (pd.Series, np.ndarray) – Target data to check for underlying distributions.

Returns List with DataCheckErrors if certain distributions are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Targets that exhibit a lognormal distribution will raise a warning for the user to transform the target.

>>> y = [0.946, 0.972, 1.154, 0.954, 0.969, 1.222, 1.038, 0.999, 0.973, 0.897]
>>> target_check = TargetDistributionDataCheck()
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target may have a lognormal distribution.",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "warning",
... "code": "TARGET_LOGNORMAL_DISTRIBUTION",
... "details": {"normalization_method": "shapiro", "statistic": 0.8, "p-
→˓value": 0.045, "columns": None, "rows": None},
... "action_options": [
... {
... "code": "TRANSFORM_TARGET",
... "data_check_name": "TargetDistributionDataCheck",
... "parameters": {},
... "metadata": {
... "transformation_strategy": "lognormal",
... "is_target": True,
... "columns": None,
... "rows": None
... }
... }
...]
... }
...]
...
>>> y = pd.Series([1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5])
>>> assert target_check.validate(None, y) == []
...
...
>>> y = pd.Series(pd.date_range("1/1/21", periods=10))
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target is unsupported datetime type. Valid Woodwork␣
→˓logical types include: integer, double, age, age_fractional",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"datetime"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []

(continues on next page)

390 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

...]

target_leakage_data_check

Data check that checks if any of the features are highly correlated with the target by using mutual information or Pearson
correlation.

Module Contents

Classes Summary

TargetLeakageDataCheck Check if any of the features are highly correlated with the
target by using mutual information, Pearson correlation,
and other correlation metrics.

Contents

class evalml.data_checks.target_leakage_data_check.TargetLeakageDataCheck(pct_corr_threshold=0.95,
method='all')

Check if any of the features are highly correlated with the target by using mutual information, Pearson correlation,
and other correlation metrics.

If method=’mutual_info’, this data check uses mutual information and supports all target and feature types. Other
correlation metrics only support binary with numeric and boolean dtypes. This method will return a value in
[-1, 1] if other correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.
Correlation metrics available can be found in Woodwork’s dependence_dict method.

Parameters
• pct_corr_threshold (float) – The correlation threshold to be considered leakage. De-

faults to 0.95.

• method (string) – The method to determine correlation. Use ‘all’ or ‘max’ for the max-
imum correlation, or for specific correlation metrics, use their name (ie ‘mutual_info’ for
mutual information, ‘pearson’ for Pearson correlation, etc). possible methods can be found
in Woodwork’s config, under correlation_metrics. Defaults to ‘all’.

Methods

name Return a name describing the data check.
validate Check if any of the features are highly correlated with

the target by using mutual information, Pearson cor-
relation, and/or Spearman correlation.

name(cls)
Return a name describing the data check.

5.14. Utils 391

https://woodwork.alteryx.com/en/stable/generated/woodwork.table_accessor.WoodworkTableAccessor.dependence_dict.html#woodwork.table_accessor.WoodworkTableAccessor.dependence_dict
https://woodwork.alteryx.com/en/stable/guides/setting_config_options.html?highlight=config#Viewing-Config-Settings

EvalML Documentation, Release 0.80.0

validate(self, X, y)
Check if any of the features are highly correlated with the target by using mutual information, Pearson
correlation, and/or Spearman correlation.

If method=’mutual_info’ or ‘method=’max’, supports all target and feature types. Other correlation metrics
only support binary with numeric and boolean dtypes. This method will return a value in [-1, 1] if other
correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series, np.ndarray) – The target data.

Returns dict with a DataCheckWarning if target leakage is detected.

Return type dict (DataCheckWarning)

Examples

>>> import pandas as pd

Any columns that are strongly correlated with the target will raise a warning. This could be indicative of
data leakage.

>>> X = pd.DataFrame({
... "leak": [10, 42, 31, 51, 61] * 15,
... "x": [42, 54, 12, 64, 12] * 15,
... "y": [13, 5, 13, 74, 24] * 15,
... })
>>> y = pd.Series([10, 42, 31, 51, 40] * 15)
...
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Column 'leak' is 95.0% or more correlated with the␣
→˓target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "code": "TARGET_LEAKAGE",
... "details": {"columns": ["leak"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak"], "rows": None}
... }
...]
... }
...]

The default method can be changed to pearson from mutual_info.

392 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

>>> X["x"] = y / 2
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8,␣
→˓method="pearson")
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Columns 'leak', 'x' are 80.0% or more correlated with␣
→˓the target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "details": {"columns": ["leak", "x"], "rows": None},
... "code": "TARGET_LEAKAGE",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak", "x"], "rows": None}
... }
...]
... }
...]

ts_parameters_data_check

Data check that checks whether the time series parameters are compatible with the data size.

Module Contents

Classes Summary

TimeSeriesParametersDataCheck Checks whether the time series parameters are compati-
ble with data splitting.

Contents

class evalml.data_checks.ts_parameters_data_check.TimeSeriesParametersDataCheck(problem_configuration,
n_splits)

Checks whether the time series parameters are compatible with data splitting.

If gap + max_delay + forecast_horizon > X.shape[0] // (n_splits + 1)

then the feature engineering window is larger than the smallest split. This will cause the pipeline to create features
from data that does not exist, which will cause errors.

Parameters
• problem_configuration (dict) – Dict containing problem_configuration parameters.

• n_splits (int) – Number of time series splits.

5.14. Utils 393

EvalML Documentation, Release 0.80.0

Methods

name Return a name describing the data check.
validate Check if the time series parameters are compatible

with data splitting.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the time series parameters are compatible with data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckError if parameters are too big for the split sizes.

Return type dict

Examples

>>> import pandas as pd

The time series parameters have to be compatible with the data passed. If the window size (gap + max_delay
+ forecast_horizon) is greater than or equal to the split size, then an error will be raised.

>>> X = pd.DataFrame({
... "dates": pd.date_range("1/1/21", periods=100),
... "first": [i for i in range(100)],
... })
>>> y = pd.Series([i for i in range(100)])
...
>>> problem_config = {"gap": 7, "max_delay": 2, "forecast_horizon": 12, "time_
→˓index": "dates"}
>>> ts_parameters_check = TimeSeriesParametersDataCheck(problem_
→˓configuration=problem_config, n_splits=7)
>>> assert ts_parameters_check.validate(X, y) == [
... {
... "message": "Since the data has 100 observations, n_splits=7, and a␣
→˓forecast horizon of 12, the smallest "
... "split would have 16 observations. Since 21 (gap + max_
→˓delay + forecast_horizon)"
... " >= 16, then at least one of the splits would be empty␣
→˓by the time it reaches "
... "the pipeline. Please use a smaller number of splits,␣
→˓reduce one or more these "
... "parameters, or collect more data.",
... "data_check_name": "TimeSeriesParametersDataCheck",
... "level": "error",
... "code": "TIMESERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT",
... "details": {

(continues on next page)

394 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "columns": None,

... "rows": None,

... "max_window_size": 21,

... "min_split_size": 16,

... "n_obs": 100,

... "n_splits": 7

... },

... "action_options": []

... }

...]

ts_splitting_data_check

Data check that checks whether the time series training and validation splits have adequate class representation.

Module Contents

Classes Summary

TimeSeriesSplittingDataCheck Checks whether the time series target data is compatible
with splitting.

Contents

class evalml.data_checks.ts_splitting_data_check.TimeSeriesSplittingDataCheck(problem_type,
n_splits)

Checks whether the time series target data is compatible with splitting.

If the target data in the training and validation of every split doesn’t have representation from all classes (for time
series classification problems) this will prevent the estimators from training on all potential outcomes which will
cause errors during prediction.

Parameters
• problem_type (str or ProblemTypes) – Problem type.

• n_splits (int) – Number of time series splits.

Methods

name Return a name describing the data check.
validate Check if the training and validation targets are com-

patible with time series data splitting.

name(cls)
Return a name describing the data check.

5.14. Utils 395

EvalML Documentation, Release 0.80.0

validate(self, X, y)
Check if the training and validation targets are compatible with time series data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Ignored. Features.

• y (pd.Series, np.ndarray) – Target data.

Returns dict with a DataCheckError if splitting would result in inadequate class representation.

Return type dict

Example

>>> import pandas as pd

Passing n_splits as 3 means that the data will be segmented into 4 parts to be iterated over for training
and validation splits. The first split results in training indices of [0:25] and validation indices of [25:50].
The training indices of the first split result in only one unique value (0). The third split results in training
indices of [0:75] and validation indices of [75:100]. The validation indices of the third split result in only
one unique value (1).

>>> X = None
>>> y = pd.Series([0 if i < 45 else i % 2 if i < 55 else 1 for i in range(100)])
>>> ts_splitting_check = TimeSeriesSplittingDataCheck("time series binary", 3)
>>> assert ts_splitting_check.validate(X, y) == [
... {
... "message": "Time Series Binary and Time Series Multiclass problem "
... "types require every training and validation split to "
... "have at least one instance of all the target classes. "
... "The following splits are invalid: [1, 3]",
... "data_check_name": "TimeSeriesSplittingDataCheck",
... "level": "error",
... "details": {
... "columns": None, "rows": None,
... "invalid_splits": {
... 1: {"Training": [0, 25]},
... 3: {"Validation": [75, 100]}
... }
... },
... "code": "TIMESERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT",
... "action_options": []
... }
...]

396 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

uniqueness_data_check

Data check that checks if there are any columns in the input that are either too unique for classification problems or not
unique enough for regression problems.

Module Contents

Classes Summary

UniquenessDataCheck Check if there are any columns in the input that are ei-
ther too unique for classification problems or not unique
enough for regression problems.

Attributes Summary

warning_not_unique_enough

warning_too_unique

Contents

class evalml.data_checks.uniqueness_data_check.UniquenessDataCheck(problem_type,
threshold=0.5)

Check if there are any columns in the input that are either too unique for classification problems or not unique
enough for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• threshold (float) – The threshold to set as an upper bound on uniqueness for classification
type problems or lower bound on for regression type problems. Defaults to 0.50.

Methods

name Return a name describing the data check.
uniqueness_score Calculate a uniqueness score for the provided field.

NaN values are not considered as unique values in
the calculation.

validate Check if there are any columns in the input that are
too unique in the case of classification problems or
not unique enough in the case of regression problems.

name(cls)
Return a name describing the data check.

5.14. Utils 397

EvalML Documentation, Release 0.80.0

static uniqueness_score(col, drop_na=True)
Calculate a uniqueness score for the provided field. NaN values are not considered as unique values in the
calculation.

Based on the Herfindahl-Hirschman Index.

Parameters
• col (pd.Series) – Feature values.

• drop_na (bool) – Whether to drop null values when computing the uniqueness score.
Defaults to True.

Returns Uniqueness score.

Return type (float)

validate(self, X, y=None)
Check if there are any columns in the input that are too unique in the case of classification problems or not
unique enough in the case of regression problems.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns
dict with a DataCheckWarning if there are any too unique or not unique enough

columns.

Return type dict

Examples

>>> import pandas as pd

Because the problem type is regression, the column “regression_not_unique_enough” raises a warning for
having just one value.

>>> df = pd.DataFrame({
... "regression_unique_enough": [float(x) for x in range(100)],
... "regression_not_unique_enough": [float(1) for x in range(100)]
... })
...
>>> uniqueness_check = UniquenessDataCheck(problem_type="regression",␣
→˓threshold=0.8)
>>> assert uniqueness_check.validate(df) == [
... {
... "message": "Input columns 'regression_not_unique_enough' for␣
→˓regression problem type are not unique enough.",
... "data_check_name": "UniquenessDataCheck",
... "level": "warning",
... "code": "NOT_UNIQUE_ENOUGH",
... "details": {"columns": ["regression_not_unique_enough"],
→˓"uniqueness_score": {"regression_not_unique_enough": 0.0}, "rows": None},
... "action_options": [

(continues on next page)

398 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... {

... "code": "DROP_COL",

... "parameters": {},

... "data_check_name": "UniquenessDataCheck",

... "metadata": {"columns": ["regression_not_unique_enough"],
→˓"rows": None}
... }
...]
... }
...]

For multiclass, the column “regression_unique_enough” has too many unique values and will raise an
appropriate warning. >>> y = pd.Series([1, 1, 1, 2, 2, 3, 3, 3]) >>> uniqueness_check = Unique-
nessDataCheck(problem_type=”multiclass”, threshold=0.8) >>> assert uniqueness_check.validate(df) ==
[. . . { . . . “message”: “Input columns ‘regression_unique_enough’ for multiclass problem type are too
unique.”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “level”: “warning”, . . . “details”: {
. . . “columns”: [“regression_unique_enough”], . . . “rows”: None, . . . “uniqueness_score”: {“regres-
sion_unique_enough”: 0.99} . . . }, . . . “code”: “TOO_UNIQUE”, . . . “action_options”: [. . . { . . .
“code”: “DROP_COL”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “parameters”: {}, . . .
“metadata”: {“columns”: [“regression_unique_enough”], “rows”: None} . . . } . . .] . . . } . . .] . . .
>>> assert UniquenessDataCheck.uniqueness_score(y) == 0.65625

evalml.data_checks.uniqueness_data_check.warning_not_unique_enough = Input columns {} for
{} problem type are not unique enough.

evalml.data_checks.uniqueness_data_check.warning_too_unique = Input columns {} for {}
problem type are too unique.

utils

Utility methods for the data checks in EvalML.

Module Contents

Functions

handle_data_check_action_code Handles data check action codes by either returning the
DataCheckActionCode or converting from a str.

Contents

evalml.data_checks.utils.handle_data_check_action_code(action_code)
Handles data check action codes by either returning the DataCheckActionCode or converting from a str.

Parameters action_code (str or DataCheckActionCode) – Data check action code that needs
to be handled.

Returns DataCheckActionCode enum

Raises

5.14. Utils 399

EvalML Documentation, Release 0.80.0

• KeyError – If input is not a valid DataCheckActionCode enum value.

• ValueError – If input is not a string or DatCheckActionCode object.

Examples

>>> assert handle_data_check_action_code("drop_col") == DataCheckActionCode.DROP_COL
>>> assert handle_data_check_action_code("DROP_ROWS") == DataCheckActionCode.DROP_
→˓ROWS
>>> assert handle_data_check_action_code("Impute_col") == DataCheckActionCode.
→˓IMPUTE_COL

Package Contents

400 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Classes Summary

ClassImbalanceDataCheck Check if any of the target labels are imbalanced, or if the
number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

DataCheck Base class for all data checks.
DataCheckAction A recommended action returned by a DataCheck.
DataCheckActionCode Enum for data check action code.
DataCheckActionOption A recommended action option returned by a DataCheck.
DataCheckError DataCheckMessage subclass for errors returned by data

checks.
DataCheckMessage Base class for a message returned by a DataCheck,

tagged by name.
DataCheckMessageCode Enum for data check message code.
DataCheckMessageType Enum for type of data check message: WARNING or

ERROR.
DataChecks A collection of data checks.
DataCheckWarning DataCheckMessage subclass for warnings returned by

data checks.
DateTimeFormatDataCheck Check if the datetime column has equally spaced inter-

vals and is monotonically increasing or decreasing in or-
der to be supported by time series estimators.

DCAOParameterAllowedValuesType Enum for data check action option parameter allowed
values type.

DCAOParameterType Enum for data check action option parameter type.
DefaultDataChecks A collection of basic data checks that is used by AutoML

by default.
IDColumnsDataCheck Check if any of the features are likely to be ID columns.
InvalidTargetDataCheck Check if the target data is considered invalid.
MulticollinearityDataCheck Check if any set features are likely to be multicollinear.
NoVarianceDataCheck Check if the target or any of the features have no vari-

ance.
NullDataCheck Check if there are any highly-null numerical, boolean,

categorical, natural language, and unknown columns
and rows in the input.

OutliersDataCheck Checks if there are any outliers in input data by using
IQR to determine score anomalies.

SparsityDataCheck Check if there are any columns with sparsely populated
values in the input.

TargetDistributionDataCheck Check if the target data contains certain distributions that
may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when
the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

TargetLeakageDataCheck Check if any of the features are highly correlated with the
target by using mutual information, Pearson correlation,
and other correlation metrics.

TimeSeriesParametersDataCheck Checks whether the time series parameters are compati-
ble with data splitting.

TimeSeriesSplittingDataCheck Checks whether the time series target data is compatible
with splitting.

UniquenessDataCheck Check if there are any columns in the input that are ei-
ther too unique for classification problems or not unique
enough for regression problems.

5.14. Utils 401

EvalML Documentation, Release 0.80.0

Contents

class evalml.data_checks.ClassImbalanceDataCheck(threshold=0.1, min_samples=100, num_cv_folds=3,
test_size=None)

Check if any of the target labels are imbalanced, or if the number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

Parameters
• threshold (float) – The minimum threshold allowed for class imbalance before a warning

is raised. This threshold is calculated by comparing the number of samples in each class to
the sum of samples in that class and the majority class. For example, a multiclass case with
[900, 900, 100] samples per classes 0, 1, and 2, respectively, would have a 0.10 threshold for
class 2 (100 / (900 + 100)). Defaults to 0.10.

• min_samples (int) – The minimum number of samples per accepted class. If the minority
class is both below the threshold and min_samples, then we consider this severely imbal-
anced. Must be greater than 0. Defaults to 100.

• num_cv_folds (int) – The number of cross-validation folds. Must be positive. Choose 0
to ignore this warning. Defaults to 3.

• test_size (None, float, int) – Percentage of test set size. Used to calculate class
imbalance prior to splitting the data into training and validation/test sets.

Raises
• ValueError – If threshold is not within 0 and 0.5

• ValueError – If min_samples is not greater than 0

• ValueError – If number of cv folds is negative

• ValueError – If test_size is not between 0 and 1

Methods

name Return a name describing the data check.
validate Check if any target labels are imbalanced beyond a

threshold for binary and multiclass problems.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if any target labels are imbalanced beyond a threshold for binary and multiclass problems.

Ignores NaN values in target labels if they appear.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.

• y (pd.Series, np.ndarray) – Target labels to check for imbalanced data.

Returns
Dictionary with DataCheckWarnings if imbalance in classes is less than the threshold,

and DataCheckErrors if the number of values for each target is below 2 * num_cv_folds.

Return type dict

402 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame()
>>> y = pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

In this binary example, the target class 0 is present in fewer than 10% (threshold=0.10) of instances, and
fewer than 2 * the number of cross folds (2 * 3 = 6). Therefore, both a warning and an error are returned
as part of the Class Imbalance Data Check. In addition, if a target is present with fewer than min_samples
occurrences (default is 100) and is under the threshold, a severe class imbalance warning will be raised.

>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.10)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The number of instances of these targets is less than 2␣
→˓* the number of cross folds = 6 instances: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "error",
... "code": "CLASS_IMBALANCE_BELOW_FOLDS",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels fall below 10% of the target: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 10% of the target and have less than 100␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
...]

In this multiclass example, the target class 0 is present in fewer than 30% of observations, however with 1
cv fold, the minimum number of instances required is 2 * 1 = 2. Therefore a warning, but not an error, is
raised.

>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, min_samples=5, num_
→˓cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The following labels fall below 30% of the target: [0]",

(continues on next page)

5.14. Utils 403

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "data_check_name": "ClassImbalanceDataCheck",

... "level": "warning",

... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",

... "details": {"target_values": [0], "rows": None, "columns": None},

... "action_options": []

... },

... {

... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 30% of the target and have less than 5␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
...]
...
>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, num_cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == []

class evalml.data_checks.DataCheck

Base class for all data checks.

Data checks are a set of heuristics used to determine if there are problems with input data.

Methods

name Return a name describing the data check.
validate Inspect and validate the input data, runs any neces-

sary calculations or algorithms, and returns a list of
warnings and errors if applicable.

name(cls)
Return a name describing the data check.

abstract validate(self, X, y=None)
Inspect and validate the input data, runs any necessary calculations or algorithms, and returns a list of
warnings and errors if applicable.

Parameters
• X (pd.DataFrame) – The input data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target data of length [n_samples]

Returns Dictionary of DataCheckError and DataCheckWarning messages

Return type dict (DataCheckMessage)

class evalml.data_checks.DataCheckAction(action_code, data_check_name, metadata=None)
A recommended action returned by a DataCheck.

Parameters
• action_code (str, DataCheckActionCode) – Action code associated with the action.

404 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• data_check_name (str) – Name of data check.

• metadata (dict, optional) – Additional useful information associated with the action.
Defaults to None.

Methods

convert_dict_to_action Convert a dictionary into a DataCheckAction.
to_dict Return a dictionary form of the data check action.

static convert_dict_to_action(action_dict)
Convert a dictionary into a DataCheckAction.

Parameters action_dict – Dictionary to convert into action. Should have keys “code”,
“data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckAction object from the input dictionary.

to_dict(self)
Return a dictionary form of the data check action.

class evalml.data_checks.DataCheckActionCode

Enum for data check action code.

Attributes

DROP_COL Action code for dropping a column.
DROP_ROWS Action code for dropping rows.
IM-
PUTE_COL

Action code for imputing a column.

REGULAR-
IZE_AND_IMPUTE_DATASET

Action code for regularizing and imputing all features and target time series data.

SET_FIRST_COL_IDAction code for setting the first column as an id column.
TRANS-
FORM_TARGET

Action code for transforming the target data.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

class evalml.data_checks.DataCheckActionOption(action_code, data_check_name, parameters=None,
metadata=None)

A recommended action option returned by a DataCheck.

It contains an action code that indicates what the action should be, a data check name that indicates
what data check was used to generate the action, and parameters and metadata which can be used to
further refine the action.

5.14. Utils 405

EvalML Documentation, Release 0.80.0

Parameters
• action_code (DataCheckActionCode) – Action code associated with the action option.

• data_check_name (str) – Name of the data check that produced this option.

• parameters (dict) – Parameters associated with the action option. Defaults to None.

• metadata (dict, optional) – Additional useful information associated with the action
option. Defaults to None.

Examples

>>> parameters = {
... "global_parameter_name": {
... "parameter_type": "global",
... "type": "float",
... "default_value": 0.0,
... },
... "column_parameter_name": {
... "parameter_type": "column",
... "columns": {
... "a": {
... "impute_strategy": {
... "categories": ["mean", "most_frequent"],
... "type": "category",
... "default_value": "mean",
... },
... "constant_fill_value": {"type": "float", "default_value": 0},
... },
... },
... },
... }
>>> data_check_action = DataCheckActionOption(DataCheckActionCode.DROP_COL, None,␣
→˓metadata={}, parameters=parameters)

Methods

convert_dict_to_option Convert a dictionary into a DataCheckActionOption.
get_action_from_defaults Returns an action based on the defaults parameters.
to_dict Return a dictionary form of the data check action op-

tion.

static convert_dict_to_option(action_dict)
Convert a dictionary into a DataCheckActionOption.

Parameters action_dict – Dictionary to convert into an action option. Should have keys
“code”, “data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckActionOption object from the input dictionary.

get_action_from_defaults(self)
Returns an action based on the defaults parameters.

406 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns An based on the defaults parameters the option.

Return type DataCheckAction

to_dict(self)
Return a dictionary form of the data check action option.

class evalml.data_checks.DataCheckError(message, data_check_name, message_code=None,
details=None, action_options=None)

DataCheckMessage subclass for errors returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.ERROR

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self)
Return a dictionary form of the data check message.

class evalml.data_checks.DataCheckMessage(message, data_check_name, message_code=None,
details=None, action_options=None)

Base class for a message returned by a DataCheck, tagged by name.

Parameters
• message (str) – Message string.

• data_check_name (str) – Name of the associated data check.

• message_code (DataCheckMessageCode, optional) – Message code associated with
the message. Defaults to None.

• details (dict, optional) – Additional useful information associated with the message.
Defaults to None.

• action_options (list, optional) – A list of `DataCheckActionOption`s associated
with the message. Defaults to None.

Attributes

mes-
sage_type

None

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self)
Return a dictionary form of the data check message.

5.14. Utils 407

EvalML Documentation, Release 0.80.0

class evalml.data_checks.DataCheckMessageCode

Enum for data check message code.

Attributes

CLASS_IMBALANCE_BELOW_FOLDSMessage code for when the number of values for each target is below 2 * number of CV folds.
CLASS_IMBALANCE_BELOW_THRESHOLDMessage code for when balance in classes is less than the threshold.
CLASS_IMBALANCE_SEVEREMessage code for when balance in classes is less than the threshold and minimum class is

less than minimum number of accepted samples.
COLS_WITH_NULLMessage code for columns with null values.
DATE-
TIME_HAS_MISALIGNED_VALUES

Message code for when datetime information has values that are not aligned with the inferred
frequency.

DATE-
TIME_HAS_NAN

Message code for when input datetime columns contain NaN values.

DATE-
TIME_HAS_REDUNDANT_ROW

Message code for when datetime information has more than one row per datetime.

DATE-
TIME_HAS_UNEVEN_INTERVALS

Message code for when the datetime values have uneven intervals.

DATE-
TIME_INFORMATION_NOT_FOUND

Message code for when datetime information can not be found or is in an unaccepted format.

DATE-
TIME_IS_MISSING_VALUES

Message code for when datetime feature has values missing between the start and end dates.

DATE-
TIME_IS_NOT_MONOTONIC

Message code for when the datetime values are not monotonically increasing.

DATE-
TIME_NO_FREQUENCY_INFERRED

Message code for when no frequency can be inferred in the datetime values through Wood-
work’s infer_frequency.

HAS_ID_COLUMNMessage code for data that has ID columns.
HAS_ID_FIRST_COLUMNMessage code for data that has an ID column as the first column.
HAS_OUTLIERSMessage code for when outliers are detected.
HIGH_VARIANCEMessage code for when high variance is detected for cross-validation.
HIGHLY_NULL_COLSMessage code for highly null columns.
HIGHLY_NULL_ROWSMessage code for highly null rows.
IS_MULTICOLLINEARMessage code for when data is potentially multicollinear.
MIS-
MATCHED_INDICES

Message code for when input target and features have mismatched indices.

MIS-
MATCHED_INDICES_ORDER

Message code for when input target and features have mismatched indices order. The two
inputs have the same index values, but shuffled.

MIS-
MATCHED_LENGTHS

Message code for when input target and features have different lengths.

NATU-
RAL_LANGUAGE_HAS_NAN

Message code for when input natural language columns contain NaN values.

NO_VARIANCEMessage code for when data has no variance (1 unique value).
NO_VARIANCE_WITH_NULLMessage code for when data has one unique value and NaN values.
NO_VARIANCE_ZERO_UNIQUEMessage code for when data has no variance (0 unique value)
NOT_UNIQUE_ENOUGHMessage code for when data does not possess enough unique values.
TAR-
GET_BINARY_NOT_TWO_UNIQUE_VALUES

Message code for target data for a binary classification problem that does not have two unique
values.

TAR-
GET_HAS_NULL

Message code for target data that has null values.

TAR-
GET_INCOMPATIBLE_OBJECTIVE

Message code for target data that has incompatible values for the specified objective

continues on next page

408 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 3 – continued from previous page
TAR-
GET_IS_EMPTY_OR_FULLY_NULL

Message code for target data that is empty or has all null values.

TAR-
GET_IS_NONE

Message code for when target is None.

TAR-
GET_LEAKAGE

Message code for when target leakage is detected.

TAR-
GET_LOGNORMAL_DISTRIBUTION

Message code for target data with a lognormal distribution.

TAR-
GET_MULTICLASS_HIGH_UNIQUE_CLASS

Message code for target data for a multi classification problem that has an abnormally large
number of unique classes relative to the number of target values.

TAR-
GET_MULTICLASS_NOT_ENOUGH_CLASSES

Message code for target data for a multi classification problem that does not have more than
two unique classes.

TAR-
GET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS

Message code for target data for a multi classification problem that does not have two exam-
ples per class.

TAR-
GET_UNSUPPORTED_PROBLEM_TYPE

Message code for target data that is being checked against an unsupported problem type.

TAR-
GET_UNSUPPORTED_TYPE

Message code for target data that is of an unsupported type.

TAR-
GET_UNSUPPORTED_TYPE_REGRESSION

Message code for target data that is incompatible with regression

TIME-
SERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT

Message code when the time series parameters are too large for the smallest data split.

TIME-
SERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT

Message code when any training and validation split of the time series target doesn’t contain
all classes.

TOO_SPARSE Message code for when multiclass data has values that are too sparsely populated.
TOO_UNIQUEMessage code for when data possesses too many unique values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

class evalml.data_checks.DataCheckMessageType

Enum for type of data check message: WARNING or ERROR.

Attributes

ERROR Error message returned by a data check.
WARNING Warning message returned by a data check.

Methods

name The name of the Enum member.
value The value of the Enum member.

5.14. Utils 409

EvalML Documentation, Release 0.80.0

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

class evalml.data_checks.DataChecks(data_checks=None, data_check_params=None)
A collection of data checks.

Parameters
• data_checks (list (DataCheck)) – List of DataCheck objects.

• data_check_params (dict) – Parameters for passed DataCheck objects.

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

class evalml.data_checks.DataCheckWarning(message, data_check_name, message_code=None,
details=None, action_options=None)

DataCheckMessage subclass for warnings returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.WARNING

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self)
Return a dictionary form of the data check message.

class evalml.data_checks.DateTimeFormatDataCheck(datetime_column='index',
nan_duplicate_threshold=0.75)

Check if the datetime column has equally spaced intervals and is monotonically increasing or decreasing in order
to be supported by time series estimators.

Parameters
• datetime_column (str, int) – The name of the datetime column. If the datetime values

are in the index, then pass “index”.

410 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• nan_duplicate_threshold (float) – The percentage of values in the datetime_column
that must not be duplicate or nan before DATETIME_NO_FREQUENCY_INFERRED is re-
turned instead of DATETIME_HAS_UNEVEN_INTERVALS. For example, if this is set to
0.80, then only 20% of the values in datetime_column can be duplicate or nan. Defaults to
0.75.

Methods

name Return a name describing the data check.
validate Checks if the target data has equal intervals and is

monotonically increasing.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Checks if the target data has equal intervals and is monotonically increasing.

Will return a DataCheckError if the data is not a datetime type, is not increasing, has redundant or missing
row(s), contains invalid (NaN or None) values, or has values that don’t align with the assumed frequency.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Target data.

Returns List with DataCheckErrors if unequal intervals are found in the datetime column.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

The column ‘dates’ has a set of two dates with daily frequency, two dates with hourly frequency, and two
dates with monthly frequency.

>>> X = pd.DataFrame(pd.date_range("2015-01-01", periods=2).append(pd.date_
→˓range("2015-01-08", periods=2, freq="H").append(pd.date_range("2016-03-02",␣
→˓periods=2, freq="M"))), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "No frequency could be detected in column 'dates',␣
→˓possibly due to uneven intervals or too many duplicate/missing values.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_NO_FREQUENCY_INFERRED",
... "details": {"columns": None, "rows": None},
... "action_options": []
... }
...]

The column “dates” has a gap in the values, which implies there are many dates missing.

5.14. Utils 411

EvalML Documentation, Release 0.80.0

>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-31", periods=50)), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has datetime values missing between␣
→˓start and end date.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_IS_MISSING_VALUES",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'dates',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
...]
... }
...]

The column “dates” has a repeat of the date 2021-01-09 appended to the end, which is considered redundant
and will raise an error.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-09", periods=1)), columns=["dates"]) (continues on next page)

412 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has more than one row with the same␣
→˓datetime value.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_REDUNDANT_ROW",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'dates',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
...]
... }
...]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8) (continues on next page)

5.14. Utils 413

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'Weeks',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
...]
... }
...]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [

(continues on next page)

414 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... {

... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'Weeks',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
...]
... }
...]

The column “Weeks” passed integers instead of datetime data, which will raise an error.

>>> X = pd.DataFrame([1, 2, 3, 4], columns=["Weeks"])
>>> y = pd.Series([0] * 4)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Datetime information could not be found in the data, or␣
→˓was not in a supported datetime format.",
... "data_check_name": "DateTimeFormatDataCheck",

(continues on next page)

5.14. Utils 415

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "level": "error",

... "details": {"columns": None, "rows": None},

... "code": "DATETIME_INFORMATION_NOT_FOUND",

... "action_options": []

... }

...]

Converting that same integer data to datetime, however, is valid.

>>> X = pd.DataFrame(pd.to_datetime([1, 2, 3, 4]), columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=10),␣
→˓columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

While the data passed in is of datetime type, time series requires the datetime information in date-
time_column to be monotonically increasing (ascending).

>>> X = X.iloc[::-1]
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Datetime values must be sorted in ascending order.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_IS_NOT_MONOTONIC",
... "action_options": []
... }
...]

The first value in the column “index” is replaced with NaT, which will raise an error in this data check.

>>> dates = [["2-1-21", "3-1-21"],
... ["2-2-21", "3-2-21"],
... ["2-3-21", "3-3-21"],
... ["2-4-21", "3-4-21"],
... ["2-5-21", "3-5-21"],
... ["2-6-21", "3-6-21"],
... ["2-7-21", "3-7-21"],
... ["2-8-21", "3-8-21"],
... ["2-9-21", "3-9-21"],
... ["2-10-21", "3-10-21"],
... ["2-11-21", "3-11-21"],
... ["2-12-21", "3-12-21"]]
>>> dates[0][0] = None
>>> df = pd.DataFrame(dates, columns=["days", "days2"])
>>> ww_payload = infer_frequency(pd.to_datetime(df["days"]), debug=True, window_
→˓length=5, threshold=0.8)

(continues on next page)

416 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="days")
>>> assert datetime_format_dc.validate(df, y) == [
... {
... "message": "Input datetime column 'days' contains NaN values.␣
→˓Please impute NaN values or drop these rows.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_NAN",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'days', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'days',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
...]
... }
...]
...

class evalml.data_checks.DCAOParameterAllowedValuesType

Enum for data check action option parameter allowed values type.

Attributes

5.14. Utils 417

EvalML Documentation, Release 0.80.0

CATEGOR-
ICAL

Categorical allowed values type. Parameters that have a set of allowed values.

NUMERI-
CAL

Numerical allowed values type. Parameters that have a range of allowed values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

class evalml.data_checks.DCAOParameterType

Enum for data check action option parameter type.

Attributes

COLUMN Column parameter type. Parameters that apply to a specific column in the data set.
GLOBAL Global parameter type. Parameters that apply to the entire data set.

Methods

all_parameter_types Get a list of all defined parameter types.
handle_dcao_parameter_type Handles the data check action option parameter type

by either returning the DCAOParameterType enum or
converting from a str.

name The name of the Enum member.
value The value of the Enum member.

all_parameter_types(cls)
Get a list of all defined parameter types.

Returns List of all defined parameter types.

Return type list(DCAOParameterType)

static handle_dcao_parameter_type(dcao_parameter_type)
Handles the data check action option parameter type by either returning the DCAOParameterType enum or
converting from a str.

Parameters dcao_parameter_type (str or DCAOParameterType) – Data check action op-
tion parameter type that needs to be handled.

Returns DCAOParameterType enum

Raises
• KeyError – If input is not a valid DCAOParameterType enum value.

• ValueError – If input is not a string or DCAOParameterType object.

418 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

class evalml.data_checks.DefaultDataChecks(problem_type, objective, n_splits=3,
problem_configuration=None)

A collection of basic data checks that is used by AutoML by default.

Includes:

• NullDataCheck

• HighlyNullRowsDataCheck

• IDColumnsDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck

• NoVarianceDataCheck

• ClassImbalanceDataCheck (for classification problem types)

• TargetDistributionDataCheck (for regression problem types)

• DateTimeFormatDataCheck (for time series problem types)

• ‘TimeSeriesParametersDataCheck’ (for time series problem types)

• TimeSeriesSplittingDataCheck (for time series classification problem types)

Parameters
• problem_type (str) – The problem type that is being validated. Can be regression, binary,

or multiclass.

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_splits (int) – The number of splits as determined by the data splitter being used. De-
faults to 3.

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index,

• gap –

• forecast_horizon –

• max_delay. (and) –

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

5.14. Utils 419

EvalML Documentation, Release 0.80.0

• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

class evalml.data_checks.IDColumnsDataCheck(id_threshold=1.0, exclude_time_index=True)
Check if any of the features are likely to be ID columns.

Parameters
• id_threshold (float) – The probability threshold to be considered an ID column. De-

faults to 1.0.

• exclude_time_index (bool) – If True, the column set as the time index will not be in-
cluded in the data check. Default is True.

Methods

name Return a name describing the data check.
validate Check if any of the features are likely to be ID

columns. Currently performs a number of simple
checks.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.

Checks performed are:

• column name is “id”

• column name ends in “_id”

• column contains all unique values (and is categorical / integer type)

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series) – The target. Defaults to None. Ignored.

Returns A dictionary of features with column name or index and their probability of being ID
columns

Return type dict

Examples

>>> import pandas as pd

Columns that end in “_id” and are completely unique are likely to be ID columns.

>>> df = pd.DataFrame({
... "profits": [25, 15, 15, 31, 19],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]

(continues on next page)

420 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... })

...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'customer_id' are 100.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
...]
... }
...]

Columns named “ID” with all unique values will also be identified as ID columns.

>>> df = df.rename(columns={"customer_id": "ID"})
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'ID' are 100.0% or more likely to be an ID␣
→˓column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["ID"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["ID"], "rows": None}
... }
...]
... }
...]

Despite being all unique, “Country_Rank” will not be identified as an ID column as id_threshold is set to
1.0 by default and its name doesn’t indicate that it’s an ID.

>>> df = pd.DataFrame({
... "humidity": ["high", "very high", "low", "low", "high"],
... "Country_Rank": [1, 2, 3, 4, 5],
... "Sales": ["very high", "high", "high", "medium", "very low"]

(continues on next page)

5.14. Utils 421

EvalML Documentation, Release 0.80.0

(continued from previous page)

... })

...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == []

However lowering the threshold will cause this column to be identified as an ID.

>>> id_col_check = IDColumnsDataCheck()
>>> id_col_check = IDColumnsDataCheck(id_threshold=0.95)
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'Country_Rank' are 95.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "details": {"columns": ["Country_Rank"], "rows": None},
... "code": "HAS_ID_COLUMN",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["Country_Rank"], "rows": None}
... }
...]
... }
...]

If the first column of the dataframe has all unique values and is named either ‘ID’ or a name that ends with
‘_id’, it is probably the primary key. The other ID columns should be dropped.

>>> df = pd.DataFrame({
... "sales_id": [0, 1, 2, 3, 4],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "The first column 'sales_id' is likely to be the primary␣
→˓key",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_FIRST_COLUMN",
... "details": {"columns": ["sales_id"], "rows": None},
... "action_options": [
... {
... "code": "SET_FIRST_COL_ID",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["sales_id"], "rows": None}

(continues on next page)

422 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

...]

... },

... {

... "message": "Columns 'customer_id' are 100.0% or more likely to be an␣
→˓ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
...]
... }
...]

class evalml.data_checks.InvalidTargetDataCheck(problem_type, objective, n_unique=100,
null_strategy='drop')

Check if the target data is considered invalid.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.

• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_unique (int) – Number of unique target values to store when problem type is binary and
target incorrectly has more than 2 unique values. Non-negative integer. If None, stores all
unique values. Defaults to 100.

• null_strategy (str) – The type of action option that should be returned if the target is
partially null. The options are impute and drop (default). impute - Will return a DataCheck-
ActionOption for imputing the target column. drop - Will return a DataCheckActionOption
for dropping the null rows in the target column.

Attributes

5.14. Utils 423

EvalML Documentation, Release 0.80.0

multi-
class_continuous_threshold

0.05

Methods

name Return a name describing the data check.
validate Check if the target data is considered invalid. If the

input features argument is not None, it will be used
to check that the target and features have the same
dimensions and indices.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data is considered invalid. If the input features argument is not None, it will be used to
check that the target and features have the same dimensions and indices.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.

• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. If not None, will be used to check that the

target and features have the same dimensions and indices.

• y (pd.Series, np.ndarray) – Target data to check for invalid values.

Returns List with DataCheckErrors if any invalid values are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Target values must be integers, doubles, or booleans.

>>> X = pd.DataFrame({"col": [1, 2, 3, 1]})
>>> y = pd.Series(["cat_1", "cat_2", "cat_1", "cat_2"])
>>> target_check = InvalidTargetDataCheck("regression", "R2", null_strategy=
→˓"impute")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is unsupported Unknown type. Valid Woodwork␣
→˓logical types include: integer, double, boolean, age, age_fractional, integer_
→˓nullable, boolean_nullable, age_nullable", (continues on next page)

424 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "data_check_name": "InvalidTargetDataCheck",

... "level": "error",

... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"unknown"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []
... },
... {
... "message": "Target data type should be numeric for regression type␣
→˓problems.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_UNSUPPORTED_TYPE_REGRESSION",
... "action_options": []
... }
...]

The target cannot have null values.

>>> y = pd.Series([None, pd.NA, pd.NaT, None])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is either empty or fully null.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_IS_EMPTY_OR_FULLY_NULL",
... "action_options": []
... }
...]
...
...
>>> y = pd.Series([1, None, 3, None])
>>> assert target_check.validate(None, y) == [
... {
... "message": "2 row(s) (50.0%) of target values are null",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {
... "columns": None,
... "rows": [1, 3],
... "num_null_rows": 2,
... "pct_null_rows": 50.0
... },
... "code": "TARGET_HAS_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "InvalidTargetDataCheck",
... "parameters": {
... "impute_strategy": {

(continues on next page)

5.14. Utils 425

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "parameter_type": "global",

... "type": "category",

... "categories": ["mean", "most_frequent"],

... "default_value": "mean"

... }

... },

... "metadata": {"columns": None, "rows": None, "is_target":␣
→˓True},
... }
...],
... }
...]

If the target values don’t match the problem type passed, an error will be raised. In this instance, only two
values exist in the target column, but multiclass has been passed as the problem type.

>>> X = pd.DataFrame([i for i in range(50)])
>>> y = pd.Series([i%2 for i in range(50)])
>>> target_check = InvalidTargetDataCheck("multiclass", "Log Loss Multiclass")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target has two or less classes, which is too few for␣
→˓multiclass problems. Consider changing to binary.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "num_classes": 2},
... "code": "TARGET_MULTICLASS_NOT_ENOUGH_CLASSES",
... "action_options": []
... }
...]

If the length of X and y differ, a warning will be raised. A warning will also be raised for indices that don”t
match.

>>> target_check = InvalidTargetDataCheck("regression", "R2")
>>> X = pd.DataFrame([i for i in range(5)])
>>> y = pd.Series([1, 2, 4, 3], index=[1, 2, 4, 3])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Input target and features have different lengths",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",
... "details": {"columns": None, "rows": None, "features_length": 5,
→˓"target_length": 4},
... "code": "MISMATCHED_LENGTHS",
... "action_options": []
... },
... {
... "message": "Input target and features have mismatched indices.␣
→˓Details will include the first 10 mismatched indices.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",

(continues on next page)

426 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "details": {

... "columns": None,

... "rows": None,

... "indices_not_in_features": [],

... "indices_not_in_target": [0]

... },

... "code": "MISMATCHED_INDICES",

... "action_options": []

... }

...]

class evalml.data_checks.MulticollinearityDataCheck(threshold=0.9)
Check if any set features are likely to be multicollinear.

Parameters threshold (float) – The threshold to be considered. Defaults to 0.9.

Methods

name Return a name describing the data check.
validate Check if any set of features are likely to be multi-

collinear.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any set of features are likely to be multicollinear.

Parameters
• X (pd.DataFrame) – The input features to check.

• y (pd.Series) – The target. Ignored.

Returns dict with a DataCheckWarning if there are any potentially multicollinear columns.

Return type dict

Example

>>> import pandas as pd

Columns in X that are highly correlated with each other will be identified using mutual information.

>>> col = pd.Series([1, 0, 2, 3, 4] * 15)
>>> X = pd.DataFrame({"col_1": col, "col_2": col * 3})
>>> y = pd.Series([1, 0, 0, 1, 0] * 15)
...
>>> multicollinearity_check = MulticollinearityDataCheck(threshold=1.0)
>>> assert multicollinearity_check.validate(X, y) == [
... {
... "message": "Columns are likely to be correlated: [('col_1', 'col_2
→˓')]",
... "data_check_name": "MulticollinearityDataCheck",

(continues on next page)

5.14. Utils 427

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "level": "warning",

... "code": "IS_MULTICOLLINEAR",

... "details": {"columns": [("col_1", "col_2")], "rows": None},

... "action_options": []

... }

...]

class evalml.data_checks.NoVarianceDataCheck(count_nan_as_value=False)
Check if the target or any of the features have no variance.

Parameters count_nan_as_value (bool) – If True, missing values will be counted as their own
unique value. Additionally, if true, will return a DataCheckWarning instead of an error if the
feature has mostly missing data and only one unique value. Defaults to False.

Methods

name Return a name describing the data check.
validate Check if the target or any of the features have no vari-

ance (1 unique value).

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the target or any of the features have no variance (1 unique value).

Parameters
• X (pd.DataFrame, np.ndarray) – The input features.

• y (pd.Series, np.ndarray) – Optional, the target data.

Returns A dict of warnings/errors corresponding to features or target with no variance.

Return type dict

Examples

>>> import pandas as pd

Columns or target data that have only one unique value will raise an error.

>>> X = pd.DataFrame([2, 2, 2, 2, 2, 2, 2, 2], columns=["First_Column"])
>>> y = pd.Series([1, 1, 1, 1, 1, 1, 1, 1])
...
>>> novar_dc = NoVarianceDataCheck()
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": [

(continues on next page)

428 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... {

... "code": "DROP_COL",

... "data_check_name": "NoVarianceDataCheck",

... "parameters": {},

... "metadata": {"columns": ["First_Column"], "rows": None}

... },

...]

... },

... {

... "message": "Y has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": []

... }

...]

By default, NaNs will not be counted as distinct values. In the first example, there are still two distinct
values besides None. In the second, there are no distinct values as the target is entirely null.

>>> X["First_Column"] = [2, 2, 2, 3, 3, 3, None, None]
>>> y = pd.Series([1, 1, 1, 2, 2, 2, None, None])
>>> assert novar_dc.validate(X, y) == []
...
...
>>> y = pd.Series([None] * 7)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "Y has 0 unique values.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE_ZERO_UNIQUE",
... "action_options":[]
... }
...]

As None is not considered a distinct value by default, there is only one unique value in X and y.

>>> X["First_Column"] = [2, 2, 2, 2, None, None, None, None]
>>> y = pd.Series([1, 1, 1, 1, None, None, None, None])
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": [
... {
... "code": "DROP_COL",

(continues on next page)

5.14. Utils 429

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "data_check_name": "NoVarianceDataCheck",

... "parameters": {},

... "metadata": {"columns": ["First_Column"], "rows": None}

... },

...]

... },

... {

... "message": "Y has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": []

... }

...]

If count_nan_as_value is set to True, then NaNs are counted as unique values. In the event that there is
an adequate number of unique values only because count_nan_as_value is set to True, a warning will be
raised so the user can encode these values.

>>> novar_dc = NoVarianceDataCheck(count_nan_as_value=True)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has two unique values including nulls.␣
→˓Consider encoding the nulls for this column to be useful for machine learning.
→˓",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE_WITH_NULL",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NoVarianceDataCheck",
... "parameters": {},
... "metadata": {"columns": ["First_Column"], "rows": None}
... },
...]
... },
... {
... "message": "Y has two unique values including nulls. Consider␣
→˓encoding the nulls for this column to be useful for machine learning.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE_WITH_NULL",
... "action_options": []
... }
...]

class evalml.data_checks.NullDataCheck(pct_null_col_threshold=0.95,
pct_moderately_null_col_threshold=0.2,
pct_null_row_threshold=0.95)

430 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Check if there are any highly-null numerical, boolean, categorical, natural language, and unknown columns and
rows in the input.

Parameters
• pct_null_col_threshold (float) – If the percentage of NaN values in an input feature

exceeds this amount, that column will be considered highly-null. Defaults to 0.95.

• pct_moderately_null_col_threshold (float) – If the percentage of NaN values
in an input feature exceeds this amount but is less than the percentage specified in
pct_null_col_threshold, that column will be considered moderately-null. Defaults to 0.20.

• pct_null_row_threshold (float) – If the percentage of NaN values in an input row
exceeds this amount, that row will be considered highly-null. Defaults to 0.95.

Methods

get_null_column_information Finds columns that are considered highly null (per-
centage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and
dictionary mapping column name to null indices.

get_null_row_information Finds rows that are considered highly null (percent-
age null is greater than threshold).

name Return a name describing the data check.
validate Check if there are any highly-null columns or rows in

the input.

static get_null_column_information(X, pct_null_col_threshold=0.0)
Finds columns that are considered highly null (percentage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and dictionary mapping column name to null indices.

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null columns.

• pct_null_col_threshold (float) – Percentage threshold for a column to be considered
null. Defaults to 0.0.

Returns Tuple containing: dictionary mapping column name to its null percentage and dictionary
mapping column name to null indices in that column.

Return type tuple

static get_null_row_information(X, pct_null_row_threshold=0.0)
Finds rows that are considered highly null (percentage null is greater than threshold).

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null rows.

• pct_null_row_threshold (float) – Percentage threshold for a row to be considered
null. Defaults to 0.0.

Returns Series containing the percentage null for each row.

Return type pd.Series

name(cls)
Return a name describing the data check.

5.14. Utils 431

EvalML Documentation, Release 0.80.0

validate(self, X, y=None)
Check if there are any highly-null columns or rows in the input.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckWarning if there are any highly-null columns or rows.

Return type dict

Examples

>>> import pandas as pd
...
>>> class SeriesWrap():
... def __init__(self, series):
... self.series = series
...
... def __eq__(self, series_2):
... return all(self.series.eq(series_2.series))

With pct_null_col_threshold set to 0.50, any column that has 50% or more of its observations set to
null will be included in the warning, as well as the percentage of null values identified (“all_null”: 1.0,
“lots_of_null”: 0.8).

>>> df = pd.DataFrame({
... "all_null": [None, pd.NA, None, None, None],
... "lots_of_null": [None, None, None, None, 5],
... "few_null": [1, 2, None, 2, 3],
... "no_null": [1, 2, 3, 4, 5]
... })
...
>>> highly_null_dc = NullDataCheck(pct_null_col_threshold=0.50)
>>> assert highly_null_dc.validate(df) == [
... {
... "message": "Column(s) 'all_null', 'lots_of_null' are 50.0% or more␣
→˓null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": ["all_null", "lots_of_null"],
... "rows": None,
... "pct_null_rows": {"all_null": 1.0, "lots_of_null": 0.8}
... },
... "code": "HIGHLY_NULL_COLS",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NullDataCheck",
... "parameters": {},
... "metadata": {"columns": ["all_null", "lots_of_null"], "rows
→˓": None}

(continues on next page)

432 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

...]

... },

... {

... "message": "Column(s) 'few_null' have between 20.0% and 50.0% null␣
→˓values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["few_null"], "rows": None, "is_
→˓target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "few_null": {
... "impute_strategy": {"categories": ["mean",
→˓"most_frequent"], "type": "category", "default_value": "mean"}
... }
... }
... }
... }
... }
...]
... }
...]

With pct_null_row_threshold set to 0.50, any row with 50% or more of its respective column values set to
null will included in the warning, as well as the offending rows (“rows”: [0, 1, 2, 3]). Since the default
value for pct_null_col_threshold is 0.95, “all_null” is also included in the warnings since the percentage of
null values in that row is over 95%. Since the default value for pct_moderately_null_col_threshold is 0.20,
“few_null” is included as a “moderately null” column as it has a null column percentage of 20%.

>>> highly_null_dc = NullDataCheck(pct_null_row_threshold=0.50)
>>> validation_messages = highly_null_dc.validate(df)
>>> validation_messages[0]["details"]["pct_null_cols"] = SeriesWrap(validation_
→˓messages[0]["details"]["pct_null_cols"])
>>> highly_null_rows = SeriesWrap(pd.Series([0.5, 0.5, 0.75, 0.5]))
>>> assert validation_messages == [
... {
... "message": "4 out of 5 rows are 50.0% or more null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": None,
... "rows": [0, 1, 2, 3],
... "pct_null_cols": highly_null_rows

(continues on next page)

5.14. Utils 433

EvalML Documentation, Release 0.80.0

(continued from previous page)

... },

... "code": "HIGHLY_NULL_ROWS",

... "action_options": [

... {

... "code": "DROP_ROWS",

... "data_check_name": "NullDataCheck",

... "parameters": {},

... "metadata": {"columns": None, "rows": [0, 1, 2, 3]}

... }

...]

... },

... {

... "message": "Column(s) 'all_null' are 95.0% or more null",

... "data_check_name": "NullDataCheck",

... "level": "warning",

... "details": {

... "columns": ["all_null"],

... "rows": None,

... "pct_null_rows": {"all_null": 1.0}

... },

... "code": "HIGHLY_NULL_COLS",

... "action_options": [

... {

... "code": "DROP_COL",

... "data_check_name": "NullDataCheck",

... "metadata": {"columns": ["all_null"], "rows": None},

... "parameters": {}

... }

...]

... },

... {

... "message": "Column(s) 'lots_of_null', 'few_null' have between 20.0%␣
→˓and 95.0% null values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["lots_of_null", "few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["lots_of_null", "few_null"], "rows":
→˓ None, "is_target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "lots_of_null": {"impute_strategy": {"categories
→˓": ["mean", "most_frequent"], "type": "category", "default_value": "mean"}},
... "few_null": {"impute_strategy": {"categories": [
→˓"mean", "most_frequent"], "type": "category", "default_value": "mean"}}
... }

(continues on next page)

434 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

... }

... }

...]

... }

...]

class evalml.data_checks.OutliersDataCheck

Checks if there are any outliers in input data by using IQR to determine score anomalies.

Columns with score anomalies are considered to contain outliers.

Methods

get_boxplot_data Returns box plot information for the given data.
name Return a name describing the data check.
validate Check if there are any outliers in a dataframe by using

IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

static get_boxplot_data(data_)
Returns box plot information for the given data.

Parameters data (pd.Series, np.ndarray) – Input data.

Returns A payload of box plot statistics.

Return type dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
>>> box_plot_data = OutliersDataCheck.get_boxplot_data(df["z"])
>>> box_plot_data["score"] = round(box_plot_data["score"], 2)
>>> assert box_plot_data == {
... "score": 0.89,
... "pct_outliers": 0.2,
... "values": {"q1": -4.0,
... "median": -3.0,
... "q3": -2.0,
... "low_bound": -7.0,
... "high_bound": -1.0,
... "low_values": [-1201],
... "high_values": [],
... "low_indices": [3],
... "high_indices": []}
... }

5.14. Utils 435

EvalML Documentation, Release 0.80.0

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if there are any outliers in a dataframe by using IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

Parameters
• X (pd.DataFrame, np.ndarray) – Input features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns A dictionary with warnings if any columns have outliers.

Return type dict

Examples

>>> import pandas as pd

The column “z” has an outlier so a warning is added to alert the user of its location.

>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
...
>>> outliers_check = OutliersDataCheck()
>>> assert outliers_check.validate(df) == [
... {
... "message": "Column(s) 'z' are likely to have outlier data.",
... "data_check_name": "OutliersDataCheck",
... "level": "warning",
... "code": "HAS_OUTLIERS",
... "details": {"columns": ["z"], "rows": [3], "column_indices": {"z":␣
→˓[3]}},
... "action_options": [
... {
... "code": "DROP_ROWS",
... "data_check_name": "OutliersDataCheck",
... "parameters": {},
... "metadata": {"rows": [3], "columns": None}
... }
...]
... }
...]

class evalml.data_checks.SparsityDataCheck(problem_type, threshold, unique_count_threshold=10)
Check if there are any columns with sparsely populated values in the input.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

‘multiclass’ or ‘time series multiclass’ is the only accepted problem type.

436 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• threshold (float) – The threshold value, or percentage of each column’s unique values,
below which, a column exhibits sparsity. Should be between 0 and 1.

• unique_count_threshold (int) – The minimum number of times a unique value has to
be present in a column to not be considered “sparse.” Defaults to 10.

Methods

name Return a name describing the data check.
sparsity_score Calculate a sparsity score for the given value counts

by calculating the percentage of unique values that
exceed the count_threshold.

validate Calculate what percentage of each column's unique
values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class
instance.

name(cls)
Return a name describing the data check.

static sparsity_score(col, count_threshold=10)
Calculate a sparsity score for the given value counts by calculating the percentage of unique values that
exceed the count_threshold.

Parameters
• col (pd.Series) – Feature values.

• count_threshold (int) – The number of instances below which a value is considered
sparse. Default is 10.

Returns Sparsity score, or the percentage of the unique values that exceed count_threshold.

Return type (float)

validate(self, X, y=None)
Calculate what percentage of each column’s unique values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class instance.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored.

Returns dict with a DataCheckWarning if there are any sparse columns.

Return type dict

Examples

>>> import pandas as pd

For multiclass problems, if a column doesn’t have enough representation from unique values, it will be
considered sparse.

5.14. Utils 437

EvalML Documentation, Release 0.80.0

>>> df = pd.DataFrame({
... "sparse": [float(x) for x in range(100)],
... "not_sparse": [float(1) for x in range(100)]
... })
...
>>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=0.5,
→˓ unique_count_threshold=10)
>>> assert sparsity_check.validate(df) == [
... {
... "message": "Input columns ('sparse') for multiclass problem type␣
→˓are too sparse.",
... "data_check_name": "SparsityDataCheck",
... "level": "warning",
... "code": "TOO_SPARSE",
... "details": {
... "columns": ["sparse"],
... "sparsity_score": {"sparse": 0.0},
... "rows": None
... },
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "SparsityDataCheck",
... "parameters": {},
... "metadata": {"columns": ["sparse"], "rows": None}
... }
...]
... }
...]

. . . >>> df[“sparse”] = [float(x % 10) for x in range(100)] >>> sparsity_check = Sparsi-
tyDataCheck(problem_type=”multiclass”, threshold=1, unique_count_threshold=5) >>> assert spar-
sity_check.validate(df) == [] . . . >>> sparse_array = pd.Series([1, 1, 1, 2, 2, 3] * 3) >>> assert Sparsi-
tyDataCheck.sparsity_score(sparse_array, count_threshold=5) == 0.6666666666666666

class evalml.data_checks.TargetDistributionDataCheck

Check if the target data contains certain distributions that may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

Methods

name Return a name describing the data check.
validate Check if the target data has a certain distribution.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data has a certain distribution.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.

438 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, np.ndarray) – Target data to check for underlying distributions.

Returns List with DataCheckErrors if certain distributions are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Targets that exhibit a lognormal distribution will raise a warning for the user to transform the target.

>>> y = [0.946, 0.972, 1.154, 0.954, 0.969, 1.222, 1.038, 0.999, 0.973, 0.897]
>>> target_check = TargetDistributionDataCheck()
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target may have a lognormal distribution.",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "warning",
... "code": "TARGET_LOGNORMAL_DISTRIBUTION",
... "details": {"normalization_method": "shapiro", "statistic": 0.8, "p-
→˓value": 0.045, "columns": None, "rows": None},
... "action_options": [
... {
... "code": "TRANSFORM_TARGET",
... "data_check_name": "TargetDistributionDataCheck",
... "parameters": {},
... "metadata": {
... "transformation_strategy": "lognormal",
... "is_target": True,
... "columns": None,
... "rows": None
... }
... }
...]
... }
...]
...
>>> y = pd.Series([1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5])
>>> assert target_check.validate(None, y) == []
...
...
>>> y = pd.Series(pd.date_range("1/1/21", periods=10))
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target is unsupported datetime type. Valid Woodwork␣
→˓logical types include: integer, double, age, age_fractional",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"datetime"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []

(continues on next page)

5.14. Utils 439

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

...]

class evalml.data_checks.TargetLeakageDataCheck(pct_corr_threshold=0.95, method='all')
Check if any of the features are highly correlated with the target by using mutual information, Pearson correlation,
and other correlation metrics.

If method=’mutual_info’, this data check uses mutual information and supports all target and feature types. Other
correlation metrics only support binary with numeric and boolean dtypes. This method will return a value in
[-1, 1] if other correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.
Correlation metrics available can be found in Woodwork’s dependence_dict method.

Parameters
• pct_corr_threshold (float) – The correlation threshold to be considered leakage. De-

faults to 0.95.

• method (string) – The method to determine correlation. Use ‘all’ or ‘max’ for the max-
imum correlation, or for specific correlation metrics, use their name (ie ‘mutual_info’ for
mutual information, ‘pearson’ for Pearson correlation, etc). possible methods can be found
in Woodwork’s config, under correlation_metrics. Defaults to ‘all’.

Methods

name Return a name describing the data check.
validate Check if any of the features are highly correlated with

the target by using mutual information, Pearson cor-
relation, and/or Spearman correlation.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if any of the features are highly correlated with the target by using mutual information, Pearson
correlation, and/or Spearman correlation.

If method=’mutual_info’ or ‘method=’max’, supports all target and feature types. Other correlation metrics
only support binary with numeric and boolean dtypes. This method will return a value in [-1, 1] if other
correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series, np.ndarray) – The target data.

Returns dict with a DataCheckWarning if target leakage is detected.

Return type dict (DataCheckWarning)

440 Chapter 5. API Reference

https://woodwork.alteryx.com/en/stable/generated/woodwork.table_accessor.WoodworkTableAccessor.dependence_dict.html#woodwork.table_accessor.WoodworkTableAccessor.dependence_dict
https://woodwork.alteryx.com/en/stable/guides/setting_config_options.html?highlight=config#Viewing-Config-Settings

EvalML Documentation, Release 0.80.0

Examples

>>> import pandas as pd

Any columns that are strongly correlated with the target will raise a warning. This could be indicative of
data leakage.

>>> X = pd.DataFrame({
... "leak": [10, 42, 31, 51, 61] * 15,
... "x": [42, 54, 12, 64, 12] * 15,
... "y": [13, 5, 13, 74, 24] * 15,
... })
>>> y = pd.Series([10, 42, 31, 51, 40] * 15)
...
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Column 'leak' is 95.0% or more correlated with the␣
→˓target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "code": "TARGET_LEAKAGE",
... "details": {"columns": ["leak"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak"], "rows": None}
... }
...]
... }
...]

The default method can be changed to pearson from mutual_info.

>>> X["x"] = y / 2
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8,␣
→˓method="pearson")
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Columns 'leak', 'x' are 80.0% or more correlated with␣
→˓the target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "details": {"columns": ["leak", "x"], "rows": None},
... "code": "TARGET_LEAKAGE",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak", "x"], "rows": None}

(continues on next page)

5.14. Utils 441

EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

...]

... }

...]

class evalml.data_checks.TimeSeriesParametersDataCheck(problem_configuration, n_splits)
Checks whether the time series parameters are compatible with data splitting.

If gap + max_delay + forecast_horizon > X.shape[0] // (n_splits + 1)

then the feature engineering window is larger than the smallest split. This will cause the pipeline to create features
from data that does not exist, which will cause errors.

Parameters
• problem_configuration (dict) – Dict containing problem_configuration parameters.

• n_splits (int) – Number of time series splits.

Methods

name Return a name describing the data check.
validate Check if the time series parameters are compatible

with data splitting.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the time series parameters are compatible with data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckError if parameters are too big for the split sizes.

Return type dict

Examples

>>> import pandas as pd

The time series parameters have to be compatible with the data passed. If the window size (gap + max_delay
+ forecast_horizon) is greater than or equal to the split size, then an error will be raised.

>>> X = pd.DataFrame({
... "dates": pd.date_range("1/1/21", periods=100),
... "first": [i for i in range(100)],
... })
>>> y = pd.Series([i for i in range(100)])
...
>>> problem_config = {"gap": 7, "max_delay": 2, "forecast_horizon": 12, "time_
→˓index": "dates"}

(continues on next page)

442 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> ts_parameters_check = TimeSeriesParametersDataCheck(problem_
→˓configuration=problem_config, n_splits=7)
>>> assert ts_parameters_check.validate(X, y) == [
... {
... "message": "Since the data has 100 observations, n_splits=7, and a␣
→˓forecast horizon of 12, the smallest "
... "split would have 16 observations. Since 21 (gap + max_
→˓delay + forecast_horizon)"
... " >= 16, then at least one of the splits would be empty␣
→˓by the time it reaches "
... "the pipeline. Please use a smaller number of splits,␣
→˓reduce one or more these "
... "parameters, or collect more data.",
... "data_check_name": "TimeSeriesParametersDataCheck",
... "level": "error",
... "code": "TIMESERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT",
... "details": {
... "columns": None,
... "rows": None,
... "max_window_size": 21,
... "min_split_size": 16,
... "n_obs": 100,
... "n_splits": 7
... },
... "action_options": []
... }
...]

class evalml.data_checks.TimeSeriesSplittingDataCheck(problem_type, n_splits)
Checks whether the time series target data is compatible with splitting.

If the target data in the training and validation of every split doesn’t have representation from all classes (for time
series classification problems) this will prevent the estimators from training on all potential outcomes which will
cause errors during prediction.

Parameters
• problem_type (str or ProblemTypes) – Problem type.

• n_splits (int) – Number of time series splits.

Methods

name Return a name describing the data check.
validate Check if the training and validation targets are com-

patible with time series data splitting.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the training and validation targets are compatible with time series data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Ignored. Features.

5.14. Utils 443

EvalML Documentation, Release 0.80.0

• y (pd.Series, np.ndarray) – Target data.

Returns dict with a DataCheckError if splitting would result in inadequate class representation.

Return type dict

Example

>>> import pandas as pd

Passing n_splits as 3 means that the data will be segmented into 4 parts to be iterated over for training
and validation splits. The first split results in training indices of [0:25] and validation indices of [25:50].
The training indices of the first split result in only one unique value (0). The third split results in training
indices of [0:75] and validation indices of [75:100]. The validation indices of the third split result in only
one unique value (1).

>>> X = None
>>> y = pd.Series([0 if i < 45 else i % 2 if i < 55 else 1 for i in range(100)])
>>> ts_splitting_check = TimeSeriesSplittingDataCheck("time series binary", 3)
>>> assert ts_splitting_check.validate(X, y) == [
... {
... "message": "Time Series Binary and Time Series Multiclass problem "
... "types require every training and validation split to "
... "have at least one instance of all the target classes. "
... "The following splits are invalid: [1, 3]",
... "data_check_name": "TimeSeriesSplittingDataCheck",
... "level": "error",
... "details": {
... "columns": None, "rows": None,
... "invalid_splits": {
... 1: {"Training": [0, 25]},
... 3: {"Validation": [75, 100]}
... }
... },
... "code": "TIMESERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT",
... "action_options": []
... }
...]

class evalml.data_checks.UniquenessDataCheck(problem_type, threshold=0.5)
Check if there are any columns in the input that are either too unique for classification problems or not unique
enough for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• threshold (float) – The threshold to set as an upper bound on uniqueness for classification
type problems or lower bound on for regression type problems. Defaults to 0.50.

Methods

444 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

name Return a name describing the data check.
uniqueness_score Calculate a uniqueness score for the provided field.

NaN values are not considered as unique values in
the calculation.

validate Check if there are any columns in the input that are
too unique in the case of classification problems or
not unique enough in the case of regression problems.

name(cls)
Return a name describing the data check.

static uniqueness_score(col, drop_na=True)
Calculate a uniqueness score for the provided field. NaN values are not considered as unique values in the
calculation.

Based on the Herfindahl-Hirschman Index.

Parameters
• col (pd.Series) – Feature values.

• drop_na (bool) – Whether to drop null values when computing the uniqueness score.
Defaults to True.

Returns Uniqueness score.

Return type (float)

validate(self, X, y=None)
Check if there are any columns in the input that are too unique in the case of classification problems or not
unique enough in the case of regression problems.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns
dict with a DataCheckWarning if there are any too unique or not unique enough

columns.

Return type dict

Examples

>>> import pandas as pd

Because the problem type is regression, the column “regression_not_unique_enough” raises a warning for
having just one value.

>>> df = pd.DataFrame({
... "regression_unique_enough": [float(x) for x in range(100)],
... "regression_not_unique_enough": [float(1) for x in range(100)]
... })
...
>>> uniqueness_check = UniquenessDataCheck(problem_type="regression",␣
→˓threshold=0.8) (continues on next page)

5.14. Utils 445

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> assert uniqueness_check.validate(df) == [
... {
... "message": "Input columns 'regression_not_unique_enough' for␣
→˓regression problem type are not unique enough.",
... "data_check_name": "UniquenessDataCheck",
... "level": "warning",
... "code": "NOT_UNIQUE_ENOUGH",
... "details": {"columns": ["regression_not_unique_enough"],
→˓"uniqueness_score": {"regression_not_unique_enough": 0.0}, "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "parameters": {},
... "data_check_name": "UniquenessDataCheck",
... "metadata": {"columns": ["regression_not_unique_enough"],
→˓"rows": None}
... }
...]
... }
...]

For multiclass, the column “regression_unique_enough” has too many unique values and will raise an
appropriate warning. >>> y = pd.Series([1, 1, 1, 2, 2, 3, 3, 3]) >>> uniqueness_check = Unique-
nessDataCheck(problem_type=”multiclass”, threshold=0.8) >>> assert uniqueness_check.validate(df) ==
[. . . { . . . “message”: “Input columns ‘regression_unique_enough’ for multiclass problem type are too
unique.”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “level”: “warning”, . . . “details”: {
. . . “columns”: [“regression_unique_enough”], . . . “rows”: None, . . . “uniqueness_score”: {“regres-
sion_unique_enough”: 0.99} . . . }, . . . “code”: “TOO_UNIQUE”, . . . “action_options”: [. . . { . . .
“code”: “DROP_COL”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “parameters”: {}, . . .
“metadata”: {“columns”: [“regression_unique_enough”], “rows”: None} . . . } . . .] . . . } . . .] . . .
>>> assert UniquenessDataCheck.uniqueness_score(y) == 0.65625

Demos

Demo datasets.

446 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Submodules

breast_cancer

Load the breast cancer dataset, which can be used for binary classification problems.

Module Contents

Functions

load_breast_cancer Load breast cancer dataset. Binary classification prob-
lem.

Contents

evalml.demos.breast_cancer.load_breast_cancer()

Load breast cancer dataset. Binary classification problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

churn

Load the churn dataset, which can be used for binary classification problems.

Module Contents

Functions

load_churn Load churn dataset, which can be used for binary classi-
fication problems.

Contents

evalml.demos.churn.load_churn(n_rows=None, verbose=True)
Load churn dataset, which can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)

5.14. Utils 447

EvalML Documentation, Release 0.80.0

diabetes

Load the diabetes dataset, which can be used for regression problems.

Module Contents

Functions

load_diabetes Load diabetes dataset. Used for regression problem.

Contents

evalml.demos.diabetes.load_diabetes()

Load diabetes dataset. Used for regression problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

fraud

Load the credit card fraud dataset, which can be used for binary classification problems.

Module Contents

Functions

load_fraud Load credit card fraud dataset.

Contents

evalml.demos.fraud.load_fraud(n_rows=None, verbose=True)
Load credit card fraud dataset.

The fraud dataset can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)

448 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

weather

The Australian daily-min-termperatures weather dataset.

Module Contents

Functions

load_weather Load the Australian daily-min-termperatures weather
dataset.

Contents

evalml.demos.weather.load_weather()

Load the Australian daily-min-termperatures weather dataset.

Returns X and y

Return type (pd.Dataframe, pd.Series)

wine

Load and return the wine dataset, which can be used for multiclass classification problems.

Module Contents

Functions

load_wine Load wine dataset. Multiclass problem.

Contents

evalml.demos.wine.load_wine()

Load wine dataset. Multiclass problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

5.14. Utils 449

EvalML Documentation, Release 0.80.0

Package Contents

Functions

load_breast_cancer Load breast cancer dataset. Binary classification prob-
lem.

load_churn Load churn dataset, which can be used for binary classi-
fication problems.

load_diabetes Load diabetes dataset. Used for regression problem.
load_fraud Load credit card fraud dataset.
load_weather Load the Australian daily-min-termperatures weather

dataset.
load_wine Load wine dataset. Multiclass problem.

Contents

evalml.demos.load_breast_cancer()

Load breast cancer dataset. Binary classification problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_churn(n_rows=None, verbose=True)
Load churn dataset, which can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_diabetes()

Load diabetes dataset. Used for regression problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_fraud(n_rows=None, verbose=True)
Load credit card fraud dataset.

The fraud dataset can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)

450 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.demos.load_weather()

Load the Australian daily-min-termperatures weather dataset.

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_wine()

Load wine dataset. Multiclass problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

Exceptions

Exceptions used in EvalML.

Submodules

exceptions

Exceptions used in EvalML.

Module Contents

Classes Summary

PartialDependenceErrorCode Enum identifying the type of error encountered in partial
dependence.

PipelineErrorCodeEnum Enum identifying the type of error encountered while
applying a pipeline.

ValidationErrorCode Enum identifying the type of error encountered in hold-
out validation.

Exceptions Summary

Contents

exception evalml.exceptions.exceptions.AutoMLSearchException

Exception raised when all pipelines in an automl batch return a score of NaN for the primary objective.

exception evalml.exceptions.exceptions.ComponentNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a component without fitting first.

exception evalml.exceptions.exceptions.DataCheckInitError

Exception raised when a data check can’t initialize with the parameters given.

5.14. Utils 451

EvalML Documentation, Release 0.80.0

exception evalml.exceptions.exceptions.MethodPropertyNotFoundError

Exception to raise when a class is does not have an expected method or property.

exception evalml.exceptions.exceptions.MissingComponentError

An exception raised when a component is not found in all_components().

exception evalml.exceptions.exceptions.NoPositiveLabelException

Exception when a particular classification label for the ‘positive’ class cannot be found in the column index or
unique values.

exception evalml.exceptions.exceptions.NullsInColumnWarning

Warning thrown when there are null values in the column of interest.

exception evalml.exceptions.exceptions.ObjectiveCreationError

Exception when get_objective tries to instantiate an objective and required args are not provided.

exception evalml.exceptions.exceptions.ObjectiveNotFoundError

Exception to raise when specified objective does not exist.

exception evalml.exceptions.exceptions.ParameterNotUsedWarning(components)
Warning thrown when a pipeline parameter isn’t used in a defined pipeline’s component graph during initializa-
tion.

exception evalml.exceptions.exceptions.PartialDependenceError(message, code)
Exception raised for all errors that partial dependence can raise.

Parameters
• message (str) – descriptive error message

• code (PartialDependenceErrorCode) – code for speicific error

class evalml.exceptions.exceptions.PartialDependenceErrorCode

Enum identifying the type of error encountered in partial dependence.

Attributes

ALL_OTHER_ERRORSall_other_errors
COM-
PUTED_PERCENTILES_TOO_CLOSE

computed_percentiles_too_close

FEA-
TURE_IS_ALL_NANS

feature_is_all_nans

FEA-
TURE_IS_MOSTLY_ONE_VALUE

feature_is_mostly_one_value

FEA-
TURES_ARGUMENT_INCORRECT_TYPES

features_argument_incorrect_types

ICE_PLOT_REQUESTED_FOR_TWO_WAY_PLOTice_plot_requested_for_two_way_partial_dependence_plot
IN-
VALID_CLASS_LABEL

invalid_class_label_requested_for_plot

IN-
VALID_FEATURE_TYPE

invalid_feature_type

PIPELINE_IS_BASELINEpipeline_is_baseline
TOO_MANY_FEATUREStoo_many_features
TWO_WAY_REQUESTED_FOR_DATEStwo_way_requested_for_dates
UNFIT-
TED_PIPELINE

unfitted_pipeline

452 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

exception evalml.exceptions.exceptions.PipelineError(message, code, details=None)
Exception raised for errors that can be raised when applying a pipeline.

Parameters
• message (str) – descriptive error message

• code (PipelineErrorCodeEnum) – code for specific error

• details (dict) – additional details for error

class evalml.exceptions.exceptions.PipelineErrorCodeEnum

Enum identifying the type of error encountered while applying a pipeline.

Attributes

PRE-
DICT_INPUT_SCHEMA_UNEQUAL

predict_input_schema_unequal

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

exception evalml.exceptions.exceptions.PipelineNotFoundError

An exception raised when a particular pipeline is not found in automl search results.

exception evalml.exceptions.exceptions.PipelineNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a pipeline without fitting first.

exception evalml.exceptions.exceptions.PipelineScoreError(exceptions, scored_successfully)
An exception raised when a pipeline errors while scoring any objective in a list of objectives.

Parameters
• exceptions (dict) – A dictionary mapping an objective name (str) to a tuple of the form

(exception, traceback). All of the objectives that errored will be stored here.

• scored_successfully (dict) – A dictionary mapping an objective name (str) to a score
value. All of the objectives that did not error will be stored here.

5.14. Utils 453

EvalML Documentation, Release 0.80.0

class evalml.exceptions.exceptions.ValidationErrorCode

Enum identifying the type of error encountered in holdout validation.

Attributes

IN-
VALID_HOLDOUT_GAP_SEPARATION

invalid_holdout_gap_separation

IN-
VALID_HOLDOUT_LENGTH

invalid_holdout_length

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

Package Contents

Classes Summary

PartialDependenceErrorCode Enum identifying the type of error encountered in partial
dependence.

PipelineErrorCodeEnum Enum identifying the type of error encountered while
applying a pipeline.

ValidationErrorCode Enum identifying the type of error encountered in hold-
out validation.

Exceptions Summary

Contents

exception evalml.exceptions.AutoMLSearchException

Exception raised when all pipelines in an automl batch return a score of NaN for the primary objective.

exception evalml.exceptions.ComponentNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a component without fitting first.

exception evalml.exceptions.DataCheckInitError

Exception raised when a data check can’t initialize with the parameters given.

exception evalml.exceptions.MethodPropertyNotFoundError

Exception to raise when a class is does not have an expected method or property.

454 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

exception evalml.exceptions.MissingComponentError

An exception raised when a component is not found in all_components().

exception evalml.exceptions.NoPositiveLabelException

Exception when a particular classification label for the ‘positive’ class cannot be found in the column index or
unique values.

exception evalml.exceptions.NullsInColumnWarning

Warning thrown when there are null values in the column of interest.

exception evalml.exceptions.ObjectiveCreationError

Exception when get_objective tries to instantiate an objective and required args are not provided.

exception evalml.exceptions.ObjectiveNotFoundError

Exception to raise when specified objective does not exist.

exception evalml.exceptions.ParameterNotUsedWarning(components)
Warning thrown when a pipeline parameter isn’t used in a defined pipeline’s component graph during initializa-
tion.

exception evalml.exceptions.PartialDependenceError(message, code)
Exception raised for all errors that partial dependence can raise.

Parameters
• message (str) – descriptive error message

• code (PartialDependenceErrorCode) – code for speicific error

class evalml.exceptions.PartialDependenceErrorCode

Enum identifying the type of error encountered in partial dependence.

Attributes

ALL_OTHER_ERRORSall_other_errors
COM-
PUTED_PERCENTILES_TOO_CLOSE

computed_percentiles_too_close

FEA-
TURE_IS_ALL_NANS

feature_is_all_nans

FEA-
TURE_IS_MOSTLY_ONE_VALUE

feature_is_mostly_one_value

FEA-
TURES_ARGUMENT_INCORRECT_TYPES

features_argument_incorrect_types

ICE_PLOT_REQUESTED_FOR_TWO_WAY_PLOTice_plot_requested_for_two_way_partial_dependence_plot
IN-
VALID_CLASS_LABEL

invalid_class_label_requested_for_plot

IN-
VALID_FEATURE_TYPE

invalid_feature_type

PIPELINE_IS_BASELINEpipeline_is_baseline
TOO_MANY_FEATUREStoo_many_features
TWO_WAY_REQUESTED_FOR_DATEStwo_way_requested_for_dates
UNFIT-
TED_PIPELINE

unfitted_pipeline

Methods

5.14. Utils 455

EvalML Documentation, Release 0.80.0

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

exception evalml.exceptions.PipelineError(message, code, details=None)
Exception raised for errors that can be raised when applying a pipeline.

Parameters
• message (str) – descriptive error message

• code (PipelineErrorCodeEnum) – code for specific error

• details (dict) – additional details for error

class evalml.exceptions.PipelineErrorCodeEnum

Enum identifying the type of error encountered while applying a pipeline.

Attributes

PRE-
DICT_INPUT_SCHEMA_UNEQUAL

predict_input_schema_unequal

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

exception evalml.exceptions.PipelineNotFoundError

An exception raised when a particular pipeline is not found in automl search results.

exception evalml.exceptions.PipelineNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a pipeline without fitting first.

exception evalml.exceptions.PipelineScoreError(exceptions, scored_successfully)
An exception raised when a pipeline errors while scoring any objective in a list of objectives.

Parameters
• exceptions (dict) – A dictionary mapping an objective name (str) to a tuple of the form

(exception, traceback). All of the objectives that errored will be stored here.

• scored_successfully (dict) – A dictionary mapping an objective name (str) to a score
value. All of the objectives that did not error will be stored here.

456 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.exceptions.ValidationErrorCode

Enum identifying the type of error encountered in holdout validation.

Attributes

IN-
VALID_HOLDOUT_GAP_SEPARATION

invalid_holdout_gap_separation

IN-
VALID_HOLDOUT_LENGTH

invalid_holdout_length

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

Model Family

Family of machine learning models.

Submodules

model_family

Enum for family of machine learning models.

Module Contents

Classes Summary

ModelFamily Enum for family of machine learning models.

Contents

class evalml.model_family.model_family.ModelFamily

Enum for family of machine learning models.

Attributes

5.14. Utils 457

EvalML Documentation, Release 0.80.0

ARIMA ARIMA model family.
BASELINE Baseline model family.
CAT-
BOOST

CatBoost model family.

DECI-
SION_TREE

Decision Tree model family.

ENSEM-
BLE

Ensemble model family.

EXPONEN-
TIAL_SMOOTHING

Exponential Smoothing model family.

EX-
TRA_TREES

Extra Trees model family.

K_NEIGHBORSK Nearest Neighbors model family.
LIGHT-
GBM

LightGBM model family.

LIN-
EAR_MODEL

Linear model family.

NONE None
PROPHET Prophet model family.
RAN-
DOM_FOREST

Random Forest model family.

SVM SVM model family.
VARMAX VARMAX model family.
VOW-
PAL_WABBIT

Vowpal Wabbit model family.

XGBOOST XGBoost model family.

Methods

is_tree_estimator Checks whether the estimator's model family uses
trees.

name The name of the Enum member.
value The value of the Enum member.

is_tree_estimator(self)
Checks whether the estimator’s model family uses trees.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

458 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

utils

Utility methods for EvalML’s model families.

Module Contents

Functions

handle_model_family Handles model_family by either returning the Mod-
elFamily or converting from a string.

Contents

evalml.model_family.utils.handle_model_family(model_family)
Handles model_family by either returning the ModelFamily or converting from a string.

Parameters model_family (str or ModelFamily) – Model type that needs to be handled.

Returns ModelFamily

Raises
• KeyError – If input is not a valid model family.

• ValueError – If input is not a string or ModelFamily object.

Package Contents

Classes Summary

ModelFamily Enum for family of machine learning models.

Functions

handle_model_family Handles model_family by either returning the Mod-
elFamily or converting from a string.

Contents

evalml.model_family.handle_model_family(model_family)
Handles model_family by either returning the ModelFamily or converting from a string.

Parameters model_family (str or ModelFamily) – Model type that needs to be handled.

Returns ModelFamily

Raises
• KeyError – If input is not a valid model family.

5.14. Utils 459

EvalML Documentation, Release 0.80.0

• ValueError – If input is not a string or ModelFamily object.

class evalml.model_family.ModelFamily

Enum for family of machine learning models.

Attributes

ARIMA ARIMA model family.
BASELINE Baseline model family.
CAT-
BOOST

CatBoost model family.

DECI-
SION_TREE

Decision Tree model family.

ENSEM-
BLE

Ensemble model family.

EXPONEN-
TIAL_SMOOTHING

Exponential Smoothing model family.

EX-
TRA_TREES

Extra Trees model family.

K_NEIGHBORSK Nearest Neighbors model family.
LIGHT-
GBM

LightGBM model family.

LIN-
EAR_MODEL

Linear model family.

NONE None
PROPHET Prophet model family.
RAN-
DOM_FOREST

Random Forest model family.

SVM SVM model family.
VARMAX VARMAX model family.
VOW-
PAL_WABBIT

Vowpal Wabbit model family.

XGBOOST XGBoost model family.

Methods

is_tree_estimator Checks whether the estimator's model family uses
trees.

name The name of the Enum member.
value The value of the Enum member.

is_tree_estimator(self)
Checks whether the estimator’s model family uses trees.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

460 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Model Understanding

Model understanding tools.

Subpackages

prediction_explanations

Prediction explanation tools.

Submodules

explainers

Prediction explanation tools.

Module Contents

Classes Summary

ExplainPredictionsStage Enum for prediction stage.

Functions

abs_error Computes the absolute error per data point for regression
problems.

cross_entropy Computes Cross Entropy Loss per data point for classi-
fication problems.

explain_predictions Creates a report summarizing the top contributing fea-
tures for each data point in the input features.

explain_predictions_best_worst Creates a report summarizing the top contributing fea-
tures for the best and worst points in the dataset as mea-
sured by error to true labels.

Attributes Summary

DEFAULT_METRICS

5.14. Utils 461

EvalML Documentation, Release 0.80.0

Contents

evalml.model_understanding.prediction_explanations.explainers.abs_error(y_true, y_pred)
Computes the absolute error per data point for regression problems.

Parameters
• y_true (pd.Series) – True labels.

• y_pred (pd.Series) – Predicted values.

Returns np.ndarray

evalml.model_understanding.prediction_explanations.explainers.cross_entropy(y_true,
y_pred_proba)

Computes Cross Entropy Loss per data point for classification problems.

Parameters
• y_true (pd.Series) – True labels encoded as ints.

• y_pred_proba (pd.DataFrame) – Predicted probabilities. One column per class.

Returns np.ndarray

evalml.model_understanding.prediction_explanations.explainers.DEFAULT_METRICS

evalml.model_understanding.prediction_explanations.explainers.explain_predictions(pipeline,
in-
put_features,
y, in-
dices_to_explain,
top_k_features=3,
in-
clude_explainer_values=False,
in-
clude_expected_value=False,
out-
put_format='text',
train-
ing_data=None,
train-
ing_target=None,
algo-
rithm='shap')

Creates a report summarizing the top contributing features for each data point in the input features.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Dataframe of input data to evaluate the pipeline on.

• y (pd.Series) – Labels for the input data.

462 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• indices_to_explain (list[int]) – List of integer indices to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point. Default is 3.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• include_expected_value (bool) – Whether the expected value should be included in the
table. Default is False.

• output_format (str) – Either “text”, “dict”, or “dataframe”. Default is “text”.

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features to each prediction for each row of input_features.

The report will include the feature names, prediction contribution, and explainer value
(optional).

Return type str, dict, or pd.DataFrame

Raises
• ValueError – if input_features is empty.

• ValueError – if an output_format outside of “text”, “dict” or “dataframe is provided.

• ValueError – if the requested index falls outside the input_feature’s boundaries.

evalml.model_understanding.prediction_explanations.explainers.explain_predictions_best_worst(pipeline,
in-
put_features,
y_true,
num_to_explain=5,
top_k_features=3,
in-
clude_explainer_values=False,
met-
ric=None,
out-
put_format='text',
call-
back=None,
train-
ing_data=None,
train-
ing_target=None,
al-
go-
rithm='shap')

Creates a report summarizing the top contributing features for the best and worst points in the dataset as measured
by error to true labels.

5.14. Utils 463

EvalML Documentation, Release 0.80.0

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Input data to evaluate the pipeline on.

• y_true (pd.Series) – True labels for the input data.

• num_to_explain (int) – How many of the best, worst, random data points to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• metric (callable) – The metric used to identify the best and worst points in the dataset.
Function must accept the true labels and predicted value or probabilities as the only argu-
ments and lower values must be better. By default, this will be the absolute error for regres-
sion problems and cross entropy loss for classification problems.

• output_format (str) – Either “text” or “dict”. Default is “text”.

• callback (callable) – Function to be called with incremental updates. Has the following
parameters: - progress_stage: stage of computation - time_elapsed: total time in seconds
that has elapsed since start of call

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features for the best/worst predictions in the input_features.

For each of the best/worst rows of input_features, the predicted values, true labels, metric
value, feature names, prediction contribution, and explainer value (optional) will be listed.

Return type str, dict, or pd.DataFrame

Raises
• ValueError – If input_features does not have more than twice the requested features to

explain.

• ValueError – If y_true and input_features have mismatched lengths.

• ValueError – If an output_format outside of “text”, “dict” or “dataframe is provided.

• PipelineScoreError – If the pipeline errors out while scoring.

class
evalml.model_understanding.prediction_explanations.explainers.ExplainPredictionsStage

Enum for prediction stage.

464 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

COM-
PUTE_EXPLAINER_VALUES_STAGE

compute_explainer_value_stage

COM-
PUTE_FEATURE_STAGE

compute_feature_stage

DONE done
PRE-
DICT_STAGE

predict_stage

PREPRO-
CESS-
ING_STAGE

preprocessing_stage

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

Package Contents

Functions

explain_predictions Creates a report summarizing the top contributing fea-
tures for each data point in the input features.

explain_predictions_best_worst Creates a report summarizing the top contributing fea-
tures for the best and worst points in the dataset as mea-
sured by error to true labels.

Contents

evalml.model_understanding.prediction_explanations.explain_predictions(pipeline, input_features,
y, indices_to_explain,
top_k_features=3, in-
clude_explainer_values=False,
in-
clude_expected_value=False,
output_format='text',
training_data=None,
training_target=None,
algorithm='shap')

Creates a report summarizing the top contributing features for each data point in the input features.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support

5.14. Utils 465

EvalML Documentation, Release 0.80.0

any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Dataframe of input data to evaluate the pipeline on.

• y (pd.Series) – Labels for the input data.

• indices_to_explain (list[int]) – List of integer indices to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point. Default is 3.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• include_expected_value (bool) – Whether the expected value should be included in the
table. Default is False.

• output_format (str) – Either “text”, “dict”, or “dataframe”. Default is “text”.

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features to each prediction for each row of input_features.

The report will include the feature names, prediction contribution, and explainer value
(optional).

Return type str, dict, or pd.DataFrame

Raises
• ValueError – if input_features is empty.

• ValueError – if an output_format outside of “text”, “dict” or “dataframe is provided.

• ValueError – if the requested index falls outside the input_feature’s boundaries.

466 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.model_understanding.prediction_explanations.explain_predictions_best_worst(pipeline,
in-
put_features,
y_true,
num_to_explain=5,
top_k_features=3,
in-
clude_explainer_values=False,
met-
ric=None,
out-
put_format='text',
call-
back=None,
train-
ing_data=None,
train-
ing_target=None,
algo-
rithm='shap')

Creates a report summarizing the top contributing features for the best and worst points in the dataset as measured
by error to true labels.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Input data to evaluate the pipeline on.

• y_true (pd.Series) – True labels for the input data.

• num_to_explain (int) – How many of the best, worst, random data points to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• metric (callable) – The metric used to identify the best and worst points in the dataset.
Function must accept the true labels and predicted value or probabilities as the only argu-
ments and lower values must be better. By default, this will be the absolute error for regres-
sion problems and cross entropy loss for classification problems.

• output_format (str) – Either “text” or “dict”. Default is “text”.

• callback (callable) – Function to be called with incremental updates. Has the following
parameters: - progress_stage: stage of computation - time_elapsed: total time in seconds
that has elapsed since start of call

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

5.14. Utils 467

EvalML Documentation, Release 0.80.0

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features for the best/worst predictions in the input_features.

For each of the best/worst rows of input_features, the predicted values, true labels, metric
value, feature names, prediction contribution, and explainer value (optional) will be listed.

Return type str, dict, or pd.DataFrame

Raises
• ValueError – If input_features does not have more than twice the requested features to

explain.

• ValueError – If y_true and input_features have mismatched lengths.

• ValueError – If an output_format outside of “text”, “dict” or “dataframe is provided.

• PipelineScoreError – If the pipeline errors out while scoring.

Submodules

decision_boundary

Model Understanding for decision boundary on Binary Classification problems.

Module Contents

Functions

find_confusion_matrix_per_thresholds Gets the confusion matrix and histogram bins for each
threshold as well as the best threshold per objective.
Only works with Binary Classification Pipelines.

Contents

evalml.model_understanding.decision_boundary.find_confusion_matrix_per_thresholds(pipeline,
X, y,
n_bins=None,
top_k=5,
to_json=False)

Gets the confusion matrix and histogram bins for each threshold as well as the best threshold per objective. Only
works with Binary Classification Pipelines.

Parameters
• pipeline (PipelineBase) – A fitted Binary Classification Pipeline to get the confusion

matrix with.

• X (pd.DataFrame) – The input features.

468 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series) – The input target.

• n_bins (int) – The number of bins to use to calculate the threshold values. Defaults to
None, which will default to using Freedman-Diaconis rule.

• top_k (int) – The maximum number of row indices per bin to include as samples. -1
includes all row indices that fall between the bins. Defaults to 5.

• to_json (bool) – Whether or not to return a json output. If False, returns the (DataFrame,
dict) tuple, otherwise returns a json.

Returns
The dataframe has the actual positive histogram, actual negative histogram, the confusion

matrix, and a sample of rows that fall in the bin, all for each threshold value. The threshold
value, represented through the dataframe index, represents the cutoff threshold at that value.
The dictionary contains the ideal threshold and score per objective, keyed by objective name.
If json, returns the info for both the dataframe and dictionary as a json output.

Return type (tuple(pd.DataFrame, dict)), json)

Raises ValueError – If the pipeline isn’t a binary classification pipeline or isn’t yet fitted on data.

feature_explanations

Human Readable Pipeline Explanations.

Module Contents

Functions

get_influential_features Finds the most influential features as well as any detri-
mental features from a dataframe of feature importances.

readable_explanation Outputs a human-readable explanation of trained
pipeline behavior.

Contents

evalml.model_understanding.feature_explanations.get_influential_features(imp_df,
max_features=5,
min_importance_threshold=0.05,
lin-
ear_importance=False)

Finds the most influential features as well as any detrimental features from a dataframe of feature importances.

Parameters
• imp_df (pd.DataFrame) – DataFrame containing feature names and associated impor-

tances.

• max_features (int) – The maximum number of features to include in an explanation.
Defaults to 5.

• min_importance_threshold (float) – The minimum percent of total importance a single
feature can have to be considered important. Defaults to 0.05.

5.14. Utils 469

EvalML Documentation, Release 0.80.0

• linear_importance (bool) – When True, negative feature importances are not considered
detrimental. Defaults to False.

Returns Lists of feature names corresponding to heavily influential, somewhat influential, and detri-
mental features, respectively.

Return type (list, list, list)

evalml.model_understanding.feature_explanations.readable_explanation(pipeline, X=None,
y=None, impor-
tance_method='permutation',
max_features=5,
min_importance_threshold=0.05,
objective='auto')

Outputs a human-readable explanation of trained pipeline behavior.

Parameters
• pipeline (PipelineBase) – The pipeline to explain.

• X (pd.DataFrame) – If importance_method is permutation, the holdout X data to compute
importance with. Ignored otherwise.

• y (pd.Series) – The holdout y data, used to obtain the name of the target class. If impor-
tance_method is permutation, used to compute importance with.

• importance_method (str) – The method of determining feature importance. One of [“per-
mutation”, “feature”]. Defaults to “permutation”.

• max_features (int) – The maximum number of influential features to include in an expla-
nation. This does not affect the number of detrimental features reported. Defaults to 5.

• min_importance_threshold (float) – The minimum percent of total importance a single
feature can have to be considered important. Defaults to 0.05.

• objective (str, ObjectiveBase) – If importance_method is permutation, the objective
to compute importance with. Ignored otherwise, defaults to “auto”.

Raises ValueError – if any arguments passed in are invalid or the pipeline is not fitted.

force_plots

Force plots.

Module Contents

Functions

force_plot Function to generate the data required to build a force
plot.

graph_force_plot Function to generate force plots for the desired rows of
the training data.

470 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

evalml.model_understanding.force_plots.force_plot(pipeline, rows_to_explain, training_data, y)
Function to generate the data required to build a force plot.

Parameters
• pipeline (PipelineBase) – The pipeline to generate the force plot for.

• rows_to_explain (list[int]) – A list of the indices of the training_data to explain.

• training_data (pandas.DataFrame) – The data used to train the pipeline.

• y (pandas.Series) – The target data.

Returns
list of dictionaries where each dict contains force plot data. Each dictionary entry repre-

sents the explanations for a single row.

For single row binary force plots:
[{‘malignant’: {‘expected_value’: 0.37, ’feature_names’: [‘worst concave points’,

‘worst perimeter’, ‘worst radius’], ‘shap_values’: [0.09, 0.09, 0.08], ‘plot’: Additive-
ForceVisualizer}]

For two row binary force plots:
[{‘malignant’: {‘expected_value’: 0.37, ’feature_names’: [‘worst concave points’,

‘worst perimeter’, ‘worst radius’], ‘shap_values’: [0.09, 0.09, 0.08], ‘plot’: Additive-
ForceVisualizer},

{‘malignant’: {‘expected_value’: 0.29, ’feature_names’: [‘worst concave points’,
‘worst perimeter’, ‘worst radius’], ‘shap_values’: [0.05, 0.03, 0.02], ‘plot’: Additive-
ForceVisualizer}]

Return type list[dict]

Raises
• TypeError – If rows_to_explain is not a list.

• TypeError – If all values in rows_to_explain aren’t integers.

evalml.model_understanding.force_plots.graph_force_plot(pipeline, rows_to_explain, training_data, y,
matplotlib=False)

Function to generate force plots for the desired rows of the training data.

Parameters
• pipeline (PipelineBase) – The pipeline to generate the force plot for.

• rows_to_explain (list[int]) – A list of the indices indicating which of the rows of the
training_data to explain.

• training_data (pandas.DataFrame) – The data used to train the pipeline.

• y (pandas.Series) – The target data for the pipeline.

• matplotlib (bool) – flag to display the force plot using matplotlib (outside of jupyter)
Defaults to False.

Returns
The same as force_plot(), but with an additional key in each dictionary for the plot.

5.14. Utils 471

EvalML Documentation, Release 0.80.0

Return type list[dict[shap.AdditiveForceVisualizer]]

metrics

Standard metrics used for model understanding.

Module Contents

Functions

check_distribution Determines if the distribution of the predicted data is
likely to match that of the ground truth data.

confusion_matrix Confusion matrix for binary and multiclass classifica-
tion.

graph_confusion_matrix Generate and display a confusion matrix plot.
graph_precision_recall_curve Generate and display a precision-recall plot.
graph_roc_curve Generate and display a Receiver Operating Characteris-

tic (ROC) plot for binary and multiclass classification
problems.

normalize_confusion_matrix Normalizes a confusion matrix.
precision_recall_curve Given labels and binary classifier predicted proba-

bilities, compute and return the data representing a
precision-recall curve.

roc_curve Given labels and classifier predicted probabilities, com-
pute and return the data representing a Receiver Operat-
ing Characteristic (ROC) curve. Works with binary or
multiclass problems.

Contents

evalml.model_understanding.metrics.check_distribution(y_true, y_pred, problem_type, threshold=0.1)
Determines if the distribution of the predicted data is likely to match that of the ground truth data.

Will use a different statistical test based on the given problem type: - Classification (Binary or Multiclass) -
chi squared test - Regression - Kolmogorov-Smirnov test - Time Series Regression - Wilcoxon signed-rank test
:param y_true: The ground truth data. :type y_true: pd.Series :param y_pred: Predictions from a pipeline. :type
y_pred: pd.Series :param problem_type: The pipeline’s problem type, used to determine the method. :type
problem_type: str or ProblemType :param threshold: The threshold for the p value where we choose to accept
or reject the null hypothesis.

Should be between 0 and 1, non-inclusive. Defaults to 0.1.

Returns 0 if the distribution of predicted values is not likely to match the true distribution, 1 if it is.

Return type int

evalml.model_understanding.metrics.confusion_matrix(y_true, y_predicted, normalize_method='true')
Confusion matrix for binary and multiclass classification.

Parameters

472 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_true (pd.Series or np.ndarray) – True binary labels.

• y_predicted (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

Returns Confusion matrix. The column header represents the predicted labels while row header
represents the actual labels.

Return type pd.DataFrame

evalml.model_understanding.metrics.graph_confusion_matrix(y_true, y_pred,
normalize_method='true',
title_addition=None)

Generate and display a confusion matrix plot.

If normalize_method is set, hover text will show raw count, otherwise hover text will show count normalized
with method ‘true’.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

• title_addition (str) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the confusion matrix plot generated.

evalml.model_understanding.metrics.graph_precision_recall_curve(y_true, y_pred_proba,
title_addition=None)

Generate and display a precision-recall plot.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• title_addition (str or None) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the precision-recall plot generated

evalml.model_understanding.metrics.graph_roc_curve(y_true, y_pred_proba,
custom_class_names=None,
title_addition=None)

Generate and display a Receiver Operating Characteristic (ROC) plot for binary and multiclass classification
problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a classifier, before
thresholding has been applied. Note this should a one dimensional array with the predicted
probability for the “true” label in the binary case.

5.14. Utils 473

EvalML Documentation, Release 0.80.0

• custom_class_names (list or None) – If not None, custom labels for classes. Defaults
to None.

• title_addition (str or None) – if not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the ROC plot generated

Raises ValueError – If the number of custom class names does not match number of classes in the
input data.

evalml.model_understanding.metrics.normalize_confusion_matrix(conf_mat,
normalize_method='true')

Normalizes a confusion matrix.

Parameters
• conf_mat (pd.DataFrame or np.ndarray) – Confusion matrix to normalize.

• normalize_method ({'true', 'pred', 'all'}) – Normalization method. Supported op-
tions are: ‘true’ to normalize by row, ‘pred’ to normalize by column, or ‘all’ to normalize by
all values. Defaults to ‘true’.

Returns normalized version of the input confusion matrix. The column header represents the pre-
dicted labels while row header represents the actual labels.

Return type pd.DataFrame

Raises ValueError – If configuration is invalid, or if the sum of a given axis is zero and normaliza-
tion by axis is specified.

evalml.model_understanding.metrics.precision_recall_curve(y_true, y_pred_proba, pos_label_idx=-
1)

Given labels and binary classifier predicted probabilities, compute and return the data representing a precision-
recall curve.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• pos_label_idx (int) – the column index corresponding to the positive class. If predicted
probabilities are two-dimensional, this will be used to access the probabilities for the positive
class.

Returns
Dictionary containing metrics used to generate a precision-recall plot, with the following keys:

• precision: Precision values.

• recall: Recall values.

• thresholds: Threshold values used to produce the precision and recall.

• auc_score: The area under the ROC curve.

Return type list

Raises NoPositiveLabelException – If predicted probabilities do not contain a column at the
specified label.

474 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.model_understanding.metrics.roc_curve(y_true, y_pred_proba)
Given labels and classifier predicted probabilities, compute and return the data representing a Receiver Operating
Characteristic (ROC) curve. Works with binary or multiclass problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or pd.DataFrame or np.ndarray) – Predictions from a
classifier, before thresholding has been applied.

Returns
A list of dictionaries (with one for each class) is returned. Binary classification problems return a list with one dictionary.

Each dictionary contains metrics used to generate an ROC plot with the following keys:

• fpr_rate: False positive rate.

• tpr_rate: True positive rate.

• threshold: Threshold values used to produce each pair of true/false positive rates.

• auc_score: The area under the ROC curve.

Return type list(dict)

partial_dependence_functions

Top level functions for running partial dependence.

Module Contents

Functions

graph_partial_dependence Create an one-way or two-way partial dependence plot.
partial_dependence Calculates one or two-way partial dependence.

Contents

evalml.model_understanding.partial_dependence_functions.graph_partial_dependence(pipeline,
X, features,
class_label=None,
grid_resolution=100,
kind='average')

Create an one-way or two-way partial dependence plot.

Passing a single integer or string as features will create a one-way partial dependence plot with the feature val-
ues plotted against the partial dependence. Passing features a tuple of int/strings will create a two-way partial
dependence plot with a contour of feature[0] in the y-axis, feature[1] in the x-axis and the partial dependence in
the z-axis.

Parameters

5.14. Utils 475

EvalML Documentation, Release 0.80.0

• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at.

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
strings, it must contain valid column int/names in X.

• class_label (string, optional) – Name of class to plot for multiclass problems. If
None, will plot the partial dependence for each class. This argument does not change be-
havior for regression or binary classification pipelines. For binary classification, the partial
dependence for the positive label will always be displayed. Defaults to None.

• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot.

• kind ({'average', 'individual', 'both'}) – Type of partial dependence to plot. ‘av-
erage’ creates a regular partial dependence (PD) graph, ‘individual’ creates an individual
conditional expectation (ICE) plot, and ‘both’ creates a single-figure PD and ICE plot. ICE
plots can only be shown for one-way partial dependence plots.

Returns figure object containing the partial dependence data for plotting

Return type plotly.graph_objects.Figure

Raises
• PartialDependenceError – if a graph is requested for a class name that isn’t present in

the pipeline.

• PartialDependenceError – if an ICE plot is requested for a two-way partial dependence.

evalml.model_understanding.partial_dependence_functions.partial_dependence(pipeline, X,
features,
percentiles=(0.05,
0.95),
grid_resolution=100,
kind='average',
fast_mode=False,
X_train=None,
y_train=None)

Calculates one or two-way partial dependence.

If a single integer or string is given for features, one-way partial dependence is calculated. If a tuple of two
integers or strings is given, two-way partial dependence is calculated with the first feature in the y-axis and
second feature in the x-axis.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
int/strings, it must contain valid column integers/names in X.

• percentiles (tuple[float]) – The lower and upper percentile used to create the extreme
values for the grid. Must be in [0, 1]. Defaults to (0.05, 0.95).

476 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot. If
this value is less than the maximum number of categories present in categorical data within
X, it will be set to the max number of categories + 1. Defaults to 100.

• kind ({'average', 'individual', 'both'}) – The type of predictions to return. ‘individ-
ual’ will return the predictions for all of the points in the grid for each sample in X. ‘average’
will return the predictions for all of the points in the grid but averaged over all of the samples
in X.

• fast_mode (bool, optional) – Whether or not performance optimizations should be used
for partial dependence calculations. Defaults to False. Note that user-specified components
may not produce correct partial dependence results, so fast mode should only be used with
EvalML-native components. Additionally, some components are not compatible with fast
mode; in those cases, an error will be raised indicating that fast mode should not be used.

• X_train (pd.DataFrame, np.ndarray) – The data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

• y_train (pd.Series, np.ndarray) – The target data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

Returns
When kind=’average’: DataFrame with averaged predictions for all points in the grid averaged
over all samples of X and the values used to calculate those predictions.

When kind=’individual’: DataFrame with individual predictions for all points in the grid for each
sample of X and the values used to calculate those predictions. If a two-way partial dependence is
calculated, then the result is a list of DataFrames with each DataFrame representing one sample’s
predictions.

When kind=’both’: A tuple consisting of the averaged predictions (in a DataFrame) over all
samples of X and the individual predictions (in a list of DataFrames) for each sample of X.

In the one-way case: The dataframe will contain two columns, “feature_values” (grid points
at which the partial dependence was calculated) and “partial_dependence” (the partial depen-
dence at that feature value). For classification problems, there will be a third column called
“class_label” (the class label for which the partial dependence was calculated). For binary clas-
sification, the partial dependence is only calculated for the “positive” class.

In the two-way case: The data frame will contain grid_resolution number of columns and rows
where the index and column headers are the sampled values of the first and second features,
respectively, used to make the partial dependence contour. The values of the data frame contain
the partial dependence data for each feature value pair.

Return type pd.DataFrame, list(pd.DataFrame), or tuple(pd.DataFrame, list(pd.DataFrame))

Raises
• ValueError – Error during call to scikit-learn’s partial dependence method.

• Exception – All other errors during calculation.

• PartialDependenceError – if the user provides a tuple of not exactly two features.

• PartialDependenceError – if the provided pipeline isn’t fitted.

• PartialDependenceError – if the provided pipeline is a Baseline pipeline.

• PartialDependenceError – if any of the features passed in are completely NaN

• PartialDependenceError – if any of the features are low-variance. Defined as having one
value occurring more than the upper percentile passed by the user. By default 95%.

5.14. Utils 477

EvalML Documentation, Release 0.80.0

permutation_importance

Permutation importance methods.

Module Contents

Functions

calculate_permutation_importance Calculates permutation importance for features.
calculate_permutation_importance_one_column Calculates permutation importance for one column in

the original dataframe.
graph_permutation_importance Generate a bar graph of the pipeline's permutation im-

portance.

Contents

evalml.model_understanding.permutation_importance.calculate_permutation_importance(pipeline,
X, y, ob-
jective,
n_repeats=5,
n_jobs=None,
ran-
dom_seed=0)

Calculates permutation importance for features.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type pd.DataFrame

Raises ValueError – If objective cannot be used with the given pipeline.

478 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.model_understanding.permutation_importance.calculate_permutation_importance_one_column(pipeline,
X,
y,
col_name,
ob-
jec-
tive,
n_repeats=5,
fast=True,
pre-
com-
puted_features=None,
ran-
dom_seed=0)

Calculates permutation importance for one column in the original dataframe.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• col_name (str, int) – The column in X to calculate permutation importance for.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• fast (bool) – Whether to use the fast method of calculating the permutation importance or
not. Defaults to True.

• precomputed_features (pd.DataFrame) – Precomputed features necessary to calculate
permutation importance using the fast method. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type float

Raises
• ValueError – If pipeline does not support fast permutation importance calculation.

• ValueError – If precomputed_features is None.

evalml.model_understanding.permutation_importance.graph_permutation_importance(pipeline, X,
y, objective,
impor-
tance_threshold=0)

Generate a bar graph of the pipeline’s permutation importance.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.

5.14. Utils 479

EvalML Documentation, Release 0.80.0

• importance_threshold (float, optional) – If provided, graph features with a permu-
tation importance whose absolute value is larger than importance_threshold. Defaults to 0.

Returns plotly.Figure, a bar graph showing features and their respective permutation importance.

Raises ValueError – If importance_threshold is not greater than or equal to 0.

visualizations

Visualization functions for model understanding.

Module Contents

Functions

binary_objective_vs_threshold Computes objective score as a function of potential bi-
nary classification decision thresholds for a fitted binary
classification pipeline.

decision_tree_data_from_estimator Return data for a fitted tree in a restructured format.
decision_tree_data_from_pipeline Return data for a fitted pipeline in a restructured format.
get_linear_coefficients Returns a dataframe showing the features with the great-

est predictive power for a linear model.
get_prediction_vs_actual_data Combines y_true and y_pred into a single

dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

get_prediction_vs_actual_over_time_data Get the data needed for the predic-
tion_vs_actual_over_time plot.

graph_binary_objective_vs_threshold Generates a plot graphing objective score vs. decision
thresholds for a fitted binary classification pipeline.

graph_prediction_vs_actual Generate a scatter plot comparing the true and predicted
values. Used for regression plotting.

graph_prediction_vs_actual_over_time Plot the target values and predictions against time on the
x-axis.

graph_t_sne Plot high dimensional data into lower dimensional space
using t-SNE.

t_sne Get the transformed output after fitting X to the embed-
ded space using t-SNE.

visualize_decision_tree Generate an image visualizing the decision tree.

Contents

evalml.model_understanding.visualizations.binary_objective_vs_threshold(pipeline, X, y,
objective, steps=100)

Computes objective score as a function of potential binary classification decision thresholds for a fitted binary
classification pipeline.

Parameters
• pipeline (BinaryClassificationPipeline obj) – Fitted binary classification

pipeline.

480 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input data used to compute objective score.

• y (pd.Series) – The target labels.

• objective (ObjectiveBase obj, str) – Objective used to score.

• steps (int) – Number of intervals to divide and calculate objective score at.

Returns DataFrame with thresholds and the corresponding objective score calculated at each thresh-
old.

Return type pd.DataFrame

Raises
• ValueError – If objective is not a binary classification objective.

• ValueError – If objective’s score_needs_proba is not False.

evalml.model_understanding.visualizations.decision_tree_data_from_estimator(estimator)
Return data for a fitted tree in a restructured format.

Parameters estimator (ComponentBase) – A fitted DecisionTree-based estimator.

Returns An OrderedDict of OrderedDicts describing a tree structure.

Return type OrderedDict

Raises
• ValueError – If estimator is not a decision tree-based estimator.

• NotFittedError – If estimator is not yet fitted.

evalml.model_understanding.visualizations.decision_tree_data_from_pipeline(pipeline_)
Return data for a fitted pipeline in a restructured format.

Parameters pipeline (PipelineBase) – A pipeline with a DecisionTree-based estimator.

Returns An OrderedDict of OrderedDicts describing a tree structure.

Return type OrderedDict

Raises
• ValueError – If estimator is not a decision tree-based estimator.

• NotFittedError – If estimator is not yet fitted.

evalml.model_understanding.visualizations.get_linear_coefficients(estimator, features=None)
Returns a dataframe showing the features with the greatest predictive power for a linear model.

Parameters
• estimator (Estimator) – Fitted linear model family estimator.

• features (list[str]) – List of feature names associated with the underlying data.

Returns Displaying the features by importance.

Return type pd.DataFrame

Raises
• ValueError – If the model is not a linear model.

• NotFittedError – If the model is not yet fitted.

5.14. Utils 481

EvalML Documentation, Release 0.80.0

evalml.model_understanding.visualizations.get_prediction_vs_actual_data(y_true, y_pred, out-
lier_threshold=None)

Combines y_true and y_pred into a single dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

Parameters
• y_true (pd.Series, or np.ndarray) – The real target values of the data

• y_pred (pd.Series, or np.ndarray) – The predicted values outputted by the regression
model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns
• prediction: Predicted values from regression model.

• actual: Real target values.

• outlier: Colors indicating which values are in the threshold for what is considered an outlier
value.

Return type pd.DataFrame with the following columns

Raises ValueError – If threshold is not positive.

evalml.model_understanding.visualizations.get_prediction_vs_actual_over_time_data(pipeline,
X, y,
X_train,
y_train,
dates)

Get the data needed for the prediction_vs_actual_over_time plot.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions.

• y (pd.Series) – Target values to compare predictions against.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

Returns Predictions vs. time.

Return type pd.DataFrame

evalml.model_understanding.visualizations.graph_binary_objective_vs_threshold(pipeline, X, y,
objective,
steps=100)

Generates a plot graphing objective score vs. decision thresholds for a fitted binary classification pipeline.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame) – The input data used to score and compute scores

482 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series) – The target labels

• objective (ObjectiveBase obj, str) – Objective used to score, shown on the y-axis
of the graph

• steps (int) – Number of intervals to divide and calculate objective score at

Returns plotly.Figure representing the objective score vs. threshold graph generated

evalml.model_understanding.visualizations.graph_prediction_vs_actual(y_true, y_pred,
outlier_threshold=None)

Generate a scatter plot comparing the true and predicted values. Used for regression plotting.

Parameters
• y_true (pd.Series) – The real target values of the data.

• y_pred (pd.Series) – The predicted values outputted by the regression model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns plotly.Figure representing the predicted vs. actual values graph

Raises ValueError – If threshold is not positive.

evalml.model_understanding.visualizations.graph_prediction_vs_actual_over_time(pipeline, X,
y, X_train,
y_train,
dates, sin-
gle_series=None)

Plot the target values and predictions against time on the x-axis.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions. If problem is multiseries,
X should be stacked.

• y (pd.Series) – Target values to compare predictions against. If problem is multiseries, y
should be stacked.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

• single_series (str) – A single series id value to plot just one series in a multiseries
dataset. Defaults to None.

Returns Showing the prediction vs actual over time.

Return type plotly.Figure

Raises ValueError – If the pipeline is not a time-series regression pipeline.

evalml.model_understanding.visualizations.graph_t_sne(X, n_components=2, perplexity=30.0,
learning_rate=200.0, metric='euclidean',
marker_line_width=2, marker_size=7,
**kwargs)

5.14. Utils 483

EvalML Documentation, Release 0.80.0

Plot high dimensional data into lower dimensional space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int) – Dimension of the embedded space. Defaults to 2.

• perplexity (float) – Related to the number of nearest neighbors that is used in other
manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider
selecting a value between 5 and 50. Defaults to 30.

• learning_rate (float) – Usually in the range [10.0, 1000.0]. If the cost function gets
stuck in a bad local minimum, increasing the learning rate may help. Must be positive.
Defaults to 200.

• metric (str) – The metric to use when calculating distance between instances in a feature
array. The default is “euclidean” which is interpreted as the squared euclidean distance.

• marker_line_width (int) – Determines the line width of the marker boundary. Defaults
to 2.

• marker_size (int) – Determines the size of the marker. Defaults to 7.

• kwargs – Arbitrary keyword arguments.

Returns Figure representing the transformed data.

Return type plotly.Figure

Raises ValueError – If marker_line_width or marker_size are not valid values.

evalml.model_understanding.visualizations.t_sne(X, n_components=2, perplexity=30.0,
learning_rate=200.0, metric='euclidean', **kwargs)

Get the transformed output after fitting X to the embedded space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int, optional) – Dimension of the embedded space.

• perplexity (float, optional) – Related to the number of nearest neighbors that is used
in other manifold learning algorithms. Larger datasets usually require a larger perplexity.
Consider selecting a value between 5 and 50.

• learning_rate (float, optional) – Usually in the range [10.0, 1000.0]. If the cost
function gets stuck in a bad local minimum, increasing the learning rate may help.

• metric (str, optional) – The metric to use when calculating distance between instances
in a feature array.

• kwargs – Arbitrary keyword arguments.

Returns TSNE output.

Return type np.ndarray (n_samples, n_components)

Raises ValueError – If specified parameters are not valid values.

evalml.model_understanding.visualizations.visualize_decision_tree(estimator, max_depth=None,
rotate=False, filled=False,
filepath=None)

Generate an image visualizing the decision tree.

484 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• estimator (ComponentBase) – A fitted DecisionTree-based estimator.

• max_depth (int, optional) – The depth to which the tree should be displayed. If set to
None (as by default), tree is fully generated.

• rotate (bool, optional) – Orient tree left to right rather than top-down.

• filled (bool, optional) – Paint nodes to indicate majority class for classification, ex-
tremity of values for regression, or purity of node for multi-output.

• filepath (str, optional) – Path to where the graph should be saved. If set to None (as
by default), the graph will not be saved.

Returns DOT object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Source

Raises
• ValueError – If estimator is not a decision tree-based estimator.

• NotFittedError – If estimator is not yet fitted.

Package Contents

5.14. Utils 485

EvalML Documentation, Release 0.80.0

Functions

binary_objective_vs_threshold Computes objective score as a function of potential bi-
nary classification decision thresholds for a fitted binary
classification pipeline.

calculate_permutation_importance Calculates permutation importance for features.
calculate_permutation_importance_one_column Calculates permutation importance for one column in

the original dataframe.
confusion_matrix Confusion matrix for binary and multiclass classifica-

tion.
explain_predictions Creates a report summarizing the top contributing fea-

tures for each data point in the input features.
explain_predictions_best_worst Creates a report summarizing the top contributing fea-

tures for the best and worst points in the dataset as mea-
sured by error to true labels.

find_confusion_matrix_per_thresholds Gets the confusion matrix and histogram bins for each
threshold as well as the best threshold per objective.
Only works with Binary Classification Pipelines.

get_linear_coefficients Returns a dataframe showing the features with the great-
est predictive power for a linear model.

get_prediction_vs_actual_data Combines y_true and y_pred into a single
dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

get_prediction_vs_actual_over_time_data Get the data needed for the predic-
tion_vs_actual_over_time plot.

graph_binary_objective_vs_threshold Generates a plot graphing objective score vs. decision
thresholds for a fitted binary classification pipeline.

graph_confusion_matrix Generate and display a confusion matrix plot.
graph_partial_dependence Create an one-way or two-way partial dependence plot.
graph_permutation_importance Generate a bar graph of the pipeline's permutation im-

portance.
graph_precision_recall_curve Generate and display a precision-recall plot.
graph_prediction_vs_actual Generate a scatter plot comparing the true and predicted

values. Used for regression plotting.
graph_prediction_vs_actual_over_time Plot the target values and predictions against time on the

x-axis.
graph_roc_curve Generate and display a Receiver Operating Characteris-

tic (ROC) plot for binary and multiclass classification
problems.

graph_t_sne Plot high dimensional data into lower dimensional space
using t-SNE.

normalize_confusion_matrix Normalizes a confusion matrix.
partial_dependence Calculates one or two-way partial dependence.
precision_recall_curve Given labels and binary classifier predicted proba-

bilities, compute and return the data representing a
precision-recall curve.

roc_curve Given labels and classifier predicted probabilities, com-
pute and return the data representing a Receiver Operat-
ing Characteristic (ROC) curve. Works with binary or
multiclass problems.

t_sne Get the transformed output after fitting X to the embed-
ded space using t-SNE.

486 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

evalml.model_understanding.binary_objective_vs_threshold(pipeline, X, y, objective, steps=100)
Computes objective score as a function of potential binary classification decision thresholds for a fitted binary
classification pipeline.

Parameters
• pipeline (BinaryClassificationPipeline obj) – Fitted binary classification

pipeline.

• X (pd.DataFrame) – The input data used to compute objective score.

• y (pd.Series) – The target labels.

• objective (ObjectiveBase obj, str) – Objective used to score.

• steps (int) – Number of intervals to divide and calculate objective score at.

Returns DataFrame with thresholds and the corresponding objective score calculated at each thresh-
old.

Return type pd.DataFrame

Raises
• ValueError – If objective is not a binary classification objective.

• ValueError – If objective’s score_needs_proba is not False.

evalml.model_understanding.calculate_permutation_importance(pipeline, X, y, objective, n_repeats=5,
n_jobs=None, random_seed=0)

Calculates permutation importance for features.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type pd.DataFrame

Raises ValueError – If objective cannot be used with the given pipeline.

evalml.model_understanding.calculate_permutation_importance_one_column(pipeline, X, y,
col_name, objective,
n_repeats=5,
fast=True, precom-
puted_features=None,
random_seed=0)

Calculates permutation importance for one column in the original dataframe.

5.14. Utils 487

EvalML Documentation, Release 0.80.0

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• col_name (str, int) – The column in X to calculate permutation importance for.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• fast (bool) – Whether to use the fast method of calculating the permutation importance or
not. Defaults to True.

• precomputed_features (pd.DataFrame) – Precomputed features necessary to calculate
permutation importance using the fast method. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type float

Raises
• ValueError – If pipeline does not support fast permutation importance calculation.

• ValueError – If precomputed_features is None.

evalml.model_understanding.confusion_matrix(y_true, y_predicted, normalize_method='true')
Confusion matrix for binary and multiclass classification.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_predicted (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

Returns Confusion matrix. The column header represents the predicted labels while row header
represents the actual labels.

Return type pd.DataFrame

evalml.model_understanding.explain_predictions(pipeline, input_features, y, indices_to_explain,
top_k_features=3, include_explainer_values=False,
include_expected_value=False, output_format='text',
training_data=None, training_target=None,
algorithm='shap')

Creates a report summarizing the top contributing features for each data point in the input features.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

488 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• input_features (pd.DataFrame) – Dataframe of input data to evaluate the pipeline on.

• y (pd.Series) – Labels for the input data.

• indices_to_explain (list[int]) – List of integer indices to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point. Default is 3.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• include_expected_value (bool) – Whether the expected value should be included in the
table. Default is False.

• output_format (str) – Either “text”, “dict”, or “dataframe”. Default is “text”.

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features to each prediction for each row of input_features.

The report will include the feature names, prediction contribution, and explainer value
(optional).

Return type str, dict, or pd.DataFrame

Raises
• ValueError – if input_features is empty.

• ValueError – if an output_format outside of “text”, “dict” or “dataframe is provided.

• ValueError – if the requested index falls outside the input_feature’s boundaries.

evalml.model_understanding.explain_predictions_best_worst(pipeline, input_features, y_true,
num_to_explain=5, top_k_features=3,
include_explainer_values=False,
metric=None, output_format='text',
callback=None, training_data=None,
training_target=None,
algorithm='shap')

Creates a report summarizing the top contributing features for the best and worst points in the dataset as measured
by error to true labels.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Input data to evaluate the pipeline on.

• y_true (pd.Series) – True labels for the input data.

5.14. Utils 489

EvalML Documentation, Release 0.80.0

• num_to_explain (int) – How many of the best, worst, random data points to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• metric (callable) – The metric used to identify the best and worst points in the dataset.
Function must accept the true labels and predicted value or probabilities as the only argu-
ments and lower values must be better. By default, this will be the absolute error for regres-
sion problems and cross entropy loss for classification problems.

• output_format (str) – Either “text” or “dict”. Default is “text”.

• callback (callable) – Function to be called with incremental updates. Has the following
parameters: - progress_stage: stage of computation - time_elapsed: total time in seconds
that has elapsed since start of call

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features for the best/worst predictions in the input_features.

For each of the best/worst rows of input_features, the predicted values, true labels, metric
value, feature names, prediction contribution, and explainer value (optional) will be listed.

Return type str, dict, or pd.DataFrame

Raises
• ValueError – If input_features does not have more than twice the requested features to

explain.

• ValueError – If y_true and input_features have mismatched lengths.

• ValueError – If an output_format outside of “text”, “dict” or “dataframe is provided.

• PipelineScoreError – If the pipeline errors out while scoring.

evalml.model_understanding.find_confusion_matrix_per_thresholds(pipeline, X, y, n_bins=None,
top_k=5, to_json=False)

Gets the confusion matrix and histogram bins for each threshold as well as the best threshold per objective. Only
works with Binary Classification Pipelines.

Parameters
• pipeline (PipelineBase) – A fitted Binary Classification Pipeline to get the confusion

matrix with.

• X (pd.DataFrame) – The input features.

• y (pd.Series) – The input target.

• n_bins (int) – The number of bins to use to calculate the threshold values. Defaults to
None, which will default to using Freedman-Diaconis rule.

490 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• top_k (int) – The maximum number of row indices per bin to include as samples. -1
includes all row indices that fall between the bins. Defaults to 5.

• to_json (bool) – Whether or not to return a json output. If False, returns the (DataFrame,
dict) tuple, otherwise returns a json.

Returns
The dataframe has the actual positive histogram, actual negative histogram, the confusion

matrix, and a sample of rows that fall in the bin, all for each threshold value. The threshold
value, represented through the dataframe index, represents the cutoff threshold at that value.
The dictionary contains the ideal threshold and score per objective, keyed by objective name.
If json, returns the info for both the dataframe and dictionary as a json output.

Return type (tuple(pd.DataFrame, dict)), json)

Raises ValueError – If the pipeline isn’t a binary classification pipeline or isn’t yet fitted on data.

evalml.model_understanding.get_linear_coefficients(estimator, features=None)
Returns a dataframe showing the features with the greatest predictive power for a linear model.

Parameters
• estimator (Estimator) – Fitted linear model family estimator.

• features (list[str]) – List of feature names associated with the underlying data.

Returns Displaying the features by importance.

Return type pd.DataFrame

Raises
• ValueError – If the model is not a linear model.

• NotFittedError – If the model is not yet fitted.

evalml.model_understanding.get_prediction_vs_actual_data(y_true, y_pred, outlier_threshold=None)
Combines y_true and y_pred into a single dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

Parameters
• y_true (pd.Series, or np.ndarray) – The real target values of the data

• y_pred (pd.Series, or np.ndarray) – The predicted values outputted by the regression
model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns
• prediction: Predicted values from regression model.

• actual: Real target values.

• outlier: Colors indicating which values are in the threshold for what is considered an outlier
value.

Return type pd.DataFrame with the following columns

Raises ValueError – If threshold is not positive.

5.14. Utils 491

EvalML Documentation, Release 0.80.0

evalml.model_understanding.get_prediction_vs_actual_over_time_data(pipeline, X, y, X_train,
y_train, dates)

Get the data needed for the prediction_vs_actual_over_time plot.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions.

• y (pd.Series) – Target values to compare predictions against.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

Returns Predictions vs. time.

Return type pd.DataFrame

evalml.model_understanding.graph_binary_objective_vs_threshold(pipeline, X, y, objective,
steps=100)

Generates a plot graphing objective score vs. decision thresholds for a fitted binary classification pipeline.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame) – The input data used to score and compute scores

• y (pd.Series) – The target labels

• objective (ObjectiveBase obj, str) – Objective used to score, shown on the y-axis
of the graph

• steps (int) – Number of intervals to divide and calculate objective score at

Returns plotly.Figure representing the objective score vs. threshold graph generated

evalml.model_understanding.graph_confusion_matrix(y_true, y_pred, normalize_method='true',
title_addition=None)

Generate and display a confusion matrix plot.

If normalize_method is set, hover text will show raw count, otherwise hover text will show count normalized
with method ‘true’.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

• title_addition (str) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the confusion matrix plot generated.

492 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.model_understanding.graph_partial_dependence(pipeline, X, features, class_label=None,
grid_resolution=100, kind='average')

Create an one-way or two-way partial dependence plot.

Passing a single integer or string as features will create a one-way partial dependence plot with the feature val-
ues plotted against the partial dependence. Passing features a tuple of int/strings will create a two-way partial
dependence plot with a contour of feature[0] in the y-axis, feature[1] in the x-axis and the partial dependence in
the z-axis.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at.

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
strings, it must contain valid column int/names in X.

• class_label (string, optional) – Name of class to plot for multiclass problems. If
None, will plot the partial dependence for each class. This argument does not change be-
havior for regression or binary classification pipelines. For binary classification, the partial
dependence for the positive label will always be displayed. Defaults to None.

• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot.

• kind ({'average', 'individual', 'both'}) – Type of partial dependence to plot. ‘av-
erage’ creates a regular partial dependence (PD) graph, ‘individual’ creates an individual
conditional expectation (ICE) plot, and ‘both’ creates a single-figure PD and ICE plot. ICE
plots can only be shown for one-way partial dependence plots.

Returns figure object containing the partial dependence data for plotting

Return type plotly.graph_objects.Figure

Raises
• PartialDependenceError – if a graph is requested for a class name that isn’t present in

the pipeline.

• PartialDependenceError – if an ICE plot is requested for a two-way partial dependence.

evalml.model_understanding.graph_permutation_importance(pipeline, X, y, objective,
importance_threshold=0)

Generate a bar graph of the pipeline’s permutation importance.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.

• importance_threshold (float, optional) – If provided, graph features with a permu-
tation importance whose absolute value is larger than importance_threshold. Defaults to 0.

Returns plotly.Figure, a bar graph showing features and their respective permutation importance.

Raises ValueError – If importance_threshold is not greater than or equal to 0.

5.14. Utils 493

EvalML Documentation, Release 0.80.0

evalml.model_understanding.graph_precision_recall_curve(y_true, y_pred_proba,
title_addition=None)

Generate and display a precision-recall plot.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• title_addition (str or None) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the precision-recall plot generated

evalml.model_understanding.graph_prediction_vs_actual(y_true, y_pred, outlier_threshold=None)
Generate a scatter plot comparing the true and predicted values. Used for regression plotting.

Parameters
• y_true (pd.Series) – The real target values of the data.

• y_pred (pd.Series) – The predicted values outputted by the regression model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns plotly.Figure representing the predicted vs. actual values graph

Raises ValueError – If threshold is not positive.

evalml.model_understanding.graph_prediction_vs_actual_over_time(pipeline, X, y, X_train, y_train,
dates, single_series=None)

Plot the target values and predictions against time on the x-axis.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions. If problem is multiseries,
X should be stacked.

• y (pd.Series) – Target values to compare predictions against. If problem is multiseries, y
should be stacked.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

• single_series (str) – A single series id value to plot just one series in a multiseries
dataset. Defaults to None.

Returns Showing the prediction vs actual over time.

Return type plotly.Figure

Raises ValueError – If the pipeline is not a time-series regression pipeline.

494 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.model_understanding.graph_roc_curve(y_true, y_pred_proba, custom_class_names=None,
title_addition=None)

Generate and display a Receiver Operating Characteristic (ROC) plot for binary and multiclass classification
problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a classifier, before
thresholding has been applied. Note this should a one dimensional array with the predicted
probability for the “true” label in the binary case.

• custom_class_names (list or None) – If not None, custom labels for classes. Defaults
to None.

• title_addition (str or None) – if not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the ROC plot generated

Raises ValueError – If the number of custom class names does not match number of classes in the
input data.

evalml.model_understanding.graph_t_sne(X, n_components=2, perplexity=30.0, learning_rate=200.0,
metric='euclidean', marker_line_width=2, marker_size=7,
**kwargs)

Plot high dimensional data into lower dimensional space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int) – Dimension of the embedded space. Defaults to 2.

• perplexity (float) – Related to the number of nearest neighbors that is used in other
manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider
selecting a value between 5 and 50. Defaults to 30.

• learning_rate (float) – Usually in the range [10.0, 1000.0]. If the cost function gets
stuck in a bad local minimum, increasing the learning rate may help. Must be positive.
Defaults to 200.

• metric (str) – The metric to use when calculating distance between instances in a feature
array. The default is “euclidean” which is interpreted as the squared euclidean distance.

• marker_line_width (int) – Determines the line width of the marker boundary. Defaults
to 2.

• marker_size (int) – Determines the size of the marker. Defaults to 7.

• kwargs – Arbitrary keyword arguments.

Returns Figure representing the transformed data.

Return type plotly.Figure

Raises ValueError – If marker_line_width or marker_size are not valid values.

evalml.model_understanding.normalize_confusion_matrix(conf_mat, normalize_method='true')
Normalizes a confusion matrix.

Parameters
• conf_mat (pd.DataFrame or np.ndarray) – Confusion matrix to normalize.

5.14. Utils 495

EvalML Documentation, Release 0.80.0

• normalize_method ({'true', 'pred', 'all'}) – Normalization method. Supported op-
tions are: ‘true’ to normalize by row, ‘pred’ to normalize by column, or ‘all’ to normalize by
all values. Defaults to ‘true’.

Returns normalized version of the input confusion matrix. The column header represents the pre-
dicted labels while row header represents the actual labels.

Return type pd.DataFrame

Raises ValueError – If configuration is invalid, or if the sum of a given axis is zero and normaliza-
tion by axis is specified.

evalml.model_understanding.partial_dependence(pipeline, X, features, percentiles=(0.05, 0.95),
grid_resolution=100, kind='average', fast_mode=False,
X_train=None, y_train=None)

Calculates one or two-way partial dependence.

If a single integer or string is given for features, one-way partial dependence is calculated. If a tuple of two
integers or strings is given, two-way partial dependence is calculated with the first feature in the y-axis and
second feature in the x-axis.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
int/strings, it must contain valid column integers/names in X.

• percentiles (tuple[float]) – The lower and upper percentile used to create the extreme
values for the grid. Must be in [0, 1]. Defaults to (0.05, 0.95).

• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot. If
this value is less than the maximum number of categories present in categorical data within
X, it will be set to the max number of categories + 1. Defaults to 100.

• kind ({'average', 'individual', 'both'}) – The type of predictions to return. ‘individ-
ual’ will return the predictions for all of the points in the grid for each sample in X. ‘average’
will return the predictions for all of the points in the grid but averaged over all of the samples
in X.

• fast_mode (bool, optional) – Whether or not performance optimizations should be used
for partial dependence calculations. Defaults to False. Note that user-specified components
may not produce correct partial dependence results, so fast mode should only be used with
EvalML-native components. Additionally, some components are not compatible with fast
mode; in those cases, an error will be raised indicating that fast mode should not be used.

• X_train (pd.DataFrame, np.ndarray) – The data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

• y_train (pd.Series, np.ndarray) – The target data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

Returns
When kind=’average’: DataFrame with averaged predictions for all points in the grid averaged
over all samples of X and the values used to calculate those predictions.

496 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

When kind=’individual’: DataFrame with individual predictions for all points in the grid for each
sample of X and the values used to calculate those predictions. If a two-way partial dependence is
calculated, then the result is a list of DataFrames with each DataFrame representing one sample’s
predictions.

When kind=’both’: A tuple consisting of the averaged predictions (in a DataFrame) over all
samples of X and the individual predictions (in a list of DataFrames) for each sample of X.

In the one-way case: The dataframe will contain two columns, “feature_values” (grid points
at which the partial dependence was calculated) and “partial_dependence” (the partial depen-
dence at that feature value). For classification problems, there will be a third column called
“class_label” (the class label for which the partial dependence was calculated). For binary clas-
sification, the partial dependence is only calculated for the “positive” class.

In the two-way case: The data frame will contain grid_resolution number of columns and rows
where the index and column headers are the sampled values of the first and second features,
respectively, used to make the partial dependence contour. The values of the data frame contain
the partial dependence data for each feature value pair.

Return type pd.DataFrame, list(pd.DataFrame), or tuple(pd.DataFrame, list(pd.DataFrame))

Raises
• ValueError – Error during call to scikit-learn’s partial dependence method.

• Exception – All other errors during calculation.

• PartialDependenceError – if the user provides a tuple of not exactly two features.

• PartialDependenceError – if the provided pipeline isn’t fitted.

• PartialDependenceError – if the provided pipeline is a Baseline pipeline.

• PartialDependenceError – if any of the features passed in are completely NaN

• PartialDependenceError – if any of the features are low-variance. Defined as having one
value occurring more than the upper percentile passed by the user. By default 95%.

evalml.model_understanding.precision_recall_curve(y_true, y_pred_proba, pos_label_idx=- 1)
Given labels and binary classifier predicted probabilities, compute and return the data representing a precision-
recall curve.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• pos_label_idx (int) – the column index corresponding to the positive class. If predicted
probabilities are two-dimensional, this will be used to access the probabilities for the positive
class.

Returns
Dictionary containing metrics used to generate a precision-recall plot, with the following keys:

• precision: Precision values.

• recall: Recall values.

• thresholds: Threshold values used to produce the precision and recall.

• auc_score: The area under the ROC curve.

5.14. Utils 497

EvalML Documentation, Release 0.80.0

Return type list

Raises NoPositiveLabelException – If predicted probabilities do not contain a column at the
specified label.

evalml.model_understanding.roc_curve(y_true, y_pred_proba)
Given labels and classifier predicted probabilities, compute and return the data representing a Receiver Operating
Characteristic (ROC) curve. Works with binary or multiclass problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or pd.DataFrame or np.ndarray) – Predictions from a
classifier, before thresholding has been applied.

Returns
A list of dictionaries (with one for each class) is returned. Binary classification problems return a list with one dictionary.

Each dictionary contains metrics used to generate an ROC plot with the following keys:

• fpr_rate: False positive rate.

• tpr_rate: True positive rate.

• threshold: Threshold values used to produce each pair of true/false positive rates.

• auc_score: The area under the ROC curve.

Return type list(dict)

evalml.model_understanding.t_sne(X, n_components=2, perplexity=30.0, learning_rate=200.0,
metric='euclidean', **kwargs)

Get the transformed output after fitting X to the embedded space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int, optional) – Dimension of the embedded space.

• perplexity (float, optional) – Related to the number of nearest neighbors that is used
in other manifold learning algorithms. Larger datasets usually require a larger perplexity.
Consider selecting a value between 5 and 50.

• learning_rate (float, optional) – Usually in the range [10.0, 1000.0]. If the cost
function gets stuck in a bad local minimum, increasing the learning rate may help.

• metric (str, optional) – The metric to use when calculating distance between instances
in a feature array.

• kwargs – Arbitrary keyword arguments.

Returns TSNE output.

Return type np.ndarray (n_samples, n_components)

Raises ValueError – If specified parameters are not valid values.

498 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Objectives

EvalML standard and custom objectives.

Submodules

binary_classification_objective

Base class for all binary classification objectives.

Module Contents

Classes Summary

BinaryClassificationObjective Base class for all binary classification objectives.

Contents

class evalml.objectives.binary_classification_objective.BinaryClassificationObjective

Base class for all binary classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

Methods

5.14. Utils 499

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

500 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

5.14. Utils 501

EvalML Documentation, Release 0.80.0

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

cost_benefit_matrix

Cost-benefit matrix objective.

Module Contents

Classes Summary

CostBenefitMatrix Score using a cost-benefit matrix. Scores quantify the
benefits of a given value, so greater numeric scores rep-
resents a better score. Costs and scores can be negative,
indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score
represents loss of cash flow.

502 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.objectives.cost_benefit_matrix.CostBenefitMatrix(true_positive, true_negative,
false_positive, false_negative)

Score using a cost-benefit matrix. Scores quantify the benefits of a given value, so greater numeric scores repre-
sents a better score. Costs and scores can be negative, indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score represents loss of cash flow.

Parameters
• true_positive (float) – Cost associated with true positive predictions.

• true_negative (float) – Cost associated with true negative predictions.

• false_positive (float) – Cost associated with false positive predictions.

• false_negative (float) – Cost associated with false negative predictions.

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Cost Benefit Matrix
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculates cost-benefit of the using the predicted and

true values.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

5.14. Utils 503

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculates cost-benefit of the using the predicted and true values.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Cost-benefit matrix score

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

504 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

fraud_cost

Score the percentage of money lost of the total transaction amount process due to fraud.

Module Contents

Classes Summary

FraudCost Score the percentage of money lost of the total transac-
tion amount process due to fraud.

Contents

class evalml.objectives.fraud_cost.FraudCost(retry_percentage=0.5, interchange_fee=0.02,
fraud_payout_percentage=1.0, amount_col='amount')

Score the percentage of money lost of the total transaction amount process due to fraud.

Parameters
• retry_percentage (float) – What percentage of customers that will retry a transaction

if it is declined. Between 0 and 1. Defaults to 0.5.

• interchange_fee (float) – How much of each successful transaction you pay. Between
0 and 1. Defaults to 0.02.

5.14. Utils 505

EvalML Documentation, Release 0.80.0

• fraud_payout_percentage (float) – Percentage of fraud you will not be able to collect.
Between 0 and 1. Defaults to 1.0.

• amount_col (str) – Name of column in data that contains the amount. Defaults to
“amount”.

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageTrue
name Fraud Cost
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate amount lost to fraud per transaction given

predictions, true values, and dataframe with transac-
tion amount.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

506 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, X, y_train=None, sample_weight=None)
Calculate amount lost to fraud per transaction given predictions, true values, and dataframe with transaction
amount.

Parameters
• y_predicted (pd.Series) – Predicted fraud labels.

• y_true (pd.Series) – True fraud labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Data with transaction amounts.

• sample_weight (pd.DataFrame) – Ignored.

Returns Amount lost to fraud per transaction.

Return type float

Raises ValueError – If amount_col is not a valid column in the input data.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

5.14. Utils 507

EvalML Documentation, Release 0.80.0

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

lead_scoring

Lead scoring objective.

Module Contents

Classes Summary

LeadScoring Lead scoring.

Contents

class evalml.objectives.lead_scoring.LeadScoring(true_positives=1, false_positives=- 1)
Lead scoring.

Parameters
• true_positives (int) – Reward for a true positive. Defaults to 1.

• false_positives (int) – Cost for a false positive. Should be negative. Defaults to -1.

Attributes

508 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Lead Scoring
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate the profit per lead.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

5.14. Utils 509

EvalML Documentation, Release 0.80.0

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculate the profit per lead.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Profit per lead

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

510 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

multiclass_classification_objective

Base class for all multiclass classification objectives.

Module Contents

Classes Summary

MulticlassClassificationObjective Base class for all multiclass classification objectives.

Contents

class
evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective

Base class for all multiclass classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

Methods

5.14. Utils 511

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

512 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

5.14. Utils 513

EvalML Documentation, Release 0.80.0

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

objective_base

Base class for all objectives.

Module Contents

Classes Summary

ObjectiveBase Base class for all objectives.

Contents

class evalml.objectives.objective_base.ObjectiveBase

Base class for all objectives.

Attributes

prob-
lem_types

None

Methods

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

514 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

5.14. Utils 515

EvalML Documentation, Release 0.80.0

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

regression_objective

Base class for all regression objectives.

Module Contents

Classes Summary

RegressionObjective Base class for all regression objectives.

516 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.objectives.regression_objective.RegressionObjective

Base class for all regression objectives.

Attributes

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

Methods

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

5.14. Utils 517

EvalML Documentation, Release 0.80.0

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

518 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

sensitivity_low_alert

Sensitivity at Low Alert Rates objective.

Module Contents

Classes Summary

SensitivityLowAlert Sensitivity at Low Alert Rates.

Attributes Summary

logger

Contents

evalml.objectives.sensitivity_low_alert.logger

class evalml.objectives.sensitivity_low_alert.SensitivityLowAlert(alert_rate=0.01)
Sensitivity at Low Alert Rates.

Parameters alert_rate (float) – percentage of top scores to classify as high risk.

Attributes

5.14. Utils 519

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Sensitivity at Low Alert Rates
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Determine if an observation is high risk given an alert

rate.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate sensitivity across all predictions, using the

top alert_rate percent of observations as the predicted
positive class.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

520 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, **kwargs)
Determine if an observation is high risk given an alert rate.

Parameters
• ypred_proba (pd.Series) – Predicted probabilities.

• **kwargs – Additional abritrary parameters.

Returns Whether or not an observation is high risk given an alert rate.

Return type pd.Series

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, **kwargs)
Calculate sensitivity across all predictions, using the top alert_rate percent of observations as the predicted
positive class.

Parameters
• y_true (pd.Series) – True labels.

• y_predicted (pd.Series) – Predicted labels based on alert_rate.

• **kwargs – Additional abritrary parameters.

Returns sensitivity using the observations with the top scores as the predicted positive class.

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

5.14. Utils 521

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

standard_metrics

Standard machine learning objective functions.

Module Contents

Classes Summary

AccuracyBinary Accuracy score for binary classification.
AccuracyMulticlass Accuracy score for multiclass classification.
AUC AUC score for binary classification.
AUCMacro AUC score for multiclass classification using macro av-

eraging.
AUCMicro AUC score for multiclass classification using micro av-

eraging.
AUCWeighted AUC Score for multiclass classification using weighted

averaging.
BalancedAccuracyBinary Balanced accuracy score for binary classification.
BalancedAccuracyMulticlass Balanced accuracy score for multiclass classification.
ExpVariance Explained variance score for regression.
F1 F1 score for binary classification.
F1Macro F1 score for multiclass classification using macro aver-

aging.
F1Micro F1 score for multiclass classification using micro aver-

aging.
F1Weighted F1 score for multiclass classification using weighted av-

eraging.
Gini Gini coefficient for binary classification.
LogLossBinary Log Loss for binary classification.
LogLossMulticlass Log Loss for multiclass classification.
MAE Mean absolute error for regression.
MAPE Mean absolute percentage error for time series regres-

sion. Scaled by 100 to return a percentage.
MASE Mean absolute scaled error for time series regression.
MaxError Maximum residual error for regression.
MCCBinary Matthews correlation coefficient for binary classifica-

tion.
MCCMulticlass Matthews correlation coefficient for multiclass classifi-

cation.
continues on next page

522 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 4 – continued from previous page
MeanSquaredLogError Mean squared log error for regression.
MedianAE Median absolute error for regression.
MSE Mean squared error for regression.
Precision Precision score for binary classification.
PrecisionMacro Precision score for multiclass classification using

macro-averaging.
PrecisionMicro Precision score for multiclass classification using micro

averaging.
PrecisionWeighted Precision score for multiclass classification using

weighted averaging.
R2 Coefficient of determination for regression.
Recall Recall score for binary classification.
RecallMacro Recall score for multiclass classification using macro av-

eraging.
RecallMicro Recall score for multiclass classification using micro av-

eraging.
RecallWeighted Recall score for multiclass classification using weighted

averaging.
RootMeanSquaredError Root mean squared error for regression.
RootMeanSquaredLogError Root mean squared log error for regression.
SMAPE Symmetric mean absolute percentage error for time se-

ries regression. Scaled by 100 to return a percentage.

Contents

class evalml.objectives.standard_metrics.AccuracyBinary

Accuracy score for binary classification.

Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AccuracyBinary().objective_function(y_true, y_
→˓pred), 0.6363636)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

5.14. Utils 523

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

524 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.AccuracyMulticlass

Accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(AccuracyMulticlass().objective_function(y_true,␣
→˓y_pred), 0.5454545)

Attributes

5.14. Utils 525

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for multiclass

classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

526 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.AUC

AUC score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AUC().objective_function(y_true, y_pred), 0.
→˓5714285)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

5.14. Utils 527

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for binary classifi-

cation.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

528 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.AUCMacro

AUC score for multiclass classification using macro averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.6, 0.1, 0.3],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMacro().objective_function(y_true, y_pred), 0.
→˓75)

5.14. Utils 529

EvalML Documentation, Release 0.80.0

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

530 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.AUCMicro

AUC score for multiclass classification using micro averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMicro().objective_function(y_true, y_pred), 0.
→˓9861111)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

5.14. Utils 531

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

532 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.AUCWeighted

AUC Score for multiclass classification using weighted averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.1, 0.2, 0.7],
... [0.6, 0.1, 0.3],
... [0.5, 0.2, 0.3]]
>>> np.testing.assert_almost_equal(AUCWeighted().objective_function(y_true, y_pred),
→˓ 0.4375)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC Score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

5.14. Utils 533

EvalML Documentation, Release 0.80.0

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC Score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.BalancedAccuracyBinary

Balanced accuracy score for binary classification.

534 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(BalancedAccuracyBinary().objective_function(y_
→˓true, y_pred), 0.60)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

5.14. Utils 535

EvalML Documentation, Release 0.80.0

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

536 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.BalancedAccuracyMulticlass

Balanced accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(BalancedAccuracyMulticlass().objective_
→˓function(y_true, y_pred), 0.5555555)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns

5.14. Utils 537

EvalML Documentation, Release 0.80.0

The percent difference between the scores. Note that for objectives that can be interpreted
as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.ExpVariance

Explained variance score for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(ExpVariance().objective_function(y_true, y_pred),
→˓ 0.7760736)

Attributes

538 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name ExpVariance
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for explained variance score for

regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for explained variance score for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 539

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.F1

F1 score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(F1().objective_function(y_true, y_pred), 0.25)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

540 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

5.14. Utils 541

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.F1Macro

F1 score for multiclass classification using macro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Macro().objective_function(y_true, y_pred), 0.
→˓5476190)

Attributes

542 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using macro averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using macro averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 543

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.F1Micro

F1 score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Micro().objective_function(y_true, y_pred), 0.
→˓5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

544 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

5.14. Utils 545

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.F1Weighted

F1 score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Weighted().objective_function(y_true, y_pred),␣
→˓0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

546 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.Gini

Gini coefficient for binary classification.

5.14. Utils 547

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Gini().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Gini
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Gini coefficient for binary

classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

548 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Gini coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

5.14. Utils 549

EvalML Documentation, Release 0.80.0

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.LogLossBinary

Log Loss for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(LogLossBinary().objective_function(y_true, y_
→˓pred), 19.6601745)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Binary
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

550 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 551

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.LogLossMulticlass

Log Loss for multiclass classification.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(LogLossMulticlass().objective_function(y_true, y_
→˓pred), 0.4783301)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Multiclass
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

552 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for multiclass classifi-

cation.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

5.14. Utils 553

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MAE

Mean absolute error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAE().objective_function(y_true, y_pred), 0.
→˓2727272)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

554 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MAPE

Mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.

5.14. Utils 555

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAPE().objective_function(y_true, y_pred), 15.
→˓9848484)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute percentage er-

ror for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

556 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MASE

Mean absolute scaled error for time series regression.

Only valid if there exists a nonzero input in y_train. Otherwise, will throw a ValueError.

Example

>>> y_train = pd.Series([5, 0.5, 4, 6, 3, 5, 2])
>>> y_true = pd.Series([3, -0.5, 2, 7, 2])
>>> y_pred = pd.Series([2.5, 0.0, 2, 8, 1.25])
>>> np.testing.assert_almost_equal(MASE().objective_function(y_true, y_pred, y_
→˓train), 0.18333333333333335)

Attributes

5.14. Utils 557

EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Scaled Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute scaled error for

time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train, X=None, sample_weight=None)
Objective function for mean absolute scaled error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

558 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MaxError

Maximum residual error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MaxError().objective_function(y_true, y_pred), 1.
→˓0)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MaxError
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

5.14. Utils 559

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for maximum residual error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for maximum residual error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

560 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MCCBinary

Matthews correlation coefficient for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(MCCBinary().objective_function(y_true, y_pred),␣
→˓0.2390457)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

5.14. Utils 561

EvalML Documentation, Release 0.80.0

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

562 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.MCCMulticlass

Matthews correlation coefficient for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(MCCMulticlass().objective_function(y_true, y_
→˓pred), 0.325)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

5.14. Utils 563

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

564 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MeanSquaredLogError

Mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MeanSquaredLogError().objective_function(y_true,␣
→˓y_pred), 0.0171353)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared log error for re-

gression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

5.14. Utils 565

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared log error for regression.

positive_only(self)
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MedianAE

Median absolute error for regression.

566 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MedianAE().objective_function(y_true, y_pred), 0.
→˓25)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MedianAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for median absolute error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 567

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for median absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MSE

Mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MSE().objective_function(y_true, y_pred), 0.
→˓1590909)

Attributes

568 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MSE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 569

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.Precision

Precision score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Precision().objective_function(y_true, y_pred),␣
→˓1.0)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

570 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

5.14. Utils 571

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.PrecisionMacro

Precision score for multiclass classification using macro-averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMacro().objective_function(y_true, y_
→˓pred), 0.5555555)

Attributes

572 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 573

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.PrecisionMicro

Precision score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMicro().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

574 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

5.14. Utils 575

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.PrecisionWeighted

Precision score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionWeighted().objective_function(y_true, y_
→˓pred), 0.5606060)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

576 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.R2

Coefficient of determination for regression.

5.14. Utils 577

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(R2().objective_function(y_true, y_pred), 0.
→˓7638036)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name R2
per-
fect_score

1

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for coefficient of determination

for regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

578 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for coefficient of determination for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.Recall

Recall score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Recall().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes

5.14. Utils 579

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for binary classi-

fication.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

580 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.RecallMacro

Recall score for multiclass classification using macro averaging.

5.14. Utils 581

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMacro().objective_function(y_true, y_pred),
→˓ 0.5555555)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

582 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RecallMicro

Recall score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMicro().objective_function(y_true, y_pred),
→˓ 0.5454545)

Attributes

5.14. Utils 583

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

584 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RecallWeighted

Recall score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallWeighted().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

5.14. Utils 585

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

586 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RootMeanSquaredError

Root mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredError().objective_function(y_true,
→˓ y_pred), 0.3988620)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

5.14. Utils 587

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RootMeanSquaredLogError

Root mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.

588 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredLogError().objective_function(y_
→˓true, y_pred), 0.13090204)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared log error for

regression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 589

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared log error for regression.

positive_only(self)
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.SMAPE

Symmetric mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(SMAPE().objective_function(y_true, y_pred), 18.
→˓13652589)

Attributes

590 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 200]

greater_is_betterFalse
is_bounded_like_percentageTrue
name Symmetric Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for symmetric mean absolute per-

centage error for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for symmetric mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 591

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

time_series_regression_objective

Base class for all time series regression objectives.

Module Contents

Classes Summary

TimeSeriesRegressionObjective Base class for all time series regression objectives.

Contents

class evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective

Base class for all time series regression objectives.

Attributes

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

Methods

592 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 593

EvalML Documentation, Release 0.80.0

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

594 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

utils

Utility methods for EvalML objectives.

Module Contents

Functions

get_all_objective_names Get a list of the names of all objectives.
get_core_objective_names Get a list of all valid core objectives.
get_core_objectives Returns all core objective instances associated with the

given problem type.
get_default_recommendation_objectives Get the default recommendation score metrics for the

given problem type.
get_non_core_objectives Get non-core objective classes.
get_objective Returns the Objective class corresponding to a given ob-

jective name.
get_optimization_objectives Get objectives for optimization.
get_ranking_objectives Get objectives for pipeline rankings.
normalize_objectives Converts objectives from a [0, inf) scale to [0, 1] given

a max and min for each objective.
organize_objectives Generate objectives to consider, with optional modifica-

tions to the defaults.
ranking_only_objectives Get ranking-only objective classes.
recommendation_score Computes a recommendation score for a model given

scores for a group of objectives.

Attributes Summary

DEFAULT_RECOMMENDATION_OBJECTIVES

Contents

evalml.objectives.utils.DEFAULT_RECOMMENDATION_OBJECTIVES

evalml.objectives.utils.get_all_objective_names()

Get a list of the names of all objectives.

Returns Objective names

Return type list (str)

5.14. Utils 595

EvalML Documentation, Release 0.80.0

evalml.objectives.utils.get_core_objective_names()

Get a list of all valid core objectives.

Returns Objective names.

Return type list[str]

evalml.objectives.utils.get_core_objectives(problem_type)
Returns all core objective instances associated with the given problem type.

Core objectives are designed to work out-of-the-box for any dataset.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

Examples

>>> for objective in get_core_objectives("regression"):
... print(objective.name)
ExpVariance
MaxError
MedianAE
MSE
MAE
R2
Root Mean Squared Error
>>> for objective in get_core_objectives("binary"):
... print(objective.name)
MCC Binary
Log Loss Binary
Gini
AUC
Precision
F1
Balanced Accuracy Binary
Accuracy Binary

evalml.objectives.utils.get_default_recommendation_objectives(problem_type, imbalanced=False)
Get the default recommendation score metrics for the given problem type.

Parameters
• problem_type (str/ProblemType) – Type of problem

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns Set of string objective names that correspond to ObjectiveBase objectives

evalml.objectives.utils.get_non_core_objectives()

Get non-core objective classes.

Non-core objectives are objectives that are domain-specific. Users typically need to configure these objectives
before using them in AutoMLSearch.

Returns List of ObjectiveBase classes

596 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.objectives.utils.get_objective(objective, return_instance=False, **kwargs)
Returns the Objective class corresponding to a given objective name.

Parameters
• objective (str or ObjectiveBase) – Name or instance of the objective class.

• return_instance (bool) – Whether to return an instance of the objective. This only ap-
plies if objective is of type str. Note that the instance will be initialized with default argu-
ments.

• kwargs (Any) – Any keyword arguments to pass into the objective. Only used when re-
turn_instance=True.

Returns ObjectiveBase if the parameter objective is of type ObjectiveBase. If objective is instead a
valid objective name, function will return the class corresponding to that name. If return_instance
is True, an instance of that objective will be returned.

Raises
• TypeError – If objective is None.

• TypeError – If objective is not a string and not an instance of ObjectiveBase.

• ObjectiveNotFoundError – If input objective is not a valid objective.

• ObjectiveCreationError – If objective cannot be created properly.

evalml.objectives.utils.get_optimization_objectives(problem_type)
Get objectives for optimization.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

evalml.objectives.utils.get_ranking_objectives(problem_type)
Get objectives for pipeline rankings.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

evalml.objectives.utils.normalize_objectives(objectives_to_normalize, max_objectives, min_objectives)
Converts objectives from a [0, inf) scale to [0, 1] given a max and min for each objective.

Parameters
• objectives_to_normalize (dict[str,float]) – A dictionary mapping objectives to

values

• max_objectives (dict[str,float]) – The mapping of objectives to the maximum val-
ues for normalization

• min_objectives (dict[str,float]) – The mapping of objectives to the minimum val-
ues for normalization

Returns A dictionary mapping objective names to their new normalized values

evalml.objectives.utils.organize_objectives(problem_type, include=None, exclude=None,
imbalanced=False)

Generate objectives to consider, with optional modifications to the defaults.

Parameters
• problem_type (str/ProblemType) – Type of problem

5.14. Utils 597

EvalML Documentation, Release 0.80.0

• include (list[str/ObjectiveBase]) – A list of objectives to include beyond the de-
faults. Defaults to None.

• exclude (list[str/ObjectiveBase]) – A list of objectives to exclude from the defaults.
Defaults to None.

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns List of string objective names that correspond to ObjectiveBase objectives

Raises
• ValueError – If any objectives to include or exclude are not valid for the problem type

• ValueError – If an objective to exclude is not in the default objectives

evalml.objectives.utils.ranking_only_objectives()

Get ranking-only objective classes.

Ranking-only objectives are objectives that are useful for evaluating the performance of a model, but should not
be used as an optimization objective during AutoMLSearch for various reasons.

Returns List of ObjectiveBase classes

evalml.objectives.utils.recommendation_score(objectives, prioritized_objective=None,
custom_weights=None)

Computes a recommendation score for a model given scores for a group of objectives.

This recommendation score is a weighted average of the given objectives, by default all weighted equally. Passing
in a prioritized objective will weight that objective with the prioritized weight, and all other objectives will split
the remaining weight equally.

Parameters
• objectives (dict[str,float]) – A dictionary mapping objectives to their values. Ob-

jectives should be a float between 0 and 1, where higher is better. If the objective does not
represent score this way, scores should first be normalized using the normalize_objectives
function.

• prioritized_objective (str) – An optional name of a priority objective that should be
given heavier weight (50% of the total) than the other objectives contributing to the score.
Defaults to None, where all objectives are weighted equally.

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. If all objectives are listed, should add up to 1. If a
subset of objectives are listed, should add up to less than 1, and remaining weight will be
evenly distributed between the remaining objectives. Should not be used at the same time as
prioritized_objective.

Returns A value between 0 and 100 representing how strongly we recommend a pipeline given a set
of evaluated objectives

Raises ValueError – If the objective(s) to prioritize are not in the known objectives, or if the custom
weight(s) are not a float between 0 and 1.

598 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

AccuracyBinary Accuracy score for binary classification.
AccuracyMulticlass Accuracy score for multiclass classification.
AUC AUC score for binary classification.
AUCMacro AUC score for multiclass classification using macro av-

eraging.
AUCMicro AUC score for multiclass classification using micro av-

eraging.
AUCWeighted AUC Score for multiclass classification using weighted

averaging.
BalancedAccuracyBinary Balanced accuracy score for binary classification.
BalancedAccuracyMulticlass Balanced accuracy score for multiclass classification.
BinaryClassificationObjective Base class for all binary classification objectives.
CostBenefitMatrix Score using a cost-benefit matrix. Scores quantify the

benefits of a given value, so greater numeric scores rep-
resents a better score. Costs and scores can be negative,
indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score
represents loss of cash flow.

ExpVariance Explained variance score for regression.
F1 F1 score for binary classification.
F1Macro F1 score for multiclass classification using macro aver-

aging.
F1Micro F1 score for multiclass classification using micro aver-

aging.
F1Weighted F1 score for multiclass classification using weighted av-

eraging.
FraudCost Score the percentage of money lost of the total transac-

tion amount process due to fraud.
Gini Gini coefficient for binary classification.
LeadScoring Lead scoring.
LogLossBinary Log Loss for binary classification.
LogLossMulticlass Log Loss for multiclass classification.
MAE Mean absolute error for regression.
MAPE Mean absolute percentage error for time series regres-

sion. Scaled by 100 to return a percentage.
MASE Mean absolute scaled error for time series regression.
MaxError Maximum residual error for regression.
MCCBinary Matthews correlation coefficient for binary classifica-

tion.
MCCMulticlass Matthews correlation coefficient for multiclass classifi-

cation.
MeanSquaredLogError Mean squared log error for regression.
MedianAE Median absolute error for regression.
MSE Mean squared error for regression.
MulticlassClassificationObjective Base class for all multiclass classification objectives.
ObjectiveBase Base class for all objectives.

continues on next page

5.14. Utils 599

EvalML Documentation, Release 0.80.0

Table 5 – continued from previous page
Precision Precision score for binary classification.
PrecisionMacro Precision score for multiclass classification using

macro-averaging.
PrecisionMicro Precision score for multiclass classification using micro

averaging.
PrecisionWeighted Precision score for multiclass classification using

weighted averaging.
R2 Coefficient of determination for regression.
Recall Recall score for binary classification.
RecallMacro Recall score for multiclass classification using macro av-

eraging.
RecallMicro Recall score for multiclass classification using micro av-

eraging.
RecallWeighted Recall score for multiclass classification using weighted

averaging.
RegressionObjective Base class for all regression objectives.
RootMeanSquaredError Root mean squared error for regression.
RootMeanSquaredLogError Root mean squared log error for regression.
SensitivityLowAlert Sensitivity at Low Alert Rates.
SMAPE Symmetric mean absolute percentage error for time se-

ries regression. Scaled by 100 to return a percentage.

Functions

get_all_objective_names Get a list of the names of all objectives.
get_core_objective_names Get a list of all valid core objectives.
get_core_objectives Returns all core objective instances associated with the

given problem type.
get_default_recommendation_objectives Get the default recommendation score metrics for the

given problem type.
get_non_core_objectives Get non-core objective classes.
get_objective Returns the Objective class corresponding to a given ob-

jective name.
get_optimization_objectives Get objectives for optimization.
get_ranking_objectives Get objectives for pipeline rankings.
normalize_objectives Converts objectives from a [0, inf) scale to [0, 1] given

a max and min for each objective.
organize_objectives Generate objectives to consider, with optional modifica-

tions to the defaults.
ranking_only_objectives Get ranking-only objective classes.
recommendation_score Computes a recommendation score for a model given

scores for a group of objectives.

600 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.objectives.AccuracyBinary

Accuracy score for binary classification.

Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AccuracyBinary().objective_function(y_true, y_
→˓pred), 0.6363636)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

5.14. Utils 601

EvalML Documentation, Release 0.80.0

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

602 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.AccuracyMulticlass

Accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(AccuracyMulticlass().objective_function(y_true,␣
→˓y_pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for multiclass

classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

5.14. Utils 603

EvalML Documentation, Release 0.80.0

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.AUC

AUC score for binary classification.

604 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AUC().objective_function(y_true, y_pred), 0.
→˓5714285)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for binary classifi-

cation.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

5.14. Utils 605

EvalML Documentation, Release 0.80.0

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

606 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.AUCMacro

AUC score for multiclass classification using macro averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.6, 0.1, 0.3],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMacro().objective_function(y_true, y_pred), 0.
→˓75)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

5.14. Utils 607

EvalML Documentation, Release 0.80.0

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.AUCMicro

AUC score for multiclass classification using micro averaging.

608 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMicro().objective_function(y_true, y_pred), 0.
→˓9861111)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

5.14. Utils 609

EvalML Documentation, Release 0.80.0

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.AUCWeighted

AUC Score for multiclass classification using weighted averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.1, 0.2, 0.7],
... [0.6, 0.1, 0.3],
... [0.5, 0.2, 0.3]]
>>> np.testing.assert_almost_equal(AUCWeighted().objective_function(y_true, y_pred),
→˓ 0.4375)

610 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC Score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC Score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

5.14. Utils 611

EvalML Documentation, Release 0.80.0

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.BalancedAccuracyBinary

Balanced accuracy score for binary classification.

Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(BalancedAccuracyBinary().objective_function(y_
→˓true, y_pred), 0.60)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

612 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

5.14. Utils 613

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.BalancedAccuracyMulticlass

Balanced accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(BalancedAccuracyMulticlass().objective_
→˓function(y_true, y_pred), 0.5555555)

Attributes

614 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 615

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.BinaryClassificationObjective

Base class for all binary classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

Methods

616 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

5.14. Utils 617

EvalML Documentation, Release 0.80.0

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

618 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.CostBenefitMatrix(true_positive, true_negative, false_positive, false_negative)
Score using a cost-benefit matrix. Scores quantify the benefits of a given value, so greater numeric scores repre-
sents a better score. Costs and scores can be negative, indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score represents loss of cash flow.

Parameters
• true_positive (float) – Cost associated with true positive predictions.

• true_negative (float) – Cost associated with true negative predictions.

• false_positive (float) – Cost associated with false positive predictions.

• false_negative (float) – Cost associated with false negative predictions.

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Cost Benefit Matrix
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

5.14. Utils 619

EvalML Documentation, Release 0.80.0

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculates cost-benefit of the using the predicted and

true values.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

620 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculates cost-benefit of the using the predicted and true values.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Cost-benefit matrix score

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.ExpVariance

Explained variance score for regression.

5.14. Utils 621

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(ExpVariance().objective_function(y_true, y_pred),
→˓ 0.7760736)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name ExpVariance
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for explained variance score for

regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

622 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for explained variance score for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.F1

F1 score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(F1().objective_function(y_true, y_pred), 0.25)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

5.14. Utils 623

EvalML Documentation, Release 0.80.0

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

624 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.F1Macro

F1 score for multiclass classification using macro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Macro().objective_function(y_true, y_pred), 0.
→˓5476190)

Attributes

5.14. Utils 625

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using macro averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using macro averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

626 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.F1Micro

F1 score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Micro().objective_function(y_true, y_pred), 0.
→˓5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

5.14. Utils 627

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

628 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.F1Weighted

F1 score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Weighted().objective_function(y_true, y_pred),␣
→˓0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

5.14. Utils 629

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.FraudCost(retry_percentage=0.5, interchange_fee=0.02,
fraud_payout_percentage=1.0, amount_col='amount')

Score the percentage of money lost of the total transaction amount process due to fraud.

Parameters
• retry_percentage (float) – What percentage of customers that will retry a transaction

if it is declined. Between 0 and 1. Defaults to 0.5.

• interchange_fee (float) – How much of each successful transaction you pay. Between
0 and 1. Defaults to 0.02.

630 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• fraud_payout_percentage (float) – Percentage of fraud you will not be able to collect.
Between 0 and 1. Defaults to 1.0.

• amount_col (str) – Name of column in data that contains the amount. Defaults to
“amount”.

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageTrue
name Fraud Cost
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate amount lost to fraud per transaction given

predictions, true values, and dataframe with transac-
tion amount.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

5.14. Utils 631

EvalML Documentation, Release 0.80.0

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, X, y_train=None, sample_weight=None)
Calculate amount lost to fraud per transaction given predictions, true values, and dataframe with transaction
amount.

Parameters
• y_predicted (pd.Series) – Predicted fraud labels.

• y_true (pd.Series) – True fraud labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Data with transaction amounts.

• sample_weight (pd.DataFrame) – Ignored.

Returns Amount lost to fraud per transaction.

Return type float

Raises ValueError – If amount_col is not a valid column in the input data.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

632 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

evalml.objectives.get_all_objective_names()

Get a list of the names of all objectives.

Returns Objective names

Return type list (str)

evalml.objectives.get_core_objective_names()

Get a list of all valid core objectives.

Returns Objective names.

Return type list[str]

evalml.objectives.get_core_objectives(problem_type)
Returns all core objective instances associated with the given problem type.

Core objectives are designed to work out-of-the-box for any dataset.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

Examples

>>> for objective in get_core_objectives("regression"):
... print(objective.name)
ExpVariance
MaxError
MedianAE
MSE
MAE
R2
Root Mean Squared Error

(continues on next page)

5.14. Utils 633

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> for objective in get_core_objectives("binary"):
... print(objective.name)
MCC Binary
Log Loss Binary
Gini
AUC
Precision
F1
Balanced Accuracy Binary
Accuracy Binary

evalml.objectives.get_default_recommendation_objectives(problem_type, imbalanced=False)
Get the default recommendation score metrics for the given problem type.

Parameters
• problem_type (str/ProblemType) – Type of problem

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns Set of string objective names that correspond to ObjectiveBase objectives

evalml.objectives.get_non_core_objectives()

Get non-core objective classes.

Non-core objectives are objectives that are domain-specific. Users typically need to configure these objectives
before using them in AutoMLSearch.

Returns List of ObjectiveBase classes

evalml.objectives.get_objective(objective, return_instance=False, **kwargs)
Returns the Objective class corresponding to a given objective name.

Parameters
• objective (str or ObjectiveBase) – Name or instance of the objective class.

• return_instance (bool) – Whether to return an instance of the objective. This only ap-
plies if objective is of type str. Note that the instance will be initialized with default argu-
ments.

• kwargs (Any) – Any keyword arguments to pass into the objective. Only used when re-
turn_instance=True.

Returns ObjectiveBase if the parameter objective is of type ObjectiveBase. If objective is instead a
valid objective name, function will return the class corresponding to that name. If return_instance
is True, an instance of that objective will be returned.

Raises
• TypeError – If objective is None.

• TypeError – If objective is not a string and not an instance of ObjectiveBase.

• ObjectiveNotFoundError – If input objective is not a valid objective.

• ObjectiveCreationError – If objective cannot be created properly.

634 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.objectives.get_optimization_objectives(problem_type)
Get objectives for optimization.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

evalml.objectives.get_ranking_objectives(problem_type)
Get objectives for pipeline rankings.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

class evalml.objectives.Gini

Gini coefficient for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Gini().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Gini
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

5.14. Utils 635

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Gini coefficient for binary

classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

636 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Gini coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.LeadScoring(true_positives=1, false_positives=- 1)
Lead scoring.

Parameters
• true_positives (int) – Reward for a true positive. Defaults to 1.

• false_positives (int) – Cost for a false positive. Should be negative. Defaults to -1.

Attributes

5.14. Utils 637

EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Lead Scoring
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate the profit per lead.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

638 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculate the profit per lead.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Profit per lead

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

5.14. Utils 639

EvalML Documentation, Release 0.80.0

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.LogLossBinary

Log Loss for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(LogLossBinary().objective_function(y_true, y_
→˓pred), 19.6601745)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Binary
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

640 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

5.14. Utils 641

EvalML Documentation, Release 0.80.0

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.LogLossMulticlass

Log Loss for multiclass classification.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(LogLossMulticlass().objective_function(y_true, y_
→˓pred), 0.4783301)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Multiclass
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

642 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for multiclass classifi-

cation.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

5.14. Utils 643

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MAE

Mean absolute error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAE().objective_function(y_true, y_pred), 0.
→˓2727272)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

644 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MAPE

Mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.

5.14. Utils 645

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAPE().objective_function(y_true, y_pred), 15.
→˓9848484)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute percentage er-

ror for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

646 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MASE

Mean absolute scaled error for time series regression.

Only valid if there exists a nonzero input in y_train. Otherwise, will throw a ValueError.

Example

>>> y_train = pd.Series([5, 0.5, 4, 6, 3, 5, 2])
>>> y_true = pd.Series([3, -0.5, 2, 7, 2])
>>> y_pred = pd.Series([2.5, 0.0, 2, 8, 1.25])
>>> np.testing.assert_almost_equal(MASE().objective_function(y_true, y_pred, y_
→˓train), 0.18333333333333335)

Attributes

5.14. Utils 647

EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Scaled Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute scaled error for

time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train, X=None, sample_weight=None)
Objective function for mean absolute scaled error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

648 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MaxError

Maximum residual error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MaxError().objective_function(y_true, y_pred), 1.
→˓0)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MaxError
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

5.14. Utils 649

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for maximum residual error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for maximum residual error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

650 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MCCBinary

Matthews correlation coefficient for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(MCCBinary().objective_function(y_true, y_pred),␣
→˓0.2390457)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

5.14. Utils 651

EvalML Documentation, Release 0.80.0

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

652 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.MCCMulticlass

Matthews correlation coefficient for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(MCCMulticlass().objective_function(y_true, y_
→˓pred), 0.325)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

5.14. Utils 653

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

654 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MeanSquaredLogError

Mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MeanSquaredLogError().objective_function(y_true,␣
→˓y_pred), 0.0171353)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared log error for re-

gression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

5.14. Utils 655

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared log error for regression.

positive_only(self)
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MedianAE

Median absolute error for regression.

656 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MedianAE().objective_function(y_true, y_pred), 0.
→˓25)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MedianAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for median absolute error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 657

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for median absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MSE

Mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MSE().objective_function(y_true, y_pred), 0.
→˓1590909)

Attributes

658 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MSE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 659

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MulticlassClassificationObjective

Base class for all multiclass classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

Methods

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

660 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

5.14. Utils 661

EvalML Documentation, Release 0.80.0

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.normalize_objectives(objectives_to_normalize, max_objectives, min_objectives)
Converts objectives from a [0, inf) scale to [0, 1] given a max and min for each objective.

Parameters
• objectives_to_normalize (dict[str,float]) – A dictionary mapping objectives to

values

• max_objectives (dict[str,float]) – The mapping of objectives to the maximum val-
ues for normalization

• min_objectives (dict[str,float]) – The mapping of objectives to the minimum val-
ues for normalization

Returns A dictionary mapping objective names to their new normalized values

class evalml.objectives.ObjectiveBase

Base class for all objectives.

Attributes

prob-
lem_types

None

Methods

662 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 663

EvalML Documentation, Release 0.80.0

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

664 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.organize_objectives(problem_type, include=None, exclude=None, imbalanced=False)
Generate objectives to consider, with optional modifications to the defaults.

Parameters
• problem_type (str/ProblemType) – Type of problem

• include (list[str/ObjectiveBase]) – A list of objectives to include beyond the de-
faults. Defaults to None.

• exclude (list[str/ObjectiveBase]) – A list of objectives to exclude from the defaults.
Defaults to None.

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns List of string objective names that correspond to ObjectiveBase objectives

Raises
• ValueError – If any objectives to include or exclude are not valid for the problem type

• ValueError – If an objective to exclude is not in the default objectives

class evalml.objectives.Precision

Precision score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Precision().objective_function(y_true, y_pred),␣
→˓1.0)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

5.14. Utils 665

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

666 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.PrecisionMacro

Precision score for multiclass classification using macro-averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMacro().objective_function(y_true, y_
→˓pred), 0.5555555)

Attributes

5.14. Utils 667

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

668 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.PrecisionMicro

Precision score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMicro().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

5.14. Utils 669

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

670 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.PrecisionWeighted

Precision score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionWeighted().objective_function(y_true, y_
→˓pred), 0.5606060)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters

5.14. Utils 671

EvalML Documentation, Release 0.80.0

• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.R2

Coefficient of determination for regression.

672 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(R2().objective_function(y_true, y_pred), 0.
→˓7638036)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name R2
per-
fect_score

1

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for coefficient of determination

for regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 673

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for coefficient of determination for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.ranking_only_objectives()

Get ranking-only objective classes.

Ranking-only objectives are objectives that are useful for evaluating the performance of a model, but should not
be used as an optimization objective during AutoMLSearch for various reasons.

Returns List of ObjectiveBase classes

class evalml.objectives.Recall

Recall score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Recall().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes

674 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for binary classi-

fication.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

5.14. Utils 675

EvalML Documentation, Release 0.80.0

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.RecallMacro

Recall score for multiclass classification using macro averaging.

676 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMacro().objective_function(y_true, y_pred),
→˓ 0.5555555)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 677

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RecallMicro

Recall score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMicro().objective_function(y_true, y_pred),
→˓ 0.5454545)

Attributes

678 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

5.14. Utils 679

EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RecallWeighted

Recall score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallWeighted().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

680 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

5.14. Utils 681

EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.recommendation_score(objectives, prioritized_objective=None, custom_weights=None)
Computes a recommendation score for a model given scores for a group of objectives.

This recommendation score is a weighted average of the given objectives, by default all weighted equally. Passing
in a prioritized objective will weight that objective with the prioritized weight, and all other objectives will split
the remaining weight equally.

Parameters
• objectives (dict[str,float]) – A dictionary mapping objectives to their values. Ob-

jectives should be a float between 0 and 1, where higher is better. If the objective does not
represent score this way, scores should first be normalized using the normalize_objectives
function.

• prioritized_objective (str) – An optional name of a priority objective that should be
given heavier weight (50% of the total) than the other objectives contributing to the score.
Defaults to None, where all objectives are weighted equally.

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. If all objectives are listed, should add up to 1. If a
subset of objectives are listed, should add up to less than 1, and remaining weight will be
evenly distributed between the remaining objectives. Should not be used at the same time as
prioritized_objective.

Returns A value between 0 and 100 representing how strongly we recommend a pipeline given a set
of evaluated objectives

Raises ValueError – If the objective(s) to prioritize are not in the known objectives, or if the custom
weight(s) are not a float between 0 and 1.

class evalml.objectives.RegressionObjective

Base class for all regression objectives.

Attributes

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

Methods

682 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 683

EvalML Documentation, Release 0.80.0

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

684 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RootMeanSquaredError

Root mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredError().objective_function(y_true,
→˓ y_pred), 0.3988620)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns

5.14. Utils 685

EvalML Documentation, Release 0.80.0

The percent difference between the scores. Note that for objectives that can be interpreted
as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RootMeanSquaredLogError

Root mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.

686 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredLogError().objective_function(y_
→˓true, y_pred), 0.13090204)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared log error for

regression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 687

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared log error for regression.

positive_only(self)
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.SensitivityLowAlert(alert_rate=0.01)
Sensitivity at Low Alert Rates.

Parameters alert_rate (float) – percentage of top scores to classify as high risk.

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Sensitivity at Low Alert Rates
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

688 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Determine if an observation is high risk given an alert

rate.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate sensitivity across all predictions, using the

top alert_rate percent of observations as the predicted
positive class.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, **kwargs)
Determine if an observation is high risk given an alert rate.

Parameters
• ypred_proba (pd.Series) – Predicted probabilities.

• **kwargs – Additional abritrary parameters.

Returns Whether or not an observation is high risk given an alert rate.

Return type pd.Series

5.14. Utils 689

EvalML Documentation, Release 0.80.0

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, **kwargs)
Calculate sensitivity across all predictions, using the top alert_rate percent of observations as the predicted
positive class.

Parameters
• y_true (pd.Series) – True labels.

• y_predicted (pd.Series) – Predicted labels based on alert_rate.

• **kwargs – Additional abritrary parameters.

Returns sensitivity using the observations with the top scores as the predicted positive class.

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.SMAPE

Symmetric mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.

690 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(SMAPE().objective_function(y_true, y_pred), 18.
→˓13652589)

Attributes

ex-
pected_range

[0, 200]

greater_is_betterFalse
is_bounded_like_percentageTrue
name Symmetric Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for symmetric mean absolute per-

centage error for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 691

EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for symmetric mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

Pipelines

EvalML pipelines.

Subpackages

components

EvalML component classes.

692 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Subpackages

ensemble

Ensemble components.

Submodules

stacked_ensemble_base

Stacked Ensemble Base.

Module Contents

Classes Summary

StackedEnsembleBase Stacked Ensemble Base Class.

Contents

class evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase(final_estimator=None,
n_jobs=-
1,
ran-
dom_seed=0,
**kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

5.14. Utils 693

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters

694 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

5.14. Utils 695

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

stacked_ensemble_classifier

Stacked Ensemble Classifier.

Module Contents

Classes Summary

StackedEnsembleClassifier Stacked Ensemble Classifier.

Contents

class evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier(final_estimator=None,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

696 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
...],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes

5.14. Utils 697

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

698 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 699

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

stacked_ensemble_regressor

Stacked Ensemble Regressor.

Module Contents

Classes Summary

StackedEnsembleRegressor Stacked Ensemble Regressor.

700 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor(final_estimator=None,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),
... "Random Forest.x",
... "Random Forest B.x",
... "y",
...],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes

5.14. Utils 701

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

702 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 703

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

StackedEnsembleBase Stacked Ensemble Base Class.
StackedEnsembleClassifier Stacked Ensemble Classifier.
StackedEnsembleRegressor Stacked Ensemble Regressor.

704 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.ensemble.StackedEnsembleBase(final_estimator=None, n_jobs=-
1, random_seed=0, **kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 705

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

706 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters

5.14. Utils 707

EvalML Documentation, Release 0.80.0

• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ensemble.StackedEnsembleClassifier(final_estimator=None,
n_jobs=- 1,
random_seed=0,
**kwargs)

Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
...],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes

708 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 709

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

710 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ensemble.StackedEnsembleRegressor(final_estimator=None,
n_jobs=- 1,
random_seed=0,
**kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 711

EvalML Documentation, Release 0.80.0

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),
... "Random Forest.x",
... "Random Forest B.x",
... "y",
...],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

712 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 713

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

714 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

estimators

EvalML estimator components.

Subpackages

classifiers

Classification model components.

Submodules

baseline_classifier

Baseline classifier.

5.14. Utils 715

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

BaselineClassifier Classifier that predicts using the specified strategy.

Contents

class evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier(strategy='mode',
ran-
dom_seed=0,
**kwargs)

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False

Methods

716 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self)
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 717

EvalML Documentation, Release 0.80.0

property feature_importance(self)
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

718 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

catboost_classifier

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library and
natively supports categorical features.

Module Contents

Classes Summary

CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

5.14. Utils 719

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier(n_estimators=10,
eta=0.03,
max_depth=6,
boot-
strap_type=None,
silent=True,
al-
low_writing_files=False,
ran-
dom_seed=0,
n_jobs=-

1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

720 Chapter 5. API Reference

https://catboost.ai/

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 721

EvalML Documentation, Release 0.80.0

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

722 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

decision_tree_classifier

Decision Tree Classifier.

Module Contents

Classes Summary

DecisionTreeClassifier Decision Tree Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier(criterion='gini',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

5.14. Utils 723

EvalML Documentation, Release 0.80.0

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

724 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 725

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

726 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

elasticnet_classifier

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Module Contents

Classes Summary

ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with
elasticnet penalty as the base estimator.

Contents

5.14. Utils 727

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier(penalty='elasticnet',
C=1.0,
l1_ratio=0.15,
multi_class='auto',
solver='saga',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

728 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 729

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

730 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

et_classifier

Extra Trees Classifier.

Module Contents

Classes Summary

ExtraTreesClassifier Extra Trees Classifier.

5.14. Utils 731

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier(n_estimators=100,
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

732 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 733

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

734 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 735

EvalML Documentation, Release 0.80.0

kneighbors_classifier

K-Nearest Neighbors Classifier.

Module Contents

Classes Summary

KNeighborsClassifier K-Nearest Neighbors Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier(n_neighbors=5,
weights='uniform',
al-
go-
rithm='auto',
leaf_size=30,
p=2,
ran-
dom_seed=0,
**kwargs)

K-Nearest Neighbors Classifier.

Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

736 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

5.14. Utils 737

EvalML Documentation, Release 0.80.0

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

738 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 739

EvalML Documentation, Release 0.80.0

lightgbm_classifier

LightGBM Classifier.

Module Contents

Classes Summary

LightGBMClassifier LightGBM Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier(boosting_type='gbdt',
learn-
ing_rate=0.1,
n_estimators=100,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bag-
ging_freq=0,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

740 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 741

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

742 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 743

EvalML Documentation, Release 0.80.0

logistic_regression_classifier

Logistic Regression Classifier.

Module Contents

Classes Summary

LogisticRegressionClassifier Logistic Regression Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier(penalty='l2',
C=1.0,
multi_class='auto',
solver='lbfgs',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

744 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 745

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

746 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 747

EvalML Documentation, Release 0.80.0

rf_classifier

Random Forest Classifier.

Module Contents

Classes Summary

RandomForestClassifier Random Forest Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier(n_estimators=100,
max_depth=6,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

748 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 749

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

750 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

svm_classifier

Support Vector Machine Classifier.

Module Contents

Classes Summary

SVMClassifier Support Vector Machine Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier(C=1.0,
ker-
nel='rbf',
gamma='auto',
prob-
a-
bil-
ity=True,
ran-
dom_seed=0,
**kwargs)

5.14. Utils 751

EvalML Documentation, Release 0.80.0

Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

752 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

5.14. Utils 753

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters

754 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

vowpal_wabbit_classifiers

Vowpal Wabbit Classifiers.

Module Contents

Classes Summary

VowpalWabbitBaseClassifier Vowpal Wabbit Base Classifier.
VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Base Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 755

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

756 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 757

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Binary Classifier.

Parameters

758 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,
“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 759

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

760 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 761

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

762 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 763

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

764 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

xgboost_classifier

XGBoost Classifier.

Module Contents

Classes Summary

XGBoostClassifier XGBoost Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier(eta=0.1,
max_depth=6,
min_child_weight=1,
n_estimators=100,
ran-
dom_seed=0,
eval_metric='logloss',
n_jobs=12,
**kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

5.14. Utils 765

EvalML Documentation, Release 0.80.0

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

766 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

5.14. Utils 767

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

768 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

BaselineClassifier Classifier that predicts using the specified strategy.
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeClassifier Decision Tree Classifier.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ExtraTreesClassifier Extra Trees Classifier.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LogisticRegressionClassifier Logistic Regression Classifier.
RandomForestClassifier Random Forest Classifier.
SVMClassifier Support Vector Machine Classifier.
VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
XGBoostClassifier XGBoost Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.BaselineClassifier(strategy='mode',
random_seed=0,
**kwargs)

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False

5.14. Utils 769

EvalML Documentation, Release 0.80.0

Methods

classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self)
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

770 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 771

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.CatBoostClassifier(n_estimators=10,
eta=0.03,
max_depth=6,
boot-
strap_type=None,
silent=True, al-
low_writing_files=False,
random_seed=0,
n_jobs=- 1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

772 Chapter 5. API Reference

https://catboost.ai/

EvalML Documentation, Release 0.80.0

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 773

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

774 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier(criterion='gini',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Classifier.

5.14. Utils 775

EvalML Documentation, Release 0.80.0

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

776 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 777

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

778 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier(penalty='elasticnet',
C=1.0,
l1_ratio=0.15,
multi_class='auto',
solver='saga',
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

5.14. Utils 779

EvalML Documentation, Release 0.80.0

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

780 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

5.14. Utils 781

EvalML Documentation, Release 0.80.0

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

782 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier(n_estimators=100,
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 783

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

784 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 785

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier(n_neighbors=5,
weights='uniform',
algo-
rithm='auto',
leaf_size=30,
p=2, ran-
dom_seed=0,
**kwargs)

K-Nearest Neighbors Classifier.

Parameters

786 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 787

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

788 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 789

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.LightGBMClassifier(boosting_type='gbdt',
learn-
ing_rate=0.1,
n_estimators=100,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bagging_freq=0,
n_jobs=- 1,
random_seed=0,
**kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

790 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 791

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

792 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 793

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier(penalty='l2',
C=1.0,
multi_class='auto',
solver='lbfgs',
n_jobs=-
1,
ran-
dom_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

794 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 795

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

796 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.RandomForestClassifier(n_estimators=100,
max_depth=6,
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 797

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

798 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 799

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.SVMClassifier(C=1.0, kernel='rbf',
gamma='auto',
probability=True,
random_seed=0,
**kwargs)

Support Vector Machine Classifier.

Parameters

800 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• C (float) – The regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 801

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

802 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 803

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

804 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 805

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

806 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 807

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

808 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 809

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.XGBoostClassifier(eta=0.1,
max_depth=6,
min_child_weight=1,
n_estimators=100,
random_seed=0,
eval_metric='logloss',
n_jobs=12,
**kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

810 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

5.14. Utils 811

EvalML Documentation, Release 0.80.0

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

812 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 813

EvalML Documentation, Release 0.80.0

regressors

Regression model components.

Submodules

arima_regressor

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the degree of
differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/statsmodels.tsa.
arima.model.ARIMA.html.

Module Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

Contents

814 Chapter 5. API Reference

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor(time_index:
Op-
tional[Hashable]
=
None,
trend:
Op-
tional[str]
=
None,
start_p:
int
=
2,
d:
int
=
0,
start_q:
int
=
2,
max_p:
int
=
5,
max_d:
int
=
2,
max_q:
int
=
5,
sea-
sonal:
bool
=
True,
sp:
int
=
1,
n_jobs:
int
= -
1,
ran-
dom_seed:
Union[int,
float]
=
0,
max-
iter:
int
=
10,
use_covariates:
bool
=
True,
**kwargs)

5.14. Utils 815

EvalML Documentation, Release 0.80.0

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

816 Chapter 5. API Reference

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

5.14. Utils 817

EvalML Documentation, Release 0.80.0

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

818 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

baseline_regressor

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to
compare with other regressors.

Module Contents

Classes Summary

BaselineRegressor Baseline regressor that uses a simple strategy to make
predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Contents

class evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor(strategy='mean',
ran-
dom_seed=0,
**kwargs)

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters
• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults

to “mean”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 819

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

820 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

5.14. Utils 821

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

catboost_regressor

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library and
natively supports categorical features.

822 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

Contents

class evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor(n_estimators=10,
eta=0.03,
max_depth=6,
boot-
strap_type=None,
silent=False,
al-
low_writing_files=False,
ran-
dom_seed=0,
n_jobs=-

1,
**kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 823

https://catboost.ai/

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

824 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 825

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

decision_tree_regressor

Decision Tree Regressor.

Module Contents

Classes Summary

DecisionTreeRegressor Decision Tree Regressor.

826 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 827

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

828 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 829

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

830 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

elasticnet_regressor

Elastic Net Regressor.

Module Contents

Classes Summary

ElasticNetRegressor Elastic Net Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor(alpha=0.0001,
l1_ratio=0.15,
max_iter=1000,
ran-
dom_seed=0,
**kwargs)

Elastic Net Regressor.

Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 831

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

832 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 833

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

et_regressor

Extra Trees Regressor.

Module Contents

Classes Summary

ExtraTreesRegressor Extra Trees Regressor.

Contents

834 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor(n_estimators:
int
=
100,
max_features:
str
=
'sqrt',
max_depth:
int
=
6,
min_samples_split:
int
=
2,
min_weight_fraction_leaf:
float
=
0.0,
n_jobs:
int
=
-

1,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

5.14. Utils 835

EvalML Documentation, Release 0.80.0

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

836 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

5.14. Utils 837

EvalML Documentation, Release 0.80.0

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

838 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

exponential_smoothing_regressor

Holt-Winters Exponential Smoothing Forecaster.

Module Contents

Classes Summary

ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.

Contents

class evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor(trend:
Op-
tional[str]
=
None,
damped_trend:
bool
=
False,
sea-
sonal:
Op-
tional[str]
=
None,
sp:
int
=
2,
n_jobs:
int
=
-

1,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters

5.14. Utils 839

EvalML Documentation, Release 0.80.0

• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

840 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

5.14. Utils 841

EvalML Documentation, Release 0.80.0

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

842 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

lightgbm_regressor

LightGBM Regressor.

Module Contents

Classes Summary

LightGBMRegressor LightGBM Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor(boosting_type='gbdt',
learn-
ing_rate=0.1,
n_estimators=20,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bag-
ging_freq=0,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

LightGBM Regressor.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

5.14. Utils 843

EvalML Documentation, Release 0.80.0

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

844 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

5.14. Utils 845

EvalML Documentation, Release 0.80.0

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

846 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

linear_regressor

Linear Regressor.

Module Contents

Classes Summary

LinearRegressor Linear Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor(fit_intercept=True,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 847

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

848 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 849

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

multiseries_time_series_baseline_regressor

Time series estimator that predicts using the naive forecasting approach.

Module Contents

Classes Summary

MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the
naive forecasting approach.

Contents

class evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

850 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 851

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

852 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 853

EvalML Documentation, Release 0.80.0

prophet_regressor

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with
yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects
and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles
outliers well.

Module Contents

Classes Summary

ProphetRegressor Prophet is a procedure for forecasting time series data
based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

Contents

854 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor(time_index:
Op-
tional[Hashable]
=
None,
change-
point_prior_scale:
float
=
0.05,
sea-
son-
al-
ity_prior_scale:
int
=
10,
hol-
i-
days_prior_scale:
int
=
10,
sea-
son-
al-
ity_mode:
str
=
'ad-
di-
tive',
stan_backend:
str
=
'CMD-
STANPY',
in-
ter-
val_width:
float
=
0.95,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

5.14. Utils 855

EvalML Documentation, Release 0.80.0

More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

856 Chapter 5. API Reference

https://facebook.github.io/prophet/

EvalML Documentation, Release 0.80.0

build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.

5.14. Utils 857

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self)→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series

858 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

rf_regressor

Random Forest Regressor.

Module Contents

Classes Summary

RandomForestRegressor Random Forest Regressor.

Contents

5.14. Utils 859

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor(n_estimators:
int
=
100,
max_depth:
int
=
6,
n_jobs:
int
=
-

1,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

860 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 861

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

862 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

svm_regressor

Support Vector Machine Regressor.

Module Contents

Classes Summary

SVMRegressor Support Vector Machine Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor(C=1.0,
ker-
nel='rbf',
gamma='auto',
ran-
dom_seed=0,
**kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

5.14. Utils 863

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

864 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 865

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

866 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

time_series_baseline_estimator

Time series estimator that predicts using the naive forecasting approach.

Module Contents

Classes Summary

TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-
casting approach.

Contents

class evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 867

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

868 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

5.14. Utils 869

EvalML Documentation, Release 0.80.0

Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

varmax_regressor

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order
and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.
varmax.VARMAX.html.

Module Contents

Classes Summary

VARMAXRegressor Vector Autoregressive Moving Average with eXoge-
nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

870 Chapter 5. API Reference

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor(time_index:
Op-
tional[Hashable]
=
None,
p:
int
=
1,
q:
int
=
0,
trend:
Op-
tional[str]
=
'c',
ran-
dom_seed:
Union[int,
float]
=
0,
max-
iter:
int
=
10,
use_covariates:
bool
=
False,
**kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 871

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

872 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 873

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

vowpal_wabbit_regressor

Vowpal Wabbit Regressor.

874 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

VowpalWabbitRegressor Vowpal Wabbit Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor(learning_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 875

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

876 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 877

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

xgboost_regressor

XGBoost Regressor.

Module Contents

Classes Summary

XGBoostRegressor XGBoost Regressor.

Contents

878 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor(eta:
float
=
0.1,
max_depth:
int
=
6,
min_child_weight:
int
=
1,
n_estimators:
int
=
100,
ran-
dom_seed:
Union[int,
float]
=
0,
n_jobs:
int
=
12,
**kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

5.14. Utils 879

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

880 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 881

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

882 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineRegressor Baseline regressor that uses a simple strategy to make
predictions. This is useful as a simple baseline regressor
to compare with other regressors.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeRegressor Decision Tree Regressor.
ElasticNetRegressor Elastic Net Regressor.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesRegressor Extra Trees Regressor.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the

naive forecasting approach.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestRegressor Random Forest Regressor.
SVMRegressor Support Vector Machine Regressor.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
VARMAXRegressor Vector Autoregressive Moving Average with eXoge-

nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostRegressor XGBoost Regressor.

5.14. Utils 883

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.regressors.ARIMARegressor(time_index:
Optional[Hashable] =
None, trend:
Optional[str] = None,
start_p: int = 2, d: int
= 0, start_q: int = 2,
max_p: int = 5, max_d:
int = 2, max_q: int = 5,
seasonal: bool = True,
sp: int = 1, n_jobs: int
= - 1, random_seed:
Union[int, float] = 0,
maxiter: int = 10,
use_covariates: bool =
True, **kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

884 Chapter 5. API Reference

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 885

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

886 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.BaselineRegressor(strategy='mean',
random_seed=0,
**kwargs)

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters
• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults

to “mean”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 887

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

888 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

5.14. Utils 889

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.CatBoostRegressor(n_estimators=10,
eta=0.03,
max_depth=6, boot-
strap_type=None,
silent=False, al-
low_writing_files=False,
random_seed=0,
n_jobs=- 1,
**kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

890 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 891

https://catboost.ai/

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

892 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

5.14. Utils 893

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

894 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 895

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

896 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters

5.14. Utils 897

EvalML Documentation, Release 0.80.0

• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.ElasticNetRegressor(alpha=0.0001,
l1_ratio=0.15,
max_iter=1000,
random_seed=0,
**kwargs)

Elastic Net Regressor.

Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

898 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

5.14. Utils 899

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

900 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor(trend:
Op-
tional[str]
=
None,
damped_trend:
bool
=
False,
sea-
sonal:
Op-
tional[str]
=
None,
sp:
int
= 2,
n_jobs:
int
= -
1,
ran-
dom_seed:
Union[int,
float]
= 0,
**kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters

5.14. Utils 901

EvalML Documentation, Release 0.80.0

• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

902 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

5.14. Utils 903

EvalML Documentation, Release 0.80.0

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

904 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor(n_estimators: int
= 100,
max_features: str
= 'sqrt',
max_depth: int =
6,
min_samples_split:
int = 2,
min_weight_fraction_leaf:
float = 0.0,
n_jobs: int = - 1,
random_seed:
Union[int, float]
= 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 905

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

906 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 907

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.LightGBMRegressor(boosting_type='gbdt',
learning_rate=0.1,
n_estimators=20,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bagging_freq=0,
n_jobs=- 1,
random_seed=0,
**kwargs)

LightGBM Regressor.

Parameters

908 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses
traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods

5.14. Utils 909

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.

910 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

5.14. Utils 911

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.LinearRegressor(fit_intercept=True,
n_jobs=- 1,
random_seed=0,
**kwargs)

Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

912 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 913

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

914 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 915

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

916 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 917

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

918 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.ProphetRegressor(time_index:
Optional[Hashable]
= None, change-
point_prior_scale:
float = 0.05, season-
ality_prior_scale: int
= 10, holi-
days_prior_scale: int
= 10,
seasonality_mode:
str = 'additive',
stan_backend: str =
'CMDSTANPY',
interval_width: float
= 0.95,
random_seed:
Union[int, float] = 0,
**kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 919

https://facebook.github.io/prophet/

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

920 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self)→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 921

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.RandomForestRegressor(n_estimators:
int = 100,
max_depth:
int = 6,
n_jobs: int = -
1,
random_seed:
Union[int,
float] = 0,
**kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

922 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 923

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

924 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.SVMRegressor(C=1.0, kernel='rbf',
gamma='auto',
random_seed=0,
**kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

5.14. Utils 925

EvalML Documentation, Release 0.80.0

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

926 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

5.14. Utils 927

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

928 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 929

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

930 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

5.14. Utils 931

EvalML Documentation, Release 0.80.0

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.VARMAXRegressor(time_index:
Optional[Hashable] =
None, p: int = 1, q: int
= 0, trend:
Optional[str] = 'c',
random_seed:
Union[int, float] = 0,
maxiter: int = 10,
use_covariates: bool
= False, **kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

932 Chapter 5. API Reference

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 933

EvalML Documentation, Release 0.80.0

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

934 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor(learning_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1, ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 935

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

936 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 937

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.XGBoostRegressor(eta: float = 0.1,
max_depth: int = 6,
min_child_weight:
int = 1,
n_estimators: int =
100, random_seed:
Union[int, float] = 0,
n_jobs: int = 12,
**kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

938 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 939

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

940 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Submodules

estimator

A component that fits and predicts given data.

Module Contents

Classes Summary

Estimator A component that fits and predicts given data.

5.14. Utils 941

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.estimator.Estimator(parameters: dict = None,
component_obj:
Type[evalml.pipelines.components.ComponentBase]
= None, random_seed:
Union[int, float] = 0,
**kwargs)

A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

942 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

5.14. Utils 943

EvalML Documentation, Release 0.80.0

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

944 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineClassifier Classifier that predicts using the specified strategy.
BaselineRegressor Baseline regressor that uses a simple strategy to make

predictions. This is useful as a simple baseline regressor
to compare with other regressors.

continues on next page

5.14. Utils 945

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

Table 6 – continued from previous page
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeClassifier Decision Tree Classifier.
DecisionTreeRegressor Decision Tree Regressor.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ElasticNetRegressor Elastic Net Regressor.
Estimator A component that fits and predicts given data.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesClassifier Extra Trees Classifier.
ExtraTreesRegressor Extra Trees Regressor.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
LogisticRegressionClassifier Logistic Regression Classifier.
MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the

naive forecasting approach.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestClassifier Random Forest Classifier.
RandomForestRegressor Random Forest Regressor.
SVMClassifier Support Vector Machine Classifier.
SVMRegressor Support Vector Machine Regressor.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
VARMAXRegressor Vector Autoregressive Moving Average with eXoge-

nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostClassifier XGBoost Classifier.
XGBoostRegressor XGBoost Regressor.

946 Chapter 5. API Reference

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.ARIMARegressor(time_index: Optional[Hashable] =
None, trend: Optional[str] = None,
start_p: int = 2, d: int = 0, start_q:
int = 2, max_p: int = 5, max_d: int =
2, max_q: int = 5, seasonal: bool =
True, sp: int = 1, n_jobs: int = - 1,
random_seed: Union[int, float] = 0,
maxiter: int = 10, use_covariates:
bool = True, **kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 947

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

948 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 949

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.BaselineClassifier(strategy='mode',
random_seed=0, **kwargs)

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

950 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False

Methods

classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self)
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

5.14. Utils 951

EvalML Documentation, Release 0.80.0

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

952 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.BaselineRegressor(strategy='mean', random_seed=0,
**kwargs)

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters

5.14. Utils 953

EvalML Documentation, Release 0.80.0

• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults
to “mean”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

954 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

5.14. Utils 955

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

956 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.CatBoostClassifier(n_estimators=10, eta=0.03,
max_depth=6,
bootstrap_type=None,
silent=True,
allow_writing_files=False,
random_seed=0, n_jobs=- 1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 957

https://catboost.ai/

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

958 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

5.14. Utils 959

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.CatBoostRegressor(n_estimators=10, eta=0.03,
max_depth=6,
bootstrap_type=None,
silent=False,
allow_writing_files=False,
random_seed=0, n_jobs=- 1,
**kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

960 Chapter 5. API Reference

https://catboost.ai/

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 961

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

962 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.DecisionTreeClassifier(criterion='gini',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0,
**kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

5.14. Utils 963

EvalML Documentation, Release 0.80.0

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

964 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 965

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

966 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

5.14. Utils 967

EvalML Documentation, Release 0.80.0

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

968 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 969

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

970 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ElasticNetClassifier(penalty='elasticnet', C=1.0,
l1_ratio=0.15,
multi_class='auto',
solver='saga', n_jobs=- 1,
random_seed=0, **kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

5.14. Utils 971

EvalML Documentation, Release 0.80.0

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

972 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

5.14. Utils 973

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15,
max_iter=1000,
random_seed=0, **kwargs)

Elastic Net Regressor.

974 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 975

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

976 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.Estimator(parameters: dict = None, component_obj:
Type[evalml.pipelines.components.ComponentBase]
= None, random_seed: Union[int, float] = 0,
**kwargs)

5.14. Utils 977

EvalML Documentation, Release 0.80.0

A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

978 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

5.14. Utils 979

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

980 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ExponentialSmoothingRegressor(trend:
Optional[str] =
None,
damped_trend:
bool = False,
seasonal:
Optional[str] =
None, sp: int = 2,
n_jobs: int = - 1,
random_seed:
Union[int, float] =
0, **kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 981

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

982 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 983

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ExtraTreesClassifier(n_estimators=100,
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=- 1, random_seed=0,
**kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

984 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 985

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

986 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

5.14. Utils 987

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ExtraTreesRegressor(n_estimators: int = 100,
max_features: str = 'sqrt',
max_depth: int = 6,
min_samples_split: int = 2,
min_weight_fraction_leaf: float
= 0.0, n_jobs: int = - 1,
random_seed: Union[int, float]
= 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

988 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 989

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

990 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 991

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.KNeighborsClassifier(n_neighbors=5,
weights='uniform',
algorithm='auto',
leaf_size=30, p=2,
random_seed=0, **kwargs)

K-Nearest Neighbors Classifier.

Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

992 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 993

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

994 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.LightGBMClassifier(boosting_type='gbdt',
learning_rate=0.1,
n_estimators=100,
max_depth=0, num_leaves=31,
min_child_samples=20,
bagging_fraction=0.9,
bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

5.14. Utils 995

EvalML Documentation, Release 0.80.0

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

996 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

5.14. Utils 997

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

998 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.LightGBMRegressor(boosting_type='gbdt',
learning_rate=0.1,
n_estimators=20, max_depth=0,
num_leaves=31,
min_child_samples=20,
bagging_fraction=0.9,
bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Regressor.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

5.14. Utils 999

EvalML Documentation, Release 0.80.0

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1000 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

5.14. Utils 1001

EvalML Documentation, Release 0.80.0

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1002 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.LinearRegressor(fit_intercept=True, n_jobs=- 1,
random_seed=0, **kwargs)

Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 1003

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

1004 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1005

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.LogisticRegressionClassifier(penalty='l2',
C=1.0,
multi_class='auto',
solver='lbfgs',
n_jobs=- 1,
random_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

1006 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 1007

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

1008 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1009

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

1010 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1011

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ProphetRegressor(time_index: Optional[Hashable] =
None, changepoint_prior_scale:
float = 0.05,
seasonality_prior_scale: int = 10,
holidays_prior_scale: int = 10,
seasonality_mode: str = 'additive',
stan_backend: str =
'CMDSTANPY', interval_width:
float = 0.95, random_seed:
Union[int, float] = 0, **kwargs)

1012 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

5.14. Utils 1013

https://facebook.github.io/prophet/

EvalML Documentation, Release 0.80.0

build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.

1014 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self)→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series

5.14. Utils 1015

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.RandomForestClassifier(n_estimators=100,
max_depth=6, n_jobs=- 1,
random_seed=0,
**kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

1016 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

5.14. Utils 1017

EvalML Documentation, Release 0.80.0

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

1018 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.RandomForestRegressor(n_estimators: int = 100,
max_depth: int = 6, n_jobs:
int = - 1, random_seed:
Union[int, float] = 0,
**kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1019

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1020 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1021

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.SVMClassifier(C=1.0, kernel='rbf', gamma='auto',
probability=True, random_seed=0,
**kwargs)

Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

1022 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1023

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1024 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.SVMRegressor(C=1.0, kernel='rbf', gamma='auto',
random_seed=0, **kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

5.14. Utils 1025

EvalML Documentation, Release 0.80.0

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

1026 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

5.14. Utils 1027

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator(gap=1,
forecast_horizon=1,
random_seed=0,
**kwargs)

1028 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 1029

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

1030 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

5.14. Utils 1031

EvalML Documentation, Release 0.80.0

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VARMAXRegressor(time_index: Optional[Hashable] =
None, p: int = 1, q: int = 0, trend:
Optional[str] = 'c', random_seed:
Union[int, float] = 0, maxiter: int =
10, use_covariates: bool = False,
**kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

1032 Chapter 5. API Reference

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 1033

EvalML Documentation, Release 0.80.0

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

1034 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier(loss_function='logistic',
learning_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
random_seed=0,
**kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1035

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

1036 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 1037

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1, ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

1038 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1039

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1040 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VowpalWabbitRegressor(learning_rate=0.5,
decay_learning_rate=1.0,
power_t=0.5, passes=1,
random_seed=0, **kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

5.14. Utils 1041

EvalML Documentation, Release 0.80.0

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1042 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1043

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.XGBoostClassifier(eta=0.1, max_depth=6,
min_child_weight=1,
n_estimators=100,
random_seed=0,
eval_metric='logloss', n_jobs=12,
**kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

1044 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 1045

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

1046 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.XGBoostRegressor(eta: float = 0.1, max_depth: int =
6, min_child_weight: int = 1,
n_estimators: int = 100,
random_seed: Union[int, float] =
0, n_jobs: int = 12, **kwargs)

XGBoost Regressor.

5.14. Utils 1047

EvalML Documentation, Release 0.80.0

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

1048 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

5.14. Utils 1049

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1050 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transformers

Components that transform data.

Subpackages

dimensionality_reduction

Transformers that reduce the dimensionality of the input data.

Submodules

lda

Component that reduces the number of features by using Linear Discriminant Analysis.

Module Contents

Classes Summary

LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-
criminant Analysis.

Contents

class evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis(n_components=None,
ran-
dom_seed=0,
**kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1051

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1052 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

5.14. Utils 1053

EvalML Documentation, Release 0.80.0

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

pca

Component that reduces the number of features by using Principal Component Analysis (PCA).

Module Contents

Classes Summary

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

Contents

class evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA(variance=0.95,
n_components=None,
ran-
dom_seed=0,
**kwargs)

Reduces the number of features by using Principal Component Analysis (PCA).

Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False

1054 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

5.14. Utils 1055

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1056 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-
criminant Analysis.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

Contents

class evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis(n_components=None,
ran-
dom_seed=0,
**kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods

5.14. Utils 1057

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters

1058 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.dimensionality_reduction.PCA(variance=0.95,
n_components=None,
random_seed=0,
**kwargs)

Reduces the number of features by using Principal Component Analysis (PCA).

5.14. Utils 1059

EvalML Documentation, Release 0.80.0

Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1060 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

5.14. Utils 1061

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

encoders

Components used to encode the input data.

Submodules

label_encoder

A transformer that encodes target labels using values between 0 and num_classes - 1.

Module Contents

Classes Summary

LabelEncoder A transformer that encodes target labels using values be-
tween 0 and num_classes - 1.

Contents

class evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder(positive_label=None,
ran-
dom_seed=0,
**kwargs)

A transformer that encodes target labels using values between 0 and num_classes - 1.

Parameters

1062 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• positive_label (int, str) – The label for the class that should be treated as positive (1)
for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 1063

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters

1064 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

onehot_encoder

A transformer that encodes categorical features in a one-hot numeric array.

Module Contents

Classes Summary

OneHotEncoder A transformer that encodes categorical features in a one-
hot numeric array.

OneHotEncoderMeta A version of the ComponentBaseMeta class which in-
cludes validation on an additional one-hot-encoder-
specific method categories.

Contents

5.14. Utils 1065

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder(top_n=10,
fea-
tures_to_encode=None,
cate-
gories=None,
drop='if_binary',
han-
dle_unknown='ignore',
han-
dle_missing='error',
ran-
dom_seed=0,
**kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

Methods

1066 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1067

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

1068 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoderMeta

A version of the ComponentBaseMeta class which includes validation on an additional one-hot-encoder-specific
method categories.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

None

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

5.14. Utils 1069

EvalML Documentation, Release 0.80.0

classmethod set_fit(cls, method)
Wrapper for the fit method.

ordinal_encoder

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of categories.

Module Contents

Classes Summary

OrdinalEncoder A transformer that encodes ordinal features as an array
of ordinal integers representing the relative order of cat-
egories.

OrdinalEncoderMeta A version of the ComponentBaseMeta class which
includes validation on an additional ordinal-encoder-
specific method categories.

Contents

class evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder(features_to_encode=None,
cat-
e-
gories=None,
han-
dle_unknown='error',
un-
known_value=None,
en-
coded_missing_value=None,
ran-
dom_seed=0,
**kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,

1070 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

5.14. Utils 1071

EvalML Documentation, Release 0.80.0

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

1072 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_feature_names(self)
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class
evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoderMeta

A version of the ComponentBaseMeta class which includes validation on an additional ordinal-encoder-specific
method categories.

Attributes

5.14. Utils 1073

EvalML Documentation, Release 0.80.0

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

None

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

target_encoder

A transformer that encodes categorical features into target encodings.

Module Contents

Classes Summary

TargetEncoder A transformer that encodes categorical features into tar-
get encodings.

1074 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder(cols=None,
smooth-
ing=1,
han-
dle_unknown='value',
han-
dle_missing='value',
ran-
dom_seed=0,
**kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

5.14. Utils 1075

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

1076 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self)
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1077

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

LabelEncoder A transformer that encodes target labels using values be-
tween 0 and num_classes - 1.

OneHotEncoder A transformer that encodes categorical features in a one-
hot numeric array.

OrdinalEncoder A transformer that encodes ordinal features as an array
of ordinal integers representing the relative order of cat-
egories.

TargetEncoder A transformer that encodes categorical features into tar-
get encodings.

Contents

class evalml.pipelines.components.transformers.encoders.LabelEncoder(positive_label=None,
random_seed=0,
**kwargs)

A transformer that encodes target labels using values between 0 and num_classes - 1.

Parameters
• positive_label (int, str) – The label for the class that should be treated as positive (1)

for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False

Methods

1078 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

5.14. Utils 1079

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.

1080 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.OneHotEncoder(top_n=10, fea-
tures_to_encode=None,
categories=None,
drop='if_binary', han-
dle_unknown='ignore',
handle_missing='error',
random_seed=0,
**kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

5.14. Utils 1081

EvalML Documentation, Release 0.80.0

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

1082 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1083

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.OrdinalEncoder(features_to_encode=None,
categories=None, han-
dle_unknown='error',
unknown_value=None,
en-
coded_missing_value=None,
random_seed=0,
**kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

1084 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

5.14. Utils 1085

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

1086 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.TargetEncoder(cols=None,
smoothing=1, han-
dle_unknown='value',
handle_missing='value',
random_seed=0,
**kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None

5.14. Utils 1087

EvalML Documentation, Release 0.80.0

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

1088 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self)
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1089

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

feature_selection

Components that select features.

Submodules

feature_selector

Component that selects top features based on importance weights.

Module Contents

Classes Summary

FeatureSelector Selects top features based on importance weights.

1090 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector(parameters=None,
com-
po-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 1091

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1092 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

recursive_feature_elimination_selector

Components that select top features based on recursive feature elimination with a Random Forest model.

5.14. Utils 1093

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

RecursiveFeatureEliminationSelector Selects relevant features using recursive feature elimina-
tion.

RFClassifierRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Classifier.

RFRegressorRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Regressor.

Contents

class evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

1094 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

5.14. Utils 1095

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

1096 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1097

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

1098 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

5.14. Utils 1099

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

1100 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1101

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1102 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

rf_classifier_feature_selector

Component that selects top features based on importance weights using a Random Forest classifier.

Module Contents

Classes Summary

RFClassifierSelectFromModel Selects top features based on importance weights using
a Random Forest classifier.

Contents

5.14. Utils 1103

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods

1104 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

5.14. Utils 1105

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

1106 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

rf_regressor_feature_selector

Component that selects top features based on importance weights using a Random Forest regresor.

Module Contents

Classes Summary

RFRegressorSelectFromModel Selects top features based on importance weights using
a Random Forest regressor.

Contents

class evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

5.14. Utils 1107

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

1108 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1109

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

FeatureSelector Selects top features based on importance weights.
RFClassifierRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Classifier.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Regressor.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.

1110 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.transformers.feature_selection.FeatureSelector(parameters=None,
compo-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 1111

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

1112 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters

5.14. Utils 1113

EvalML Documentation, Release 0.80.0

• step (int, float) – The number of features to eliminate in each iteration. If an integer
is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods

1114 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

5.14. Utils 1115

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

1116 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

5.14. Utils 1117

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

1118 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

5.14. Utils 1119

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-
1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1120 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

5.14. Utils 1121

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

1122 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1123

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1124 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

5.14. Utils 1125

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

imputers

Components that impute missing values in the input data.

Submodules

imputer

Component that imputes missing data according to a specified imputation strategy.

Module Contents

Classes Summary

Imputer Imputes missing data according to a specified imputation
strategy.

1126 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.transformers.imputers.imputer.Imputer(categorical_impute_strategy='most_frequent',
categori-
cal_fill_value=None,
nu-
meric_impute_strategy='mean',
nu-
meric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None,
random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods

5.14. Utils 1127

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

1128 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1129

EvalML Documentation, Release 0.80.0

knn_imputer

Component that imputes missing data according to a specified imputation strategy.

Module Contents

Classes Summary

KNNImputer Imputes missing data using KNN according to a speci-
fied number of neighbors. Natural language columns are
ignored.

Contents

class evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer(number_neighbors=3,
ran-
dom_seed=0,
**kwargs)

Imputes missing data using KNN according to a specified number of neighbors. Natural language columns are
ignored.

Parameters
• number_neighbors (int) – Number of nearest neighbors for KNN to search for. Defaults

to 3.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

name KNN Imputer
train-
ing_only

False

Methods

1130 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the KNNImputer receives a dataframe with both Boolean and Categor-
ical data.

5.14. Utils 1131

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1132 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

per_column_imputer

Component that imputes missing data according to a specified imputation strategy per column.

Module Contents

Classes Summary

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

Contents

class evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer(impute_strategies=None,
ran-
dom_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods

5.14. Utils 1133

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

1134 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1135

EvalML Documentation, Release 0.80.0

simple_imputer

Component that imputes missing data according to a specified imputation strategy.

Module Contents

Classes Summary

SimpleImputer Imputes missing data according to a specified imputation
strategy. Natural language columns are ignored.

Contents

class evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer(impute_strategy='most_frequent',
fill_value=None,
ran-
dom_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

1136 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

5.14. Utils 1137

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1138 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

target_imputer

Component that imputes missing target data according to a specified imputation strategy.

Module Contents

Classes Summary

TargetImputer Imputes missing target data according to a specified im-
putation strategy.

TargetImputerMeta A version of the ComponentBaseMeta class which han-
dles when input features is None.

Contents

class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer(impute_strategy='most_frequent',
fill_value=None,
ran-
dom_seed=0,
**kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods

5.14. Utils 1139

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

1140 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1141

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta

A version of the ComponentBaseMeta class which handles when input features is None.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

Parameters method (callable) – Method to wrap.

Raises ComponentNotYetFittedError – If component is not fitted.

Returns The wrapped input method.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

time_series_imputer

Component that imputes missing data according to a specified timeseries-specific imputation strategy.

Module Contents

Classes Summary

TimeSeriesImputer Imputes missing data according to a specified
timeseries-specific imputation strategy.

1142 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
nu-
meric_impute_strategy='interpolate',
tar-
get_impute_strategy='forwards_fill',
ran-
dom_seed=0,
**kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods

5.14. Utils 1143

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

1144 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1145

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

Imputer Imputes missing data according to a specified imputation
strategy.

KNNImputer Imputes missing data using KNN according to a speci-
fied number of neighbors. Natural language columns are
ignored.

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

SimpleImputer Imputes missing data according to a specified imputation
strategy. Natural language columns are ignored.

TargetImputer Imputes missing target data according to a specified im-
putation strategy.

TimeSeriesImputer Imputes missing data according to a specified
timeseries-specific imputation strategy.

Contents

class evalml.pipelines.components.transformers.imputers.Imputer(categorical_impute_strategy='most_frequent',
categorical_fill_value=None, nu-
meric_impute_strategy='mean',
numeric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1146 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1147

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

1148 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.KNNImputer(number_neighbors=3,
random_seed=0, **kwargs)

Imputes missing data using KNN according to a specified number of neighbors. Natural language columns are
ignored.

Parameters
• number_neighbors (int) – Number of nearest neighbors for KNN to search for. Defaults

to 3.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

name KNN Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 1149

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the KNNImputer receives a dataframe with both Boolean and Categor-
ical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1150 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.PerColumnImputer(impute_strategies=None,
random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

5.14. Utils 1151

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

1152 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1153

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.imputers.SimpleImputer(impute_strategy='most_frequent',
fill_value=None,
random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1154 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1155

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.TargetImputer(impute_strategy='most_frequent',
fill_value=None,
random_seed=0,
**kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1156 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

5.14. Utils 1157

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.

1158 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
nu-
meric_impute_strategy='interpolate',
tar-
get_impute_strategy='forwards_fill',
random_seed=0,
**kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods

5.14. Utils 1159

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

1160 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1161

EvalML Documentation, Release 0.80.0

preprocessing

Preprocessing transformer components.

Submodules

datetime_featurizer

Transformer that can automatically extract features from datetime columns.

Module Contents

Classes Summary

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

Contents

class evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer(features_to_extract=None,
en-
code_as_categories=False,
time_index=None,
ran-
dom_seed=0,
**kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.

• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.
Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1162 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

5.14. Utils 1163

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

1164 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

decomposer

Component that removes trends from time series and returns the decomposed components.

Module Contents

Classes Summary

Decomposer Component that removes trends and seasonality from
time series and returns the decomposed components.

Contents

class evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer(component_obj=None,
ran-
dom_seed:
int = 0,
degree:
int = 1,
period:
int = -
1, sea-
sonal_smoother:
int = 7,
time_index:
str =
None,
**kwargs)

Component that removes trends and seasonality from time series and returns the decomposed components.

5.14. Utils 1165

EvalML Documentation, Release 0.80.0

Parameters
• parameters (dict) – Dictionary of parameters to pass to component object.

• component_obj (class) – Instance of a detrender/deseasonalizer class.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• degree (int) – Currently the degree of the PolynomialDecomposer, not used for STLDe-
composer.

• period (int) – The best guess, in units, for the period of the seasonal signal.

• seasonal_smoother (int) – The seasonal smoothing parameter for STLDecomposer, not
used for PolynomialDecomposer.

• time_index (str) – The column name of the feature matrix (X) that the datetime informa-
tion should be pulled from.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Decomposer
needs_fitting True
train-
ing_only

False

Methods

1166 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits component to data.
fit_transform Removes fitted trend and seasonality from target vari-

able.
get_trend_dataframe Return a list of dataframes, each with 3 columns:

trend, seasonality, residual.
inverse_transform Add the trend + seasonality back to y.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

5.14. Utils 1167

EvalML Documentation, Release 0.80.0

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

abstract get_trend_dataframe(self, y: pandas.Series)
Return a list of dataframes, each with 3 columns: trend, seasonality, residual.

abstract inverse_transform(self, y: pandas.Series)
Add the trend + seasonality back to y.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

1168 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

abstract transform(self, X, y=None)
Transforms data X.

Parameters

5.14. Utils 1169

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

drop_nan_rows_transformer

Transformer to drop rows specified by row indices.

Module Contents

Classes Summary

DropNaNRowsTransformer Transformer to drop rows with NaN values.

Contents

class evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer(parameters=None,
com-
po-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

1170 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1171

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

1172 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

drop_null_columns

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Module Contents

Classes Summary

DropNullColumns Transformer to drop features whose percentage of NaN
values exceeds a specified threshold.

Contents

class evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns(pct_null_threshold=1.0,
ran-
dom_seed=0,
**kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.

Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods

5.14. Utils 1173

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

1174 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1175

EvalML Documentation, Release 0.80.0

drop_rows_transformer

Transformer to drop rows specified by row indices.

Module Contents

Classes Summary

DropRowsTransformer Transformer to drop rows specified by row indices.

Contents

class evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer(indices_to_drop=None,
ran-
dom_seed=0)

Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.

• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods

1176 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

5.14. Utils 1177

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1178 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

featuretools

Featuretools DFS component that generates features for the input features.

Module Contents

Classes Summary

DFSTransformer Featuretools DFS component that generates features for
the input features.

Contents

class evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer(index='index',
fea-
tures=None,
ran-
dom_seed=0,
**kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods

5.14. Utils 1179

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

1180 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

5.14. Utils 1181

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

log_transformer

Component that applies a log transformation to the target data.

Module Contents

Classes Summary

LogTransformer Applies a log transformation to the target data.

Contents

class evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods

1182 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters

5.14. Utils 1183

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

1184 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

lsa

Transformer to calculate the Latent Semantic Analysis Values of text input.

Module Contents

Classes Summary

LSA Transformer to calculate the Latent Semantic Analysis
Values of text input.

Contents

class evalml.pipelines.components.transformers.preprocessing.lsa.LSA(random_seed=0,
**kwargs)

Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False

Methods

5.14. Utils 1185

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

1186 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1187

EvalML Documentation, Release 0.80.0

natural_language_featurizer

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Module Contents

Classes Summary

NaturalLanguageFeaturizer Transformer that can automatically featurize text
columns using featuretools' nlp_primitives.

Contents

class evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods

1188 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

5.14. Utils 1189

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1190 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

polynomial_decomposer

Component that removes trends from time series by fitting a polynomial to the data.

Module Contents

Classes Summary

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

Contents

class evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer(time_index:
str
=
None,
de-
gree:
int
=
1,
pe-
riod:
int
=
-

1,
ran-
dom_seed:
int
=
0,
**kwargs)

Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

5.14. Utils 1191

EvalML Documentation, Release 0.80.0

• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False

Methods

1192 Chapter 5. API Reference

https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1193

EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns

1194 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

The first element are the input features returned without modification. The second ele-
ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

5.14. Utils 1195

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns

1196 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

The input features are returned without modification. The target variable y is de-
trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

replace_nullable_types

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Module Contents

Classes Summary

ReplaceNullableTypes Transformer to replace features with the new nullable
dtypes with a dtype that is compatible in EvalML.

Contents

class evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes(random_seed=0,
**kwargs)

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods

5.14. Utils 1197

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.

1198 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1199

EvalML Documentation, Release 0.80.0

stl_decomposer

Component that removes trends and seasonality from time series using STL.

Module Contents

Classes Summary

STLDecomposer Removes trends and seasonality from time series using
the STL algorithm.

Contents

class evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer(time_index:
str
=
None,
de-
gree:
int
=
1,
pe-
riod:
int
=
None,
sea-
sonal_smoother:
int
=
7,
ran-
dom_seed:
int
=
0,
**kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and

1200 Chapter 5. API Reference

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

EvalML Documentation, Release 0.80.0

if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods

5.14. Utils 1201

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1202 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

5.14. Utils 1203

EvalML Documentation, Release 0.80.0

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

1204 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

5.14. Utils 1205

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

text_transformer

Base class for all transformers working with text features.

Module Contents

Classes Summary

TextTransformer Base class for all transformers working with text fea-
tures.

Contents

class evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer(component_obj=None,
ran-
dom_seed=0,
**kwargs)

Base class for all transformers working with text features.

Parameters
• component_obj (obj) – Third-party objects useful in component implementation. Defaults

to None.

1206 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1207

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

1208 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

time_series_featurizer

Transformer that delays input features and target variable for time series problems.

Module Contents

Classes Summary

TimeSeriesFeaturizer Transformer that delays input features and target variable
for time series problems.

Contents

class evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer(time_index=None,
max_delay=2,
gap=0,
fore-
cast_horizon=1,
conf_level=0.05,
rolling_window_size=0.25,
de-
lay_features=True,
de-
lay_target=True,
ran-
dom_seed=0,
**kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

5.14. Utils 1209

EvalML Documentation, Release 0.80.0

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

1210 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters

5.14. Utils 1211

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1212 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

time_series_regularizer

Transformer that regularizes a dataset with an uninferrable offset frequency for time series problems.

Module Contents

Classes Summary

TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced
datetime column.

Contents

class evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer(time_index=None,
fre-
quency_payload=None,
win-
dow_length=4,
thresh-
old=0.4,
ran-
dom_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

5.14. Utils 1213

EvalML Documentation, Release 0.80.0

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1214 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1215

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

transform_primitive_components

Components that extract features from the input data.

Module Contents

Classes Summary

EmailFeaturizer Transformer that can automatically extract features from
emails.

URLFeaturizer Transformer that can automatically extract features from
URL.

1216 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1217

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

1218 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods

5.14. Utils 1219

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

1220 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1221

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

Decomposer Component that removes trends and seasonality from
time series and returns the decomposed components.

DFSTransformer Featuretools DFS component that generates features for
the input features.

DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
EmailFeaturizer Transformer that can automatically extract features from

emails.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
PolynomialDecomposer Removes trends and seasonality from time series by fit-

ting a polynomial and moving average to the data.
ReplaceNullableTypes Transformer to replace features with the new nullable

dtypes with a dtype that is compatible in EvalML.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
TextTransformer Base class for all transformers working with text fea-

tures.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
URLFeaturizer Transformer that can automatically extract features from

URL.

Contents

class evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer(features_to_extract=None,
en-
code_as_categories=False,
time_index=None,
ran-
dom_seed=0,
**kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.

1222 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.
Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1223

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1224 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.Decomposer(component_obj=None,
random_seed: int = 0,
degree: int = 1,
period: int = - 1,
seasonal_smoother:
int = 7, time_index:
str = None, **kwargs)

Component that removes trends and seasonality from time series and returns the decomposed components.

Parameters
• parameters (dict) – Dictionary of parameters to pass to component object.

• component_obj (class) – Instance of a detrender/deseasonalizer class.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• degree (int) – Currently the degree of the PolynomialDecomposer, not used for STLDe-
composer.

• period (int) – The best guess, in units, for the period of the seasonal signal.

• seasonal_smoother (int) – The seasonal smoothing parameter for STLDecomposer, not
used for PolynomialDecomposer.

• time_index (str) – The column name of the feature matrix (X) that the datetime informa-
tion should be pulled from.

5.14. Utils 1225

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Decomposer
needs_fitting True
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits component to data.
fit_transform Removes fitted trend and seasonality from target vari-

able.
get_trend_dataframe Return a list of dataframes, each with 3 columns:

trend, seasonality, residual.
inverse_transform Add the trend + seasonality back to y.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

1226 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters

5.14. Utils 1227

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

abstract get_trend_dataframe(self, y: pandas.Series)
Return a list of dataframes, each with 3 columns: trend, seasonality, residual.

abstract inverse_transform(self, y: pandas.Series)
Add the trend + seasonality back to y.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

1228 Chapter 5. API Reference

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DFSTransformer(index='index',
features=None,
random_seed=0,
**kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

5.14. Utils 1229

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

1230 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1231

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer(parameters=None,
com-
po-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

1232 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

5.14. Utils 1233

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DropNullColumns(pct_null_threshold=1.0,
ran-
dom_seed=0,
**kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters

1234 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 1235

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

1236 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer(indices_to_drop=None,
ran-
dom_seed=0)

Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.

• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods

5.14. Utils 1237

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

1238 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1239

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

1240 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

5.14. Utils 1241

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1242 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1243

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.LSA(random_seed=0, **kwargs)
Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False

1244 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

5.14. Utils 1245

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1246 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1247

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1248 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer(time_index:
str =
None,
degree:
int = 1,
period:
int = - 1,
ran-
dom_seed:
int = 0,
**kwargs)

Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.

5.14. Utils 1249

EvalML Documentation, Release 0.80.0

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.

1250 Chapter 5. API Reference

https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

5.14. Utils 1251

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

1252 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

5.14. Utils 1253

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes(random_seed=0,
**kwargs)

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes

1254 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1255

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.

Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame

1256 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.STLDecomposer(time_index: str =
None, degree: int
= 1, period: int =
None, sea-
sonal_smoother:
int = 7,
random_seed: int
= 0, **kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and
if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods

5.14. Utils 1257

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1258 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

5.14. Utils 1259

EvalML Documentation, Release 0.80.0

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

1260 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

5.14. Utils 1261

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.TextTransformer(component_obj=None,
ran-
dom_seed=0,
**kwargs)

Base class for all transformers working with text features.

Parameters
• component_obj (obj) – Third-party objects useful in component implementation. Defaults

to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

1262 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

5.14. Utils 1263

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

1264 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer(time_index=None,
max_delay=2,
gap=0,
fore-
cast_horizon=1,
conf_level=0.05,
rolling_window_size=0.25,
de-
lay_features=True,
de-
lay_target=True,
ran-
dom_seed=0,
**kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

5.14. Utils 1265

EvalML Documentation, Release 0.80.0

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1266 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

5.14. Utils 1267

EvalML Documentation, Release 0.80.0

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer(time_index=None,
fre-
quency_payload=None,
win-
dow_length=4,
thresh-
old=0.4,
ran-
dom_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

1268 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1269

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1270 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.URLFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods

5.14. Utils 1271

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

1272 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1273

EvalML Documentation, Release 0.80.0

samplers

Sampler components.

Submodules

base_sampler

Base Sampler component. Used as the base class of all sampler components.

Module Contents

Classes Summary

BaseSampler Base Sampler component. Used as the base class of all
sampler components.

Contents

class evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler(parameters=None,
compo-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Base Sampler component. Used as the base class of all sampler components.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

True

train-
ing_only

True

Methods

1274 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

5.14. Utils 1275

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1276 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

oversampler

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC based
on inputs to the component.

Module Contents

Classes Summary

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

Contents

class evalml.pipelines.components.transformers.samplers.oversampler.Oversampler(sampling_ratio=0.25,
sam-
pling_ratio_dict=None,
k_neighbors_default=5,
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters
• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with

range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes

5.14. Utils 1277

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1278 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

5.14. Utils 1279

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

undersampler

An undersampling transformer to downsample the majority classes in the dataset.

Module Contents

Classes Summary

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

Contents

class evalml.pipelines.components.transformers.samplers.undersampler.Undersampler(sampling_ratio=0.25,
sam-
pling_ratio_dict=None,
min_samples=100,
min_percentage=0.1,
ran-
dom_seed=0,
**kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples

1280 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1281

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1282 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

Contents

class evalml.pipelines.components.transformers.samplers.Oversampler(sampling_ratio=0.25,
sampling_ratio_dict=None,
k_neighbors_default=5,
n_jobs=- 1,
random_seed=0,
**kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters

5.14. Utils 1283

EvalML Documentation, Release 0.80.0

• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with
range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1284 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1285

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.samplers.Undersampler(sampling_ratio=0.25,
sam-
pling_ratio_dict=None,
min_samples=100,
min_percentage=0.1,
random_seed=0,
**kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples
are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.

1286 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1287

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1288 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

scalers

Components that scale input data.

Submodules

standard_scaler

A transformer that standardizes input features by removing the mean and scaling to unit variance.

Module Contents

Classes Summary

StandardScaler A transformer that standardizes input features by remov-
ing the mean and scaling to unit variance.

5.14. Utils 1289

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler(random_seed=0,
**kwargs)

A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1290 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

5.14. Utils 1291

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

StandardScaler A transformer that standardizes input features by remov-
ing the mean and scaling to unit variance.

Contents

class evalml.pipelines.components.transformers.scalers.StandardScaler(random_seed=0,
**kwargs)

A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

1292 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters

5.14. Utils 1293

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1294 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Submodules

column_selectors

Initalizes an transformer that selects specified columns in input data.

Module Contents

Classes Summary

ColumnSelector Initalizes an transformer that selects specified columns
in input data.

DropColumns Drops specified columns in input data.
SelectByType Selects columns by specified Woodwork logical type or

semantic tag in input data.
SelectColumns Selects specified columns in input data.

Contents

class evalml.pipelines.components.transformers.column_selectors.ColumnSelector(columns=None,
ran-
dom_seed=0,
**kwargs)

Initalizes an transformer that selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1295

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

1296 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

5.14. Utils 1297

EvalML Documentation, Release 0.80.0

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.column_selectors.DropColumns(columns=None,
random_seed=0,
**kwargs)

Drops specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

drop.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by dropping columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1298 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns.

Parameters
• X (pd.DataFrame) – Data to transform.

5.14. Utils 1299

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.column_selectors.SelectByType(column_types=None,
exclude=False,
ran-
dom_seed=0,
**kwargs)

Selects columns by specified Woodwork logical type or semantic tag in input data.

Parameters
• column_types (string, ww.LogicalType, list(string), list(ww.
LogicalType)) – List of Woodwork types or tags, used to determine which columns
to select or exclude.

• exclude (bool) – If true, exclude the column_types instead of including them. Defaults to
False.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns By Type Transformer
needs_fitting False
train-
ing_only

False

Methods

1300 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by selecting columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

5.14. Utils 1301

EvalML Documentation, Release 0.80.0

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by selecting columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.column_selectors.SelectColumns(columns=None,
ran-
dom_seed=0,
**kwargs)

Selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select. If columns are not present, they will not be selected.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1302 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1303

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, optional) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1304 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transformer

A component that may or may not need fitting that transforms data. These components are used before an estimator.

Module Contents

Classes Summary

Transformer A component that may or may not need fitting that trans-
forms data. These components are used before an esti-
mator.

Contents

class evalml.pipelines.components.transformers.transformer.Transformer(parameters=None,
component_obj=None,
random_seed=0,
**kwargs)

A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1305

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

1306 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

5.14. Utils 1307

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

DFSTransformer Featuretools DFS component that generates features for
the input features.

DropColumns Drops specified columns in input data.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
EmailFeaturizer Transformer that can automatically extract features from

emails.
FeatureSelector Selects top features based on importance weights.
Imputer Imputes missing data according to a specified imputation

strategy.
LabelEncoder A transformer that encodes target labels using values be-

tween 0 and num_classes - 1.
LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-

criminant Analysis.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

continues on next page

1308 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 7 – continued from previous page
ReplaceNullableTypes Transformer to replace features with the new nullable

dtypes with a dtype that is compatible in EvalML.
RFClassifierRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Classifier.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Regressor.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.
SelectByType Selects columns by specified Woodwork logical type or

semantic tag in input data.
SelectColumns Selects specified columns in input data.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TargetImputer Imputes missing target data according to a specified im-

putation strategy.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

URLFeaturizer Transformer that can automatically extract features from
URL.

Contents

class evalml.pipelines.components.transformers.DateTimeFeaturizer(features_to_extract=None,
encode_as_categories=False,
time_index=None,
random_seed=0, **kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.

• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.

5.14. Utils 1309

EvalML Documentation, Release 0.80.0

Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1310 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1311

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DFSTransformer(index='index', features=None,
random_seed=0, **kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

1312 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 1313

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

1314 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropColumns(columns=None, random_seed=0,
**kwargs)

Drops specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

drop.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

5.14. Utils 1315

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by dropping columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

1316 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropNaNRowsTransformer(parameters=None,
component_obj=None,
random_seed=0,
**kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

5.14. Utils 1317

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1318 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

5.14. Utils 1319

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropNullColumns(pct_null_threshold=1.0,
random_seed=0, **kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.

Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

1320 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1321

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropRowsTransformer(indices_to_drop=None,
random_seed=0)

Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.

• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods

1322 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

5.14. Utils 1323

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.EmailFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

1324 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1325

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

1326 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.FeatureSelector(parameters=None,
component_obj=None,
random_seed=0, **kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1327

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

1328 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

5.14. Utils 1329

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.Imputer(categorical_impute_strategy='most_frequent',
categorical_fill_value=None,
numeric_impute_strategy='mean',
numeric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods

1330 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

5.14. Utils 1331

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LabelEncoder(positive_label=None,
random_seed=0, **kwargs)

A transformer that encodes target labels using values between 0 and num_classes - 1.

1332 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• positive_label (int, str) – The label for the class that should be treated as positive (1)

for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 1333

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1334 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LinearDiscriminantAnalysis(n_components=None,
random_seed=0,
**kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods

5.14. Utils 1335

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters

1336 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

5.14. Utils 1337

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1338 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

5.14. Utils 1339

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LSA(random_seed=0, **kwargs)
Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False

Methods

1340 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

5.14. Utils 1341

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.NaturalLanguageFeaturizer(random_seed=0,
**kwargs)

1342 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1343

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

1344 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.OneHotEncoder(top_n=10,
features_to_encode=None,
categories=None, drop='if_binary',
handle_unknown='ignore',
handle_missing='error',
random_seed=0, **kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1345

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

1346 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1347

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.OrdinalEncoder(features_to_encode=None,
categories=None,
handle_unknown='error',
unknown_value=None,
encoded_missing_value=None,
random_seed=0, **kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

1348 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

5.14. Utils 1349

EvalML Documentation, Release 0.80.0

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

1350 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1351

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.Oversampler(sampling_ratio=0.25,
sampling_ratio_dict=None,
k_neighbors_default=5, n_jobs=- 1,
random_seed=0, **kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters
• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with

range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods

1352 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 1353

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.PCA(variance=0.95, n_components=None,
random_seed=0, **kwargs)

Reduces the number of features by using Principal Component Analysis (PCA).

Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.

1354 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

5.14. Utils 1355

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

1356 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.PerColumnImputer(impute_strategies=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods

5.14. Utils 1357

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

1358 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.PolynomialDecomposer(time_index: str = None,
degree: int = 1, period: int
= - 1, random_seed: int =
0, **kwargs)

5.14. Utils 1359

EvalML Documentation, Release 0.80.0

Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False

Methods

1360 Chapter 5. API Reference

https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1361

EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns

1362 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

The first element are the input features returned without modification. The second ele-
ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

5.14. Utils 1363

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns

1364 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

The input features are returned without modification. The target variable y is de-
trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.ReplaceNullableTypes(random_seed=0,
**kwargs)

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 1365

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.

Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1366 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFClassifierRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scoring=None,
n_jobs=- 1,
n_estimators=10,
max_depth=None,
random_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

5.14. Utils 1367

EvalML Documentation, Release 0.80.0

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1368 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1369

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=- 1,
random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

1370 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1371

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1372 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFRegressorRFESelector(step=0.2,
min_features_to_select=1,
cv=None, scoring=None,
n_jobs=- 1,
n_estimators=10,
max_depth=None,
random_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

5.14. Utils 1373

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

1374 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1375

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFRegressorSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
threshold='median',
n_jobs=- 1,
random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

1376 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1377

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1378 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.SelectByType(column_types=None, exclude=False,
random_seed=0, **kwargs)

Selects columns by specified Woodwork logical type or semantic tag in input data.

Parameters
• column_types (string, ww.LogicalType, list(string), list(ww.
LogicalType)) – List of Woodwork types or tags, used to determine which columns
to select or exclude.

• exclude (bool) – If true, exclude the column_types instead of including them. Defaults to
False.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns By Type Transformer
needs_fitting False
train-
ing_only

False

5.14. Utils 1379

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by selecting columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

1380 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by selecting columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.SelectColumns(columns=None, random_seed=0,
**kwargs)

Selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select. If columns are not present, they will not be selected.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1381

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1382 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, optional) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1383

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.SimpleImputer(impute_strategy='most_frequent',
fill_value=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1384 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1385

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.StandardScaler(random_seed=0, **kwargs)
A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

1386 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters

5.14. Utils 1387

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.STLDecomposer(time_index: str = None, degree: int
= 1, period: int = None,
seasonal_smoother: int = 7,
random_seed: int = 0, **kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters

1388 Chapter 5. API Reference

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

EvalML Documentation, Release 0.80.0

• time_index (str) – Specifies the name of the column in X that provides the datetime ob-
jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and
if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods

5.14. Utils 1389

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1390 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

5.14. Utils 1391

EvalML Documentation, Release 0.80.0

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

1392 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

5.14. Utils 1393

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TargetEncoder(cols=None, smoothing=1,
handle_unknown='value',
handle_missing='value',
random_seed=0, **kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1394 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1395

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self)
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

1396 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TargetImputer(impute_strategy='most_frequent',
fill_value=None, random_seed=0,
**kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods

5.14. Utils 1397

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

1398 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1399

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.transformers.TimeSeriesFeaturizer(time_index=None,
max_delay=2, gap=0,
forecast_horizon=1,
conf_level=0.05,
rolling_window_size=0.25,
delay_features=True,
delay_target=True,
random_seed=0,
**kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

1400 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1401

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

1402 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
nu-
meric_impute_strategy='interpolate',
tar-
get_impute_strategy='forwards_fill',
random_seed=0, **kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods

5.14. Utils 1403

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

1404 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

5.14. Utils 1405

EvalML Documentation, Release 0.80.0

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TimeSeriesRegularizer(time_index=None,
frequency_payload=None,
window_length=4,
threshold=0.4,
random_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

1406 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises

5.14. Utils 1407

EvalML Documentation, Release 0.80.0

• ValueError – if self.time_index is None, if X and y have different lengths, if time_index
in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

1408 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.Transformer(parameters=None,
component_obj=None,
random_seed=0, **kwargs)

A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1409

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

1410 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

5.14. Utils 1411

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.Undersampler(sampling_ratio=0.25,
sampling_ratio_dict=None,
min_samples=100,
min_percentage=0.1,
random_seed=0, **kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples
are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes

1412 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1413

EvalML Documentation, Release 0.80.0

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

1414 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.URLFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 1415

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1416 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Submodules

component_base

Base class for all components.

5.14. Utils 1417

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

ComponentBase Base class for all components.

Contents

class evalml.pipelines.components.component_base.ComponentBase(parameters=None,
component_obj=None,
random_seed=0, **kwargs)

Base class for all components.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
load Loads component at file path.
modifies_features Returns whether this component modifies (subsets or

transforms) the features variable during transform.
modifies_target Returns whether this component modifies (subsets or

transforms) the target variable during transform.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
training_only Returns whether or not this component should be

evaluated during training-time only, or during both
training and prediction time.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1418 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property modifies_features(cls)
Returns whether this component modifies (subsets or transforms) the features variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property modifies_target(cls)
Returns whether this component modifies (subsets or transforms) the target variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 1419

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property training_only(cls)
Returns whether or not this component should be evaluated during training-time only, or during both train-
ing and prediction time.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

component_base_meta

Metaclass that overrides creating a new component by wrapping methods with validators and setters.

Module Contents

Classes Summary

ComponentBaseMeta Metaclass that overrides creating a new component by
wrapping methods with validators and setters.

Contents

class evalml.pipelines.components.component_base_meta.ComponentBaseMeta

Metaclass that overrides creating a new component by wrapping methods with validators and setters.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

1420 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

utils

Utility methods for EvalML components.

Module Contents

Classes Summary

WrappedSKClassifier Scikit-learn classifier wrapper class.
WrappedSKRegressor Scikit-learn regressor wrapper class.

5.14. Utils 1421

EvalML Documentation, Release 0.80.0

Functions

all_components Get all available components.
allowed_model_families List the model types allowed for a particular problem

type.
convert_bool_to_double Converts all boolean columns in dataframe to doubles.

If include_ints, converts all integer columns to doubles
as well.

estimator_unable_to_handle_nans If True, provided estimator class is unable to handle NaN
values as an input.

generate_component_code Creates and returns a string that contains the Python im-
ports and code required for running the EvalML compo-
nent.

get_estimators Returns the estimators allowed for a particular problem
type.

get_prediction_intevals_for_tree_regressors Find the prediction intervals for tree-based regressors.
handle_component_class Standardizes input from a string name to a Component-

Base subclass if necessary.
handle_float_categories_for_catboost Updates input data to be compatible with CatBoost esti-

mators.
make_balancing_dictionary Makes dictionary for oversampler components. Find ra-

tio of each class to the majority. If the ratio is smaller
than the sampling_ratio, we want to oversample, other-
wise, we don't want to sample at all, and we leave the
data as is.

match_indices Matches index from the passed dataframe to the passed
series.

scikit_learn_wrapped_estimator Wraps an EvalML object as a scikit-learn estimator.

Contents

evalml.pipelines.components.utils.all_components()

Get all available components.

evalml.pipelines.components.utils.allowed_model_families(problem_type)
List the model types allowed for a particular problem type.

Parameters problem_type (ProblemTypes or str) – ProblemTypes enum or string.

Returns A list of model families.

Return type list[ModelFamily]

evalml.pipelines.components.utils.convert_bool_to_double(data: pandas.DataFrame, include_ints:
bool = False)→ pandas.DataFrame

Converts all boolean columns in dataframe to doubles. If include_ints, converts all integer columns to doubles
as well.

Parameters
• data (pd.DataFrame) – Input dataframe.

• include_ints (bool) – If True, converts all integer columns to doubles as well. Defaults
to False.

1422 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Input dataframe with all boolean-valued columns converted to doubles.

Return type pd.DataFrame

evalml.pipelines.components.utils.estimator_unable_to_handle_nans(estimator_class)
If True, provided estimator class is unable to handle NaN values as an input.

Parameters estimator_class (Estimator) – Estimator class

Raises ValueError – If estimator is not a valid estimator class.

Returns True if estimator class is unable to process NaN values, False otherwise.

Return type bool

evalml.pipelines.components.utils.generate_component_code(element)
Creates and returns a string that contains the Python imports and code required for running the EvalML compo-
nent.

Parameters element (component instance) – The instance of the component to generate string
Python code for.

Returns String representation of Python code that can be run separately in order to recreate the
component instance. Does not include code for custom component implementation.

Raises ValueError – If the input element is not a component instance.

Examples

>>> from evalml.pipelines.components.estimators.regressors.decision_tree_regressor␣
→˓import DecisionTreeRegressor
>>> assert generate_component_code(DecisionTreeRegressor()) == "from evalml.
→˓pipelines.components.estimators.regressors.decision_tree_regressor import␣
→˓DecisionTreeRegressor\n\ndecisionTreeRegressor = DecisionTreeRegressor(**{
→˓'criterion': 'squared_error', 'max_features': 'sqrt', 'max_depth': 6, 'min_
→˓samples_split': 2, 'min_weight_fraction_leaf': 0.0})"
...
>>> from evalml.pipelines.components.transformers.imputers.simple_imputer import␣
→˓SimpleImputer
>>> assert generate_component_code(SimpleImputer()) == "from evalml.pipelines.
→˓components.transformers.imputers.simple_imputer import SimpleImputer\n\
→˓nsimpleImputer = SimpleImputer(**{'impute_strategy': 'most_frequent', 'fill_value
→˓': None})"

evalml.pipelines.components.utils.get_estimators(problem_type, model_families=None,
excluded_model_families=None)

Returns the estimators allowed for a particular problem type.

Can also optionally filter by a list of model types.

Parameters
• problem_type (ProblemTypes or str) – Problem type to filter for.

• model_families (list(str, ModelFamily)) – Model families to filter for.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the results.

Returns A list of estimator subclasses.

5.14. Utils 1423

EvalML Documentation, Release 0.80.0

Return type list[class]

Raises
• TypeError – If the model_families parameter is not a list.

• RuntimeError – If a model family is not valid for the problem type.

evalml.pipelines.components.utils.get_prediction_intevals_for_tree_regressors(X: pan-
das.DataFrame,
predictions:
pandas.Series,
coverage:
List[float],
estimators:
List[evalml.pipelines.components.estimators.estimator.Estimator])
→ Dict[str,
pandas.Series]

Find the prediction intervals for tree-based regressors.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• predictions (pd.Series) – Predictions from the regressor.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• estimators (list) – Collection of fitted sub-estimators.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

evalml.pipelines.components.utils.handle_component_class(component_class)
Standardizes input from a string name to a ComponentBase subclass if necessary.

If a str is provided, will attempt to look up a ComponentBase class by that name and return a new instance. Oth-
erwise if a ComponentBase subclass or Component instance is provided, will return that without modification.

Parameters component_class (str, ComponentBase) – Input to be standardized.

Returns ComponentBase

Raises
• ValueError – If input is not a valid component class.

• MissingComponentError – If the component cannot be found.

Examples

>>> from evalml.pipelines.components.estimators.regressors.decision_tree_regressor␣
→˓import DecisionTreeRegressor
>>> handle_component_class(DecisionTreeRegressor)
<class 'evalml.pipelines.components.estimators.regressors.decision_tree_regressor.
→˓DecisionTreeRegressor'>
>>> handle_component_class("Random Forest Regressor")
<class 'evalml.pipelines.components.estimators.regressors.rf_regressor.
→˓RandomForestRegressor'>

1424 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.pipelines.components.utils.handle_float_categories_for_catboost(X)
Updates input data to be compatible with CatBoost estimators.

CatBoost cannot handle data in X that is the Categorical Woodwork logical type with floating point categories.
This utility determines if the floating point categories can be converted to integers without truncating any data,
and if they can be, converts them to int64 categories. Will not attempt to use values that are truly floating points.

Parameters X (pd.DataFrame) – Input data to CatBoost that has Woodwork initialized

Returns
Input data with exact same Woodwork typing info as the original but with any float categories

converted to be int64 when possible.

Return type DataFrame

Raises ValueError – if the numeric categories are actual floats that cannot be converted to integers
without truncating data

evalml.pipelines.components.utils.make_balancing_dictionary(y, sampling_ratio)
Makes dictionary for oversampler components. Find ratio of each class to the majority. If the ratio is smaller
than the sampling_ratio, we want to oversample, otherwise, we don’t want to sample at all, and we leave the data
as is.

Parameters
• y (pd.Series) – Target data.

• sampling_ratio (float) – The balanced ratio we want the samples to meet.

Returns Dictionary where keys are the classes, and the corresponding values are the counts of sam-
ples for each class that will satisfy sampling_ratio.

Return type dict

Raises ValueError – If sampling ratio is not in the range (0, 1] or the target is empty.

Examples

>>> import pandas as pd
>>> y = pd.Series([1] * 4 + [2] * 8 + [3])
>>> assert make_balancing_dictionary(y, 0.5) == {2: 8, 1: 4, 3: 4}
>>> assert make_balancing_dictionary(y, 0.9) == {2: 8, 1: 7, 3: 7}
>>> assert make_balancing_dictionary(y, 0.1) == {2: 8, 1: 4, 3: 1}

evalml.pipelines.components.utils.match_indices(X: pandas.DataFrame, y: pandas.Series)→
Tuple[pandas.DataFrame, Union[pandas.Series,
pandas.DataFrame]]

Matches index from the passed dataframe to the passed series.

Parameters
• X (pd.DataFrame) – Dataframe to match index from.

• y (pd.Series) – Series to match the index to.

Returns: Tuple(pd.DataFrame, pd.Series): DataFrame and Series with matching indicies.

evalml.pipelines.components.utils.scikit_learn_wrapped_estimator(evalml_obj)
Wraps an EvalML object as a scikit-learn estimator.

5.14. Utils 1425

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.utils.WrappedSKClassifier(pipeline)
Scikit-learn classifier wrapper class.

Methods

fit Fits component to data.
get_metadata_routing Get metadata routing of this object.
get_params Get parameters for this estimator.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
score Return the mean accuracy on the given test data and

labels.
set_params Set the parameters of this estimator.

fit(self, X, y)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_params(self, deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this estima-
tor and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type dict

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Features

Returns Predicted values.

Return type np.ndarray

predict_proba(self, X)
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type np.ndarray

1426 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

score(self, X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters
• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

Returns score – Mean accuracy of self.predict(X) w.r.t. y.

Return type float

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

class evalml.pipelines.components.utils.WrappedSKRegressor(pipeline)
Scikit-learn regressor wrapper class.

Methods

fit Fits component to data.
get_metadata_routing Get metadata routing of this object.
get_params Get parameters for this estimator.
predict Make predictions using selected features.
score Return the coefficient of determination of the predic-

tion.
set_params Set the parameters of this estimator.

fit(self, X, y)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

5.14. Utils 1427

EvalML Documentation, Release 0.80.0

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_params(self, deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this estima-
tor and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type dict

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Features.

Returns Predicted values.

Return type np.ndarray

score(self, X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination 𝑅2 is defined as (1− 𝑢
𝑣), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters
• X (array-like of shape (n_samples, n_features)) – Test samples. For some es-

timators this may be a precomputed kernel matrix or a list of generic objects instead with
shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of
samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
values for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

Returns score – 𝑅2 of self.predict(X) w.r.t. y.

Return type float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

1428 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineClassifier Classifier that predicts using the specified strategy.
BaselineRegressor Baseline regressor that uses a simple strategy to make

predictions. This is useful as a simple baseline regressor
to compare with other regressors.

CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

ComponentBase Base class for all components.
ComponentBaseMeta Metaclass that overrides creating a new component by

wrapping methods with validators and setters.
DateTimeFeaturizer Transformer that can automatically extract features from

datetime columns.
DecisionTreeClassifier Decision Tree Classifier.
DecisionTreeRegressor Decision Tree Regressor.
DFSTransformer Featuretools DFS component that generates features for

the input features.
DropColumns Drops specified columns in input data.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ElasticNetRegressor Elastic Net Regressor.
EmailFeaturizer Transformer that can automatically extract features from

emails.
Estimator A component that fits and predicts given data.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesClassifier Extra Trees Classifier.
ExtraTreesRegressor Extra Trees Regressor.
FeatureSelector Selects top features based on importance weights.
Imputer Imputes missing data according to a specified imputation

strategy.
continues on next page

5.14. Utils 1429

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

Table 8 – continued from previous page
KNeighborsClassifier K-Nearest Neighbors Classifier.
LabelEncoder A transformer that encodes target labels using values be-

tween 0 and num_classes - 1.
LightGBMClassifier LightGBM Classifier.
LightGBMRegressor LightGBM Regressor.
LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-

criminant Analysis.
LinearRegressor Linear Regressor.
LogisticRegressionClassifier Logistic Regression Classifier.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the

naive forecasting approach.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

ProphetRegressor Prophet is a procedure for forecasting time series data
based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestClassifier Random Forest Classifier.
RandomForestRegressor Random Forest Regressor.
ReplaceNullableTypes Transformer to replace features with the new nullable

dtypes with a dtype that is compatible in EvalML.
RFClassifierRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Classifier.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Regressor.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.
SelectByType Selects columns by specified Woodwork logical type or

semantic tag in input data.
continues on next page

1430 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 8 – continued from previous page
SelectColumns Selects specified columns in input data.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StackedEnsembleBase Stacked Ensemble Base Class.
StackedEnsembleClassifier Stacked Ensemble Classifier.
StackedEnsembleRegressor Stacked Ensemble Regressor.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
SVMClassifier Support Vector Machine Classifier.
SVMRegressor Support Vector Machine Regressor.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TargetImputer Imputes missing target data according to a specified im-

putation strategy.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

URLFeaturizer Transformer that can automatically extract features from
URL.

VARMAXRegressor Vector Autoregressive Moving Average with eXoge-
nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostClassifier XGBoost Classifier.
XGBoostRegressor XGBoost Regressor.

5.14. Utils 1431

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.ARIMARegressor(time_index: Optional[Hashable] = None, trend:
Optional[str] = None, start_p: int = 2, d: int = 0,
start_q: int = 2, max_p: int = 5, max_d: int = 2,
max_q: int = 5, seasonal: bool = True, sp: int = 1,
n_jobs: int = - 1, random_seed: Union[int, float] =
0, maxiter: int = 10, use_covariates: bool = True,
**kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1432 Chapter 5. API Reference

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1433

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1434 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.BaselineClassifier(strategy='mode', random_seed=0, **kwargs)
Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1435

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False

Methods

classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self)
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

1436 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

5.14. Utils 1437

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.BaselineRegressor(strategy='mean', random_seed=0, **kwargs)
Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters
• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults

to “mean”.

1438 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1439

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1440 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.CatBoostClassifier(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=True,
allow_writing_files=False, random_seed=0,
n_jobs=- 1, **kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

5.14. Utils 1441

https://catboost.ai/

EvalML Documentation, Release 0.80.0

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

1442 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

5.14. Utils 1443

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

1444 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.CatBoostRegressor(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=False,
allow_writing_files=False, random_seed=0,
n_jobs=- 1, **kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1445

https://catboost.ai/

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1446 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1447

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ComponentBase(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Base class for all components.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Methods

1448 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
load Loads component at file path.
modifies_features Returns whether this component modifies (subsets or

transforms) the features variable during transform.
modifies_target Returns whether this component modifies (subsets or

transforms) the target variable during transform.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
training_only Returns whether or not this component should be

evaluated during training-time only, or during both
training and prediction time.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

5.14. Utils 1449

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property modifies_features(cls)
Returns whether this component modifies (subsets or transforms) the features variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property modifies_target(cls)
Returns whether this component modifies (subsets or transforms) the target variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property training_only(cls)
Returns whether or not this component should be evaluated during training-time only, or during both train-
ing and prediction time.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ComponentBaseMeta

Metaclass that overrides creating a new component by wrapping methods with validators and setters.

Attributes

1450 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

class evalml.pipelines.components.DateTimeFeaturizer(features_to_extract=None,
encode_as_categories=False,
time_index=None, random_seed=0, **kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.

• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.
Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1451

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

1452 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

5.14. Utils 1453

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DecisionTreeClassifier(criterion='gini', max_features='sqrt',
max_depth=6, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

1454 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1455

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1456 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt', max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)

5.14. Utils 1457

EvalML Documentation, Release 0.80.0

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1458 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 1459

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1460 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DFSTransformer(index='index', features=None, random_seed=0,
**kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1461

EvalML Documentation, Release 0.80.0

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

1462 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1463

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DropColumns(columns=None, random_seed=0, **kwargs)
Drops specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

drop.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1464 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by dropping columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1465

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1466 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.DropNaNRowsTransformer(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 1467

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

1468 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DropNullColumns(pct_null_threshold=1.0, random_seed=0,
**kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.

Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods

5.14. Utils 1469

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

1470 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DropRowsTransformer(indices_to_drop=None, random_seed=0)
Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.

5.14. Utils 1471

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

1472 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

5.14. Utils 1473

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15,
multi_class='auto', solver='saga', n_jobs=-
1, random_seed=0, **kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1474 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 1475

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1476 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15,
max_iter=1000, random_seed=0, **kwargs)

Elastic Net Regressor.

Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1477

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

1478 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 1479

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.EmailFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False

1480 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

5.14. Utils 1481

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

1482 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Estimator(parameters: dict = None, component_obj:
Type[evalml.pipelines.components.ComponentBase] =
None, random_seed: Union[int, float] = 0, **kwargs)

A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 1483

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

1484 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

5.14. Utils 1485

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ExponentialSmoothingRegressor(trend: Optional[str] = None,
damped_trend: bool = False,
seasonal: Optional[str] = None,
sp: int = 2, n_jobs: int = - 1,
random_seed: Union[int, float]
= 0, **kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1486 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1487

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1488 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ExtraTreesClassifier(n_estimators=100, max_features='sqrt',
max_depth=6, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_jobs=- 1,
random_seed=0, **kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

5.14. Utils 1489

EvalML Documentation, Release 0.80.0

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

1490 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 1491

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

1492 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ExtraTreesRegressor(n_estimators: int = 100, max_features: str =
'sqrt', max_depth: int = 6, min_samples_split:
int = 2, min_weight_fraction_leaf: float = 0.0,
n_jobs: int = - 1, random_seed: Union[int,
float] = 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

5.14. Utils 1493

EvalML Documentation, Release 0.80.0

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1494 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

5.14. Utils 1495

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.FeatureSelector(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Selects top features based on importance weights.

Parameters

1496 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 1497

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1498 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Imputer(categorical_impute_strategy='most_frequent',
categorical_fill_value=None,
numeric_impute_strategy='mean', numeric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None, random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1499

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

1500 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

5.14. Utils 1501

EvalML Documentation, Release 0.80.0

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.KNeighborsClassifier(n_neighbors=5, weights='uniform',
algorithm='auto', leaf_size=30, p=2,
random_seed=0, **kwargs)

K-Nearest Neighbors Classifier.

Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1502 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 1503

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

1504 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LabelEncoder(positive_label=None, random_seed=0, **kwargs)
A transformer that encodes target labels using values between 0 and num_classes - 1.

Parameters
• positive_label (int, str) – The label for the class that should be treated as positive (1)

for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False

5.14. Utils 1505

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

1506 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.

5.14. Utils 1507

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LightGBMClassifier(boosting_type='gbdt', learning_rate=0.1,
n_estimators=100, max_depth=0,
num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0,
n_jobs=- 1, random_seed=0, **kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1508 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1509

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1510 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LightGBMRegressor(boosting_type='gbdt', learning_rate=0.1,
n_estimators=20, max_depth=0,
num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0,
n_jobs=- 1, random_seed=0, **kwargs)

LightGBM Regressor.

Parameters

5.14. Utils 1511

EvalML Documentation, Release 0.80.0

• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses
traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods

1512 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.

5.14. Utils 1513

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

1514 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LinearDiscriminantAnalysis(n_components=None,
random_seed=0, **kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods

5.14. Utils 1515

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters

1516 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LinearRegressor(fit_intercept=True, n_jobs=- 1, random_seed=0,
**kwargs)

Linear Regressor.

Parameters

5.14. Utils 1517

EvalML Documentation, Release 0.80.0

• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to
False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

1518 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

5.14. Utils 1519

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LogisticRegressionClassifier(penalty='l2', C=1.0,
multi_class='auto', solver='lbfgs',
n_jobs=- 1, random_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

1520 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 1521

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

1522 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1523

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods

1524 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters

5.14. Utils 1525

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

1526 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LSA(random_seed=0, **kwargs)
Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1527

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters

1528 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor(gap=1,
forecast_horizon=1,
random_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False

5.14. Utils 1529

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

1530 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

5.14. Utils 1531

EvalML Documentation, Release 0.80.0

Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.NaturalLanguageFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods

1532 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

5.14. Utils 1533

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.OneHotEncoder(top_n=10, features_to_encode=None,
categories=None, drop='if_binary',
handle_unknown='ignore', handle_missing='error',
random_seed=0, **kwargs)

1534 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

Methods

5.14. Utils 1535

EvalML Documentation, Release 0.80.0

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1536 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

5.14. Utils 1537

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.OrdinalEncoder(features_to_encode=None, categories=None,
handle_unknown='error', unknown_value=None,
encoded_missing_value=None, random_seed=0,
**kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1538 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1539

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1540 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Oversampler(sampling_ratio=0.25, sampling_ratio_dict=None,
k_neighbors_default=5, n_jobs=- 1, random_seed=0,
**kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters
• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with

range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

5.14. Utils 1541

EvalML Documentation, Release 0.80.0

• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

1542 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.

5.14. Utils 1543

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.PCA(variance=0.95, n_components=None, random_seed=0, **kwargs)
Reduces the number of features by using Principal Component Analysis (PCA).

Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.

1544 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1545

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.PerColumnImputer(impute_strategies=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1546 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1547

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X

1548 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.PolynomialDecomposer(time_index: str = None, degree: int = 1,
period: int = - 1, random_seed: int = 0,
**kwargs)

Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False

5.14. Utils 1549

https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1550 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns

5.14. Utils 1551

EvalML Documentation, Release 0.80.0

The first element are the input features returned without modification. The second ele-
ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

1552 Chapter 5. API Reference

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns

5.14. Utils 1553

EvalML Documentation, Release 0.80.0

The input features are returned without modification. The target variable y is de-
trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ProphetRegressor(time_index: Optional[Hashable] = None,
changepoint_prior_scale: float = 0.05,
seasonality_prior_scale: int = 10,
holidays_prior_scale: int = 10,
seasonality_mode: str = 'additive', stan_backend:
str = 'CMDSTANPY', interval_width: float = 0.95,
random_seed: Union[int, float] = 0, **kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1554 Chapter 5. API Reference

https://facebook.github.io/prophet/

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1555

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self)→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1556 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RandomForestClassifier(n_estimators=100, max_depth=6,
n_jobs=- 1, random_seed=0, **kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1557

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1558 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1559

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RandomForestRegressor(n_estimators: int = 100, max_depth: int =
6, n_jobs: int = - 1, random_seed:
Union[int, float] = 0, **kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

1560 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1561

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1562 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ReplaceNullableTypes(random_seed=0, **kwargs)
Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes

5.14. Utils 1563

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

1564 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.

Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame

5.14. Utils 1565

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFClassifierRFESelector(step=0.2, min_features_to_select=1,
cv=None, scoring=None, n_jobs=- 1,
n_estimators=10, max_depth=None,
random_seed=0, **kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods

1566 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

5.14. Utils 1567

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

1568 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
percent_features=0.5,
threshold='median', n_jobs=- 1,
random_seed=0, **kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods

5.14. Utils 1569

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

1570 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

5.14. Utils 1571

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFRegressorRFESelector(step=0.2, min_features_to_select=1,
cv=None, scoring=None, n_jobs=- 1,
n_estimators=10, max_depth=None,
random_seed=0, **kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods

1572 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

5.14. Utils 1573

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

1574 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFRegressorSelectFromModel(number_features=None,
n_estimators=10, max_depth=None,
percent_features=0.5,
threshold='median', n_jobs=- 1,
random_seed=0, **kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

5.14. Utils 1575

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

1576 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

5.14. Utils 1577

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SelectByType(column_types=None, exclude=False, random_seed=0,
**kwargs)

Selects columns by specified Woodwork logical type or semantic tag in input data.

Parameters
• column_types (string, ww.LogicalType, list(string), list(ww.
LogicalType)) – List of Woodwork types or tags, used to determine which columns
to select or exclude.

• exclude (bool) – If true, exclude the column_types instead of including them. Defaults to
False.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns By Type Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by selecting columns.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

1578 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters

5.14. Utils 1579

EvalML Documentation, Release 0.80.0

• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by selecting columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SelectColumns(columns=None, random_seed=0, **kwargs)
Selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select. If columns are not present, they will not be selected.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

1580 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, optional) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

5.14. Utils 1581

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SimpleImputer(impute_strategy='most_frequent', fill_value=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

1582 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

5.14. Utils 1583

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

1584 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.StackedEnsembleBase(final_estimator=None, n_jobs=- 1,
random_seed=0, **kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1585

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

1586 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1587

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.StackedEnsembleClassifier(final_estimator=None, n_jobs=- 1,
random_seed=0, **kwargs)

Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],

(continues on next page)

1588 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "Stacked Ensemble": [

... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
...],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 1589

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

1590 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1591

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.StackedEnsembleRegressor(final_estimator=None, n_jobs=- 1,
random_seed=0, **kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),

(continues on next page)

1592 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "Random Forest.x",

... "Random Forest B.x",

... "y",

...],

... }

...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 1593

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

1594 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1595

EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.StandardScaler(random_seed=0, **kwargs)
A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1596 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 1597

EvalML Documentation, Release 0.80.0

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.STLDecomposer(time_index: str = None, degree: int = 1, period: int =
None, seasonal_smoother: int = 7, random_seed: int
= 0, **kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and
if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods

1598 Chapter 5. API Reference

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1599

EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

1600 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

5.14. Utils 1601

EvalML Documentation, Release 0.80.0

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

1602 Chapter 5. API Reference

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

EvalML Documentation, Release 0.80.0

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SVMClassifier(C=1.0, kernel='rbf', gamma='auto',
probability=True, random_seed=0, **kwargs)

Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1603

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1604 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1605

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SVMRegressor(C=1.0, kernel='rbf', gamma='auto', random_seed=0,
**kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

1606 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1607

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1608 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TargetEncoder(cols=None, smoothing=1, handle_unknown='value',
handle_missing='value', random_seed=0, **kwargs)

A transformer that encodes categorical features into target encodings.

Parameters

5.14. Utils 1609

EvalML Documentation, Release 0.80.0

• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise
only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1610 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self)
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

5.14. Utils 1611

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TargetImputer(impute_strategy='most_frequent', fill_value=None,
random_seed=0, **kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1612 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

5.14. Utils 1613

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.

1614 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesBaselineEstimator(gap=1, forecast_horizon=1,
random_seed=0, **kwargs)

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 1615

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

1616 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

5.14. Utils 1617

EvalML Documentation, Release 0.80.0

Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesFeaturizer(time_index=None, max_delay=2, gap=0,
forecast_horizon=1, conf_level=0.05,
rolling_window_size=0.25,
delay_features=True, delay_target=True,
random_seed=0, **kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

1618 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

5.14. Utils 1619

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters

1620 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
numeric_impute_strategy='interpolate',
target_impute_strategy='forwards_fill',
random_seed=0, **kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

5.14. Utils 1621

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

1622 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

5.14. Utils 1623

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesRegularizer(time_index=None,
frequency_payload=None,
window_length=4, threshold=0.4,
random_seed=0, **kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

1624 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 1625

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

1626 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Transformer(parameters=None, component_obj=None,
random_seed=0, **kwargs)

A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1627

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

1628 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

5.14. Utils 1629

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Undersampler(sampling_ratio=0.25, sampling_ratio_dict=None,
min_samples=100, min_percentage=0.1,
random_seed=0, **kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples
are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True

1630 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

5.14. Utils 1631

EvalML Documentation, Release 0.80.0

fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

1632 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.URLFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1633

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1634 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VARMAXRegressor(time_index: Optional[Hashable] = None, p: int =
1, q: int = 0, trend: Optional[str] = 'c',
random_seed: Union[int, float] = 0, maxiter: int =
10, use_covariates: bool = False, **kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

5.14. Utils 1635

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

1636 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1637

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VowpalWabbitBinaryClassifier(loss_function='logistic',
learning_rate=0.5,
decay_learning_rate=1.0,
power_t=0.5, passes=1,
random_seed=0, **kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

1638 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1639

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1640 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learning_rate=0.5,
decay_learning_rate=1.0,
power_t=0.5, passes=1,
random_seed=0, **kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

5.14. Utils 1641

EvalML Documentation, Release 0.80.0

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

1642 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

5.14. Utils 1643

EvalML Documentation, Release 0.80.0

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VowpalWabbitRegressor(learning_rate=0.5,
decay_learning_rate=1.0, power_t=0.5,
passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

1644 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1645

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1646 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.XGBoostClassifier(eta=0.1, max_depth=6, min_child_weight=1,
n_estimators=100, random_seed=0,
eval_metric='logloss', n_jobs=12, **kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

5.14. Utils 1647

EvalML Documentation, Release 0.80.0

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1648 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

5.14. Utils 1649

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.XGBoostRegressor(eta: float = 0.1, max_depth: int = 6,
min_child_weight: int = 1, n_estimators: int =
100, random_seed: Union[int, float] = 0, n_jobs:
int = 12, **kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

1650 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 1651

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1652 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Submodules

binary_classification_pipeline

Pipeline subclass for all binary classification pipelines.

5.14. Utils 1653

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

BinaryClassificationPipeline Pipeline subclass for all binary classification pipelines.

Contents

class evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline(component_graph,
parame-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline subclass for all binary classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = BinaryClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Binary Pipeline")
...
>>> assert pipeline.custom_name == "My Binary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

1654 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.BINARY

Methods

5.14. Utils 1655

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels. Assumes that

the column at index 1 represents the positive label
case.

save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.1656 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

5.14. Utils 1657

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

1658 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.

5.14. Utils 1659

EvalML Documentation, Release 0.80.0

• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels. Assumes that the column at index 1 represents the positive label
case.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

1660 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self)
Threshold used to make a prediction. Defaults to None.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

binary_classification_pipeline_mixin

Binary classification pipeline mix-in class.

5.14. Utils 1661

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

BinaryClassificationPipelineMixin Binary classification pipeline mix-in class.

Contents

class
evalml.pipelines.binary_classification_pipeline_mixin.BinaryClassificationPipelineMixin

Binary classification pipeline mix-in class.

Methods

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

threshold Threshold used to make a prediction. Defaults to
None.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.

• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property threshold(self)
Threshold used to make a prediction. Defaults to None.

classification_pipeline

Pipeline subclass for all classification pipelines.

1662 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

ClassificationPipeline Pipeline subclass for all classification pipelines.

Contents

class evalml.pipelines.classification_pipeline.ClassificationPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline subclass for all classification pipelines.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods

5.14. Utils 1663

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

1664 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters

5.14. Utils 1665

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

1666 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

5.14. Utils 1667

EvalML Documentation, Release 0.80.0

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

1668 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

component_graph

Component graph for a pipeline as a directed acyclic graph (DAG).

Module Contents

Classes Summary

ComponentGraph Component graph for a pipeline as a directed acyclic
graph (DAG).

Attributes Summary

logger

Contents

class evalml.pipelines.component_graph.ComponentGraph(component_dict=None, cached_data=None,
random_seed=0)

Component graph for a pipeline as a directed acyclic graph (DAG).

Parameters
• component_dict (dict) – A dictionary which specifies the components and edges between

components that should be used to create the component graph. Defaults to None.

• cached_data (dict) – A dictionary of nested cached data. If the hashes and components
are in this cache, we skip fitting for these components. Expected to be of format {hash1:
{component_name: trained_component, . . . }, hash2: {. . . }, . . . }. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1669

EvalML Documentation, Release 0.80.0

Examples

>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'Logistic Regression': ['Logistic Regression Classifier',
→˓'Imputer.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)
>>> assert component_graph.compute_order == ['Imputer', 'Logistic Regression']
...
...
>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'OHE': ['One Hot Encoder', 'Imputer.x', 'y'],
... 'estimator_1': ['Random Forest Classifier', 'OHE.x', 'y'],
... 'estimator_2': ['Decision Tree Classifier', 'OHE.x', 'y'],
... 'final': ['Logistic Regression Classifier', 'estimator_1.x',
→˓'estimator_2.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)

The default parameters for every component in the component graph.

>>> assert component_graph.default_parameters == {
... 'Imputer': {'categorical_impute_strategy': 'most_frequent',
... 'numeric_impute_strategy': 'mean',
... 'boolean_impute_strategy': 'most_frequent',
... 'categorical_fill_value': None,
... 'numeric_fill_value': None,
... 'boolean_fill_value': None},
... 'One Hot Encoder': {'top_n': 10,
... 'features_to_encode': None,
... 'categories': None,
... 'drop': 'if_binary',
... 'handle_unknown': 'ignore',
... 'handle_missing': 'error'},
... 'Random Forest Classifier': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Logistic Regression Classifier': {'penalty': 'l2',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'lbfgs'}}

Methods

1670 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

compute_order The order that components will be computed or
called in.

default_parameters The default parameter dictionary for this pipeline.
describe Outputs component graph details including compo-

nent parameters.
fit Fit each component in the graph.
fit_and_transform_all_but_final Fit and transform all components save the final one,

usually an estimator.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
generate_order Regenerated the topologically sorted order of the

graph.
get_component Retrieves a single component object from the graph.
get_component_input_logical_types Get the logical types that are passed to the given com-

ponent.
get_estimators Gets a list of all the estimator components within this

graph.
get_inputs Retrieves all inputs for a given component.
get_last_component Retrieves the component that is computed last in the

graph, usually the final estimator.
graph Generate an image representing the component

graph.
has_dfs Whether this component graph contains a DFSTrans-

former or not.
instantiate Instantiates all uninstantiated components within the

graph using the given parameters. An error will be
raised if a component is already instantiated but the
parameters dict contains arguments for that compo-
nent.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

last_component_input_logical_types Get the logical types that are passed to the last com-
ponent in the pipeline.

predict Make predictions using selected features.
transform Transform the input using the component graph.
transform_all_but_final Transform all components save the final one, and

gathers the data from any number of parents to get all
the information that should be fed to the final compo-
nent.

property compute_order(self)
The order that components will be computed or called in.

property default_parameters(self)
The default parameter dictionary for this pipeline.

Returns Dictionary of all component default parameters.

Return type dict

describe(self, return_dict=False)
Outputs component graph details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about component

5.14. Utils 1671

EvalML Documentation, Release 0.80.0

graph. Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None

Return type dict

Raises ValueError – If the componentgraph is not instantiated

fit(self, X, y)
Fit each component in the graph.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_and_transform_all_but_final(self, X, y)
Fit and transform all components save the final one, usually an estimator.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns Transformed features and target.

Return type Tuple (pd.DataFrame, pd.Series)

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

classmethod generate_order(cls, component_dict)
Regenerated the topologically sorted order of the graph.

get_component(self, component_name)
Retrieves a single component object from the graph.

Parameters component_name (str) – Name of the component to retrieve

Returns ComponentBase object

Raises ValueError – If the component is not in the graph.

get_component_input_logical_types(self, component_name)
Get the logical types that are passed to the given component.

Parameters component_name (str) – Name of component in the graph

Returns Dict - Mapping feature name to logical type instance.

Raises

1672 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

get_estimators(self)
Gets a list of all the estimator components within this graph.

Returns All estimator objects within the graph.

Return type list

Raises ValueError – If the component graph is not yet instantiated.

get_inputs(self, component_name)
Retrieves all inputs for a given component.

Parameters component_name (str) – Name of the component to look up.

Returns List of inputs for the component to use.

Return type list[str]

Raises ValueError – If the component is not in the graph.

get_last_component(self)
Retrieves the component that is computed last in the graph, usually the final estimator.

Returns ComponentBase object

Raises ValueError – If the component graph has no edges.

graph(self, name=None, graph_format=None)
Generate an image representing the component graph.

Parameters
• name (str) – Name of the graph. Defaults to None.

• graph_format (str) – file format to save the graph in. Defaults to None.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises RuntimeError – If graphviz is not installed.

property has_dfs(self)
Whether this component graph contains a DFSTransformer or not.

instantiate(self, parameters=None)
Instantiates all uninstantiated components within the graph using the given parameters. An error will be
raised if a component is already instantiated but the parameters dict contains arguments for that component.

Parameters parameters (dict) – Dictionary with component names as keys and dictionary of
that component’s parameters as values. An empty dictionary {} or None implies using all
default values for component parameters. If a component in the component graph is already
instantiated, it will not use any of its parameters defined in this dictionary. Defaults to None.

Returns self

Raises ValueError – If component graph is already instantiated or if a component errored while
instantiating.

5.14. Utils 1673

EvalML Documentation, Release 0.80.0

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y – (pd.Series): Final component features.

Returns The target with inverse transformation applied.

Return type pd.Series

property last_component_input_logical_types(self)
Get the logical types that are passed to the last component in the pipeline.

Returns Dict - Mapping feature name to logical type instance.

Raises
• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Input features of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

transform(self, X, y=None)
Transform the input using the component graph.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is not a Transformer.

transform_all_but_final(self, X, y=None)
Transform all components save the final one, and gathers the data from any number of parents to get all the
information that should be fed to the final component.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples]. Defaults to None.

Returns Transformed values.

Return type pd.DataFrame

evalml.pipelines.component_graph.logger

1674 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

multiclass_classification_pipeline

Pipeline subclass for all multiclass classification pipelines.

Module Contents

Classes Summary

MulticlassClassificationPipeline Pipeline subclass for all multiclass classification
pipelines.

Contents

class evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline subclass for all multiclass classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1675

EvalML Documentation, Release 0.80.0

Example

>>> pipeline = MulticlassClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Multiclass Pipeline
→˓")
...
>>> assert pipeline.custom_name == "My Multiclass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.MULTICLASS

Methods

1676 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

5.14. Utils 1677

EvalML Documentation, Release 0.80.0

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters

1678 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

5.14. Utils 1679

EvalML Documentation, Release 0.80.0

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

1680 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

5.14. Utils 1681

EvalML Documentation, Release 0.80.0

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

multiseries_regression_pipeline

Pipeline base class for time series regression problems.

Module Contents

Classes Summary

MultiseriesRegressionPipeline Pipeline base class for multiseries time series regression
problems.

Contents

class evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for multiseries time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components.

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay

1682 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a multiseries time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.

continues on next page

5.14. Utils 1683

EvalML Documentation, Release 0.80.0

Table 9 – continued from previous page
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

1684 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a multiseries time series pipeline.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.

Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series

5.14. Utils 1685

EvalML Documentation, Release 0.80.0

Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
...)
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)
>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters

1686 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

5.14. Utils 1687

EvalML Documentation, Release 0.80.0

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

1688 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

5.14. Utils 1689

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

pipeline_base

Base machine learning pipeline class.

Module Contents

Classes Summary

PipelineBase Machine learning pipeline.

Attributes Summary

logger

1690 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Contents

evalml.pipelines.pipeline_base.logger

class evalml.pipelines.pipeline_base.PipelineBase(component_graph, parameters=None,
custom_name=None, random_seed=0)

Machine learning pipeline.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”].

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods

5.14. Utils 1691

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

1692 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

abstract fit(self, X, y)
Build a model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

5.14. Utils 1693

EvalML Documentation, Release 0.80.0

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

1694 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters

5.14. Utils 1695

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

pipeline_meta

Metaclass that overrides creating a new pipeline by wrapping methods with validators and setters.

1696 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

PipelineBaseMeta Metaclass that overrides creating a new pipeline by
wrapping methods with validators and setters.

Contents

class evalml.pipelines.pipeline_meta.PipelineBaseMeta

Metaclass that overrides creating a new pipeline by wrapping methods with validators and setters.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises PipelineNotYetFittedError – If pipeline is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

5.14. Utils 1697

EvalML Documentation, Release 0.80.0

regression_pipeline

Pipeline subclass for all regression pipelines.

Module Contents

Classes Summary

RegressionPipeline Pipeline subclass for all regression pipelines.

Contents

class evalml.pipelines.regression_pipeline.RegressionPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline subclass for all regression pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = RegressionPipeline(component_graph=["Simple Imputer", "Linear␣
→˓Regressor"],
... parameters={"Simple Imputer": {"impute_strategy":
→˓"mean"}},
... custom_name="My Regression Pipeline")
...
>>> assert pipeline.custom_name == "My Regression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

1698 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1}}

Attributes

prob-
lem_type

ProblemTypes.REGRESSION

Methods

5.14. Utils 1699

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a regression model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

1700 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a regression model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training data of length [n_samples]

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

5.14. Utils 1701

EvalML Documentation, Release 0.80.0

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

1702 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters

5.14. Utils 1703

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – True values of length [n_samples]

• objectives (list) – Non-empty list of objectives to score on

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

time_series_classification_pipelines

Pipeline base class for time-series classification problems.

1704 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

TimeSeriesBinaryClassificationPipeline Pipeline base class for time series binary classification
problems.

TimeSeriesClassificationPipeline Pipeline base class for time series classification prob-
lems.

TimeSeriesMulticlassClassificationPipeline Pipeline base class for time series multiclass classifica-
tion problems.

Contents

class evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series binary classification problems.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesBinaryClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {"gap
→˓": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},

(continues on next page)

5.14. Utils 1705

EvalML Documentation, Release 0.80.0

(continued from previous page)

... custom_name="My␣
→˓TimeSeriesBinary Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesBinary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
...
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.

continues on next page

1706 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 10 – continued from previous page
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

5.14. Utils 1707

EvalML Documentation, Release 0.80.0

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

1708 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

5.14. Utils 1709

EvalML Documentation, Release 0.80.0

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.

1710 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame) – Future data of shape [n_samples, n_features].

• y (pd.Series) – Future target of shape [n_samples].

• X_train (pd.DataFrame) – Data the pipeline was trained on of shape [n_samples_train,
n_feautures].

• y_train (pd.Series) – Targets used to train the pipeline of shape [n_samples_train].

• objective (ObjectiveBase, str) – Objective used to threshold predicted probabili-
ties, optional. Defaults to None.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If objective is not defined for time-series binary classification problems.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

5.14. Utils 1711

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self)
Threshold used to make a prediction. Defaults to None.

1712 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series classification problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1713

EvalML Documentation, Release 0.80.0

Attributes

prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.

continues on next page

1714 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 11 – continued from previous page
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

5.14. Utils 1715

EvalML Documentation, Release 0.80.0

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

1716 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

5.14. Utils 1717

EvalML Documentation, Release 0.80.0

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

1718 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

5.14. Utils 1719

EvalML Documentation, Release 0.80.0

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series multiclass classification problems.

Parameters

1720 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• component_graph (list or dict) – List of components in order. Accepts strings or
ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesMulticlassClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesMulticlass Pipeline")
>>> assert pipeline.custom_name == "My TimeSeriesMulticlass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

ProblemTypes.TIME_SERIES_MULTICLASS

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

continues on next page

5.14. Utils 1721

EvalML Documentation, Release 0.80.0

Table 12 – continued from previous page
clone Constructs a new pipeline with the same components,

parameters, and random seed.
create_objectives Create objective instances from a list of strings or ob-

jective classes.
custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)

1722 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

5.14. Utils 1723

EvalML Documentation, Release 0.80.0

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

1724 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

5.14. Utils 1725

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

1726 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

5.14. Utils 1727

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

time_series_pipeline_base

Pipeline base class for time-series problems.

Module Contents

Classes Summary

TimeSeriesPipelineBase Pipeline base class for time series problems.

Contents

class evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline base class for time series problems.

Parameters

1728 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list
of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods

5.14. Utils 1729

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

1730 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

abstract fit(self, X, y)
Build a model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

5.14. Utils 1731

EvalML Documentation, Release 0.80.0

• y (pd.Series, np.ndarray) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

1732 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

5.14. Utils 1733

EvalML Documentation, Release 0.80.0

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

1734 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

time_series_regression_pipeline

Pipeline base class for time series regression problems.

5.14. Utils 1735

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

TimeSeriesRegressionPipeline Pipeline base class for time series regression problems.

Contents

class evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline(component_graph,
pa-
rame-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Simple Imputer",
→˓"Linear Regressor"],
... parameters={"Simple␣
→˓Imputer": {"impute_strategy": "mean"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesRegression Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesRegression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}

1736 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

continues on next page

5.14. Utils 1737

EvalML Documentation, Release 0.80.0

Table 13 – continued from previous page
inverse_transform Apply component inverse_transform methods to es-

timator predictions in reverse order.
load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

1738 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series pipeline.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training targets of length [n_samples].

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

5.14. Utils 1739

EvalML Documentation, Release 0.80.0

get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.

Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series

Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
...)
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)
>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

1740 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

5.14. Utils 1741

EvalML Documentation, Release 0.80.0

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

1742 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

5.14. Utils 1743

EvalML Documentation, Release 0.80.0

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

utils

Utility methods for EvalML pipelines.

Module Contents

1744 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Functions

generate_pipeline_code Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

generate_pipeline_example Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

get_actions_from_option_defaults Returns a list of actions based on the defaults parameters
of each option in the input DataCheckActionOption list.

make_pipeline Given input data, target data, an estimator class and the
problem type, generates a pipeline class with a prepro-
cessing chain which was recommended based on the in-
puts. The pipeline will be a subclass of the appropriate
pipeline base class for the specified problem_type.

make_pipeline_from_actions Creates a pipeline of components to address the input
DataCheckAction list.

make_pipeline_from_data_check_output Creates a pipeline of components to address warnings
and errors output from running data checks. Uses all
default suggestions.

make_timeseries_baseline_pipeline Make a baseline pipeline for time series regression prob-
lems.

rows_of_interest Get the row indices of the data that are closest to the
threshold. Works only for binary classification problems
and pipelines.

stack_data Stacks the given DataFrame back into a single Series, or
a DataFrame if include_series_id is True.

stack_X Restacks the unstacked features into a single DataFrame.
unstack_multiseries Converts multiseries data with one series_id column and

one target column to one target column per series id.

Attributes Summary

DECOMPOSER_PERIOD_CAP

Contents

evalml.pipelines.utils.DECOMPOSER_PERIOD_CAP = 1000

evalml.pipelines.utils.generate_pipeline_code(element, features_path=None)
Creates and returns a string that contains the Python imports and code required for running the EvalML pipeline.

Parameters
• element (pipeline instance) – The instance of the pipeline to generate string Python

code.

• features_path (str) – path to features json created from featuretools.save_features(). De-
faults to None.

5.14. Utils 1745

EvalML Documentation, Release 0.80.0

Returns String representation of Python code that can be run separately in order to recreate the
pipeline instance. Does not include code for custom component implementation.

Return type str

Raises
• ValueError – If element is not a pipeline, or if the pipeline is nonlinear.

• ValueError – If features in features_path do not match the features on the pipeline.

evalml.pipelines.utils.generate_pipeline_example(pipeline, path_to_train, path_to_holdout, target,
path_to_features=None, path_to_mapping='',
output_file_path=None)

Creates and returns a string that contains the Python imports and code required for running the EvalML pipeline.

Parameters
• pipeline (pipeline instance) – The instance of the pipeline to generate string Python

code.

• path_to_train (str) – path to training data.

• path_to_holdout (str) – path to holdout data.

• target (str) – target variable.

• path_to_features (str) – path to features json. Defaults to None.

• path_to_mapping (str) – path to mapping json. Defaults to None.

• output_file_path (str) – path to output python file. Defaults to None.

Returns String representation of Python code that can be run separately in order to recreate the
pipeline instance. Does not include code for custom component implementation.

Return type str

evalml.pipelines.utils.get_actions_from_option_defaults(action_options)
Returns a list of actions based on the defaults parameters of each option in the input DataCheckActionOption
list.

Parameters action_options (list[DataCheckActionOption]) – List of DataCheckAc-
tionOption objects

Returns List of actions based on the defaults parameters of each option in the input list.

Return type list[DataCheckAction]

evalml.pipelines.utils.make_pipeline(X, y, estimator, problem_type, parameters=None,
sampler_name=None, extra_components_before=None,
extra_components_after=None, use_estimator=True,
known_in_advance=None, features=False,
exclude_featurizers=None, include_decomposer=True)

Given input data, target data, an estimator class and the problem type, generates a pipeline class with a prepro-
cessing chain which was recommended based on the inputs. The pipeline will be a subclass of the appropriate
pipeline base class for the specified problem_type.

Parameters
• X (pd.DataFrame) – The input data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

• estimator (Estimator) – Estimator for pipeline.

1746 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• problem_type (ProblemTypes or str) – Problem type for pipeline to generate.

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters.

• sampler_name (str) – The name of the sampler component to add to the pipeline. Only
used in classification problems. Defaults to None

• extra_components_before (list[ComponentBase]) – List of extra components to be
added before preprocessing components. Defaults to None.

• extra_components_after (list[ComponentBase]) – List of extra components to be
added after preprocessing components. Defaults to None.

• use_estimator (bool) – Whether to add the provided estimator to the pipeline or not.
Defaults to True.

• known_in_advance (list[str], None) – List of features that are known in advance.

• features (bool) – Whether to add a DFSTransformer component to this pipeline.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipeline. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”, “URLFeaturizer”,
“NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• include_decomposer (bool) – For time series regression problems, whether or not to
include a decomposer in the generated pipeline. Defaults to True.

Returns PipelineBase instance with dynamically generated preprocessing components and specified
estimator.

Return type PipelineBase object

Raises ValueError – If estimator is not valid for the given problem type, or sampling is not sup-
ported for the given problem type.

evalml.pipelines.utils.make_pipeline_from_actions(problem_type, actions,
problem_configuration=None)

Creates a pipeline of components to address the input DataCheckAction list.

Parameters
• problem_type (str or ProblemType) – The problem type that the pipeline should ad-

dress.

• actions (list[DataCheckAction]) – List of DataCheckAction objects used to create list
of components

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index, gap, forecast_horizon, and max_delay.

Returns Pipeline which can be used to address data check actions.

Return type PipelineBase

evalml.pipelines.utils.make_pipeline_from_data_check_output(problem_type, data_check_output,
problem_configuration=None)

Creates a pipeline of components to address warnings and errors output from running data checks. Uses all
default suggestions.

Parameters
• problem_type (str or ProblemType) – The problem type.

5.14. Utils 1747

EvalML Documentation, Release 0.80.0

• data_check_output (dict) – Output from calling DataCheck.validate().

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index, gap, forecast_horizon, and max_delay.

Returns Pipeline which can be used to address data check outputs.

Return type PipelineBase

Raises ValueError – If problem_type is of type time series but an incorrect problem_configuration
has been passed.

evalml.pipelines.utils.make_timeseries_baseline_pipeline(problem_type, gap, forecast_horizon,
time_index, exclude_featurizer=False,
series_id=None)

Make a baseline pipeline for time series regression problems.

Parameters
• problem_type – One of TIME_SERIES_REGRESSION,

TIME_SERIES_MULTICLASS, TIME_SERIES_BINARY

• gap (int) – Non-negative gap parameter.

• forecast_horizon (int) – Positive forecast_horizon parameter.

• time_index (str) – Column name of time_index parameter.

• exclude_featurizer (bool) – Whether or not to exclude the TimeSeriesFeaturizer from
the baseline graph. Defaults to False.

• series_id (str) – Column name of series_id parameter. Only used for multiseries time
series. Defaults to None.

Returns TimeSeriesPipelineBase, a time series pipeline corresponding to the problem type.

evalml.pipelines.utils.rows_of_interest(pipeline, X, y=None, threshold=None, epsilon=0.1,
sort_values=True, types='all')

Get the row indices of the data that are closest to the threshold. Works only for binary classification problems
and pipelines.

Parameters
• pipeline (PipelineBase) – The fitted binary pipeline.

• X (ww.DataTable, pd.DataFrame) – The input features to predict on.

• y (ww.DataColumn, pd.Series, None) – The input target data, if available. Defaults to
None.

• threshold (float) – The threshold value of interest to separate positive and negative pre-
dictions. If None, uses the pipeline threshold if set, else 0.5. Defaults to None.

• epsilon (epsilon) – The difference between the probability and the threshold that would
make the row interesting for us. For instance, epsilon=0.1 and threhsold=0.5 would mean
we consider all rows in [0.4, 0.6] to be of interest. Defaults to 0.1.

• sort_values (bool) – Whether to return the indices sorted by the distance from the thresh-
old, such that the first values are closer to the threshold and the later values are further. De-
faults to True.

• types (str) – The type of rows to keep and return. Can be one of [‘incorrect’, ‘correct’,
‘true_positive’, ‘true_negative’, ‘all’]. Defaults to ‘all’.

1748 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

’incorrect’ - return only the rows where the predictions are incorrect. This means that, given
the threshold and target y, keep only the rows which are labeled wrong. ‘correct’ - return
only the rows where the predictions are correct. This means that, given the threshold and
target y, keep only the rows which are correctly labeled. ‘true_positive’ - return only the
rows which are positive, as given by the targets. ‘true_negative’ - return only the rows which
are negative, as given by the targets. ‘all’ - return all rows. This is the only option available
when there is no target data provided.

Returns The indices corresponding to the rows of interest.

Raises
• ValueError – If pipeline is not a fitted Binary Classification pipeline.

• ValueError – If types is invalid or y is not provided when types is not ‘all’.

• ValueError – If the threshold is provided and is exclusive of [0, 1].

evalml.pipelines.utils.stack_data(data, include_series_id=False, series_id_name=None,
starting_index=None)

Stacks the given DataFrame back into a single Series, or a DataFrame if include_series_id is True.

Should only be used for data that is expected to be a single series. To stack multiple unstacked columns, use
stack_X.

Parameters
• data (pd.DataFrame) – The data to stack.

• include_series_id (bool) – Whether or not to extract the series id and include it in a
separate columns

• series_id_name (str) – If include_series_id is True, the series_id name to set for the
column. The column will be named ‘series_id’ if this parameter is None.

• starting_index (int) – The starting index to use for the stacked series. If None and the
input index is numeric, the starting index will match that of the input data. If None and the
input index is a DatetimeIndex, the index will be the input data’s index repeated over the
number of columns in the input data.

Returns The data in stacked series form.

Return type pd.Series or pd.DataFrame

evalml.pipelines.utils.stack_X(X, series_id_name, time_index, starting_index=None,
series_id_values=None)

Restacks the unstacked features into a single DataFrame.

Parameters
• X (pd.DataFrame) – The unstacked features.

• series_id_name (str) – The name of the series id column.

• time_index (str) – The name of the time index column.

• starting_index (int) – The starting index to use for the stacked DataFrame. If None, the
starting index will match that of the input data. Defaults to None.

• series_id_values (set, list) – The unique values of a series ID, used to generate the
index. If None, values will be generated from X column values. Required if X only has time
index values and no exogenous values. Defaults to None.

Returns The restacked features.

5.14. Utils 1749

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

evalml.pipelines.utils.unstack_multiseries(X, y, series_id, time_index, target_name)
Converts multiseries data with one series_id column and one target column to one target column per series id.

Datetime information will be preserved only as a column in X.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• series_id (str) – The column which identifies which series each row belongs to.

• time_index (str) – Specifies the name of the column in X that provides the datetime ob-
jects.

• target_name (str) – The name of the target column.

Returns The unstacked X and y data.

Return type pd.DataFrame, pd.DataFrame

Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BinaryClassificationPipeline Pipeline subclass for all binary classification pipelines.
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

ClassificationPipeline Pipeline subclass for all classification pipelines.
ComponentGraph Component graph for a pipeline as a directed acyclic

graph (DAG).
DecisionTreeClassifier Decision Tree Classifier.
DecisionTreeRegressor Decision Tree Regressor.
DFSTransformer Featuretools DFS component that generates features for

the input features.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ElasticNetRegressor Elastic Net Regressor.
Estimator A component that fits and predicts given data.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesClassifier Extra Trees Classifier.
ExtraTreesRegressor Extra Trees Regressor.

continues on next page

1750 Chapter 5. API Reference

https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

Table 14 – continued from previous page
FeatureSelector Selects top features based on importance weights.
Imputer Imputes missing data according to a specified imputation

strategy.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
LogisticRegressionClassifier Logistic Regression Classifier.
MulticlassClassificationPipeline Pipeline subclass for all multiclass classification

pipelines.
MultiseriesRegressionPipeline Pipeline base class for multiseries time series regression

problems.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PipelineBase Machine learning pipeline.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestClassifier Random Forest Classifier.
RandomForestRegressor Random Forest Regressor.
RegressionPipeline Pipeline subclass for all regression pipelines.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StackedEnsembleBase Stacked Ensemble Base Class.
StackedEnsembleClassifier Stacked Ensemble Classifier.
StackedEnsembleRegressor Stacked Ensemble Regressor.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
SVMClassifier Support Vector Machine Classifier.
SVMRegressor Support Vector Machine Regressor.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TimeSeriesBinaryClassificationPipeline Pipeline base class for time series binary classification

problems.
TimeSeriesClassificationPipeline Pipeline base class for time series classification prob-

lems.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
continues on next page

5.14. Utils 1751

EvalML Documentation, Release 0.80.0

Table 14 – continued from previous page
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesMulticlassClassificationPipeline Pipeline base class for time series multiclass classifica-

tion problems.
TimeSeriesRegressionPipeline Pipeline base class for time series regression problems.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

VARMAXRegressor Vector Autoregressive Moving Average with eXoge-
nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostClassifier XGBoost Classifier.
XGBoostRegressor XGBoost Regressor.

Contents

class evalml.pipelines.ARIMARegressor(time_index: Optional[Hashable] = None, trend: Optional[str] =
None, start_p: int = 2, d: int = 0, start_q: int = 2, max_p: int = 5,
max_d: int = 2, max_q: int = 5, seasonal: bool = True, sp: int = 1,
n_jobs: int = - 1, random_seed: Union[int, float] = 0, maxiter: int
= 10, use_covariates: bool = True, **kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

1752 Chapter 5. API Reference

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html

EvalML Documentation, Release 0.80.0

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 1753

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1754 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.BinaryClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline subclass for all binary classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate

5.14. Utils 1755

EvalML Documentation, Release 0.80.0

component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = BinaryClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Binary Pipeline")
...
>>> assert pipeline.custom_name == "My Binary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.BINARY

Methods

1756 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels. Assumes that

the column at index 1 represents the positive label
case.

save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.5.14. Utils 1757

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

1758 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

5.14. Utils 1759

EvalML Documentation, Release 0.80.0

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.

1760 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels. Assumes that the column at index 1 represents the positive label
case.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

5.14. Utils 1761

EvalML Documentation, Release 0.80.0

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self)
Threshold used to make a prediction. Defaults to None.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.CatBoostClassifier(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=True,
allow_writing_files=False, random_seed=0, n_jobs=- 1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

1762 Chapter 5. API Reference

https://catboost.ai/

EvalML Documentation, Release 0.80.0

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 1763

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1764 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.CatBoostRegressor(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=False, allow_writing_files=False,
random_seed=0, n_jobs=- 1, **kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

5.14. Utils 1765

https://catboost.ai/

EvalML Documentation, Release 0.80.0

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

1766 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

5.14. Utils 1767

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline subclass for all classification pipelines.

Parameters

1768 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• component_graph (list or dict) – List of components in order. Accepts strings or
ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods

5.14. Utils 1769

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

1770 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters

5.14. Utils 1771

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

1772 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

5.14. Utils 1773

EvalML Documentation, Release 0.80.0

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

1774 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.ComponentGraph(component_dict=None, cached_data=None, random_seed=0)
Component graph for a pipeline as a directed acyclic graph (DAG).

Parameters
• component_dict (dict) – A dictionary which specifies the components and edges between

components that should be used to create the component graph. Defaults to None.

• cached_data (dict) – A dictionary of nested cached data. If the hashes and components
are in this cache, we skip fitting for these components. Expected to be of format {hash1:
{component_name: trained_component, . . . }, hash2: {. . . }, . . . }. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Examples

>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'Logistic Regression': ['Logistic Regression Classifier',
→˓'Imputer.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)
>>> assert component_graph.compute_order == ['Imputer', 'Logistic Regression']
...
...
>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'OHE': ['One Hot Encoder', 'Imputer.x', 'y'],
... 'estimator_1': ['Random Forest Classifier', 'OHE.x', 'y'],
... 'estimator_2': ['Decision Tree Classifier', 'OHE.x', 'y'],
... 'final': ['Logistic Regression Classifier', 'estimator_1.x',
→˓'estimator_2.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)

The default parameters for every component in the component graph.

>>> assert component_graph.default_parameters == {
... 'Imputer': {'categorical_impute_strategy': 'most_frequent',
... 'numeric_impute_strategy': 'mean',
... 'boolean_impute_strategy': 'most_frequent',

(continues on next page)

5.14. Utils 1775

EvalML Documentation, Release 0.80.0

(continued from previous page)

... 'categorical_fill_value': None,

... 'numeric_fill_value': None,

... 'boolean_fill_value': None},

... 'One Hot Encoder': {'top_n': 10,

... 'features_to_encode': None,

... 'categories': None,

... 'drop': 'if_binary',

... 'handle_unknown': 'ignore',

... 'handle_missing': 'error'},

... 'Random Forest Classifier': {'n_estimators': 100,

... 'max_depth': 6,

... 'n_jobs': -1},

... 'Decision Tree Classifier': {'criterion': 'gini',

... 'max_features': 'sqrt',

... 'max_depth': 6,

... 'min_samples_split': 2,

... 'min_weight_fraction_leaf': 0.0},

... 'Logistic Regression Classifier': {'penalty': 'l2',

... 'C': 1.0,

... 'n_jobs': -1,

... 'multi_class': 'auto',

... 'solver': 'lbfgs'}}

Methods

1776 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

compute_order The order that components will be computed or
called in.

default_parameters The default parameter dictionary for this pipeline.
describe Outputs component graph details including compo-

nent parameters.
fit Fit each component in the graph.
fit_and_transform_all_but_final Fit and transform all components save the final one,

usually an estimator.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
generate_order Regenerated the topologically sorted order of the

graph.
get_component Retrieves a single component object from the graph.
get_component_input_logical_types Get the logical types that are passed to the given com-

ponent.
get_estimators Gets a list of all the estimator components within this

graph.
get_inputs Retrieves all inputs for a given component.
get_last_component Retrieves the component that is computed last in the

graph, usually the final estimator.
graph Generate an image representing the component

graph.
has_dfs Whether this component graph contains a DFSTrans-

former or not.
instantiate Instantiates all uninstantiated components within the

graph using the given parameters. An error will be
raised if a component is already instantiated but the
parameters dict contains arguments for that compo-
nent.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

last_component_input_logical_types Get the logical types that are passed to the last com-
ponent in the pipeline.

predict Make predictions using selected features.
transform Transform the input using the component graph.
transform_all_but_final Transform all components save the final one, and

gathers the data from any number of parents to get all
the information that should be fed to the final compo-
nent.

property compute_order(self)
The order that components will be computed or called in.

property default_parameters(self)
The default parameter dictionary for this pipeline.

Returns Dictionary of all component default parameters.

Return type dict

describe(self, return_dict=False)
Outputs component graph details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about component

5.14. Utils 1777

EvalML Documentation, Release 0.80.0

graph. Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None

Return type dict

Raises ValueError – If the componentgraph is not instantiated

fit(self, X, y)
Fit each component in the graph.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_and_transform_all_but_final(self, X, y)
Fit and transform all components save the final one, usually an estimator.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns Transformed features and target.

Return type Tuple (pd.DataFrame, pd.Series)

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

classmethod generate_order(cls, component_dict)
Regenerated the topologically sorted order of the graph.

get_component(self, component_name)
Retrieves a single component object from the graph.

Parameters component_name (str) – Name of the component to retrieve

Returns ComponentBase object

Raises ValueError – If the component is not in the graph.

get_component_input_logical_types(self, component_name)
Get the logical types that are passed to the given component.

Parameters component_name (str) – Name of component in the graph

Returns Dict - Mapping feature name to logical type instance.

Raises

1778 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

get_estimators(self)
Gets a list of all the estimator components within this graph.

Returns All estimator objects within the graph.

Return type list

Raises ValueError – If the component graph is not yet instantiated.

get_inputs(self, component_name)
Retrieves all inputs for a given component.

Parameters component_name (str) – Name of the component to look up.

Returns List of inputs for the component to use.

Return type list[str]

Raises ValueError – If the component is not in the graph.

get_last_component(self)
Retrieves the component that is computed last in the graph, usually the final estimator.

Returns ComponentBase object

Raises ValueError – If the component graph has no edges.

graph(self, name=None, graph_format=None)
Generate an image representing the component graph.

Parameters
• name (str) – Name of the graph. Defaults to None.

• graph_format (str) – file format to save the graph in. Defaults to None.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises RuntimeError – If graphviz is not installed.

property has_dfs(self)
Whether this component graph contains a DFSTransformer or not.

instantiate(self, parameters=None)
Instantiates all uninstantiated components within the graph using the given parameters. An error will be
raised if a component is already instantiated but the parameters dict contains arguments for that component.

Parameters parameters (dict) – Dictionary with component names as keys and dictionary of
that component’s parameters as values. An empty dictionary {} or None implies using all
default values for component parameters. If a component in the component graph is already
instantiated, it will not use any of its parameters defined in this dictionary. Defaults to None.

Returns self

Raises ValueError – If component graph is already instantiated or if a component errored while
instantiating.

5.14. Utils 1779

EvalML Documentation, Release 0.80.0

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y – (pd.Series): Final component features.

Returns The target with inverse transformation applied.

Return type pd.Series

property last_component_input_logical_types(self)
Get the logical types that are passed to the last component in the pipeline.

Returns Dict - Mapping feature name to logical type instance.

Raises
• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Input features of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

transform(self, X, y=None)
Transform the input using the component graph.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is not a Transformer.

transform_all_but_final(self, X, y=None)
Transform all components save the final one, and gathers the data from any number of parents to get all the
information that should be fed to the final component.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples]. Defaults to None.

Returns Transformed values.

Return type pd.DataFrame

1780 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

class evalml.pipelines.DecisionTreeClassifier(criterion='gini', max_features='sqrt', max_depth=6,
min_samples_split=2, min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

5.14. Utils 1781

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

1782 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

5.14. Utils 1783

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.DecisionTreeRegressor(criterion='squared_error', max_features='sqrt',
max_depth=6, min_samples_split=2,
min_weight_fraction_leaf=0.0, random_seed=0,
**kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

1784 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 1785

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

1786 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

5.14. Utils 1787

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.DFSTransformer(index='index', features=None, random_seed=0, **kwargs)
Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods

1788 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

5.14. Utils 1789

EvalML Documentation, Release 0.80.0

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

1790 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.DropNaNRowsTransformer(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 1791

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1792 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15,
multi_class='auto', solver='saga', n_jobs=- 1,
random_seed=0, **kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

5.14. Utils 1793

EvalML Documentation, Release 0.80.0

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1794 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

5.14. Utils 1795

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15, max_iter=1000,
random_seed=0, **kwargs)

Elastic Net Regressor.

Parameters

1796 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

5.14. Utils 1797

EvalML Documentation, Release 0.80.0

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1798 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.Estimator(parameters: dict = None, component_obj:
Type[evalml.pipelines.components.ComponentBase] = None,
random_seed: Union[int, float] = 0, **kwargs)

5.14. Utils 1799

EvalML Documentation, Release 0.80.0

A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

1800 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

5.14. Utils 1801

EvalML Documentation, Release 0.80.0

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

1802 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ExponentialSmoothingRegressor(trend: Optional[str] = None, damped_trend:
bool = False, seasonal: Optional[str] = None,
sp: int = 2, n_jobs: int = - 1, random_seed:
Union[int, float] = 0, **kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

5.14. Utils 1803

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters

1804 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

5.14. Utils 1805

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ExtraTreesClassifier(n_estimators=100, max_features='sqrt', max_depth=6,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_jobs=- 1, random_seed=0, **kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

1806 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

5.14. Utils 1807

EvalML Documentation, Release 0.80.0

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

1808 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1809

EvalML Documentation, Release 0.80.0

class evalml.pipelines.ExtraTreesRegressor(n_estimators: int = 100, max_features: str = 'sqrt',
max_depth: int = 6, min_samples_split: int = 2,
min_weight_fraction_leaf: float = 0.0, n_jobs: int = - 1,
random_seed: Union[int, float] = 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

1810 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

5.14. Utils 1811

EvalML Documentation, Release 0.80.0

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

1812 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.FeatureSelector(parameters=None, component_obj=None, random_seed=0,
**kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1813

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

1814 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

5.14. Utils 1815

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.Imputer(categorical_impute_strategy='most_frequent', categorical_fill_value=None,
numeric_impute_strategy='mean', numeric_fill_value=None,
boolean_impute_strategy='most_frequent', boolean_fill_value=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods

1816 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

5.14. Utils 1817

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto',
leaf_size=30, p=2, random_seed=0, **kwargs)

K-Nearest Neighbors Classifier.

1818 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 1819

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

1820 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 1821

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LightGBMClassifier(boosting_type='gbdt', learning_rate=0.1, n_estimators=100,
max_depth=0, num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1822 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1823

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1824 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LightGBMRegressor(boosting_type='gbdt', learning_rate=0.1, n_estimators=20,
max_depth=0, num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Regressor.

Parameters

5.14. Utils 1825

EvalML Documentation, Release 0.80.0

• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses
traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods

1826 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.

5.14. Utils 1827

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

1828 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LinearRegressor(fit_intercept=True, n_jobs=- 1, random_seed=0, **kwargs)
Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 1829

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

1830 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 1831

EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LogisticRegressionClassifier(penalty='l2', C=1.0, multi_class='auto',
solver='lbfgs', n_jobs=- 1, random_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

1832 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 1833

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1834 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.MulticlassClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline subclass for all multiclass classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

5.14. Utils 1835

EvalML Documentation, Release 0.80.0

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = MulticlassClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Multiclass Pipeline
→˓")
...
>>> assert pipeline.custom_name == "My Multiclass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.MULTICLASS

Methods

1836 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

5.14. Utils 1837

EvalML Documentation, Release 0.80.0

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters

1838 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

5.14. Utils 1839

EvalML Documentation, Release 0.80.0

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

1840 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

5.14. Utils 1841

EvalML Documentation, Release 0.80.0

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.MultiseriesRegressionPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline base class for multiseries time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components.

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
continues on next page

1842 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 15 – continued from previous page
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a multiseries time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

5.14. Utils 1843

EvalML Documentation, Release 0.80.0

Return type bool

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a multiseries time series pipeline.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

Returns self

1844 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.

Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series

Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
...)
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)

(continues on next page)

5.14. Utils 1845

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

1846 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

5.14. Utils 1847

EvalML Documentation, Release 0.80.0

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

1848 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

5.14. Utils 1849

EvalML Documentation, Release 0.80.0

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.OneHotEncoder(top_n=10, features_to_encode=None, categories=None,
drop='if_binary', handle_unknown='ignore',
handle_missing='error', random_seed=0, **kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

1850 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1851

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1852 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.OrdinalEncoder(features_to_encode=None, categories=None,
handle_unknown='error', unknown_value=None,
encoded_missing_value=None, random_seed=0, **kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

5.14. Utils 1853

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

1854 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self)
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

5.14. Utils 1855

EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.PerColumnImputer(impute_strategies=None, random_seed=0, **kwargs)
Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

1856 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1857

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

1858 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.PipelineBase(component_graph, parameters=None, custom_name=None,
random_seed=0)

Machine learning pipeline.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”].

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods

5.14. Utils 1859

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

1860 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

abstract fit(self, X, y)
Build a model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

5.14. Utils 1861

EvalML Documentation, Release 0.80.0

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

1862 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters

5.14. Utils 1863

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.ProphetRegressor(time_index: Optional[Hashable] = None,
changepoint_prior_scale: float = 0.05, seasonality_prior_scale:
int = 10, holidays_prior_scale: int = 10, seasonality_mode: str
= 'additive', stan_backend: str = 'CMDSTANPY',
interval_width: float = 0.95, random_seed: Union[int, float] =
0, **kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

1864 Chapter 5. API Reference

https://facebook.github.io/prophet/

EvalML Documentation, Release 0.80.0

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

5.14. Utils 1865

EvalML Documentation, Release 0.80.0

build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.

1866 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self)→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series

5.14. Utils 1867

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RandomForestClassifier(n_estimators=100, max_depth=6, n_jobs=- 1,
random_seed=0, **kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

1868 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

5.14. Utils 1869

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

1870 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RandomForestRegressor(n_estimators: int = 100, max_depth: int = 6, n_jobs: int
= - 1, random_seed: Union[int, float] = 0, **kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

5.14. Utils 1871

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

1872 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1873

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RegressionPipeline(component_graph, parameters=None, custom_name=None,
random_seed=0)

Pipeline subclass for all regression pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = RegressionPipeline(component_graph=["Simple Imputer", "Linear␣
→˓Regressor"],
... parameters={"Simple Imputer": {"impute_strategy":
→˓"mean"}},
... custom_name="My Regression Pipeline")
...

(continues on next page)

1874 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> assert pipeline.custom_name == "My Regression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1}}

Attributes

prob-
lem_type

ProblemTypes.REGRESSION

Methods

5.14. Utils 1875

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a regression model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

1876 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a regression model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training data of length [n_samples]

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

5.14. Utils 1877

EvalML Documentation, Release 0.80.0

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

1878 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters

5.14. Utils 1879

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – True values of length [n_samples]

• objectives (list) – Non-empty list of objectives to score on

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.RFClassifierSelectFromModel(number_features=None, n_estimators=10,
max_depth=None, percent_features=0.5,
threshold='median', n_jobs=- 1, random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

1880 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

5.14. Utils 1881

EvalML Documentation, Release 0.80.0

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

1882 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RFRegressorSelectFromModel(number_features=None, n_estimators=10,
max_depth=None, percent_features=0.5,
threshold='median', n_jobs=- 1, random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

5.14. Utils 1883

EvalML Documentation, Release 0.80.0

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

1884 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self)
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

5.14. Utils 1885

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.SimpleImputer(impute_strategy='most_frequent', fill_value=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

1886 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1887

EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

1888 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.StackedEnsembleBase(final_estimator=None, n_jobs=- 1, random_seed=0,
**kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

5.14. Utils 1889

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

1890 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1891

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.StackedEnsembleClassifier(final_estimator=None, n_jobs=- 1, random_seed=0,
**kwargs)

Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],

(continues on next page)

1892 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "Stacked Ensemble": [

... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
...],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

5.14. Utils 1893

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

1894 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1895

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.StackedEnsembleRegressor(final_estimator=None, n_jobs=- 1, random_seed=0,
**kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),

(continues on next page)

1896 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

(continued from previous page)

... "Random Forest.x",

... "Random Forest B.x",

... "y",

...],

... }

...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 1897

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

1898 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1899

EvalML Documentation, Release 0.80.0

class evalml.pipelines.StandardScaler(random_seed=0, **kwargs)
A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1900 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 1901

EvalML Documentation, Release 0.80.0

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.SVMClassifier(C=1.0, kernel='rbf', gamma='auto', probability=True,
random_seed=0, **kwargs)

Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

1902 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters

5.14. Utils 1903

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

1904 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.SVMRegressor(C=1.0, kernel='rbf', gamma='auto', random_seed=0, **kwargs)
Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1905

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

1906 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1907

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TargetEncoder(cols=None, smoothing=1, handle_unknown='value',
handle_missing='value', random_seed=0, **kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

1908 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

5.14. Utils 1909

EvalML Documentation, Release 0.80.0

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self)
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

1910 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TimeSeriesBinaryClassificationPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline base class for time series binary classification problems.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

5.14. Utils 1911

EvalML Documentation, Release 0.80.0

Example

>>> pipeline = TimeSeriesBinaryClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {"gap
→˓": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesBinary Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesBinary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
...
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
continues on next page

1912 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 16 – continued from previous page
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

5.14. Utils 1913

EvalML Documentation, Release 0.80.0

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

1914 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

5.14. Utils 1915

EvalML Documentation, Release 0.80.0

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.

1916 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame) – Future data of shape [n_samples, n_features].

• y (pd.Series) – Future target of shape [n_samples].

• X_train (pd.DataFrame) – Data the pipeline was trained on of shape [n_samples_train,
n_feautures].

• y_train (pd.Series) – Targets used to train the pipeline of shape [n_samples_train].

• objective (ObjectiveBase, str) – Objective used to threshold predicted probabili-
ties, optional. Defaults to None.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If objective is not defined for time-series binary classification problems.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

5.14. Utils 1917

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self)
Threshold used to make a prediction. Defaults to None.

1918 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline base class for time series classification problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods

5.14. Utils 1919

EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
continues on next page

1920 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Table 17 – continued from previous page
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

5.14. Utils 1921

EvalML Documentation, Release 0.80.0

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises

1922 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters

5.14. Utils 1923

EvalML Documentation, Release 0.80.0

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

1924 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

5.14. Utils 1925

EvalML Documentation, Release 0.80.0

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesFeaturizer(time_index=None, max_delay=2, gap=0,
forecast_horizon=1, conf_level=0.05,
rolling_window_size=0.25, delay_features=True,
delay_target=True, random_seed=0, **kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters

1926 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

5.14. Utils 1927

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters

1928 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
numeric_impute_strategy='interpolate',
target_impute_strategy='forwards_fill', random_seed=0,
**kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

5.14. Utils 1929

EvalML Documentation, Release 0.80.0

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

1930 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

5.14. Utils 1931

EvalML Documentation, Release 0.80.0

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TimeSeriesMulticlassClassificationPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline base class for time series multiclass classification problems.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

1932 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesMulticlassClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesMulticlass Pipeline")
>>> assert pipeline.custom_name == "My TimeSeriesMulticlass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

ProblemTypes.TIME_SERIES_MULTICLASS

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
continues on next page

5.14. Utils 1933

EvalML Documentation, Release 0.80.0

Table 18 – continued from previous page
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self)
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

1934 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

5.14. Utils 1935

EvalML Documentation, Release 0.80.0

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

1936 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

5.14. Utils 1937

EvalML Documentation, Release 0.80.0

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

1938 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters

5.14. Utils 1939

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesRegressionPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline base class for time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Simple Imputer",
→˓"Linear Regressor"],
... parameters={"Simple␣
→˓Imputer": {"impute_strategy": "mean"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesRegression Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesRegression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

1940 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
continues on next page

5.14. Utils 1941

EvalML Documentation, Release 0.80.0

Table 19 – continued from previous page
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self)
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self)
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

1942 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self)
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series pipeline.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training targets of length [n_samples].

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.

5.14. Utils 1943

EvalML Documentation, Release 0.80.0

Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series

Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
...)
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)
>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

1944 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self)
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . .], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . .]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

5.14. Utils 1945

EvalML Documentation, Release 0.80.0

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self)
Returns model family of this pipeline.

property name(self)
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self)
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

1946 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self)
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

5.14. Utils 1947

EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesRegularizer(time_index=None, frequency_payload=None,
window_length=4, threshold=0.4, random_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

1948 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

5.14. Utils 1949

EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

1950 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.Transformer(parameters=None, component_obj=None, random_seed=0, **kwargs)
A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1951

EvalML Documentation, Release 0.80.0

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters

1952 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

5.14. Utils 1953

EvalML Documentation, Release 0.80.0

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VARMAXRegressor(time_index: Optional[Hashable] = None, p: int = 1, q: int = 0,
trend: Optional[str] = 'c', random_seed: Union[int, float] = 0,
maxiter: int = 10, use_covariates: bool = False, **kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

1954 Chapter 5. API Reference

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 1955

EvalML Documentation, Release 0.80.0

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

1956 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VowpalWabbitBinaryClassifier(loss_function='logistic', learning_rate=0.5,
decay_learning_rate=1.0, power_t=0.5,
passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

5.14. Utils 1957

EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

1958 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1959

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VowpalWabbitMulticlassClassifier(loss_function='logistic', learning_rate=0.5,
decay_learning_rate=1.0, power_t=0.5,
passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

1960 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 1961

EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

1962 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VowpalWabbitRegressor(learning_rate=0.5, decay_learning_rate=1.0,
power_t=0.5, passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

5.14. Utils 1963

EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

1964 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

5.14. Utils 1965

EvalML Documentation, Release 0.80.0

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.XGBoostClassifier(eta=0.1, max_depth=6, min_child_weight=1,
n_estimators=100, random_seed=0, eval_metric='logloss',
n_jobs=12, **kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

1966 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters

5.14. Utils 1967

EvalML Documentation, Release 0.80.0

• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

1968 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.XGBoostRegressor(eta: float = 0.1, max_depth: int = 6, min_child_weight: int = 1,
n_estimators: int = 100, random_seed: Union[int, float] = 0,
n_jobs: int = 12, **kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

5.14. Utils 1969

EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self)
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

1970 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self)→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self)
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self)
Returns the parameters which were used to initialize the component.

5.14. Utils 1971

EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Preprocessing

Preprocessing utilities.

Subpackages

data_splitters

Data splitter classes.

1972 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Submodules

no_split

Empty Data Splitter class.

Module Contents

Classes Summary

NoSplit Does not split the training data into training and valida-
tion sets.

Contents

class evalml.preprocessing.data_splitters.no_split.NoSplit(random_seed=0)
Does not split the training data into training and validation sets.

All data is passed as the training set, test data is simply an array of None. To be used for future unsupervised
learning, should not be used in any of the currently supported pipelines.

Parameters random_seed (int) – The seed to use for random sampling. Defaults to 0. Not used.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets, where

the testing set is empty.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 0.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

5.14. Utils 1973

EvalML Documentation, Release 0.80.0

split(self, X, y=None)
Divide the data into training and testing sets, where the testing set is empty.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

sk_splitters

SKLearn data splitter wrapper classes.

Module Contents

Classes Summary

KFold Wrapper class for sklearn's KFold splitter.
StratifiedKFold Wrapper class for sklearn's Stratified KFold splitter.

Contents

class evalml.preprocessing.data_splitters.sk_splitters.KFold(n_splits=5, *, shuffle=False,
random_state=None)

Wrapper class for sklearn’s KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

1974 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.

• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

• y (array-like of shape (n_samples,), default=None) – The target variable for
supervised learning problems.

• groups (array-like of shape (n_samples,), default=None) – Group labels for
the samples used while splitting the dataset into train/test set.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

class evalml.preprocessing.data_splitters.sk_splitters.StratifiedKFold(n_splits=5, *,
shuffle=False,
random_state=None)

Wrapper class for sklearn’s Stratified KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

5.14. Utils 1975

EvalML Documentation, Release 0.80.0

get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters
• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.

• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

Note that providing y is sufficient to generate the splits and hence np.zeros(n_samples)
may be used as a placeholder for X instead of actual training data.

• y (array-like of shape (n_samples,)) – The target variable for supervised learning
problems. Stratification is done based on the y labels.

• groups (object) – Always ignored, exists for compatibility.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results iden-
tical by setting random_state to an integer.

time_series_split

Rolling Origin Cross Validation for time series problems.

1976 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

TimeSeriesSplit Rolling Origin Cross Validation for time series prob-
lems.

Contents

class evalml.preprocessing.data_splitters.time_series_split.TimeSeriesSplit(max_delay=0,
gap=0, fore-
cast_horizon=None,
time_index=None,
n_series=None,
n_splits=3)

Rolling Origin Cross Validation for time series problems.

The max_delay, gap, and forecast_horizon parameters are only used to validate that the requested split size is not
too small given these parameters.

Parameters
• max_delay (int) – Max delay value for feature engineering. Time series pipelines cre-

ate delayed features from existing features. This process will introduce NaNs into the first
max_delay number of rows. The splitter uses the last max_delay number of rows from the
previous split as the first max_delay number of rows of the current split to avoid “throwing
out” more data than in necessary. Defaults to 0.

• gap (int) – Number of time units separating the data used to generate features and the data
to forecast on. Defaults to 0.

• forecast_horizon (int, None) – Number of time units to forecast. Used for parameter
validation. If an integer, will set the size of the cv splits. Defaults to None.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Defaults to None.

• n_splits (int) – number of data splits to make. Defaults to 3.

Example

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> ts_split = TimeSeriesSplit(n_splits=4)
>>> generator_ = ts_split.split(X, y)
...
>>> first_split = next(generator_)
>>> assert (first_split[0] == np.array([0, 1])).all()
>>> assert (first_split[1] == np.array([2, 3])).all()

(continues on next page)

5.14. Utils 1977

EvalML Documentation, Release 0.80.0

(continued from previous page)

...

...
>>> second_split = next(generator_)
>>> assert (second_split[0] == np.array([0, 1, 2, 3])).all()
>>> assert (second_split[1] == np.array([4, 5])).all()
...
...
>>> third_split = next(generator_)
>>> assert (third_split[0] == np.array([0, 1, 2, 3, 4, 5])).all()
>>> assert (third_split[1] == np.array([6, 7])).all()
...
...
>>> fourth_split = next(generator_)
>>> assert (fourth_split[0] == np.array([0, 1, 2, 3, 4, 5, 6, 7])).all()
>>> assert (fourth_split[1] == np.array([8, 9])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Get the number of data splits.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Get the time series splits.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Get the number of data splits.

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Returns Number of splits.

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Get the time series splits.

X and y are assumed to be sorted in ascending time order. This method can handle passing in empty or
None X and y data but note that X and y cannot be None or empty at the same time.

1978 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Yields Iterator of (train, test) indices tuples.

Raises ValueError – If one of the proposed splits would be empty.

training_validation_split

Training Validation Split class.

Module Contents

Classes Summary

TrainingValidationSplit Split the training data into training and validation sets.

Contents

class evalml.preprocessing.data_splitters.training_validation_split.TrainingValidationSplit(test_size=None,
train_size=None,
shuf-
fle=False,
strat-
ify=None,
ran-
dom_seed=0)

Split the training data into training and validation sets.

Parameters
• test_size (float) – What percentage of data points should be included in the validation

set. Defalts to the complement of train_size if train_size is set, and 0.25 otherwise.

• train_size (float) – What percentage of data points should be included in the training
set. Defaults to the complement of test_size

• shuffle (boolean) – Whether to shuffle the data before splitting. Defaults to False.

• stratify (list) – Splits the data in a stratified fashion, using this argument as class labels.
Defaults to None.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

5.14. Utils 1979

EvalML Documentation, Release 0.80.0

Examples

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> tv_split = TrainingValidationSplit()
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4, 5, 6])).all()
>>> assert (split_[1] == np.array([7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(test_size=0.5)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4])).all()
>>> assert (split_[1] == np.array([5, 6, 7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(shuffle=True)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([9, 1, 6, 7, 3, 0, 5])).all()
>>> assert (split_[1] == np.array([2, 8, 4])).all()
...
...
>>> y = pd.Series([i % 3 for i in range(10)])
>>> tv_split = TrainingValidationSplit(shuffle=True, stratify=y)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([1, 9, 3, 2, 8, 6, 7])).all()
>>> assert (split_[1] == np.array([0, 4, 5])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 1.

Return type int

1980 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

Package Contents

Classes Summary

KFold Wrapper class for sklearn's KFold splitter.
NoSplit Does not split the training data into training and valida-

tion sets.
StratifiedKFold Wrapper class for sklearn's Stratified KFold splitter.
TimeSeriesSplit Rolling Origin Cross Validation for time series prob-

lems.
TrainingValidationSplit Split the training data into training and validation sets.

Contents

class evalml.preprocessing.data_splitters.KFold(n_splits=5, *, shuffle=False, random_state=None)
Wrapper class for sklearn’s KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

5.14. Utils 1981

EvalML Documentation, Release 0.80.0

get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters
• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.

• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

• y (array-like of shape (n_samples,), default=None) – The target variable for
supervised learning problems.

• groups (array-like of shape (n_samples,), default=None) – Group labels for
the samples used while splitting the dataset into train/test set.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

class evalml.preprocessing.data_splitters.NoSplit(random_seed=0)
Does not split the training data into training and validation sets.

All data is passed as the training set, test data is simply an array of None. To be used for future unsupervised
learning, should not be used in any of the currently supported pipelines.

Parameters random_seed (int) – The seed to use for random sampling. Defaults to 0. Not used.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets, where

the testing set is empty.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

1982 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 0.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets, where the testing set is empty.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

class evalml.preprocessing.data_splitters.StratifiedKFold(n_splits=5, *, shuffle=False,
random_state=None)

Wrapper class for sklearn’s Stratified KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters
• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.

5.14. Utils 1983

EvalML Documentation, Release 0.80.0

• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

Note that providing y is sufficient to generate the splits and hence np.zeros(n_samples)
may be used as a placeholder for X instead of actual training data.

• y (array-like of shape (n_samples,)) – The target variable for supervised learning
problems. Stratification is done based on the y labels.

• groups (object) – Always ignored, exists for compatibility.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results iden-
tical by setting random_state to an integer.

class evalml.preprocessing.data_splitters.TimeSeriesSplit(max_delay=0, gap=0,
forecast_horizon=None,
time_index=None, n_series=None,
n_splits=3)

Rolling Origin Cross Validation for time series problems.

The max_delay, gap, and forecast_horizon parameters are only used to validate that the requested split size is not
too small given these parameters.

Parameters
• max_delay (int) – Max delay value for feature engineering. Time series pipelines cre-

ate delayed features from existing features. This process will introduce NaNs into the first
max_delay number of rows. The splitter uses the last max_delay number of rows from the
previous split as the first max_delay number of rows of the current split to avoid “throwing
out” more data than in necessary. Defaults to 0.

• gap (int) – Number of time units separating the data used to generate features and the data
to forecast on. Defaults to 0.

• forecast_horizon (int, None) – Number of time units to forecast. Used for parameter
validation. If an integer, will set the size of the cv splits. Defaults to None.

1984 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• time_index (str) – Name of the column containing the datetime information used to order
the data. Defaults to None.

• n_splits (int) – number of data splits to make. Defaults to 3.

Example

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> ts_split = TimeSeriesSplit(n_splits=4)
>>> generator_ = ts_split.split(X, y)
...
>>> first_split = next(generator_)
>>> assert (first_split[0] == np.array([0, 1])).all()
>>> assert (first_split[1] == np.array([2, 3])).all()
...
...
>>> second_split = next(generator_)
>>> assert (second_split[0] == np.array([0, 1, 2, 3])).all()
>>> assert (second_split[1] == np.array([4, 5])).all()
...
...
>>> third_split = next(generator_)
>>> assert (third_split[0] == np.array([0, 1, 2, 3, 4, 5])).all()
>>> assert (third_split[1] == np.array([6, 7])).all()
...
...
>>> fourth_split = next(generator_)
>>> assert (fourth_split[0] == np.array([0, 1, 2, 3, 4, 5, 6, 7])).all()
>>> assert (fourth_split[1] == np.array([8, 9])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Get the number of data splits.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Get the time series splits.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Get the number of data splits.

5.14. Utils 1985

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Returns Number of splits.

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Get the time series splits.

X and y are assumed to be sorted in ascending time order. This method can handle passing in empty or
None X and y data but note that X and y cannot be None or empty at the same time.

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Yields Iterator of (train, test) indices tuples.

Raises ValueError – If one of the proposed splits would be empty.

class evalml.preprocessing.data_splitters.TrainingValidationSplit(test_size=None,
train_size=None,
shuffle=False, stratify=None,
random_seed=0)

Split the training data into training and validation sets.

Parameters
• test_size (float) – What percentage of data points should be included in the validation

set. Defalts to the complement of train_size if train_size is set, and 0.25 otherwise.

• train_size (float) – What percentage of data points should be included in the training
set. Defaults to the complement of test_size

• shuffle (boolean) – Whether to shuffle the data before splitting. Defaults to False.

• stratify (list) – Splits the data in a stratified fashion, using this argument as class labels.
Defaults to None.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

1986 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Examples

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> tv_split = TrainingValidationSplit()
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4, 5, 6])).all()
>>> assert (split_[1] == np.array([7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(test_size=0.5)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4])).all()
>>> assert (split_[1] == np.array([5, 6, 7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(shuffle=True)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([9, 1, 6, 7, 3, 0, 5])).all()
>>> assert (split_[1] == np.array([2, 8, 4])).all()
...
...
>>> y = pd.Series([i % 3 for i in range(10)])
>>> tv_split = TrainingValidationSplit(shuffle=True, stratify=y)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([1, 9, 3, 2, 8, 6, 7])).all()
>>> assert (split_[1] == np.array([0, 4, 5])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 1.

Return type int

5.14. Utils 1987

EvalML Documentation, Release 0.80.0

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

Submodules

utils

Helpful preprocessing utilities.

Module Contents

Functions

load_data Load features and target from file.
number_of_features Get the number of features of each specific dtype in a

DataFrame.
split_data Split data into train and test sets.
split_multiseries_data Split stacked multiseries data into train and test sets. Un-

stacked data can use split_data.
target_distribution Get the target distributions.

Contents

evalml.preprocessing.utils.load_data(path, index, target, n_rows=None, drop=None, verbose=True,
**kwargs)

Load features and target from file.

Parameters
• path (str) – Path to file or a http/ftp/s3 URL.

• index (str) – Column for index.

• target (str) – Column for target.

• n_rows (int) – Number of rows to return. Defaults to None.

• drop (list) – List of columns to drop. Defaults to None.

1988 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• verbose (bool) – If True, prints information about features and target. Defaults to True.

• **kwargs – Other keyword arguments that should be passed to panda’s read_csv method.

Returns Features matrix and target.

Return type pd.DataFrame, pd.Series

evalml.preprocessing.utils.number_of_features(dtypes)
Get the number of features of each specific dtype in a DataFrame.

Parameters dtypes (pd.Series) – DataFrame.dtypes to get the number of features for.

Returns dtypes and the number of features for each input type.

Return type pd.Series

Example

>>> X = pd.DataFrame()
>>> X["integers"] = [i for i in range(10)]
>>> X["floats"] = [float(i) for i in range(10)]
>>> X["strings"] = [str(i) for i in range(10)]
>>> X["booleans"] = [bool(i%2) for i in range(10)]

Lists the number of columns corresponding to each dtype.

>>> number_of_features(X.dtypes)
Number of Features

Boolean 1
Categorical 1
Numeric 2

evalml.preprocessing.utils.split_data(X, y, problem_type, problem_configuration=None, test_size=None,
random_seed=0)

Split data into train and test sets.

Parameters
• X (pd.DataFrame or np.ndarray) – data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – target data of length [n_samples]

• problem_type (str or ProblemTypes) – type of supervised learning problem. see
evalml.problem_types.problemtype.all_problem_types for a full list.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
and max_delay variables.

• test_size (float) – What percentage of data points should be included in the test set.
Defaults to 0.2 (20%) for non-timeseries problems and 0.1 (10%) for timeseries problems.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

5.14. Utils 1989

EvalML Documentation, Release 0.80.0

Examples

>>> X = pd.DataFrame([1, 2, 3, 4, 5, 6], columns=["First"])
>>> y = pd.Series([8, 9, 10, 11, 12, 13])
...
>>> X_train, X_validation, y_train, y_validation = split_data(X, y, "regression",␣
→˓random_seed=42)
>>> X_train

First
5 6
2 3
4 5
3 4
>>> X_validation

First
0 1
1 2
>>> y_train
5 13
2 10
4 12
3 11
dtype: int64
>>> y_validation
0 8
1 9
dtype: int64

evalml.preprocessing.utils.split_multiseries_data(X, y, series_id, time_index, **kwargs)
Split stacked multiseries data into train and test sets. Unstacked data can use split_data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples*n_series, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

• series_id (str) – Name of column containing series id.

• time_index (str) – Name of column containing time index.

• **kwargs – Additional keyword arguments to pass to the split_data function.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.preprocessing.utils.target_distribution(targets)
Get the target distributions.

Parameters targets (pd.Series) – Target data.

Returns Target data and their frequency distribution as percentages.

Return type pd.Series

1990 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Examples

>>> y = pd.Series([1, 2, 4, 1, 3, 3, 1, 2])
>>> print(target_distribution(y).to_string())
Targets
1 37.50%
2 25.00%
3 25.00%
4 12.50%
>>> y = pd.Series([True, False, False, False, True])
>>> print(target_distribution(y).to_string())
Targets
False 60.00%
True 40.00%

Package Contents

Classes Summary

NoSplit Does not split the training data into training and valida-
tion sets.

TimeSeriesSplit Rolling Origin Cross Validation for time series prob-
lems.

TrainingValidationSplit Split the training data into training and validation sets.

Functions

load_data Load features and target from file.
number_of_features Get the number of features of each specific dtype in a

DataFrame.
split_data Split data into train and test sets.
split_multiseries_data Split stacked multiseries data into train and test sets. Un-

stacked data can use split_data.
target_distribution Get the target distributions.

Contents

evalml.preprocessing.load_data(path, index, target, n_rows=None, drop=None, verbose=True, **kwargs)
Load features and target from file.

Parameters
• path (str) – Path to file or a http/ftp/s3 URL.

• index (str) – Column for index.

• target (str) – Column for target.

• n_rows (int) – Number of rows to return. Defaults to None.

5.14. Utils 1991

EvalML Documentation, Release 0.80.0

• drop (list) – List of columns to drop. Defaults to None.

• verbose (bool) – If True, prints information about features and target. Defaults to True.

• **kwargs – Other keyword arguments that should be passed to panda’s read_csv method.

Returns Features matrix and target.

Return type pd.DataFrame, pd.Series

class evalml.preprocessing.NoSplit(random_seed=0)
Does not split the training data into training and validation sets.

All data is passed as the training set, test data is simply an array of None. To be used for future unsupervised
learning, should not be used in any of the currently supported pipelines.

Parameters random_seed (int) – The seed to use for random sampling. Defaults to 0. Not used.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets, where

the testing set is empty.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 0.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets, where the testing set is empty.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

1992 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.preprocessing.number_of_features(dtypes)
Get the number of features of each specific dtype in a DataFrame.

Parameters dtypes (pd.Series) – DataFrame.dtypes to get the number of features for.

Returns dtypes and the number of features for each input type.

Return type pd.Series

Example

>>> X = pd.DataFrame()
>>> X["integers"] = [i for i in range(10)]
>>> X["floats"] = [float(i) for i in range(10)]
>>> X["strings"] = [str(i) for i in range(10)]
>>> X["booleans"] = [bool(i%2) for i in range(10)]

Lists the number of columns corresponding to each dtype.

>>> number_of_features(X.dtypes)
Number of Features

Boolean 1
Categorical 1
Numeric 2

evalml.preprocessing.split_data(X, y, problem_type, problem_configuration=None, test_size=None,
random_seed=0)

Split data into train and test sets.

Parameters
• X (pd.DataFrame or np.ndarray) – data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – target data of length [n_samples]

• problem_type (str or ProblemTypes) – type of supervised learning problem. see
evalml.problem_types.problemtype.all_problem_types for a full list.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
and max_delay variables.

• test_size (float) – What percentage of data points should be included in the test set.
Defaults to 0.2 (20%) for non-timeseries problems and 0.1 (10%) for timeseries problems.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

5.14. Utils 1993

EvalML Documentation, Release 0.80.0

Examples

>>> X = pd.DataFrame([1, 2, 3, 4, 5, 6], columns=["First"])
>>> y = pd.Series([8, 9, 10, 11, 12, 13])
...
>>> X_train, X_validation, y_train, y_validation = split_data(X, y, "regression",␣
→˓random_seed=42)
>>> X_train

First
5 6
2 3
4 5
3 4
>>> X_validation

First
0 1
1 2
>>> y_train
5 13
2 10
4 12
3 11
dtype: int64
>>> y_validation
0 8
1 9
dtype: int64

evalml.preprocessing.split_multiseries_data(X, y, series_id, time_index, **kwargs)
Split stacked multiseries data into train and test sets. Unstacked data can use split_data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples*n_series, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

• series_id (str) – Name of column containing series id.

• time_index (str) – Name of column containing time index.

• **kwargs – Additional keyword arguments to pass to the split_data function.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.preprocessing.target_distribution(targets)
Get the target distributions.

Parameters targets (pd.Series) – Target data.

Returns Target data and their frequency distribution as percentages.

Return type pd.Series

1994 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Examples

>>> y = pd.Series([1, 2, 4, 1, 3, 3, 1, 2])
>>> print(target_distribution(y).to_string())
Targets
1 37.50%
2 25.00%
3 25.00%
4 12.50%
>>> y = pd.Series([True, False, False, False, True])
>>> print(target_distribution(y).to_string())
Targets
False 60.00%
True 40.00%

class evalml.preprocessing.TimeSeriesSplit(max_delay=0, gap=0, forecast_horizon=None,
time_index=None, n_series=None, n_splits=3)

Rolling Origin Cross Validation for time series problems.

The max_delay, gap, and forecast_horizon parameters are only used to validate that the requested split size is not
too small given these parameters.

Parameters
• max_delay (int) – Max delay value for feature engineering. Time series pipelines cre-

ate delayed features from existing features. This process will introduce NaNs into the first
max_delay number of rows. The splitter uses the last max_delay number of rows from the
previous split as the first max_delay number of rows of the current split to avoid “throwing
out” more data than in necessary. Defaults to 0.

• gap (int) – Number of time units separating the data used to generate features and the data
to forecast on. Defaults to 0.

• forecast_horizon (int, None) – Number of time units to forecast. Used for parameter
validation. If an integer, will set the size of the cv splits. Defaults to None.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Defaults to None.

• n_splits (int) – number of data splits to make. Defaults to 3.

Example

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> ts_split = TimeSeriesSplit(n_splits=4)
>>> generator_ = ts_split.split(X, y)
...
>>> first_split = next(generator_)
>>> assert (first_split[0] == np.array([0, 1])).all()
>>> assert (first_split[1] == np.array([2, 3])).all()

(continues on next page)

5.14. Utils 1995

EvalML Documentation, Release 0.80.0

(continued from previous page)

...

...
>>> second_split = next(generator_)
>>> assert (second_split[0] == np.array([0, 1, 2, 3])).all()
>>> assert (second_split[1] == np.array([4, 5])).all()
...
...
>>> third_split = next(generator_)
>>> assert (third_split[0] == np.array([0, 1, 2, 3, 4, 5])).all()
>>> assert (third_split[1] == np.array([6, 7])).all()
...
...
>>> fourth_split = next(generator_)
>>> assert (fourth_split[0] == np.array([0, 1, 2, 3, 4, 5, 6, 7])).all()
>>> assert (fourth_split[1] == np.array([8, 9])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Get the number of data splits.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Get the time series splits.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Get the number of data splits.

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Returns Number of splits.

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Get the time series splits.

X and y are assumed to be sorted in ascending time order. This method can handle passing in empty or
None X and y data but note that X and y cannot be None or empty at the same time.

1996 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Yields Iterator of (train, test) indices tuples.

Raises ValueError – If one of the proposed splits would be empty.

class evalml.preprocessing.TrainingValidationSplit(test_size=None, train_size=None, shuffle=False,
stratify=None, random_seed=0)

Split the training data into training and validation sets.

Parameters
• test_size (float) – What percentage of data points should be included in the validation

set. Defalts to the complement of train_size if train_size is set, and 0.25 otherwise.

• train_size (float) – What percentage of data points should be included in the training
set. Defaults to the complement of test_size

• shuffle (boolean) – Whether to shuffle the data before splitting. Defaults to False.

• stratify (list) – Splits the data in a stratified fashion, using this argument as class labels.
Defaults to None.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Examples

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> tv_split = TrainingValidationSplit()
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4, 5, 6])).all()
>>> assert (split_[1] == np.array([7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(test_size=0.5)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4])).all()
>>> assert (split_[1] == np.array([5, 6, 7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(shuffle=True)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([9, 1, 6, 7, 3, 0, 5])).all()
>>> assert (split_[1] == np.array([2, 8, 4])).all()
...
...
>>> y = pd.Series([i % 3 for i in range(10)])

(continues on next page)

5.14. Utils 1997

EvalML Documentation, Release 0.80.0

(continued from previous page)

>>> tv_split = TrainingValidationSplit(shuffle=True, stratify=y)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([1, 9, 3, 2, 8, 6, 7])).all()
>>> assert (split_[1] == np.array([0, 4, 5])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets.

get_metadata_routing(self)
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 1.

Return type int

property is_cv(self)
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

1998 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Problem Types

The supported types of machine learning problems.

Submodules

problem_types

Enum defining the supported types of machine learning problems.

Module Contents

Classes Summary

ProblemTypes Enum defining the supported types of machine learning
problems.

Contents

class evalml.problem_types.problem_types.ProblemTypes

Enum defining the supported types of machine learning problems.

Attributes

BINARY Binary classification problem.
MULTI-
CLASS

Multiclass classification problem.

MULTI-
SERIES_TIME_SERIES_REGRESSION

Multiseries time series regression problem.

REGRES-
SION

Regression problem.

TIME_SERIES_BINARYTime series binary classification problem.
TIME_SERIES_MULTICLASSTime series multiclass classification problem.
TIME_SERIES_REGRESSIONTime series regression problem.

Methods

all_problem_types Get a list of all defined problem types.
name The name of the Enum member.
value The value of the Enum member.

all_problem_types(cls)
Get a list of all defined problem types.

Returns List of all defined problem types.

Return type list(ProblemTypes)

5.14. Utils 1999

EvalML Documentation, Release 0.80.0

name(self)
The name of the Enum member.

value(self)
The value of the Enum member.

utils

Utility methods for the ProblemTypes enum in EvalML.

Module Contents

Functions

detect_problem_type Determine the type of problem is being solved based on
the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

handle_problem_types Handles problem_type by either returning the Problem-
Types or converting from a str.

is_binary Determines if the provided problem_type is a binary
classification problem type.

is_classification Determines if the provided problem_type is a classifica-
tion problem type.

is_multiclass Determines if the provided problem_type is a multiclass
classification problem type.

is_multiseries Determines if the provided problem_type is a multiseries
time series problem type.

is_regression Determines if the provided problem_type is a regression
problem type.

is_time_series Determines if the provided problem_type is a time series
problem type.

Contents

evalml.problem_types.utils.detect_problem_type(y)
Determine the type of problem is being solved based on the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

Parameters y (pd.Series) – The target labels to predict.

Returns ProblemType Enum

Return type ProblemType

2000 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Examples

>>> y = pd.Series([0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])
>>> assert detect_problem_type(y) == ProblemTypes.BINARY
...
>>> y = pd.Series([1, 2, 3, 2, 1, 1, 1, 2, 2, 3, 3])
>>> assert detect_problem_type(y) == ProblemTypes.MULTICLASS
...
>>> y = pd.Series([1.6, 4.2, 3.3, 2.9, 4, 1, 5.5, 2, -2, -3.2, 3])
>>> assert detect_problem_type(y) == ProblemTypes.REGRESSION

Raises ValueError – If the input has less than two classes.

evalml.problem_types.utils.handle_problem_types(problem_type)
Handles problem_type by either returning the ProblemTypes or converting from a str.

Parameters problem_type (str or ProblemTypes) – Problem type that needs to be handled.

Returns ProblemTypes enum

Raises
• KeyError – If input is not a valid ProblemTypes enum value.

• ValueError – If input is not a string or ProblemTypes object.

Examples

>>> assert handle_problem_types("regression") == ProblemTypes.REGRESSION
>>> assert handle_problem_types("TIME SERIES BINARY") == ProblemTypes.TIME_SERIES_
→˓BINARY
>>> assert handle_problem_types("Multiclass") == ProblemTypes.MULTICLASS

evalml.problem_types.utils.is_binary(problem_type)
Determines if the provided problem_type is a binary classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a binary classification problem type.

Return type bool

Examples

>>> assert is_binary("Binary")
>>> assert is_binary(ProblemTypes.BINARY)
>>> assert is_binary(ProblemTypes.TIME_SERIES_BINARY)

evalml.problem_types.utils.is_classification(problem_type)
Determines if the provided problem_type is a classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

5.14. Utils 2001

EvalML Documentation, Release 0.80.0

Returns Whether or not the provided problem_type is a classification problem type.

Return type bool

Examples

>>> assert is_classification("Multiclass")
>>> assert is_classification(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_classification(ProblemTypes.REGRESSION)

evalml.problem_types.utils.is_multiclass(problem_type)
Determines if the provided problem_type is a multiclass classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiclass classification problem type.

Return type bool

Examples

>>> assert is_multiclass("Multiclass")
>>> assert is_multiclass(ProblemTypes.MULTICLASS)
>>> assert is_multiclass(ProblemTypes.TIME_SERIES_MULTICLASS)

evalml.problem_types.utils.is_multiseries(problem_type)
Determines if the provided problem_type is a multiseries time series problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiseries time series problem type.

Return type bool

evalml.problem_types.utils.is_regression(problem_type)
Determines if the provided problem_type is a regression problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a regression problem type.

Return type bool

Examples

>>> assert is_regression("Regression")
>>> assert is_regression(ProblemTypes.REGRESSION)
>>> assert is_regression(ProblemTypes.TIME_SERIES_REGRESSION)

evalml.problem_types.utils.is_time_series(problem_type)
Determines if the provided problem_type is a time series problem type.

2002 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a time series problem type.

Return type bool

Examples

>>> assert is_time_series("time series regression")
>>> assert is_time_series(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_time_series(ProblemTypes.REGRESSION)

Package Contents

Classes Summary

ProblemTypes Enum defining the supported types of machine learning
problems.

Functions

detect_problem_type Determine the type of problem is being solved based on
the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

handle_problem_types Handles problem_type by either returning the Problem-
Types or converting from a str.

is_binary Determines if the provided problem_type is a binary
classification problem type.

is_classification Determines if the provided problem_type is a classifica-
tion problem type.

is_multiclass Determines if the provided problem_type is a multiclass
classification problem type.

is_multiseries Determines if the provided problem_type is a multiseries
time series problem type.

is_regression Determines if the provided problem_type is a regression
problem type.

is_time_series Determines if the provided problem_type is a time series
problem type.

5.14. Utils 2003

EvalML Documentation, Release 0.80.0

Contents

evalml.problem_types.detect_problem_type(y)
Determine the type of problem is being solved based on the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

Parameters y (pd.Series) – The target labels to predict.

Returns ProblemType Enum

Return type ProblemType

Examples

>>> y = pd.Series([0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])
>>> assert detect_problem_type(y) == ProblemTypes.BINARY
...
>>> y = pd.Series([1, 2, 3, 2, 1, 1, 1, 2, 2, 3, 3])
>>> assert detect_problem_type(y) == ProblemTypes.MULTICLASS
...
>>> y = pd.Series([1.6, 4.2, 3.3, 2.9, 4, 1, 5.5, 2, -2, -3.2, 3])
>>> assert detect_problem_type(y) == ProblemTypes.REGRESSION

Raises ValueError – If the input has less than two classes.

evalml.problem_types.handle_problem_types(problem_type)
Handles problem_type by either returning the ProblemTypes or converting from a str.

Parameters problem_type (str or ProblemTypes) – Problem type that needs to be handled.

Returns ProblemTypes enum

Raises
• KeyError – If input is not a valid ProblemTypes enum value.

• ValueError – If input is not a string or ProblemTypes object.

Examples

>>> assert handle_problem_types("regression") == ProblemTypes.REGRESSION
>>> assert handle_problem_types("TIME SERIES BINARY") == ProblemTypes.TIME_SERIES_
→˓BINARY
>>> assert handle_problem_types("Multiclass") == ProblemTypes.MULTICLASS

evalml.problem_types.is_binary(problem_type)
Determines if the provided problem_type is a binary classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a binary classification problem type.

Return type bool

2004 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Examples

>>> assert is_binary("Binary")
>>> assert is_binary(ProblemTypes.BINARY)
>>> assert is_binary(ProblemTypes.TIME_SERIES_BINARY)

evalml.problem_types.is_classification(problem_type)
Determines if the provided problem_type is a classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a classification problem type.

Return type bool

Examples

>>> assert is_classification("Multiclass")
>>> assert is_classification(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_classification(ProblemTypes.REGRESSION)

evalml.problem_types.is_multiclass(problem_type)
Determines if the provided problem_type is a multiclass classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiclass classification problem type.

Return type bool

Examples

>>> assert is_multiclass("Multiclass")
>>> assert is_multiclass(ProblemTypes.MULTICLASS)
>>> assert is_multiclass(ProblemTypes.TIME_SERIES_MULTICLASS)

evalml.problem_types.is_multiseries(problem_type)
Determines if the provided problem_type is a multiseries time series problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiseries time series problem type.

Return type bool

evalml.problem_types.is_regression(problem_type)
Determines if the provided problem_type is a regression problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a regression problem type.

Return type bool

5.14. Utils 2005

EvalML Documentation, Release 0.80.0

Examples

>>> assert is_regression("Regression")
>>> assert is_regression(ProblemTypes.REGRESSION)
>>> assert is_regression(ProblemTypes.TIME_SERIES_REGRESSION)

evalml.problem_types.is_time_series(problem_type)
Determines if the provided problem_type is a time series problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a time series problem type.

Return type bool

Examples

>>> assert is_time_series("time series regression")
>>> assert is_time_series(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_time_series(ProblemTypes.REGRESSION)

class evalml.problem_types.ProblemTypes

Enum defining the supported types of machine learning problems.

Attributes

BINARY Binary classification problem.
MULTI-
CLASS

Multiclass classification problem.

MULTI-
SERIES_TIME_SERIES_REGRESSION

Multiseries time series regression problem.

REGRES-
SION

Regression problem.

TIME_SERIES_BINARYTime series binary classification problem.
TIME_SERIES_MULTICLASSTime series multiclass classification problem.
TIME_SERIES_REGRESSIONTime series regression problem.

Methods

all_problem_types Get a list of all defined problem types.
name The name of the Enum member.
value The value of the Enum member.

all_problem_types(cls)
Get a list of all defined problem types.

Returns List of all defined problem types.

Return type list(ProblemTypes)

name(self)
The name of the Enum member.

2006 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

value(self)
The value of the Enum member.

Tuners

EvalML tuner classes.

Submodules

grid_search_tuner

Grid Search Optimizer, which generates all of the possible points to search for using a grid.

Module Contents

Classes Summary

GridSearchTuner Grid Search Optimizer, which generates all of the possi-
ble points to search for using a grid.

Contents

class evalml.tuners.grid_search_tuner.GridSearchTuner(pipeline_hyperparameter_ranges,
n_points=10, random_seed=0)

Grid Search Optimizer, which generates all of the possible points to search for using a grid.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• n_points (int) – The number of points to sample from along each dimension defined in
the space argument. Defaults to 10.

• random_seed (int) – Seed for random number generator. Unused in this class, defaults to
0.

Examples

>>> tuner = GridSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a
→˓', 'b', 'c']}}, n_points=5)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 0.0, 'param b': 'a'}

Determines points using a grid search approach.

5.14. Utils 2007

EvalML Documentation, Release 0.80.0

>>> for each in range(5):
... print(tuner.propose())
{'My Component': {'param a': 0.0, 'param b': 'b'}}
{'My Component': {'param a': 0.0, 'param b': 'c'}}
{'My Component': {'param a': 10.0, 'param b': 'a'}}
{'My Component': {'param a': 10.0, 'param b': 'b'}}
{'My Component': {'param a': 10.0, 'param b': 'c'}}

Methods

add Not applicable to grid search tuner as generated pa-
rameters are not dependent on scores of previous pa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Returns parameters from _grid_points iterations.

add(self, pipeline_parameters, score)
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous param-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self)
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self)
Returns parameters from _grid_points iterations.

If all possible combinations of parameters have been scored, then NoParamsException is raised.

Returns proposed pipeline parameters

2008 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dict

random_search_tuner

Random Search Optimizer.

Module Contents

Classes Summary

RandomSearchTuner Random Search Optimizer.

Contents

class evalml.tuners.random_search_tuner.RandomSearchTuner(pipeline_hyperparameter_ranges,
with_replacement=False,
replacement_max_attempts=10,
random_seed=0)

Random Search Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• with_replacement (bool) – If false, only unique hyperparameters will be shown

• replacement_max_attempts (int) – The maximum number of tries to get a unique set of
random parameters. Only used if tuner is initalized with with_replacement=True

• random_seed (int) – Seed for random number generator. Defaults to 0.

Example

>>> tuner = RandomSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': [
→˓'a', 'b', 'c']}}, random_seed=42)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 3.7454011884736254, 'param b': 'c
→˓'}

Determines points using a random search approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 7.3199394181140525, 'param b': 'b'}}
{'My Component': {'param a': 1.5601864044243654, 'param b': 'a'}}
{'My Component': {'param a': 0.5808361216819947, 'param b': 'c'}}
{'My Component': {'param a': 6.011150117432089, 'param b': 'c'}}

(continues on next page)

5.14. Utils 2009

EvalML Documentation, Release 0.80.0

(continued from previous page)

{'My Component': {'param a': 0.2058449429580245, 'param b': 'c'}}
{'My Component': {'param a': 8.32442640800422, 'param b': 'a'}}
{'My Component': {'param a': 1.8182496720710064, 'param b': 'a'}}

Methods

add Not applicable to random search tuner as generated
parameters are not dependent on scores of previous
parameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Generate a unique set of parameters.

add(self, pipeline_parameters, score)
Not applicable to random search tuner as generated parameters are not dependent on scores of previous
parameters.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self)
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self)
Generate a unique set of parameters.

If tuner was initialized with with_replacement=True and the tuner is unable to generate a unique set of
parameters after replacement_max_attempts tries, then NoParamsException is raised.

Returns Proposed pipeline parameters

Return type dict

2010 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

skopt_tuner

Bayesian Optimizer.

Module Contents

Classes Summary

SKOptTuner Bayesian Optimizer.

Attributes Summary

logger

Contents

evalml.tuners.skopt_tuner.logger

class evalml.tuners.skopt_tuner.SKOptTuner(pipeline_hyperparameter_ranges, random_seed=0)
Bayesian Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – A set of hyperparameter ranges corre-

sponding to a pipeline’s parameters.

• random_seed (int) – The seed for the random number generator. Defaults to 0.

Examples

>>> tuner = SKOptTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b
→˓', 'c']}})
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 5.928446182250184, 'param b': 'c
→˓'}

Determines points using a Bayesian Optimizer approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 8.57945617622757, 'param b': 'c'}}
{'My Component': {'param a': 6.235636967859724, 'param b': 'b'}}
{'My Component': {'param a': 2.9753460654447235, 'param b': 'a'}}
{'My Component': {'param a': 2.7265629458011325, 'param b': 'b'}}
{'My Component': {'param a': 8.121687287754932, 'param b': 'b'}}

(continues on next page)

5.14. Utils 2011

EvalML Documentation, Release 0.80.0

(continued from previous page)

{'My Component': {'param a': 3.927847961008298, 'param b': 'c'}}
{'My Component': {'param a': 3.3739616041726843, 'param b': 'b'}}

Methods

add Add score to sample.
get_starting_parameters Gets the starting parameters given the pipeline hyper-

parameter range.
is_search_space_exhausted Optional. If possible search space for tuner is finite,

this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

add(self, pipeline_parameters, score)
Add score to sample.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

Returns None

Raises
• Exception – If skopt tuner errors.

• ParameterError – If skopt receives invalid parameters.

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self)
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool

propose(self)
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters.

2012 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Return type dict

tuner

Base Tuner class.

Module Contents

Classes Summary

Tuner Base Tuner class.

Contents

class evalml.tuners.tuner.Tuner(pipeline_hyperparameter_ranges, random_seed=0)
Base Tuner class.

Tuners implement different strategies for sampling from a search space. They’re used in EvalML to search the
space of pipeline hyperparameters.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters.

• random_seed (int) – The random state. Defaults to 0.

Methods

add Register a set of hyperparameters with the score ob-
tained from training a pipeline with those hyperpa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Optional. If possible search space for tuner is finite,
this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

abstract add(self, pipeline_parameters, score)
Register a set of hyperparameters with the score obtained from training a pipeline with those hyperparam-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

Returns None

5.14. Utils 2013

EvalML Documentation, Release 0.80.0

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self)
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool

abstract propose(self)
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters

Return type dict

tuner_exceptions

Exception thrown by tuner classes.

Module Contents

Contents

exception evalml.tuners.tuner_exceptions.NoParamsException

Raised when a tuner exhausts its search space and runs out of parameters to propose.

exception evalml.tuners.tuner_exceptions.ParameterError

Raised when a tuner encounters an error with the parameters being used with it.

Package Contents

Classes Summary

GridSearchTuner Grid Search Optimizer, which generates all of the possi-
ble points to search for using a grid.

RandomSearchTuner Random Search Optimizer.
SKOptTuner Bayesian Optimizer.
Tuner Base Tuner class.

2014 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Exceptions Summary

Contents

class evalml.tuners.GridSearchTuner(pipeline_hyperparameter_ranges, n_points=10, random_seed=0)
Grid Search Optimizer, which generates all of the possible points to search for using a grid.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• n_points (int) – The number of points to sample from along each dimension defined in
the space argument. Defaults to 10.

• random_seed (int) – Seed for random number generator. Unused in this class, defaults to
0.

Examples

>>> tuner = GridSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a
→˓', 'b', 'c']}}, n_points=5)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 0.0, 'param b': 'a'}

Determines points using a grid search approach.

>>> for each in range(5):
... print(tuner.propose())
{'My Component': {'param a': 0.0, 'param b': 'b'}}
{'My Component': {'param a': 0.0, 'param b': 'c'}}
{'My Component': {'param a': 10.0, 'param b': 'a'}}
{'My Component': {'param a': 10.0, 'param b': 'b'}}
{'My Component': {'param a': 10.0, 'param b': 'c'}}

Methods

add Not applicable to grid search tuner as generated pa-
rameters are not dependent on scores of previous pa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Returns parameters from _grid_points iterations.

5.14. Utils 2015

EvalML Documentation, Release 0.80.0

add(self, pipeline_parameters, score)
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous param-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self)
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self)
Returns parameters from _grid_points iterations.

If all possible combinations of parameters have been scored, then NoParamsException is raised.

Returns proposed pipeline parameters

Return type dict

exception evalml.tuners.NoParamsException

Raised when a tuner exhausts its search space and runs out of parameters to propose.

exception evalml.tuners.ParameterError

Raised when a tuner encounters an error with the parameters being used with it.

class evalml.tuners.RandomSearchTuner(pipeline_hyperparameter_ranges, with_replacement=False,
replacement_max_attempts=10, random_seed=0)

Random Search Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• with_replacement (bool) – If false, only unique hyperparameters will be shown

• replacement_max_attempts (int) – The maximum number of tries to get a unique set of
random parameters. Only used if tuner is initalized with with_replacement=True

• random_seed (int) – Seed for random number generator. Defaults to 0.

2016 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Example

>>> tuner = RandomSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': [
→˓'a', 'b', 'c']}}, random_seed=42)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 3.7454011884736254, 'param b': 'c
→˓'}

Determines points using a random search approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 7.3199394181140525, 'param b': 'b'}}
{'My Component': {'param a': 1.5601864044243654, 'param b': 'a'}}
{'My Component': {'param a': 0.5808361216819947, 'param b': 'c'}}
{'My Component': {'param a': 6.011150117432089, 'param b': 'c'}}
{'My Component': {'param a': 0.2058449429580245, 'param b': 'c'}}
{'My Component': {'param a': 8.32442640800422, 'param b': 'a'}}
{'My Component': {'param a': 1.8182496720710064, 'param b': 'a'}}

Methods

add Not applicable to random search tuner as generated
parameters are not dependent on scores of previous
parameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Generate a unique set of parameters.

add(self, pipeline_parameters, score)
Not applicable to random search tuner as generated parameters are not dependent on scores of previous
parameters.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

5.14. Utils 2017

EvalML Documentation, Release 0.80.0

Return type dict

is_search_space_exhausted(self)
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self)
Generate a unique set of parameters.

If tuner was initialized with with_replacement=True and the tuner is unable to generate a unique set of
parameters after replacement_max_attempts tries, then NoParamsException is raised.

Returns Proposed pipeline parameters

Return type dict

class evalml.tuners.SKOptTuner(pipeline_hyperparameter_ranges, random_seed=0)
Bayesian Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – A set of hyperparameter ranges corre-

sponding to a pipeline’s parameters.

• random_seed (int) – The seed for the random number generator. Defaults to 0.

Examples

>>> tuner = SKOptTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b
→˓', 'c']}})
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 5.928446182250184, 'param b': 'c
→˓'}

Determines points using a Bayesian Optimizer approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 8.57945617622757, 'param b': 'c'}}
{'My Component': {'param a': 6.235636967859724, 'param b': 'b'}}
{'My Component': {'param a': 2.9753460654447235, 'param b': 'a'}}
{'My Component': {'param a': 2.7265629458011325, 'param b': 'b'}}
{'My Component': {'param a': 8.121687287754932, 'param b': 'b'}}
{'My Component': {'param a': 3.927847961008298, 'param b': 'c'}}
{'My Component': {'param a': 3.3739616041726843, 'param b': 'b'}}

Methods

2018 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

add Add score to sample.
get_starting_parameters Gets the starting parameters given the pipeline hyper-

parameter range.
is_search_space_exhausted Optional. If possible search space for tuner is finite,

this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

add(self, pipeline_parameters, score)
Add score to sample.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

Returns None

Raises
• Exception – If skopt tuner errors.

• ParameterError – If skopt receives invalid parameters.

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self)
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool

propose(self)
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters.

Return type dict

5.14. Utils 2019

EvalML Documentation, Release 0.80.0

class evalml.tuners.Tuner(pipeline_hyperparameter_ranges, random_seed=0)
Base Tuner class.

Tuners implement different strategies for sampling from a search space. They’re used in EvalML to search the
space of pipeline hyperparameters.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters.

• random_seed (int) – The random state. Defaults to 0.

Methods

add Register a set of hyperparameters with the score ob-
tained from training a pipeline with those hyperpa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Optional. If possible search space for tuner is finite,
this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

abstract add(self, pipeline_parameters, score)
Register a set of hyperparameters with the score obtained from training a pipeline with those hyperparam-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

Returns None

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self)
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool

2020 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

abstract propose(self)
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters

Return type dict

Utils

Utility methods.

Submodules

base_meta

Metaclass that overrides creating a new component or pipeline by wrapping methods with validators and setters.

Module Contents

Classes Summary

BaseMeta Metaclass that overrides creating a new component or
pipeline by wrapping methods with validators and set-
ters.

Contents

class evalml.utils.base_meta.BaseMeta

Metaclass that overrides creating a new component or pipeline by wrapping methods with validators and setters.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

5.14. Utils 2021

EvalML Documentation, Release 0.80.0

classmethod set_fit(cls, method)
Wrapper for the fit method.

cli_utils

CLI functions.

Module Contents

Functions

get_evalml_black_config Gets configuration for black.
get_evalml_pip_requirements Gets pip requirements for evalml (with pip packages

converted to conda names)
get_evalml_requirements_file Gets pip requirements for evalml as a requirements file
get_evalml_root Gets location where evalml is installed.
get_installed_packages Get dictionary mapping installed package names to their

versions.
get_sys_info Returns system information.
print_deps Prints the version number of each dependency.
print_info Prints information about the system, evalml, and depen-

dencies of evalml.
print_sys_info Prints system information.
standardize_format Standardizes the format of the given packages.

Attributes Summary

CONDA_TO_PIP_NAME

Contents

evalml.utils.cli_utils.CONDA_TO_PIP_NAME

evalml.utils.cli_utils.get_evalml_black_config(evalml_path)
Gets configuration for black.

Parameters evalml_path – Path to evalml root.

Returns Dictionary of black configuration.

evalml.utils.cli_utils.get_evalml_pip_requirements(evalml_path, ignore_packages=None,
convert_to_conda=True)

Gets pip requirements for evalml (with pip packages converted to conda names)

Parameters
• evalml_path – Path to evalml root.

• ignore_packages – List of packages to ignore. Defaults to None.

2022 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns List of pip requirements for evalml.

evalml.utils.cli_utils.get_evalml_requirements_file(evalml_path, requirements_file_path)
Gets pip requirements for evalml as a requirements file

Parameters
• evalml_path – Path to evalml root.

• requirements_file_path – Path to requirements file.

Returns Pip requirements for evalml in a singular string.

evalml.utils.cli_utils.get_evalml_root()

Gets location where evalml is installed.

Returns Location where evalml is installed.

evalml.utils.cli_utils.get_installed_packages()

Get dictionary mapping installed package names to their versions.

Returns Dictionary mapping installed package names to their versions.

evalml.utils.cli_utils.get_sys_info()

Returns system information.

Returns List of tuples about system stats.

evalml.utils.cli_utils.print_deps()

Prints the version number of each dependency.

evalml.utils.cli_utils.print_info()

Prints information about the system, evalml, and dependencies of evalml.

evalml.utils.cli_utils.print_sys_info()

Prints system information.

evalml.utils.cli_utils.standardize_format(packages, ignore_packages=None, convert_to_conda=True)
Standardizes the format of the given packages.

Parameters
• packages – Requirements package generator object.

• ignore_packages – List of packages to ignore. Defaults to None.

Returns List of packages with standardized format.

gen_utils

General utility methods.

5.14. Utils 2023

EvalML Documentation, Release 0.80.0

Module Contents

Classes Summary

classproperty Allows function to be accessed as a class level property.

Functions

are_datasets_separated_by_gap_time_index Determine if the train and test datasets are separated by
gap number of units using the time_index.

are_ts_parameters_valid_for_split Validates the time series parameters in prob-
lem_configuration are compatible with split sizes.

contains_all_ts_parameters Validates that the problem configuration contains all re-
quired keys.

convert_to_seconds Converts a string describing a length of time to its length
in seconds.

deprecate_arg Helper to raise warnings when a deprecated arg is used.
drop_rows_with_nans Drop rows that have any NaNs in all dataframes or series.
get_importable_subclasses Get importable subclasses of a base class. Used to

list all of our estimators, transformers, components and
pipelines dynamically.

get_random_seed Given a numpy.random.RandomState object, generate
an int representing a seed value for another random num-
ber generator. Or, if given an int, return that int.

get_random_state Generates a numpy.random.RandomState instance using
seed.

get_time_index Determines the column in the given data that should be
used as the time index.

import_or_raise Attempts to import the requested library by name. If the
import fails, raises an ImportError or warning.

is_all_numeric Checks if the given DataFrame contains only numeric
values.

jupyter_check Get whether or not the code is being run in a Ipython
environment (such as Jupyter Notebook or Jupyter Lab).

pad_with_nans Pad the beginning num_to_pad rows with nans.
safe_repr Convert the given value into a string that can safely be

used for repr.
save_plot Saves fig to filepath if specified, or to a default location

if not.
validate_holdout_datasets Validate the holdout datasets match our expectations.

2024 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes Summary

logger

SEED_BOUNDS

Contents

evalml.utils.gen_utils.are_datasets_separated_by_gap_time_index(train, test, pipeline_params,
freq=None)

Determine if the train and test datasets are separated by gap number of units using the time_index.

This will be true when users are predicting on unseen data but not during cross validation since the target is
known.

Parameters
• train (pd.DataFrame) – Training data.

• test (pd.DataFrame) – Data of shape [n_samples, n_features].

• pipeline_params (dict) – Dictionary of time series parameters.

• freq (str) – Frequency of time index.

Returns True if the difference in time units is equal to gap + 1.

Return type bool

evalml.utils.gen_utils.are_ts_parameters_valid_for_split(gap, max_delay, forecast_horizon, n_obs,
n_splits)

Validates the time series parameters in problem_configuration are compatible with split sizes.

Parameters
• gap (int) – gap value.

• max_delay (int) – max_delay value.

• forecast_horizon (int) – forecast_horizon value.

• n_obs (int) – Number of observations in the dataset.

• n_splits (int) – Number of cross validation splits.

Returns
TsParameterValidationResult - named tuple with four fields is_valid (bool): True if param-

eters are valid. msg (str): Contains error message to display. Empty if is_valid. small-
est_split_size (int): Smallest split size given n_obs and n_splits. max_window_size (int):
Max window size given gap, max_delay, forecast_horizon.

class evalml.utils.gen_utils.classproperty(func)
Allows function to be accessed as a class level property.

Example: .. code-block:

5.14. Utils 2025

EvalML Documentation, Release 0.80.0

class LogisticRegressionBinaryPipeline(PipelineBase):
component_graph = ['Simple Imputer', 'Logistic Regression Classifier']

@classproperty
def summary(cls):
summary = ""
for component in cls.component_graph:

component = handle_component_class(component)
summary += component.name + " + "

return summary

assert LogisticRegressionBinaryPipeline.summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "
assert LogisticRegressionBinaryPipeline().summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "

evalml.utils.gen_utils.contains_all_ts_parameters(problem_configuration)
Validates that the problem configuration contains all required keys.

Parameters problem_configuration (dict) – Problem configuration.

Returns
True if the configuration contains all parameters. If False, msg is a non-empty string with

error message.

Return type bool, str

evalml.utils.gen_utils.convert_to_seconds(input_str)
Converts a string describing a length of time to its length in seconds.

Parameters input_str (str) – The string to be parsed and converted to seconds.

Returns Returns the library if importing succeeded.

Raises AssertionError – If an invalid unit is used.

Examples

>>> assert convert_to_seconds("10 hr") == 36000.0
>>> assert convert_to_seconds("30 minutes") == 1800.0
>>> assert convert_to_seconds("2.5 min") == 150.0

evalml.utils.gen_utils.deprecate_arg(old_arg, new_arg, old_value, new_value)
Helper to raise warnings when a deprecated arg is used.

Parameters
• old_arg (str) – Name of old/deprecated argument.

• new_arg (str) – Name of new argument.

• old_value (Any) – Value the user passed in for the old argument.

• new_value (Any) – Value the user passed in for the new argument.

Returns old_value if not None, else new_value

2026 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

evalml.utils.gen_utils.drop_rows_with_nans(*pd_data)
Drop rows that have any NaNs in all dataframes or series.

Parameters *pd_data – sequence of pd.Series or pd.DataFrame or None

Returns list of pd.DataFrame or pd.Series or None

evalml.utils.gen_utils.get_importable_subclasses(base_class, used_in_automl=True)
Get importable subclasses of a base class. Used to list all of our estimators, transformers, components and
pipelines dynamically.

Parameters
• base_class (abc.ABCMeta) – Base class to find all of the subclasses for.

• used_in_automl – Not all components/pipelines/estimators are used in automl search. If
True, only include those subclasses that are used in the search. This would mean excluding
classes related to ExtraTrees, ElasticNet, and Baseline estimators.

Returns List of subclasses.

evalml.utils.gen_utils.get_random_seed(random_state, min_bound=SEED_BOUNDS.min_bound,
max_bound=SEED_BOUNDS.max_bound)

Given a numpy.random.RandomState object, generate an int representing a seed value for another random number
generator. Or, if given an int, return that int.

To protect against invalid input to a particular library’s random number generator, if an int value is provided,
and it is outside the bounds “[min_bound, max_bound)”, the value will be projected into the range between the
min_bound (inclusive) and max_bound (exclusive) using modular arithmetic.

Parameters
• random_state (int, numpy.random.RandomState) – random state

• min_bound (None, int) – if not default of None, will be min bound when generating seed
(inclusive). Must be less than max_bound.

• max_bound (None, int) – if not default of None, will be max bound when generating seed
(exclusive). Must be greater than min_bound.

Returns Seed for random number generator

Return type int

Raises ValueError – If boundaries are not valid.

evalml.utils.gen_utils.get_random_state(seed)
Generates a numpy.random.RandomState instance using seed.

Parameters seed (None, int, np.random.RandomState object) – seed to use to gen-
erate numpy.random.RandomState. Must be between SEED_BOUNDS.min_bound and
SEED_BOUNDS.max_bound, inclusive.

Raises ValueError – If the input seed is not within the acceptable range.

Returns A numpy.random.RandomState instance.

evalml.utils.gen_utils.get_time_index(X: pandas.DataFrame, y: pandas.Series, time_index_name: str)
Determines the column in the given data that should be used as the time index.

evalml.utils.gen_utils.import_or_raise(library, error_msg=None, warning=False)
Attempts to import the requested library by name. If the import fails, raises an ImportError or warning.

Parameters

5.14. Utils 2027

EvalML Documentation, Release 0.80.0

• library (str) – The name of the library.

• error_msg (str) – Error message to return if the import fails.

• warning (bool) – If True, import_or_raise gives a warning instead of ImportError. Defaults
to False.

Returns Returns the library if importing succeeded.

Raises
• ImportError – If attempting to import the library fails because the library is not installed.

• Exception – If importing the library fails.

evalml.utils.gen_utils.is_all_numeric(df)
Checks if the given DataFrame contains only numeric values.

Parameters df (pd.DataFrame) – The DataFrame to check data types of.

Returns True if all the columns are numeric and are not missing any values, False otherwise.

evalml.utils.gen_utils.jupyter_check()

Get whether or not the code is being run in a Ipython environment (such as Jupyter Notebook or Jupyter Lab).

Returns True if Ipython, False otherwise.

Return type boolean

evalml.utils.gen_utils.logger

evalml.utils.gen_utils.pad_with_nans(pd_data, num_to_pad)
Pad the beginning num_to_pad rows with nans.

Parameters
• pd_data (pd.DataFrame or pd.Series) – Data to pad.

• num_to_pad (int) – Number of nans to pad.

Returns pd.DataFrame or pd.Series

evalml.utils.gen_utils.safe_repr(value)
Convert the given value into a string that can safely be used for repr.

Parameters value – The item to convert

Returns String representation of the value

evalml.utils.gen_utils.save_plot(fig, filepath=None, format='png', interactive=False,
return_filepath=False)

Saves fig to filepath if specified, or to a default location if not.

Parameters
• fig (Figure) – Figure to be saved.

• filepath (str or Path, optional) – Location to save file. Default is with filename
“test_plot”.

• format (str) – Extension for figure to be saved as. Ignored if interactive is True and fig is
of type plotly.Figure. Defaults to ‘png’.

• interactive (bool, optional) – If True and fig is of type plotly.Figure, saves the fig as
interactive instead of static, and format will be set to ‘html’. Defaults to False.

2028 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• return_filepath (bool, optional) – Whether to return the final filepath the image is
saved to. Defaults to False.

Returns String representing the final filepath the image was saved to if return_filepath is set to True.
Defaults to None.

evalml.utils.gen_utils.SEED_BOUNDS

evalml.utils.gen_utils.validate_holdout_datasets(X, X_train, pipeline_params)
Validate the holdout datasets match our expectations.

This function is run before calling predict in a time series pipeline. It verifies that X (the holdout set) is gap units
away from the training set and is less than or equal to the forecast_horizon.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• X_train (pd.DataFrame) – Training data.

• pipeline_params (dict) – Dictionary of time series parameters with gap, fore-
cast_horizon, and time_index being required.

Returns
TSHoldoutValidationResult - named tuple with three fields is_valid (bool): True if holdout

data is valid. error_messages (list): List of error messages to display. Empty if is_valid.
error_codes (list): List of error codes to display. Empty if is_valid.

logger

Logging functions.

Module Contents

Functions

get_logger Get the logger with the associated name.
log_batch_times Used to print out the batch times.
log_subtitle Log with a subtitle.
log_title Log with a title.
time_elapsed How much time has elapsed since the search started.

Contents

evalml.utils.logger.get_logger(name)
Get the logger with the associated name.

Parameters name (str) – Name of the logger to get.

Returns The logger object with the associated name.

5.14. Utils 2029

EvalML Documentation, Release 0.80.0

evalml.utils.logger.log_batch_times(logger, batch_times)
Used to print out the batch times.

Parameters
• logger – the logger.

• batch_times – dict with (batch number, {pipeline name, pipeline time}).

evalml.utils.logger.log_subtitle(logger, title, underline='=')
Log with a subtitle.

evalml.utils.logger.log_title(logger, title)
Log with a title.

evalml.utils.logger.time_elapsed(start_time)
How much time has elapsed since the search started.

Parameters start_time (int) – Time when search started.

Returns elapsed time formatted as a string [H:]MM:SS

Return type str

nullable_type_utils

Module Contents

Contents

evalml.utils.nullable_type_utils.DOWNCAST_TYPE_DICT

update_checker

Check if EvalML has updated since the user installed.

Module Contents

Contents

evalml.utils.update_checker.method

woodwork_utils

Woodwork utility methods.

2030 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Module Contents

Functions

downcast_nullable_types Downcasts IntegerNullable, BooleanNullable types to
Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

infer_feature_types Create a Woodwork structure from the given list, pan-
das, or numpy input, with specified types for columns.
If a column's type is not specified, it will be inferred by
Woodwork.

Attributes Summary

numeric_and_boolean_ww

Contents

evalml.utils.woodwork_utils.downcast_nullable_types(data, ignore_null_cols=True)
Downcasts IntegerNullable, BooleanNullable types to Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

Parameters
• data (pd.DataFrame, pd.Series) – Feature data.

• ignore_null_cols (bool) – Whether to ignore downcasting columns with null values or
not. Defaults to True.

Returns DataFrame or Series initialized with logical type information where BooleanNullable are
cast as Double.

Return type data

evalml.utils.woodwork_utils.infer_feature_types(data, feature_types=None)
Create a Woodwork structure from the given list, pandas, or numpy input, with specified types for columns. If a
column’s type is not specified, it will be inferred by Woodwork.

Parameters
• data (pd.DataFrame, pd.Series) – Input data to convert to a Woodwork data structure.

• feature_types (string, ww.logical_type obj, dict, optional) – If data is a 2D
structure, feature_types must be a dictionary mapping column names to the type of data rep-
resented in the column. If data is a 1D structure, then feature_types must be a Woodwork log-
ical type or a string representing a Woodwork logical type (“Double”, “Integer”, “Boolean”,
“Categorical”, “Datetime”, “NaturalLanguage”)

Returns A Woodwork data structure where the data type of each column was either specified or
inferred.

Raises ValueError – If there is a mismatch between the dataframe and the woodwork schema.

5.14. Utils 2031

EvalML Documentation, Release 0.80.0

evalml.utils.woodwork_utils.numeric_and_boolean_ww

Package Contents

Classes Summary

classproperty Allows function to be accessed as a class level property.

Functions

convert_to_seconds Converts a string describing a length of time to its length
in seconds.

deprecate_arg Helper to raise warnings when a deprecated arg is used.
downcast_nullable_types Downcasts IntegerNullable, BooleanNullable types to

Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

drop_rows_with_nans Drop rows that have any NaNs in all dataframes or series.
get_importable_subclasses Get importable subclasses of a base class. Used to

list all of our estimators, transformers, components and
pipelines dynamically.

get_logger Get the logger with the associated name.
get_random_seed Given a numpy.random.RandomState object, generate

an int representing a seed value for another random num-
ber generator. Or, if given an int, return that int.

get_random_state Generates a numpy.random.RandomState instance using
seed.

get_time_index Determines the column in the given data that should be
used as the time index.

import_or_raise Attempts to import the requested library by name. If the
import fails, raises an ImportError or warning.

infer_feature_types Create a Woodwork structure from the given list, pan-
das, or numpy input, with specified types for columns.
If a column's type is not specified, it will be inferred by
Woodwork.

is_all_numeric Checks if the given DataFrame contains only numeric
values.

jupyter_check Get whether or not the code is being run in a Ipython
environment (such as Jupyter Notebook or Jupyter Lab).

log_subtitle Log with a subtitle.
log_title Log with a title.
pad_with_nans Pad the beginning num_to_pad rows with nans.
safe_repr Convert the given value into a string that can safely be

used for repr.
save_plot Saves fig to filepath if specified, or to a default location

if not.

2032 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Attributes Summary

SEED_BOUNDS

Contents

class evalml.utils.classproperty(func)
Allows function to be accessed as a class level property.

Example: .. code-block:

class LogisticRegressionBinaryPipeline(PipelineBase):
component_graph = ['Simple Imputer', 'Logistic Regression Classifier']

@classproperty
def summary(cls):
summary = ""
for component in cls.component_graph:

component = handle_component_class(component)
summary += component.name + " + "

return summary

assert LogisticRegressionBinaryPipeline.summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "
assert LogisticRegressionBinaryPipeline().summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "

evalml.utils.convert_to_seconds(input_str)
Converts a string describing a length of time to its length in seconds.

Parameters input_str (str) – The string to be parsed and converted to seconds.

Returns Returns the library if importing succeeded.

Raises AssertionError – If an invalid unit is used.

Examples

>>> assert convert_to_seconds("10 hr") == 36000.0
>>> assert convert_to_seconds("30 minutes") == 1800.0
>>> assert convert_to_seconds("2.5 min") == 150.0

evalml.utils.deprecate_arg(old_arg, new_arg, old_value, new_value)
Helper to raise warnings when a deprecated arg is used.

Parameters
• old_arg (str) – Name of old/deprecated argument.

• new_arg (str) – Name of new argument.

• old_value (Any) – Value the user passed in for the old argument.

• new_value (Any) – Value the user passed in for the new argument.

5.14. Utils 2033

EvalML Documentation, Release 0.80.0

Returns old_value if not None, else new_value

evalml.utils.downcast_nullable_types(data, ignore_null_cols=True)
Downcasts IntegerNullable, BooleanNullable types to Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

Parameters
• data (pd.DataFrame, pd.Series) – Feature data.

• ignore_null_cols (bool) – Whether to ignore downcasting columns with null values or
not. Defaults to True.

Returns DataFrame or Series initialized with logical type information where BooleanNullable are
cast as Double.

Return type data

evalml.utils.drop_rows_with_nans(*pd_data)
Drop rows that have any NaNs in all dataframes or series.

Parameters *pd_data – sequence of pd.Series or pd.DataFrame or None

Returns list of pd.DataFrame or pd.Series or None

evalml.utils.get_importable_subclasses(base_class, used_in_automl=True)
Get importable subclasses of a base class. Used to list all of our estimators, transformers, components and
pipelines dynamically.

Parameters
• base_class (abc.ABCMeta) – Base class to find all of the subclasses for.

• used_in_automl – Not all components/pipelines/estimators are used in automl search. If
True, only include those subclasses that are used in the search. This would mean excluding
classes related to ExtraTrees, ElasticNet, and Baseline estimators.

Returns List of subclasses.

evalml.utils.get_logger(name)
Get the logger with the associated name.

Parameters name (str) – Name of the logger to get.

Returns The logger object with the associated name.

evalml.utils.get_random_seed(random_state, min_bound=SEED_BOUNDS.min_bound,
max_bound=SEED_BOUNDS.max_bound)

Given a numpy.random.RandomState object, generate an int representing a seed value for another random number
generator. Or, if given an int, return that int.

To protect against invalid input to a particular library’s random number generator, if an int value is provided,
and it is outside the bounds “[min_bound, max_bound)”, the value will be projected into the range between the
min_bound (inclusive) and max_bound (exclusive) using modular arithmetic.

Parameters
• random_state (int, numpy.random.RandomState) – random state

• min_bound (None, int) – if not default of None, will be min bound when generating seed
(inclusive). Must be less than max_bound.

• max_bound (None, int) – if not default of None, will be max bound when generating seed
(exclusive). Must be greater than min_bound.

2034 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Returns Seed for random number generator

Return type int

Raises ValueError – If boundaries are not valid.

evalml.utils.get_random_state(seed)
Generates a numpy.random.RandomState instance using seed.

Parameters seed (None, int, np.random.RandomState object) – seed to use to gen-
erate numpy.random.RandomState. Must be between SEED_BOUNDS.min_bound and
SEED_BOUNDS.max_bound, inclusive.

Raises ValueError – If the input seed is not within the acceptable range.

Returns A numpy.random.RandomState instance.

evalml.utils.get_time_index(X: pandas.DataFrame, y: pandas.Series, time_index_name: str)
Determines the column in the given data that should be used as the time index.

evalml.utils.import_or_raise(library, error_msg=None, warning=False)
Attempts to import the requested library by name. If the import fails, raises an ImportError or warning.

Parameters
• library (str) – The name of the library.

• error_msg (str) – Error message to return if the import fails.

• warning (bool) – If True, import_or_raise gives a warning instead of ImportError. Defaults
to False.

Returns Returns the library if importing succeeded.

Raises
• ImportError – If attempting to import the library fails because the library is not installed.

• Exception – If importing the library fails.

evalml.utils.infer_feature_types(data, feature_types=None)
Create a Woodwork structure from the given list, pandas, or numpy input, with specified types for columns. If a
column’s type is not specified, it will be inferred by Woodwork.

Parameters
• data (pd.DataFrame, pd.Series) – Input data to convert to a Woodwork data structure.

• feature_types (string, ww.logical_type obj, dict, optional) – If data is a 2D
structure, feature_types must be a dictionary mapping column names to the type of data rep-
resented in the column. If data is a 1D structure, then feature_types must be a Woodwork log-
ical type or a string representing a Woodwork logical type (“Double”, “Integer”, “Boolean”,
“Categorical”, “Datetime”, “NaturalLanguage”)

Returns A Woodwork data structure where the data type of each column was either specified or
inferred.

Raises ValueError – If there is a mismatch between the dataframe and the woodwork schema.

evalml.utils.is_all_numeric(df)
Checks if the given DataFrame contains only numeric values.

Parameters df (pd.DataFrame) – The DataFrame to check data types of.

Returns True if all the columns are numeric and are not missing any values, False otherwise.

5.14. Utils 2035

EvalML Documentation, Release 0.80.0

evalml.utils.jupyter_check()

Get whether or not the code is being run in a Ipython environment (such as Jupyter Notebook or Jupyter Lab).

Returns True if Ipython, False otherwise.

Return type boolean

evalml.utils.log_subtitle(logger, title, underline='=')
Log with a subtitle.

evalml.utils.log_title(logger, title)
Log with a title.

evalml.utils.pad_with_nans(pd_data, num_to_pad)
Pad the beginning num_to_pad rows with nans.

Parameters
• pd_data (pd.DataFrame or pd.Series) – Data to pad.

• num_to_pad (int) – Number of nans to pad.

Returns pd.DataFrame or pd.Series

evalml.utils.safe_repr(value)
Convert the given value into a string that can safely be used for repr.

Parameters value – The item to convert

Returns String representation of the value

evalml.utils.save_plot(fig, filepath=None, format='png', interactive=False, return_filepath=False)
Saves fig to filepath if specified, or to a default location if not.

Parameters
• fig (Figure) – Figure to be saved.

• filepath (str or Path, optional) – Location to save file. Default is with filename
“test_plot”.

• format (str) – Extension for figure to be saved as. Ignored if interactive is True and fig is
of type plotly.Figure. Defaults to ‘png’.

• interactive (bool, optional) – If True and fig is of type plotly.Figure, saves the fig as
interactive instead of static, and format will be set to ‘html’. Defaults to False.

• return_filepath (bool, optional) – Whether to return the final filepath the image is
saved to. Defaults to False.

Returns String representing the final filepath the image was saved to if return_filepath is set to True.
Defaults to None.

evalml.utils.SEED_BOUNDS

2036 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

AutoMLSearch Automated Pipeline search.

Functions

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.

Contents

class evalml.AutoMLSearch(X_train=None, y_train=None, X_holdout=None, y_holdout=None,
problem_type=None, objective='auto', max_iterations=None, max_time=None,
patience=None, tolerance=None, data_splitter=None,
allowed_component_graphs=None, allowed_model_families=None,
excluded_model_families=None, features=None, run_feature_selection=True,
start_iteration_callback=None, add_result_callback=None, error_callback=None,
additional_objectives=None, alternate_thresholding_objective='F1',
random_seed=0, n_jobs=- 1, tuner_class=None, optimize_thresholds=True,
ensembling=False, max_batches=None, problem_configuration=None,
train_best_pipeline=True, search_parameters=None, sampler_method='auto',
sampler_balanced_ratio=0.25, allow_long_running_models=False,
_pipelines_per_batch=5, automl_algorithm='default', engine='sequential',
verbose=False, timing=False, exclude_featurizers=None, holdout_set_size=0,
use_recommendation=False, include_recommendation=None,
exclude_recommendation=None)

Automated Pipeline search.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• X_holdout (pd.DataFrame) – The input holdout data of shape [n_samples, n_features].

• y_holdout (pd.Series) – The target holdout data of length [n_samples].

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• max_iterations (int) – Maximum number of iterations to search. If max_iterations and
max_time is not set, then max_iterations will default to max_iterations of 5.

5.14. Utils 2037

EvalML Documentation, Release 0.80.0

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: ComponentGraph(. . .) }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored. For default algorithm, this
only applies to estimators in the non-naive batches.

• features (list) – List of features to run DFS on AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the search input
and if the feature itself is not in search input. If features is an empty list, the DFS Transformer
will not be included in pipelines.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm, setting is no-op for iterative algorithm.

• data_splitter (sklearn.model_selection.BaseCrossValidator) – Data splitting
method to use. Defaults to StratifiedKFold.

• tuner_class – The tuner class to use. Defaults to SKOptTuner.

• optimize_thresholds (bool) – Whether or not to optimize the binary pipeline threshold.
Defaults to True.

• start_iteration_callback (callable) – Function called before each pipeline training
iteration. Callback function takes three positional parameters: The pipeline instance and the
AutoMLSearch object.

• add_result_callback (callable) – Function called after each pipeline training iteration.
Callback function takes three positional parameters: A dictionary containing the training
results for the new pipeline, an untrained_pipeline containing the parameters used during
training, and the AutoMLSearch object.

• error_callback (callable) – Function called when search() errors and raises an Excep-
tion. Callback function takes three positional parameters: the Exception raised, the trace-
back, and the AutoMLSearch object. Must also accepts kwargs, so AutoMLSearch is able
to pass along other appropriate parameters by default. Defaults to None, which will call
log_error_callback.

• additional_objectives (list) – Custom set of objectives to score on. Will override
default objectives for problem type if not empty.

2038 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• alternate_thresholding_objective (str) – The objective to use for thresholding bi-
nary classification pipelines if the main objective provided isn’t tuneable. Defaults to F1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. If the number of unique pipelines to search over per
batch is one, ensembling will not run. Defaults to False.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, forecast_horizon, and max_delay variables. For multiseries time series problems, the
values passed in should also include the name of a series_id column.

• train_best_pipeline (boolean) – Whether or not to train the best pipeline before re-
turning it. Defaults to True.

• search_parameters (dict) – A dict of the hyperparameter ranges or pipeline parame-
ters used to iterate over during search. Keys should consist of the component names and
values should specify a singular value/list for pipeline parameters, or skopt.Space for hy-
perparameter ranges. In the example below, the Imputer parameters would be passed to the
hyperparameter ranges, and the Label Encoder parameters would be used as the component
parameter.

e.g. search_parameters = { ‘Imputer’ [{ ‘numeric_impute_strategy’: Categori-
cal([‘most_frequent’, ‘median’]) },] ’Label Encoder’: {‘positive_label’: True} }

• sampler_method (str) – The data sampling component to use in the pipelines if the prob-
lem type is classification and the target balance is smaller than the sampler_balanced_ratio.
Either ‘auto’, which will use our preferred sampler for the data, ‘Undersampler’, ‘Oversam-
pler’, or None. Defaults to ‘auto’.

• sampler_balanced_ratio (float) – The minority:majority class ratio that we consider
balanced, so a 1:4 ratio would be equal to 0.25. If the class balance is larger than this provided
value, then we will not add a sampler since the data is then considered balanced. Overrides
the sampler_ratio of the samplers. Defaults to 0.25.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• _ensembling_split_size (float) – The amount of the training data we’ll set aside for
training ensemble metalearners. Only used when ensembling is True. Must be between 0
and 1, exclusive. Defaults to 0.2

• _pipelines_per_batch (int) – The number of pipelines to train for every batch after the
first one. The first batch will train a baseline pipline + one of each pipeline family allowed
in the search.

• automl_algorithm (str) – The automl algorithm to use. Currently the two choices are
‘iterative’ and ‘default’. Defaults to default.

5.14. Utils 2039

EvalML Documentation, Release 0.80.0

• engine (EngineBase or str) – The engine instance used to evaluate pipelines. Dask or
concurrent.futures engines can also be chosen by providing a string from the list [“sequen-
tial”, “cf_threaded”, “cf_process”, “dask_threaded”, “dask_process”]. If a parallel engine is
selected this way, the maximum amount of parallelism, as determined by the engine, will be
used. Defaults to “sequential”.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by search. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”,
“URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

• holdout_set_size (float) – The size of the holdout set that AutoML search will take for
datasets larger than 500 rows. If set to 0, holdout set will not be taken regardless of number
of rows. Must be between 0 and 1, exclusive. Defaults to 0.1.

• use_recommendation (bool) – Whether or not to use a recommendation score to rank
pipelines instead of optimization objective. Defaults to False.

• include_recommendation (list[str]) – A list of objectives to include beyond the de-
faults in the recommendation score. Defaults to None.

• exclude_recommendation (list[str]) – A list of objectives to exclude from the defaults
in the recommendation score. Defaults to None.

Methods

2040 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

add_to_rankings Fits and evaluates a given pipeline then adds the re-
sults to the automl rankings with the requirement that
automl search has been run.

best_pipeline Returns a trained instance of the best pipeline
and parameters found during automl search. If
train_best_pipeline is set to False, returns an un-
trained pipeline instance.

close_engine Function to explicitly close the engine, client, parallel
resources.

describe_pipeline Describe a pipeline.
full_rankings Returns a pandas.DataFrame with scoring results

from all pipelines searched.
get_ensembler_input_pipelines Returns a list of input pipeline IDs given an ensem-

bler pipeline ID.
get_pipeline Given the ID of a pipeline training result, returns an

untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during
automl search.

get_recommendation_score_breakdown Reports the scores for the objectives used in the given
pipeline's recommendation score calculation.

get_recommendation_scores Calculates recommendation scores for all pipelines in
the search results.

load Loads AutoML object at file path.
plot Return an instance of the plot with the latest scores.
rankings Returns a pandas.DataFrame with scoring results

from the highest-scoring set of parameters used with
each pipeline.

results Class that allows access to a copy of the results from
automl_search.

save Saves AutoML object at file path.
score_pipelines Score a list of pipelines on the given holdout data.
search Find the best pipeline for the data set.
train_pipelines Train a list of pipelines on the training data.

add_to_rankings(self, pipeline)
Fits and evaluates a given pipeline then adds the results to the automl rankings with the requirement that
automl search has been run.

Parameters pipeline (PipelineBase) – pipeline to train and evaluate.

property best_pipeline(self)
Returns a trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Returns A trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Return type PipelineBase

Raises PipelineNotFoundError – If this is called before .search() is called.

close_engine(self)
Function to explicitly close the engine, client, parallel resources.

5.14. Utils 2041

EvalML Documentation, Release 0.80.0

describe_pipeline(self, pipeline_id, return_dict=False)
Describe a pipeline.

Parameters
• pipeline_id (int) – pipeline to describe

• return_dict (bool) – If True, return dictionary of information about pipeline. Defaults
to False.

Returns Description of specified pipeline. Includes information such as type of pipeline compo-
nents, problem, training time, cross validation, etc.

Raises PipelineNotFoundError – If pipeline_id is not a valid ID.

property full_rankings(self)
Returns a pandas.DataFrame with scoring results from all pipelines searched.

get_ensembler_input_pipelines(self, ensemble_pipeline_id)
Returns a list of input pipeline IDs given an ensembler pipeline ID.

Parameters ensemble_pipeline_id (id) – Ensemble pipeline ID to get input pipeline IDs
from.

Returns A list of ensemble input pipeline IDs.

Return type list[int]

Raises ValueError – If ensemble_pipeline_id does not correspond to a valid ensemble pipeline
ID.

get_pipeline(self, pipeline_id)
Given the ID of a pipeline training result, returns an untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during automl search.

Parameters pipeline_id (int) – Pipeline to retrieve.

Returns Untrained pipeline instance associated with the provided ID.

Return type PipelineBase

Raises PipelineNotFoundError – if pipeline_id is not a valid ID.

get_recommendation_score_breakdown(self, pipeline_id)
Reports the scores for the objectives used in the given pipeline’s recommendation score calculation.

Note that these scores are reported in their raw form, not scaled to be between 0 and 1.

Parameters pipeline_id (int) – The id of the pipeline to get the recommendation score break-
down for.

Returns A dictionary of the scores for each objective used in the recommendation score calcu-
lation.

Return type dict

get_recommendation_scores(self, priority=None, custom_weights=None, use_pipeline_names=False)
Calculates recommendation scores for all pipelines in the search results.

Parameters
• priority (str) – An optional name of a priority objective that should be given heavier

weight (of 0.5) than the other objectives contributing to the score. Defaults to None, where
all objectives are weighted equally.

2042 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. Should not be used at the same time as priori-
tized_objective. Defaults to None.

• use_pipeline_names (bool) – Whether or not to return the pipeline names instead of
ids as the keys to the recommendation score dictionary. Defaults to False.

Returns A dictionary mapping pipeline IDs to recommendation scores

static load(file_path, pickle_type='cloudpickle')
Loads AutoML object at file path.

Parameters
• file_path (str) – Location to find file to load

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use. Currently
not used since the standard pickle library can handle cloudpickles.

Returns AutoSearchBase object

property plot(self)
Return an instance of the plot with the latest scores.

property rankings(self)
Returns a pandas.DataFrame with scoring results from the highest-scoring set of parameters used with each
pipeline.

property results(self)
Class that allows access to a copy of the results from automl_search.

Returns
Dictionary containing pipeline_results, a dict with results from each pipeline, and

search_order, a list describing the order the pipelines were searched.

Return type dict

save(self, file_path, pickle_type='cloudpickle', pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves AutoML object at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use.

• pickle_protocol (int) – The pickle data stream format.

Raises ValueError – If pickle_type is not “pickle” or “cloudpickle”.

score_pipelines(self, pipelines, X_holdout, y_holdout, objectives)
Score a list of pipelines on the given holdout data.

Parameters
• pipelines (list[PipelineBase]) – List of pipelines to train.

• X_holdout (pd.DataFrame) – Holdout features.

• y_holdout (pd.Series) – Holdout targets for scoring.

• objectives (list[str], list[ObjectiveBase]) – Objectives used for scoring.

5.14. Utils 2043

EvalML Documentation, Release 0.80.0

Returns Dictionary keyed by pipeline name that maps to a dictionary of scores. Note that the any
pipelines that error out during scoring will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type dict[str, Dict[str, float]]

search(self, interactive_plot=True)
Find the best pipeline for the data set.

Parameters interactive_plot (boolean, True) – Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Raises AutoMLSearchException – If all pipelines in the current AutoML batch produced a
score of np.nan on the primary objective.

Returns Dictionary keyed by batch number that maps to the timings for pipelines run in that
batch, as well as the total time for each batch. Pipelines within a batch are labeled by pipeline
name.

Return type Dict[int, Dict[str, Timestamp]]

train_pipelines(self, pipelines)
Train a list of pipelines on the training data.

This can be helpful for training pipelines once the search is complete.

Parameters pipelines (list[PipelineBase]) – List of pipelines to train.

Returns Dictionary keyed by pipeline name that maps to the fitted pipeline. Note that the any
pipelines that error out during training will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type Dict[str, PipelineBase]

evalml.search(X_train=None, y_train=None, problem_type=None, objective='auto', mode='fast',
max_time=None, patience=None, tolerance=None, problem_configuration=None, n_splits=3,
verbose=False, timing=False)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• mode (str) – mode for DefaultAlgorithm. There are two modes: fast and long, where fast
is a subset of long. Please look at DefaultAlgorithm for more details.

2044 Chapter 5. API Reference

EvalML Documentation, Release 0.80.0

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

Returns The automl search object containing pipelines and rankings, and the results from running
the data checks. If the data check results contain errors, automl search will not be run and an
automl search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If search configuration is not valid.

evalml.search_iterative(X_train=None, y_train=None, problem_type=None, objective='auto',
problem_configuration=None, n_splits=3, timing=False, **kwargs)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

5.14. Utils 2045

EvalML Documentation, Release 0.80.0

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• **kwargs – Other keyword arguments which are provided will be passed to AutoMLSearch.

Returns the automl search object containing pipelines and rankings, and the results from running the
data checks. If the data check results contain errors, automl search will not be run and an automl
search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If the search configuration is invalid.

2046 Chapter 5. API Reference

CHAPTER

SIX

RELEASE NOTES

Future Releases
• Enhancements

• Fixes

• Changes

• Documentation Changes

• Testing Changes

Warning: Breaking Changes

v0.80.0 Aug. 30, 2023
• Enhancements

– Added support for prediction intervals for VARMAX regressor #4267

– Integrated multiseries time series into AutoMLSearch #4270

• Fixes
– Fixed error when stacking data with no exogenous variables #4275

• Changes
– Updated ARIMARegressor to be compatible with sktime v0.22.0 and beyond #4283

– Updated graph_prediction_vs_actual_over_time() to be compatible with multiseries time
series #4284

– Updated excluded_model_families to take in a list of both str and ModelFamily data types
#4287

– Unpinned ipywidgets #4288

• Documentation Changes
– Removed erroneous warnings from Data Checks User Guide page and removed tqdm warning in

all notebooks #4274

• Testing Changes

Warning: Breaking Changes

v0.79.0 Aug. 11, 2023

2047

https://github.com/alteryx/evalml/pull/4267
https://github.com/alteryx/evalml/pull/4270
https://github.com/alteryx/evalml/pull/4275
https://github.com/alteryx/evalml/pull/4283
https://github.com/alteryx/evalml/pull/4284
https://github.com/alteryx/evalml/pull/4287
https://github.com/alteryx/evalml/pull/4288
https://github.com/alteryx/evalml/pull/4274

EvalML Documentation, Release 0.80.0

• Enhancements
– Updated regression metrics to handle multioutput dataframes as well as single output series #4233

– Added baseline regressor for multiseries time series problems #4246

– Added stacking and unstacking utility functions to work with multiseries data #4250

– Added multiseries regression pipeline class #4256

– Added multiseries VARMAX regressor #4238

• Fixes
– Added support for pandas 2 #4216

– Fixed bug where time series pipelines would fail due to MASE needing y_train when scoring
#4258

– Update s3 bucket for docs image #4260

– Fix deps checker including any package with post in the name #4268

• Changes
– Unpinned sktime version #4214

– Bumped minimum lightgbm version to 4.0.0 for nullable type handling #4237

– Pinned scikit-learn version due to incompatibility with pinned imbalanced-learn #4248

• Documentation Changes

• Testing Changes

Warning: Breaking Changes

v0.78.0 Jul. 10, 2023
• Enhancements

– Add run_feature_selection to AutoMLSearch and Default Algorithm #4210

– Added SMAPE to the standard metrics for time series problems #4220

– Added MASE metric and y_train parameter to objectives #4221

• Fixes
– IDColumnsDataCheck now works with Unknown data type #4203

• Changes
– Upgraded minimum SHAP version to 0.42.0 and unpinned numpy version #4228

• Documentation Changes
– Updated API reference #4213

Warning:
Breaking Changes

• Removed Decision Tree and CatBoost Estimators from AutoML search #4205

• Removed first batch from default algorithm #4215

2048 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/4233
https://github.com/alteryx/evalml/pull/4246
https://github.com/alteryx/evalml/pull/4250
https://github.com/alteryx/evalml/pull/4256
https://github.com/alteryx/evalml/pull/4238
https://github.com/alteryx/evalml/pull/4216
https://github.com/alteryx/evalml/pull/4258
https://github.com/alteryx/evalml/pull/4260
https://github.com/alteryx/evalml/pull/4268
https://github.com/alteryx/evalml/pull/4214
https://github.com/alteryx/evalml/pull/4237
https://github.com/alteryx/evalml/pull/4248
https://github.com/alteryx/evalml/pull/4210
https://github.com/alteryx/evalml/pull/4220
https://github.com/alteryx/evalml/pull/4221
https://github.com/alteryx/evalml/pull/4203
https://github.com/alteryx/evalml/pull/4228
https://github.com/alteryx/evalml/pull/4213
https://github.com/alteryx/evalml/pull/4205
https://github.com/alteryx/evalml/pull/4215

EvalML Documentation, Release 0.80.0

v0.77.0 Jun. 07, 2023
• Enhancements

– Added check_distribution function for determining if the predicted distribution matches the
true one #4184

– Added get_recommendation_score_breakdown function for insight on the recommendation
score #4188

– Added excluded_model_families parameter to AutoMLSearch() #4196

– Added option to exclude time index in IDColumnsDataCheck #4194

• Fixes
– Fixed small errors in ARIMARegressor implementation #4186

– Fixed get_forecast_period to properly handle gap parameter #4200

• Changes

• Documentation Changes

• Testing Changes
– Run looking glass performance tests on merge via Airflow #4198

v0.76.0 May. 09, 2023
• Enhancements

– Added optional recommendation_score to rank pipelines during AutoMLSearch #4156

– Added BytesIO support to PipelinBase.load() #4179

• Fixes
– Capped numpy at <=1.23.5 as a temporary measure for SHAP #4172

– Updated our readthedocs recipe to reenable builds #4177

v0.75.0 May. 01, 2023
• Fixes

– Fixed bug where resetting the holdout data indices would cause time series predict_in_sample
to be wrong #4161

• Changes
– Changed per-pipeline timings to store as a float #4160

– Update Dask install commands in pyproject.toml #4164

– Capped IPython version to < 8.12.1 for readthedocs and plotly compatibility #3987

v0.74.0 Apr. 18, 2023
• Enhancements

– Saved computed additional_objectives computed during search to AutoML object #4141

– Remove extra naive pipelines #4142

• Fixes
– Fixed usage of codecov after uploader deprecation #4144

– Fixed issue where prediction intervals were becoming NaNs due to index errors #4154

2049

https://github.com/alteryx/evalml/pull/4184
https://github.com/alteryx/evalml/pull/4188
https://github.com/alteryx/evalml/pull/4196
https://github.com/alteryx/evalml/pull/4194
https://github.com/alteryx/evalml/pull/4186
https://github.com/alteryx/evalml/pull/4200
https://github.com/alteryx/evalml/pull/4198
https://github.com/alteryx/evalml/pull/4156
https://github.com/alteryx/evalml/pull/4179
https://github.com/alteryx/evalml/pull/4172
https://github.com/alteryx/evalml/pull/4177
https://github.com/alteryx/evalml/pull/4161
https://github.com/alteryx/evalml/pull/4160
https://github.com/alteryx/evalml/pull/4164
https://github.com/alteryx/evalml/pull/3987
https://github.com/alteryx/evalml/pull/4141
https://github.com/alteryx/evalml/pull/4142
https://github.com/alteryx/evalml/pull/4144
https://github.com/alteryx/evalml/pull/4154

EvalML Documentation, Release 0.80.0

• Changes
– Capped size of seasonal period used for determining whether to include STLDecomposer in

pipelines #4147

v0.73.0 Apr. 10, 2023
• Enhancements

– Allowed InvalidTargetDataCheck to return a DROP_ROWS DataCheckActionOption #4116

– Implemented prediction intervals for non-time series native pipelines using the naïve method
#4127

• Changes
– Removed unnecessary logic from imputer components prior to nullable type handling #4038,

#4043

– Added calls to _handle_nullable_types in component fit, transform, and predict methods
when needed #4046, #4043

– Removed existing nullable type handling across AutoMLSearch to just use new handling #4085,
#4043

– Handled nullable type incompatibility in Decomposer #4105, :pr:`4043

– Removed nullable type incompatibility handling for ARIMA and ExponentialSmoothingRegres-
sor #4129

– Changed the default value for null_strategy in InvalidTargetDataCheck to drop #4131

– Pinned sktime version to 0.17.0 for nullable types support #4137

• Testing Changes
– Fixed installation of prophet for linux nightly tests #4114

v0.72.0 Mar. 27, 2023
• Enhancements

– Updated pipeline.get_prediction_intervals() to add trend prediction interval information from STL
decomposer #4093

– Added method=all support for TargetLeakageDataCheck #4106

• Fixes
– Fixed ensemble pipelines not working with generate_pipeline_example #4102

• Changes
– Pinned ipywidgets version under 8.0.5 #4097

– Calculated partial dependence grid values for integer data by rounding instead of truncating frac-
tional values #4096

• Testing Changes
– Updated graphviz installation in GitHub workflows to fix windows nightlies #4088

v0.71.0 Mar. 17, 2023*
• Fixes

– Fixed error in PipelineBase._supports_fast_permutation_importance with stacked en-
semble pipelines #4083

2050 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/4147
https://github.com/alteryx/evalml/pull/4116
https://github.com/alteryx/evalml/pull/4127
https://github.com/alteryx/evalml/pull/4038
https://github.com/alteryx/evalml/pull/4043
https://github.com/alteryx/evalml/pull/4046
https://github.com/alteryx/evalml/pull/4043
https://github.com/alteryx/evalml/pull/4085
https://github.com/alteryx/evalml/pull/4043
https://github.com/alteryx/evalml/pull/4105
https://github.com/alteryx/evalml/pull/4129
https://github.com/alteryx/evalml/pull/4131
https://github.com/alteryx/evalml/pull/4137
https://github.com/alteryx/evalml/pull/4114
https://github.com/alteryx/evalml/pull/4093
https://github.com/alteryx/evalml/pull/4106
https://github.com/alteryx/evalml/pull/4102
https://github.com/alteryx/evalml/pull/4097
https://github.com/alteryx/evalml/pull/4096
https://github.com/alteryx/evalml/pull/4088
https://github.com/alteryx/evalml/pull/4083

EvalML Documentation, Release 0.80.0

v0.70.0 Mar. 16, 2023
• Changes

– Added Oversampler nullable type incompatibility in X #4068

– Removed nullable handling from objective functions, roc_curve, and correlation_matrix
#4072

– Transitioned from prophet-prebuilt to prophet directly #4045

v0.69.0 Mar. 15, 2023
• Enhancements

– Move black to regular dependency and use it for generate_pipeline_code #4005

– Implement generate_pipeline_example #4023

– Add new downcast utils for component-specific nullable type handling and begin implementation
on objective and component base classes #4024

– Add nullable type incompatibility properties to the components that need them #4031

– Add get_evalml_requirements_file #4034

– Pipelines with DFS Transformers will run fast permutation importance if DFS features pre-exist
#4037

– Add get_prediction_intervals() at the pipeline level #4052

• Fixes
– Fixed generate_pipeline_example erroring out for pipelines with a DFSTransformer #4059

– Remove nullable types handling for OverSampler #4064

• Changes
– Uncapped pmdarima and updated minimum version #4027

– Increase min catboost to 1.1.1 and xgboost to 1.7.0 to add nullable type support for those estimators
#3996

– Unpinned networkx and updated minimum version #4035

– Increased scikit-learn version to 1.2.2 #4064

– Capped max holidays version to 0.21 #4064

– Stop allowing knn as a boolean impute strategy #4058

– Capped nbsphinx at < 0.9.0 #4071

• Testing Changes
– Use release.yaml for performance tests on merge to main #4007

– Pin github-action-check-linked-issues at v1.4.5 #4042

– Updated tests to support Woodwork’s object dtype inference for numeric columns #4066

– Updated TargetLeakageDataCheck tests to handle boolean targets properly #4066

v0.68.0 Feb. 15, 2023
• Enhancements

– Integrated determine_periodicity into AutoMLSearch #3952

2051

https://github.com/alteryx/evalml/pull/4068
https://github.com/alteryx/evalml/pull/4072
https://github.com/alteryx/evalml/pull/4045
https://github.com/alteryx/evalml/pull/4005
https://github.com/alteryx/evalml/pull/4023
https://github.com/alteryx/evalml/pull/4024
https://github.com/alteryx/evalml/pull/4031
https://github.com/alteryx/evalml/pull/4034
https://github.com/alteryx/evalml/pull/4037
https://github.com/alteryx/evalml/pull/4052
https://github.com/alteryx/evalml/pull/4059
https://github.com/alteryx/evalml/pull/4064
https://github.com/alteryx/evalml/pull/4027
https://github.com/alteryx/evalml/pull/3996
https://github.com/alteryx/evalml/pull/4035
https://github.com/alteryx/evalml/pull/4064
https://github.com/alteryx/evalml/pull/4064
https://github.com/alteryx/evalml/pull/4058
https://github.com/alteryx/evalml/pull/4071
https://github.com/alteryx/evalml/pull/4007
https://github.com/alteryx/evalml/pull/4042
https://github.com/alteryx/evalml/pull/4066
https://github.com/alteryx/evalml/pull/4066
https://github.com/alteryx/evalml/pull/3952

EvalML Documentation, Release 0.80.0

– Removed frequency limitations for decomposition using the STLDecomposer #3952

• Changes
– Remove requirements-parser requirement #3978

– Updated the SKOptTuner to use a gradient boosting regressor for tuning instead of extra trees
#3983

– Unpinned sktime from below 1.2, increased minimum to 1.2.1 #3983

• Testing Changes
– Add pull request check for linked issues to CI workflow #3970, #3980

– Upgraded minimum IPython version to 8.10.0 #3987

v0.67.0 Jan. 31, 2023
• Fixes

– Re-added TimeSeriesPipeline.should_skip_featurization to fix bug where data would
get featurized unnecessarily #3964

– Allow float categories to be passed into CatBoost estimators #3966

• Changes
– Update pyproject.toml to correctly specify the data filepaths #3967

• Documentation Changes
– Added demo for prediction intervals #3954

v0.66.1 Jan. 26, 2023
• Fixes

– Updated LabelEncoder to store the original typing information #3960

– Fixed bug where all-null BooleanNullable columns would break the imputer during transform
#3959

v0.66.0 Jan. 24, 2023
• Enhancements

– Improved decomposer determine_periodicity functionality for better period guesses #3912

– Added dates_needed_for_prediction for time series pipelines #3906

– Added RFClassifierRFESelector and RFRegressorRFESelector components for feature
selection using recursive feature elimination #3934

– Added dates_needed_for_prediction_range for time series pipelines #3941

• Fixes
– Fixed set_period() not updating decomposer parameters #3932

– Removed second identical batch for time series problems in DefaultAlgorithm #3936

– Fix install command for alteryx-open-src-update-checker #3940

– Fixed non-prophet case of test_components_can_be_used_for_partial_dependence_fast_mode
#3949

• Changes
– Updated PolynomialDecomposer to work with sktime v0.15.1 #3930

2052 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3952
https://github.com/alteryx/evalml/pull/3978
https://github.com/alteryx/evalml/pull/3983
https://github.com/alteryx/evalml/pull/3983
https://github.com/alteryx/evalml/pull/3970
https://github.com/alteryx/evalml/pull/3980
https://github.com/alteryx/evalml/pull/3987
https://github.com/alteryx/evalml/pull/3964
https://github.com/alteryx/evalml/pull/3966
https://github.com/alteryx/evalml/pull/3967
https://github.com/alteryx/evalml/pull/3954
https://github.com/alteryx/evalml/pull/3960
https://github.com/alteryx/evalml/pull/3959
https://github.com/alteryx/evalml/pull/3912
https://github.com/alteryx/evalml/pull/3906
https://github.com/alteryx/evalml/pull/3934
https://github.com/alteryx/evalml/pull/3941
https://github.com/alteryx/evalml/pull/3932
https://github.com/alteryx/evalml/pull/3936
https://github.com/alteryx/evalml/pull/3940
https://github.com/alteryx/evalml/pull/3949
https://github.com/alteryx/evalml/pull/3930

EvalML Documentation, Release 0.80.0

– Add ruff and use pyproject.toml (move away from setup.cfg) #3928

– Pinned category-encoders` to 2.5.1.post0 #3933

– Remove requirements-parser and tomli from core requirements #3948

v0.65.0 Jan. 3, 2023
• Enhancements

– Added the ability to retrieve prediction intervals for estimators that support time series regression
#3876

– Added utils to handle the logic for threshold tuning objective and resplitting data #3888

– Integrated OrdinalEncoder into AutoMLSearch #3765

• Fixes
– Fixed ARIMA not accounting for gap in prediction from end of training data #3884

– Fixed DefaultAlgorithm adding an extra OneHotEncoder when a categorical column is not
selected #3914

• Changes
– Added a threshold to DateTimeFormatDataCheck to account for too many duplicate or nan val-

ues #3883

– Changed treatment of Boolean columns for SimpleImputer and ClassImbalanceDataCheck
to be compatible with new Woodwork inference #3892

– Split decomposer seasonal_period parameter into seasonal_smoother and period param-
eters #3896

– Excluded catboost from the broken link checking workflow due to 403 errors #3899

– Pinned scikit-learn version below 1.2.0 #3901

– Cast newly created one hot encoded columns as bool dtype #3913

• Documentation Changes
– Hid non-essential warning messages in time series docs #3890

• Testing Changes

v0.64.0 Dec. 8, 2022
• Enhancements

• Fixes
– Allowed the DFS Transformer to calculate feature values for Features with a dataframe_name

that is not "X" #3873

– Stopped passing full list of DFS Transformer features into cloned pipeline in partial dependence
fast mode #3875

• Changes
– Update leaderboard names to show ranking_score instead of validation_score #3878

– Remove Int64Index after Pandas 1.5 Upgrade #3825

– Reduced the threshold for setting use_covariates to False for ARIMA models in Au-
toMLSearch #3868

– Pinned woodwork version at <=0.19.0 #3871

2053

https://github.com/alteryx/evalml/pull/3928
https://github.com/alteryx/evalml/pull/3933
https://github.com/alteryx/evalml/pull/3948
https://github.com/alteryx/evalml/pull/3876
https://github.com/alteryx/evalml/pull/3888
https://github.com/alteryx/evalml/pull/3765
https://github.com/alteryx/evalml/pull/3884
https://github.com/alteryx/evalml/pull/3914
https://github.com/alteryx/evalml/pull/3883
https://github.com/alteryx/evalml/pull/3892
https://github.com/alteryx/evalml/pull/3896
https://github.com/alteryx/evalml/pull/3899
https://github.com/alteryx/evalml/pull/3901
https://github.com/alteryx/evalml/pull/3913
https://github.com/alteryx/evalml/pull/3890
https://github.com/alteryx/evalml/pull/3873
https://github.com/alteryx/evalml/pull/3875
https://github.com/alteryx/evalml/pull/3878
https://github.com/alteryx/evalml/pull/3825
https://github.com/alteryx/evalml/pull/3868
https://github.com/alteryx/evalml/pull/3871

EvalML Documentation, Release 0.80.0

– Updated minimum Pandas version to 1.5.0 #3808

– Remove dsherry from automated dependency update reviews and added tamargrey #3870

• Documentation Changes

• Testing Changes

v0.63.0 Nov. 23, 2022
• Enhancements

– Added fast mode to partial dependence #3753

– Added the ability to serialize featuretools features into time series pipelines #3836

• Fixes
– Fixed TimeSeriesFeaturizer potentially selecting lags outside of feature engineering window

#3773

– Fixed bug where TimeSeriesFeaturizer could not encode Ordinal columns with non numeric
categories #3812

– Updated demo dataset links to point to new endpoint #3826

– Updated STLDecomposer to infer the time index frequency if it’s not present #3829

– Updated _drop_time_index to move the time index from X to both X.index and y.index
#3829

– Fixed bug where engineered features lost their origin attribute in partial dependence, causing it to
fail #3830

– Fixed bug where partial dependence’s fast mode handling for the DFS Transformer wouldn’t work
with multi output features #3830

– Allowed target to be present and ignored in partial dependence’s DFS Transformer fast mode
handling #3830

• Changes
– Consolidated decomposition frequency validation logic to Decomposer class #3811

– Removed Featuretools version upper bound and prevent Woodwork 0.20.0 from being installed
#3813

– Updated min Featuretools version to 0.16.0, min nlp-primitives version to 2.9.0 and min Dask
version to 2022.2.0 #3823

– Rename issue templates config.yaml to config.yml #3844

– Reverted change adding a should_skip_featurization flag to time series pipelines #3862

• Documentation Changes
– Added information about STL Decomposition to the time series docs #3835

– Removed RTD failure on warnings #3864

v0.62.0 Nov. 01, 2022
• Fixes

– Fixed bug with datetime conversion in get_time_index #3792

– Fixed bug where invalid anchored or offset frequencies were including the STLDecomposer in
pipelines #3794

2054 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3808
https://github.com/alteryx/evalml/pull/3870
https://github.com/alteryx/evalml/pull/3753
https://github.com/alteryx/evalml/pull/3836
https://github.com/alteryx/evalml/pull/3773
https://github.com/alteryx/evalml/pull/3812
https://github.com/alteryx/evalml/pull/3826
https://github.com/alteryx/evalml/pull/3829
https://github.com/alteryx/evalml/pull/3829
https://github.com/alteryx/evalml/pull/3830
https://github.com/alteryx/evalml/pull/3830
https://github.com/alteryx/evalml/pull/3830
https://github.com/alteryx/evalml/pull/3811
https://github.com/alteryx/evalml/pull/3813
https://github.com/alteryx/evalml/pull/3823
https://github.com/alteryx/evalml/pull/3844
https://github.com/alteryx/evalml/pull/3862
https://github.com/alteryx/evalml/pull/3835
https://github.com/alteryx/evalml/pull/3864
https://github.com/alteryx/evalml/pull/3792
https://github.com/alteryx/evalml/pull/3794

EvalML Documentation, Release 0.80.0

– Fixed bug where irregular datetime frequencies were causing errors in make_pipeline #3800

• Changes
– Capped dask at < 2022.10.1 #3797

– Uncapped dask and excluded 2022.10.1 from viable versions #3803

– Removed all references to XGBoost’s deprecated _use_label_encoder argument #3805

– Capped featuretools at < 1.17.0 #3805

– Capped woodwork at < 0.21.0 #3805

v0.61.1 Oct. 27, 2022
• Fixes

– Fixed bug where TimeSeriesBaselinePipeline wouldn’t preserve index name of input fea-
tures #3788

– Fixed bug in TimeSeriesBaselinePipeline referencing a static string instead of time index
var #3788

• Documentation Changes
– Updated Release Notes #3788

v0.61.0 Oct. 25, 2022
• Enhancements

– Added the STL Decomposer #3741

– Integrated STLDecomposer into AutoMLSearch for time series regression problems #3781

– Brought the PolynomialDecomposer up to parity with STLDecomposer #3768

• Changes
– Cap Featuretools at < 1.15.0 #3775

– Remove Featuretools upper bound restriction and fix nlp-primitives import statements #3778

v0.60.0 Oct. 19, 2022
• Enhancements

– Add forecast functions to time series regression pipeline #3742

• Fixes
– Fix to allow IDColumnsDataCheck to work with IntegerNullable inputs #3740

– Fixed datasets name for main performance tests #3743

• Changes
– Use Woodwork’s dependence_dict method to calculate for TargetLeakageDataCheck #3728

• Documentation Changes

• Testing Changes

Warning:
Breaking Changes

• TargetLeakageDataCheck now uses argument mutual_info rather than mutual #3728

2055

https://github.com/alteryx/evalml/pull/3800
https://github.com/alteryx/evalml/pull/3797
https://github.com/alteryx/evalml/pull/3803
https://github.com/alteryx/evalml/pull/3805
https://github.com/alteryx/evalml/pull/3805
https://github.com/alteryx/evalml/pull/3805
https://github.com/alteryx/evalml/pull/3788
https://github.com/alteryx/evalml/pull/3788
https://github.com/alteryx/evalml/pull/3788
https://github.com/alteryx/evalml/pull/3741
https://github.com/alteryx/evalml/pull/3781
https://github.com/alteryx/evalml/pull/3768
https://github.com/alteryx/evalml/pull/3775
https://github.com/alteryx/evalml/pull/3778
https://github.com/alteryx/evalml/pull/3742
https://github.com/alteryx/evalml/pull/3740
https://github.com/alteryx/evalml/pull/3743
https://github.com/alteryx/evalml/pull/3728
https://github.com/alteryx/evalml/pull/3728

EvalML Documentation, Release 0.80.0

v0.59.0 Sept. 27, 2022
• Enhancements

– Enhanced Decomposer with determine_periodicity function to automatically determine pe-
riodicity of seasonal target. #3729

– Enhanced Decomposer with set_seasonal_period function to set a Decomposer object’s sea-
sonal period automatically. #3729

– Added OrdinalEncoder component #3736

• Fixes
– Fixed holdout warning message showing when using default parameters #3727

– Fixed bug in Oversampler where categorical dtypes would fail #3732

• Changes
– Automatic sorting of the time_index prior to running DataChecks has been disabled #3723

• Documentation Changes

• Testing Changes
– Update job to use new looking glass report command #3733

v0.58.0 Sept. 20, 2022
• Enhancements

– Defined get_trend_df() for PolynomialDecomposer to allow decomposition of target data into
trend, seasonality and residual. #3720

– Updated to run with Woodwork >= 0.18.0 #3700

– Pass time index column to time series native estimators but drop otherwise #3691

– Added errors attribute to AutoMLSearch for useful debugging #3702

• Fixes
– Removed multiple samplers occurring in pipelines generated by DefaultAlgorithm #3696

– Fix search order changing when using DefaultAlgorithm #3704

• Changes
– Bumped up minimum version of sktime to 0.12.0. #3720

– Added abstract Decomposer class as a parent to PolynomialDecomposer to support additional
decomposers. #3720

– Pinned pmdarima < 2.0.0 #3679

– Added support for using downcast_nullable_types with Series as well as DataFrames #3697

– Added distinction between ranking and optimization objectives #3721

• Documentation Changes

• Testing Changes
– Updated pytest fixtures and brittle test files to explicitly set woodwork typing information #3697

– Added github workflow to run looking glass performance tests on merge to main #3690

2056 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3729
https://github.com/alteryx/evalml/pull/3729
https://github.com/alteryx/evalml/pull/3736
https://github.com/alteryx/evalml/pull/3727
https://github.com/alteryx/evalml/pull/3732
https://github.com/alteryx/evalml/pull/3723
https://github.com/alteryx/evalml/pull/3733
https://github.com/alteryx/evalml/pull/3720
https://github.com/alteryx/evalml/pull/3700
https://github.com/alteryx/evalml/pull/3691
https://github.com/alteryx/evalml/pull/3702
https://github.com/alteryx/evalml/pull/3696
https://github.com/alteryx/evalml/pull/3704
https://github.com/alteryx/evalml/pull/3720
https://github.com/alteryx/evalml/pull/3720
https://github.com/alteryx/evalml/pull/3679
https://github.com/alteryx/evalml/pull/3697
https://github.com/alteryx/evalml/pull/3721
https://github.com/alteryx/evalml/pull/3697
https://github.com/alteryx/evalml/pull/3690

EvalML Documentation, Release 0.80.0

– Fixed looking glass performance test script #3715

– Remove commit message from looking glass slack message #3719

v0.57.0 Sept. 6, 2022
• Enhancements

– Added KNNImputer class and created new knn parameter for Imputer #3662

• Fixes
– IDColumnsDataCheck now only returns an action code to set the first column as the primary key

if it contains unique values #3639

– IDColumnsDataCheck now can handle primary key columns containing “integer” values that are
of the double type #3683

– Added support for BooleanNullable columns in EvalML pipelines and imputer #3678

– Updated StandardScaler to only apply to numeric columns #3686

• Changes
– Unpinned sktime to allow for version 0.13.2 #3685

– Pinned pmdarima < 2.0.0 #3679

v0.56.1 Aug. 19, 2022
• Fixes

– IDColumnsDataCheck now only returns an action code to set the first column as the primary key
if it contains unique values #3639

– Reverted the make_pipeline changes that conditionally included the imputers #3672

v0.56.0 Aug. 15, 2022
• Enhancements

– Add CI testing environment in Mac for install workflow #3646

– Updated make_pipeline to only include the Imputer in pipelines if NaNs exist in the data #3657

– Updated to run with Woodwork >= 0.17.2 #3626

– Add exclude_featurizers parameter to AutoMLSearch to specify featurizers that should be
excluded from all pipelines #3631

– Add fit_transform method to pipelines and component graphs #3640

– Changed default value of data splitting for time series problem holdout set evaluation #3650

• Fixes
– Reverted the Woodwork 0.17.x compatibility work due to performance regression #3664

• Changes
– Disable holdout set in AutoML search by default #3659

– Pinned sktime at >=0.7.0,<0.13.1 due to slowdowns with time series modeling #3658

– Added additional testing support for Python 3.10 #3609

• Documentation Changes
– Updated broken link checker to exclude stackoverflow domain #3633

2057

https://github.com/alteryx/evalml/pull/3715
https://github.com/alteryx/evalml/pull/3719
https://github.com/alteryx/evalml/pull/3662
https://github.com/alteryx/evalml/pull/3639
https://github.com/alteryx/evalml/pull/3683
https://github.com/alteryx/evalml/pull/3678
https://github.com/alteryx/evalml/pull/3686
https://github.com/alteryx/evalml/pull/3685
https://github.com/alteryx/evalml/pull/3679
https://github.com/alteryx/evalml/pull/3639
https://github.com/alteryx/evalml/pull/3672
https://github.com/alteryx/evalml/pull/3646
https://github.com/alteryx/evalml/pull/3657
https://github.com/alteryx/evalml/pull/3626
https://github.com/alteryx/evalml/pull/3631
https://github.com/alteryx/evalml/pull/3640
https://github.com/alteryx/evalml/pull/3650
https://github.com/alteryx/evalml/pull/3664
https://github.com/alteryx/evalml/pull/3659
https://github.com/alteryx/evalml/pull/3658
https://github.com/alteryx/evalml/pull/3609
https://github.com/alteryx/evalml/pull/3633

EvalML Documentation, Release 0.80.0

– Add instructions to add new users to evalml-core-feedstock #3636

v0.55.0 July. 24, 2022
• Enhancements

– Increased the amount of logical type information passed to Woodwork when calling ww.init()
in transformers #3604

– Added ability to log how long each batch and pipeline take in automl.search() #3577

– Added the option to set the sp parameter for ARIMA models #3597

– Updated the CV split size of time series problems to match forecast horizon for improved perfor-
mance #3616

– Added holdout set evaluation as part of AutoML search and pipeline ranking #3499

– Added Dockerfile.arm and .dockerignore for python version and M1 testing #3609

– Added test_gen_utils::in_container_arm64() fixture #3609

• Fixes
– Fixed iterative graphs not appearing in documentation #3592

– Updated the load_diabetes() method to account for scikit-learn 1.1.1 changes to the dataset
#3591

– Capped woodwork version at < 0.17.0 #3612

– Bump minimum scikit-optimize version to 0.9.0 :pr:`3614

– Invalid target data checks involving regression and unsupported data types now produce a different
DataCheckMessageCode #3630

– Updated test_data_checks.py::test_data_checks_raises_value_errors_on_init -
more lenient text check #3609

• Changes
– Add pre-commit hooks for linting #3608

– Implemented a lower threshold and window size for the TimeSeriesRegularizer and
DatetimeFormatDataCheck #3627

– Updated IDColumnsDataCheck to return an action to set the first column as the primary key if it
is identified as an ID column #3634

• Documentation Changes

• Testing Changes
– Pinned GraphViz version for Windows CI Test #3596

– Removed skipping of PolynomialDecomposer tests for Python 3.9 envs. #3720

– Removed pytest.mark.skip_if_39 pytest marker #3602 #3607

– Updated pytest==7.1.2 #3609

– Added Dockerfile.arm and .dockerignore for python version and M1 testing #3609

– Added test_gen_utils::in_container_arm64() fixture #3609

Warning:

2058 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3636
https://github.com/alteryx/evalml/pull/3604
https://github.com/alteryx/evalml/pull/3577
https://github.com/alteryx/evalml/pull/3597
https://github.com/alteryx/evalml/pull/3616
https://github.com/alteryx/evalml/pull/3499
https://github.com/alteryx/evalml/pull/3609
https://github.com/alteryx/evalml/pull/3609
https://github.com/alteryx/evalml/pull/3592
https://github.com/alteryx/evalml/pull/3591
https://github.com/alteryx/evalml/pull/3612
https://github.com/alteryx/evalml/pull/3630
https://github.com/alteryx/evalml/pull/3609
https://github.com/alteryx/evalml/pull/3608
https://github.com/alteryx/evalml/pull/3627
https://github.com/alteryx/evalml/pull/3634
https://github.com/alteryx/evalml/pull/3596
https://github.com/alteryx/evalml/pull/3720
https://github.com/alteryx/evalml/pull/3602
https://github.com/alteryx/evalml/pull/3607
https://github.com/alteryx/evalml/pull/3609
https://github.com/alteryx/evalml/pull/3609
https://github.com/alteryx/evalml/pull/3609

EvalML Documentation, Release 0.80.0

Breaking Changes
• Refactored test cases that iterate over all components to use pytest.mark.parametrise and changed

the corresponding if...continue blocks to pytest.mark.xfail #3622

v0.54.0 June. 23, 2022
• Fixes

– Updated the Imputer and SimpleImputer to work with scikit-learn 1.1.1. #3525

– Bumped the minimum versions of scikit-learn to 1.1.1 and imbalanced-learn to 0.9.1. #3525

– Added a clearer error message when describe is called on an un-instantiated ComponentGraph
#3569

– Added a clearer error message when time series’ predict is called with its X_train or y_train
parameter set as None #3579

• Changes
– Don’t pass time_index as kwargs to sktime ARIMA implementation for compatibility with latest

version #3564

– Remove incompatible nlp-primitives version 2.6.0 from accepted dependency versions #3572,
#3574

– Updated evalml authors #3581

• Documentation Changes
– Fix typo in long_description field in setup.cfg #3553

– Update install page to remove Python 3.7 mention #3567

v0.53.1 June. 9, 2022
• Changes

– Set the development status to 4 - Beta in setup.cfg #3550

v0.53.0 June. 9, 2022
• Enhancements

– Pass n_jobs to default algorithm #3548

• Fixes
– Fixed github workflows for featuretools and woodwork to test their main branch against evalml.

#3517

– Supress warnings in TargetEncoder raised by a coming change to default parameters #3540

– Fixed bug where schema was not being preserved in column renaming for XGBoost and Light-
GBM models #3496

• Changes
– Transitioned to use pyproject.toml and setup.cfg away from setup.py #3494, #3536

• Documentation Changes
– Updated the Time Series User Guide page to include known-in-advance features and fix typos

#3521

– Add slack and stackoverflow icon to footer #3528

2059

https://github.com/alteryx/evalml/pull/3622
https://github.com/alteryx/evalml/pull/3525
https://github.com/alteryx/evalml/pull/3525
https://github.com/alteryx/evalml/pull/3569
https://github.com/alteryx/evalml/pull/3579
https://github.com/alteryx/evalml/pull/3564
https://github.com/alteryx/evalml/pull/3572
https://github.com/alteryx/evalml/pull/3574
https://github.com/alteryx/evalml/pull/3581
https://github.com/alteryx/evalml/pull/3553
https://github.com/alteryx/evalml/pull/3567
https://github.com/alteryx/evalml/pull/3550
https://github.com/alteryx/evalml/pull/3548
https://github.com/alteryx/evalml/pull/3517
https://github.com/alteryx/evalml/pull/3540
https://github.com/alteryx/evalml/pull/3496
https://github.com/alteryx/evalml/pull/3494
https://github.com/alteryx/evalml/pull/3536
https://github.com/alteryx/evalml/pull/3521
https://github.com/alteryx/evalml/pull/3528

EvalML Documentation, Release 0.80.0

– Add install instructions for M1 Mac #3543

• Testing Changes
– Rename yml to yaml for GitHub Actions #3522

– Remove noncore_dependency pytest marker #3541

– Changed test_smotenc_category_features to use valid postal code values in response to
new woodwork type validation #3544

v0.52.0 May. 12, 2022
• Changes

– Added github workflows for featuretools and woodwork to test their main branch against evalml.
#3504

– Added pmdarima to conda recipe. #3505

– Added a threshold for NullDataCheck before a warning is issued for null values #3507

– Changed NoVarianceDataCheck to only output warnings #3506

– Reverted XGBoost Classifier/Regressor patch for all boolean columns needing to be converted to
int. #3503

– Updated roc_curve() and conf_matrix() to work with IntegerNullable and BooleanNullable
types. #3465

– Changed ComponentGraph._transform_features to raise a PipelineError instead of
a ValueError. This is not a breaking change because PipelineError is a subclass of
ValueError. #3497

– Capped sklearn at version 1.1.0 #3518

• Documentation Changes
– Updated to install prophet extras in Read the Docs. #3509

• Testing Changes
– Moved vowpal wabbit in test recipe to evalml package from evalml-core #3502

v0.51.0 Apr. 28, 2022
• Enhancements

– Updated make_pipeline_from_data_check_output to work with time series problems.
#3454

• Fixes
– Changed PipelineBase.graph_json() to return a python dictionary and renamed as
graph_dict()#3463

• Changes
– Added vowpalwabbit to local recipe and remove is_using_conda pytest skip markers from

relevant tests #3481

• Documentation Changes
– Fixed broken link in contributing guide #3464

– Improved development instructions #3468

2060 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3543
https://github.com/alteryx/evalml/pull/3522
https://github.com/alteryx/evalml/pull/3541
https://github.com/alteryx/evalml/pull/3544
https://github.com/alteryx/evalml/pull/3504
https://github.com/alteryx/evalml/pull/3505
https://github.com/alteryx/evalml/pull/3507
https://github.com/alteryx/evalml/pull/3506
https://github.com/alteryx/evalml/pull/3503
https://github.com/alteryx/evalml/pull/3465
https://github.com/alteryx/evalml/pull/3497
https://github.com/alteryx/evalml/pull/3518
https://github.com/alteryx/evalml/pull/3509
https://github.com/alteryx/evalml/pull/3502
https://github.com/alteryx/evalml/pull/3454
https://github.com/alteryx/evalml/pull/3463
https://github.com/alteryx/evalml/pull/3481
https://github.com/alteryx/evalml/pull/3464
https://github.com/alteryx/evalml/pull/3468

EvalML Documentation, Release 0.80.0

– Added the TimeSeriesRegularizer and TimeSeriesImputer to the timeseries section of the
User Guide #3473

– Updated OSS slack link #3487

– Fix rendering of model understanding plotly charts in docs #3460

• Testing Changes
– Updated unit tests to support woodwork 0.16.2 #3482

– Fix some unit tests after vowpal wabbit got added to conda recipe #3486

Warning:
Breaking Changes

• Renamed PipelineBase.graph_json() to PipelineBase.graph_dict() #3463

• Minimum supported woodwork version is now 0.16.2 #3482

v0.50.0 Apr. 12, 2022
• Enhancements

– Added TimeSeriesImputer component #3374

– Replaced pipeline_parameters and custom_hyperparameters with search_parameters
in AutoMLSearch #3373, #3427

– Added TimeSeriesRegularizer to smooth uninferrable date ranges for time series problems
#3376

– Enabled ensembling as a parameter for DefaultAlgorithm #3435, #3444

• Fixes
– Fix DefaultAlgorithm not handling Email and URL features #3419

– Added test to ensure LabelEncoder parameters preserved during AutoMLSearch #3326

• Changes
– Updated DateTimeFormatDataCheck to use woodwork’s infer_frequency function #3425

– Renamed graphs.py to visualizations.py #3439

• Documentation Changes
– Updated the model understanding section of the user guide to include missing functions #3446

– Rearranged the user guide model understanding page for easier navigation #3457

– Update README text to Alteryx #3462

Warning:
Breaking Changes

• Renamed graphs.py to visualizations.py #3439

• Replaced pipeline_parameters and custom_hyperparameters with search_parameters in
AutoMLSearch #3373

v0.49.0 Mar. 31, 2022

2061

https://github.com/alteryx/evalml/pull/3473
https://github.com/alteryx/evalml/pull/3487
https://github.com/alteryx/evalml/pull/3460
https://github.com/alteryx/evalml/pull/3482
https://github.com/alteryx/evalml/pull/3486
https://github.com/alteryx/evalml/pull/3463
https://github.com/alteryx/evalml/pull/3482
https://github.com/alteryx/evalml/pull/3374
https://github.com/alteryx/evalml/pull/3373
https://github.com/alteryx/evalml/pull/3427
https://github.com/alteryx/evalml/pull/3376
https://github.com/alteryx/evalml/pull/3435
https://github.com/alteryx/evalml/pull/3444
https://github.com/alteryx/evalml/pull/3419
https://github.com/alteryx/evalml/pull/3326
https://github.com/alteryx/evalml/pull/3425
https://github.com/alteryx/evalml/pull/3439
https://github.com/alteryx/evalml/pull/3446
https://github.com/alteryx/evalml/pull/3457
https://github.com/alteryx/evalml/pull/3462
https://github.com/alteryx/evalml/pull/3439
https://github.com/alteryx/evalml/pull/3373

EvalML Documentation, Release 0.80.0

• Enhancements
– Added use_covariates parameter to ARIMARegressor #3407

– AutoMLSearch will set use_covariates to False for ARIMA when dataset is large #3407

– Add ability to retrieve logical types to a component in the graph via
get_component_input_logical_types #3428

– Add ability to get logical types passed to the last component via
last_component_input_logical_types #3428

• Fixes
– Fix conda build after PR 3407 #3429

• Changes
– Moved model understanding metrics from graph.py into a separate file #3417

– Unpin click dependency #3420

– For IterativeAlgorithm, put time series algorithms first #3407

– Use prophet-prebuilt to install prophet in extras #3407

Warning:
Breaking Changes

• Moved model understanding metrics from graph.py to metrics.py #3417

v0.48.0 Mar. 25, 2022
• Enhancements

– Add support for oversampling in time series classification problems #3387

• Fixes
– Fixed TimeSeriesFeaturizer to make it deterministic when creating and choosing columns

#3384

– Fixed bug where Email/URL features with missing values would cause the imputer to error out
#3388

• Changes
– Update maintainers to add Frank #3382

– Allow woodwork version 0.14.0 to be installed #3381

– Moved partial dependence functions from graph.py to a separate file #3404

– Pin click at 8.0.4 due to incompatibility with black #3413

• Documentation Changes
– Added automl user guide section covering search algorithms #3394

– Updated broken links and automated broken link detection #3398

– Upgraded nbconvert #3402, #3411

• Testing Changes
– Updated scheduled workflows to only run on Alteryx owned repos (#3395)

2062 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3407
https://github.com/alteryx/evalml/pull/3407
https://github.com/alteryx/evalml/pull/3428
https://github.com/alteryx/evalml/pull/3428
https://github.com/alteryx/evalml/pull/3429
https://github.com/alteryx/evalml/pull/3417
https://github.com/alteryx/evalml/pull/3420
https://github.com/alteryx/evalml/pull/3407
https://github.com/alteryx/evalml/pull/3407
https://github.com/alteryx/evalml/pull/3417
https://github.com/alteryx/evalml/pull/3387
https://github.com/alteryx/evalml/pull/3384
https://github.com/alteryx/evalml/pull/3388
https://github.com/alteryx/evalml/pull/3382
https://github.com/alteryx/evalml/pull/3381
https://github.com/alteryx/evalml/pull/3404
https://github.com/alteryx/evalml/pull/3413
https://github.com/alteryx/evalml/pull/3394
https://github.com/alteryx/evalml/pull/3398
https://github.com/alteryx/evalml/pull/3402
https://github.com/alteryx/evalml/pull/3411
https://github.com/alteryx/evalml/pull/3395

EvalML Documentation, Release 0.80.0

– Exclude documentation versions other than latest from broken link check #3401

Warning:
Breaking Changes

• Moved partial dependence functions from graph.py to partial_dependence.py #3404

v0.47.0 Mar. 16, 2022
• Enhancements

– Added TimeSeriesFeaturizer into ARIMA-based pipelines #3313

– Added caching capability for ensemble training during AutoMLSearch #3257

– Added new error code for zero unique values in NoVarianceDataCheck #3372

• Fixes
– Fixed get_pipelines to reset pipeline threshold for binary cases #3360

• Changes
– Update maintainers #3365

– Revert pandas 1.3.0 compatibility patch #3378

• Documentation Changes
– Fixed documentation links to point to correct pages #3358

• Testing Changes
– Checkout main branch in build_conda_pkg job #3375

v0.46.0 Mar. 03, 2022
• Enhancements

– Added test_size parameter to ClassImbalanceDataCheck #3341

– Make target optional for NoVarianceDataCheck #3339

• Changes
– Removed python_version<3.9 environment marker from sktime dependency #3332

– Updated DatetimeFormatDataCheck to return all messages and not return early if NaNs are
detected #3354

• Documentation Changes
– Added in-line tabs and copy-paste functionality to documentation, overhauled Install page #3353

v0.45.0 Feb. 17, 2022
• Enhancements

– Added support for pandas >= 1.4.0 #3324

– Standardized feature importance for estimators #3305

– Replaced usage of private method with Woodwork’s public get_subset_schema method #3325

• Changes
– Added an is_cv property to the datasplitters used #3297

2063

https://github.com/alteryx/evalml/pull/3401
https://github.com/alteryx/evalml/pull/3404
https://github.com/alteryx/evalml/pull/3313
https://github.com/alteryx/evalml/pull/3257
https://github.com/alteryx/evalml/pull/3372
https://github.com/alteryx/evalml/pull/3360
https://github.com/alteryx/evalml/pull/3365
https://github.com/alteryx/evalml/pull/3378
https://github.com/alteryx/evalml/pull/3358
https://github.com/alteryx/evalml/pull/3375
https://github.com/alteryx/evalml/pull/3341
https://github.com/alteryx/evalml/pull/3339
https://github.com/alteryx/evalml/pull/3332
https://github.com/alteryx/evalml/pull/3354
https://github.com/alteryx/evalml/pull/3353
https://github.com/alteryx/evalml/pull/3324
https://github.com/alteryx/evalml/pull/3305
https://github.com/alteryx/evalml/pull/3325
https://github.com/alteryx/evalml/pull/3297

EvalML Documentation, Release 0.80.0

– Changed SimpleImputer to ignore Natural Language columns #3324

– Added drop NaN component to some time series pipelines #3310

• Documentation Changes
– Update README.md with Alteryx link (#3319)

– Added formatting to the AutoML user guide to shorten result outputs #3328

• Testing Changes
– Add auto approve dependency workflow schedule for every 30 mins #3312

v0.44.0 Feb. 04, 2022
• Enhancements

– Updated DefaultAlgorithm to also limit estimator usage for long-running multiclass problems
#3099

– Added make_pipeline_from_data_check_output() utility method #3277

– Updated AutoMLSearch to use DefaultAlgorithm as the default automl algorithm #3261,
#3304

– Added more specific data check errors to DatetimeFormatDataCheck #3288

– Added features as a parameter for AutoMLSearch and add DFSTransformer to pipelines when
features are present #3309

• Fixes
– Updated the binary classification pipeline’s optimize_thresholds method to use Nelder-Mead

#3280

– Fixed bug where feature importance on time series pipelines only showed 0 for time index #3285

• Changes
– Removed DateTimeNaNDataCheck and NaturalLanguageNaNDataCheck in favor of
NullDataCheck #3260

– Drop support for Python 3.7 #3291

– Updated minimum version of woodwork to v0.12.0 #3290

• Documentation Changes
– Update documentation and docstring for validate_holdout_datasets for time series problems #3278

– Fixed mistake in documentation where wrong objective was used for calculating percent-better-
than-baseline #3285

Warning:
Breaking Changes

• Removed DateTimeNaNDataCheck and NaturalLanguageNaNDataCheck in favor of
NullDataCheck #3260

• Dropped support for Python 3.7 #3291

v0.43.0 Jan. 25, 2022
• Enhancements

2064 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3324
https://github.com/alteryx/evalml/pull/3310
https://github.com/alteryx/evalml/pull/3319
https://github.com/alteryx/evalml/pull/3328
https://github.com/alteryx/evalml/pull/3312
https://github.com/alteryx/evalml/pull/3099
https://github.com/alteryx/evalml/pull/3277
https://github.com/alteryx/evalml/pull/3261
https://github.com/alteryx/evalml/pull/3304
https://github.com/alteryx/evalml/pull/3288
https://github.com/alteryx/evalml/pull/3309
https://github.com/alteryx/evalml/pull/3280
https://github.com/alteryx/evalml/pull/3285
https://github.com/alteryx/evalml/pull/3260
https://github.com/alteryx/evalml/pull/3291
https://github.com/alteryx/evalml/pull/3290
https://github.com/alteryx/evalml/pull/3278
https://github.com/alteryx/evalml/pull/3285
https://github.com/alteryx/evalml/pull/3260
https://github.com/alteryx/evalml/pull/3291

EvalML Documentation, Release 0.80.0

– Updated new NullDataCheck to return a warning and suggest an action to impute columns with
null values #3197

– Updated make_pipeline_from_actions to handle null column imputation #3237

– Updated data check actions API to return options instead of actions and add functionality to suggest
and take action on columns with null values #3182

• Fixes
– Fixed categorical data leaking into non-categorical sub-pipelines in DefaultAlgorithm #3209

– Fixed Python 3.9 installation for prophet by updating pmdarima version in requirements #3268

– Allowed DateTime columns to pass through PerColumnImputer without breaking #3267

• Changes
– Updated DataCheck validate() output to return a dictionary instead of list for actions #3142

– Updated DataCheck validate() API to use the new DataCheckActionOption class instead
of DataCheckAction #3152

– Uncapped numba version and removed it from requirements #3263

– Renamed HighlyNullDataCheck to NullDataCheck #3197

– Updated data check validate() output to return a list of warnings and errors instead of a dictio-
nary #3244

– Capped pandas at < 1.4.0 #3274

• Testing Changes
– Bumped minimum IPython version to 7.16.3 in test-requirements.txt based on dependabot

feedback #3269

Warning:
Breaking Changes

• Renamed HighlyNullDataCheck to NullDataCheck #3197

• Updated data check validate() output to return a list of warnings and errors instead of a dictionary.
See the Data Check or Data Check Actions pages (under User Guide) for examples. #3244

• Removed impute_all and default_impute_strategy parameters from the PerColumnImputer
#3267

• Updated PerColumnImputer such that columns not specified in impute_strategies dict will not be
imputed anymore #3267

v0.42.0 Jan. 18, 2022
• Enhancements

– Required the separation of training and test data by gap + 1 units to be verified by time_index
for time series problems #3208

– Added support for boolean features for ARIMARegressor #3187

– Updated dependency bot workflow to remove outdated description and add new configuration to
delete branches automatically #3212

– Added n_obs and n_splits to TimeSeriesParametersDataCheck error details #3246

2065

https://github.com/alteryx/evalml/pull/3197
https://github.com/alteryx/evalml/pull/3237
https://github.com/alteryx/evalml/pull/3182
https://github.com/alteryx/evalml/pull/3209
https://github.com/alteryx/evalml/pull/3268
https://github.com/alteryx/evalml/pull/3267
https://github.com/alteryx/evalml/pull/3142
https://github.com/alteryx/evalml/pull/3152
https://github.com/alteryx/evalml/pull/3263
https://github.com/alteryx/evalml/pull/3197
https://github.com/alteryx/evalml/pull/3244
https://github.com/alteryx/evalml/pull/3274
https://github.com/alteryx/evalml/pull/3269
https://github.com/alteryx/evalml/pull/3197
https://github.com/alteryx/evalml/pull/3244
https://github.com/alteryx/evalml/pull/3267
https://github.com/alteryx/evalml/pull/3267
https://github.com/alteryx/evalml/pull/3208
https://github.com/alteryx/evalml/pull/3187
https://github.com/alteryx/evalml/pull/3212
https://github.com/alteryx/evalml/pull/3246

EvalML Documentation, Release 0.80.0

• Fixes
– Fixed classification pipelines to only accept target data with the appropriate number of classes

#3185

– Added support for time series in DefaultAlgorithm #3177

– Standardized names of featurization components #3192

– Removed empty cell in text_input.ipynb #3234

– Removed potential prediction explanations failure when pipelines predicted a class with probabil-
ity 1 #3221

– Dropped NaNs before partial dependence grid generation #3235

– Allowed prediction explanations to be json-serializable #3262

– Fixed bug where InvalidTargetDataCheck would not check time series regression targets
#3251

– Fixed bug in are_datasets_separated_by_gap_time_index #3256

• Changes
– Raised lowest compatible numpy version to 1.21.0 to address security concerns #3207

– Changed the default objective to MedianAE from R2 for time series regression #3205

– Removed all-nan Unknown to Double logical conversion in infer_feature_types #3196

– Checking the validity of holdout data for time series problems can be performed by calling
pipelines.utils.validate_holdout_datasets prior to calling predict #3208

• Testing Changes
– Update auto approve workflow trigger and delete branch after merge #3265

Warning:
Breaking Changes

• Renamed DateTime Featurizer Component to DateTime Featurizer and Natural Language
Featurization Component to Natural Language Featurizer #3192

v0.41.0 Jan. 06, 2022
• Enhancements

– Added string support for DataCheckActionCode #3167

– Added DataCheckActionOption class #3134

– Add issue templates for bugs, feature requests and documentation improvements for GitHub #3199

• Fixes
– Fix bug where prediction explanations class_name was shown as float for boolean targets #3179

– Fixed bug in nightly linux tests #3189

• Changes
– Removed usage of scikit-learn’s LabelEncoder in favor of ours #3161

– Removed nullable types checking from infer_feature_types #3156

2066 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3185
https://github.com/alteryx/evalml/pull/3177
https://github.com/alteryx/evalml/pull/3192
https://github.com/alteryx/evalml/pull/3234
https://github.com/alteryx/evalml/pull/3221
https://github.com/alteryx/evalml/pull/3235
https://github.com/alteryx/evalml/pull/3262
https://github.com/alteryx/evalml/pull/3251
https://github.com/alteryx/evalml/pull/3256
https://github.com/alteryx/evalml/pull/3207
https://github.com/alteryx/evalml/pull/3205
https://github.com/alteryx/evalml/pull/3196
https://github.com/alteryx/evalml/pull/3208
https://github.com/alteryx/evalml/pull/3265
https://github.com/alteryx/evalml/pull/3192
https://github.com/alteryx/evalml/pull/3167
https://github.com/alteryx/evalml/pull/3134
https://github.com/alteryx/evalml/pull/3199
https://github.com/alteryx/evalml/pull/3179
https://github.com/alteryx/evalml/pull/3189
https://github.com/alteryx/evalml/pull/3161
https://github.com/alteryx/evalml/pull/3156

EvalML Documentation, Release 0.80.0

– Fixed mean_cv_data and validation_score values in AutoMLSearch.rankings to reflect cv
score or NaN when appropriate #3162

• Testing Changes
– Updated tests to use new pipeline API instead of defining custom pipeline classes #3172

– Add workflow to auto-merge dependency PRs if status checks pass #3184

v0.40.0 Dec. 22, 2021
• Enhancements

– Added TimeSeriesSplittingDataCheck to DefaultDataChecks to verify adequate class rep-
resentation in time series classification problems #3141

– Added the ability to accept serialized features and skip computation in DFSTransformer #3106

– Added support for known-in-advance features #3149

– Added Holt-Winters ExponentialSmoothingRegressor for time series regression problems
#3157

– Required the separation of training and test data by gap + 1 units to be verified by time_index
for time series problems #3160

• Fixes
– Fixed error caused when tuning threshold for time series binary classification #3140

• Changes
– TimeSeriesParametersDataCheck was added to DefaultDataChecks for time series prob-

lems #3139

– Renamed date_index to time_index in problem_configuration for time series problems
#3137

– Updated nlp-primitives minimum version to 2.1.0 #3166

– Updated minimum version of woodwork to v0.11.0 #3171

– Revert 3160 until uninferrable frequency can be addressed earlier in the process #3198

• Documentation Changes
– Added comments to provide clarity on doctests #3155

• Testing Changes
– Parameterized tests in test_datasets.py #3145

Warning:
Breaking Changes

• Renamed date_index to time_index in problem_configuration for time series problems #3137

v0.39.0 Dec. 9, 2021
• Enhancements

– Renamed DelayedFeatureTransformer to TimeSeriesFeaturizer and enhanced it to com-
pute rolling features #3028

– Added ability to impute only specific columns in PerColumnImputer #3123

2067

https://github.com/alteryx/evalml/pull/3162
https://github.com/alteryx/evalml/pull/3172
https://github.com/alteryx/evalml/pull/3184
https://github.com/alteryx/evalml/pull/3141
https://github.com/alteryx/evalml/pull/3106
https://github.com/alteryx/evalml/pull/3149
https://github.com/alteryx/evalml/pull/3157
https://github.com/alteryx/evalml/pull/3160
https://github.com/alteryx/evalml/pull/3140
https://github.com/alteryx/evalml/pull/3139
https://github.com/alteryx/evalml/pull/3137
https://github.com/alteryx/evalml/pull/3166
https://github.com/alteryx/evalml/pull/3171
https://github.com/alteryx/evalml/pull/3198
https://github.com/alteryx/evalml/pull/3155
https://github.com/alteryx/evalml/pull/3145
https://github.com/alteryx/evalml/pull/3137
https://github.com/alteryx/evalml/pull/3028
https://github.com/alteryx/evalml/pull/3123

EvalML Documentation, Release 0.80.0

– Added TimeSeriesParametersDataCheck to verify the time series parameters are valid given
the number of splits in cross validation #3111

• Fixes
– Default parameters for RFRegressorSelectFromModel and RFClassifierSelectFromModel

has been fixed to avoid selecting all features #3110

• Changes
– Removed reliance on a datetime index for ARIMARegressor and ProphetRegressor #3104

– Included target leakage check when fitting ARIMARegressor to account for the lack of
TimeSeriesFeaturizer in ARIMARegressor based pipelines #3104

– Cleaned up and refactored InvalidTargetDataCheck implementation and docstring #3122

– Removed indices information from the output of HighlyNullDataCheck’s validate() method
#3092

– Added ReplaceNullableTypes component to prepare for handling pandas nullable types. #3090

– Updated make_pipeline for handling pandas nullable types in preprocessing pipeline. #3129

– Removed unused EnsembleMissingPipelinesError exception definition #3131

• Testing Changes
– Refactored tests to avoid using importorskip #3126

– Added skip_during_conda test marker to skip tests that are not supposed to run during conda
build #3127

– Added skip_if_39 test marker to skip tests that are not supposed to run during python 3.9 #3133

Warning:
Breaking Changes

• Renamed DelayedFeatureTransformer to TimeSeriesFeaturizer #3028

• ProphetRegressor now requires a datetime column in X represented by the date_index parameter
#3104

• Renamed module evalml.data_checks.invalid_target_data_check to evalml.
data_checks.invalid_targets_data_check #3122

• Removed unused EnsembleMissingPipelinesError exception definition #3131

v0.38.0 Nov. 27, 2021
• Enhancements

– Added data_check_name attribute to the data check action class #3034

– Added NumWords and NumCharacters primitives to TextFeaturizer and renamed
TextFeaturizer` to ``NaturalLanguageFeaturizer #3030

– Added support for scikit-learn > 1.0.0 #3051

– Required the date_index parameter to be specified for time series problems in AutoMLSearch
#3041

– Allowed time series pipelines to predict on test datasets whose length is less than or equal to the
forecast_horizon. Also allowed the test set index to start at 0. #3071

2068 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/3111
https://github.com/alteryx/evalml/pull/3110
https://github.com/alteryx/evalml/pull/3104
https://github.com/alteryx/evalml/pull/3104
https://github.com/alteryx/evalml/pull/3122
https://github.com/alteryx/evalml/pull/3092
https://github.com/alteryx/evalml/pull/3090
https://github.com/alteryx/evalml/pull/3129
https://github.com/alteryx/evalml/pull/3131
https://github.com/alteryx/evalml/pull/3126
https://github.com/alteryx/evalml/pull/3127
https://github.com/alteryx/evalml/pull/3133
https://github.com/alteryx/evalml/pull/3028
https://github.com/alteryx/evalml/pull/3104
https://github.com/alteryx/evalml/pull/3122
https://github.com/alteryx/evalml/pull/3131
https://github.com/alteryx/evalml/pull/3034
https://github.com/alteryx/evalml/pull/3030
https://github.com/alteryx/evalml/pull/3051
https://github.com/alteryx/evalml/pull/3041
https://github.com/alteryx/evalml/pull/3071

EvalML Documentation, Release 0.80.0

– Enabled time series pipeline to predict on data with features that are not known-in-advanced #3094

• Fixes
– Added in error message when fit and predict/predict_proba data types are different #3036

– Fixed bug where ensembling components could not get converted to JSON format #3049

– Fixed bug where components with tuned integer hyperparameters could not get converted to JSON
format #3049

– Fixed bug where force plots were not displaying correct feature values #3044

– Included confusion matrix at the pipeline threshold for find_confusion_matrix_per_threshold
#3080

– Fixed bug where One Hot Encoder would error out if a non-categorical feature had a missing value
#3083

– Fixed bug where features created from categorical columns by Delayed Feature Transformer
would be inferred as categorical #3083

• Changes
– Delete predict_uses_y estimator attribute #3069

– Change DateTimeFeaturizer to use corresponding Featuretools primitives #3081

– Updated TargetDistributionDataCheck to return metadata details as floats rather strings
#3085

– Removed dependency on psutil package #3093

• Documentation Changes
– Updated docs to use data check action methods rather than manually cleaning data #3050

• Testing Changes
– Updated integration tests to use make_pipeline_from_actions instead of private method

#3047

Warning:
Breaking Changes

• Added data_check_name attribute to the data check action class #3034

• Renamed TextFeaturizer` to ``NaturalLanguageFeaturizer #3030

• Updated the Pipeline.graph_json function to return a dictionary of “from” and “to” edges instead
of tuples #3049

• Delete predict_uses_y estimator attribute #3069

• Changed time series problems in AutoMLSearch to need a not-None date_index #3041

• Changed the DelayedFeatureTransformer to throw a ValueError during fit if the date_index is
None #3041

• Passing X=None to DelayedFeatureTransformer is deprecated #3041

v0.37.0 Nov. 9, 2021
• Enhancements

2069

https://github.com/alteryx/evalml/pull/3094
https://github.com/alteryx/evalml/pull/3036
https://github.com/alteryx/evalml/pull/3049
https://github.com/alteryx/evalml/pull/3049
https://github.com/alteryx/evalml/pull/3044
https://github.com/alteryx/evalml/pull/3080
https://github.com/alteryx/evalml/pull/3083
https://github.com/alteryx/evalml/pull/3083
https://github.com/alteryx/evalml/pull/3069
https://github.com/alteryx/evalml/pull/3081
https://github.com/alteryx/evalml/pull/3085
https://github.com/alteryx/evalml/pull/3093
https://github.com/alteryx/evalml/pull/3050
https://github.com/alteryx/evalml/pull/3047
https://github.com/alteryx/evalml/pull/3034
https://github.com/alteryx/evalml/pull/3030
https://github.com/alteryx/evalml/pull/3049
https://github.com/alteryx/evalml/pull/3069
https://github.com/alteryx/evalml/pull/3041
https://github.com/alteryx/evalml/pull/3041
https://github.com/alteryx/evalml/pull/3041

EvalML Documentation, Release 0.80.0

– Added find_confusion_matrix_per_threshold to Model Understanding #2972

– Limit computationally-intensive models during AutoMLSearch for certain multiclass problems,
allow for opt-in with parameter allow_long_running_models #2982

– Added support for stacked ensemble pipelines to prediction explanations module #2971

– Added integration tests for data checks and data checks actions workflow #2883

– Added a change in pipeline structure to handle categorical columns separately for pipelines in
DefaultAlgorithm #2986

– Added an algorithm to DelayedFeatureTransformer to select better lags #3005

– Added test to ensure pickling pipelines preserves thresholds #3027

– Added AutoML function to access ensemble pipeline’s input pipelines IDs #3011

– Added ability to define which class is “positive” for label encoder in binary classification case
#3033

• Fixes
– Fixed bug where Oversampler didn’t consider boolean columns to be categorical #2980

– Fixed permutation importance failing when target is categorical #3017

– Updated estimator and pipelines’ predict, predict_proba, transform, inverse_transform
methods to preserve input indices #2979

– Updated demo dataset link for daily min temperatures #3023

• Changes
– Updated OutliersDataCheck and UniquenessDataCheck and allow for the suspension of the

Nullable types error #3018

• Documentation Changes
– Fixed cost benefit matrix demo formatting #2990

– Update ReadMe.md with new badge links and updated installation instructions for conda #2998

– Added more comprehensive doctests #3002

v0.36.0 Oct. 27, 2021
• Enhancements

– Added LIME as an algorithm option for explain_predictions and
explain_predictions_best_worst #2905

– Standardized data check messages and added default “rows” and “columns” to data check message
details dictionary #2869

– Added rows_of_interest to pipeline utils #2908

– Added support for woodwork version 0.8.2 #2909

– Enhanced the DateTimeFeaturizer to handle NaNs in date features #2909

– Added support for woodwork logical types PostalCode, SubRegionCode, and CountryCode in
model understanding tools #2946

– Added Vowpal Wabbit regressor and classifiers #2846

– Added NoSplit data splitter for future unsupervised learning searches #2958

– Added method to convert actions into a preprocessing pipeline #2968

2070 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2972
https://github.com/alteryx/evalml/pull/2982
https://github.com/alteryx/evalml/pull/2971
https://github.com/alteryx/evalml/pull/2883
https://github.com/alteryx/evalml/pull/2986
https://github.com/alteryx/evalml/pull/3005
https://github.com/alteryx/evalml/pull/3027
https://github.com/alteryx/evalml/pull/3011
https://github.com/alteryx/evalml/pull/3033
https://github.com/alteryx/evalml/pull/2980
https://github.com/alteryx/evalml/pull/3017
https://github.com/alteryx/evalml/pull/2979
https://github.com/alteryx/evalml/pull/3023
https://github.com/alteryx/evalml/pull/3018
https://github.com/alteryx/evalml/pull/2990
https://github.com/alteryx/evalml/pull/2998
https://github.com/alteryx/evalml/pull/3002
https://github.com/alteryx/evalml/pull/2905
https://github.com/alteryx/evalml/pull/2869
https://github.com/alteryx/evalml/pull/2908
https://github.com/alteryx/evalml/pull/2909
https://github.com/alteryx/evalml/pull/2909
https://github.com/alteryx/evalml/pull/2946
https://github.com/alteryx/evalml/pull/2846
https://github.com/alteryx/evalml/pull/2958
https://github.com/alteryx/evalml/pull/2968

EvalML Documentation, Release 0.80.0

• Fixes
– Fixed bug where partial dependence was not respecting the ww schema #2929

– Fixed calculate_permutation_importance for datetimes on StandardScaler #2938

– Fixed SelectColumns to only select available features for feature selection in
DefaultAlgorithm #2944

– Fixed DropColumns component not receiving parameters in DefaultAlgorithm #2945

– Fixed bug where trained binary thresholds were not being returned by get_pipeline or clone
#2948

– Fixed bug where Oversampler selected ww logical categorical instead of ww semantic category
#2946

• Changes
– Changed make_pipeline function to place the DateTimeFeaturizer prior to the Imputer so

that NaN dates can be imputed #2909

– Refactored OutliersDataCheck and HighlyNullDataCheck to add more descriptive metadata
#2907

– Bumped minimum version of dask from 2021.2.0 to 2021.10.0 #2978

• Documentation Changes
– Added back Future Release section to release notes #2927

– Updated CI to run doctest (docstring tests) and apply necessary fixes to docstrings #2933

– Added documentation for BinaryClassificationPipeline thresholding #2937

• Testing Changes
– Fixed dependency checker to catch full names of packages #2930

– Refactored build_conda_pkg to work from a local recipe #2925

– Refactored component test for different environments #2957

Warning:
Breaking Changes

• Standardized data check messages and added default “rows” and “columns” to data check message
details dictionary. This may change the number of messages returned from a data check. #2869

v0.35.0 Oct. 14, 2021
• Enhancements

– Added human-readable pipeline explanations to model understanding #2861

– Updated to support Featuretools 1.0.0 and nlp-primitives 2.0.0 #2848

• Fixes
– Fixed bug where long mode for the top level search method was not respected #2875

– Pinned cmdstan to 0.28.0 in cmdstan-builder to prevent future breaking of support for
Prophet #2880

– Added Jarque-Bera to the TargetDistributionDataCheck #2891

2071

https://github.com/alteryx/evalml/pull/2929
https://github.com/alteryx/evalml/pull/2938
https://github.com/alteryx/evalml/pull/2944
https://github.com/alteryx/evalml/pull/2945
https://github.com/alteryx/evalml/pull/2948
https://github.com/alteryx/evalml/pull/2946
https://github.com/alteryx/evalml/pull/2909
https://github.com/alteryx/evalml/pull/2907
https://github.com/alteryx/evalml/pull/2978
https://github.com/alteryx/evalml/pull/2927
https://github.com/alteryx/evalml/pull/2933
https://github.com/alteryx/evalml/pull/2937
https://github.com/alteryx/evalml/pull/2930
https://github.com/alteryx/evalml/pull/2925
https://github.com/alteryx/evalml/pull/2957
https://github.com/alteryx/evalml/pull/2869
https://github.com/alteryx/evalml/pull/2861
https://github.com/alteryx/evalml/pull/2848
https://github.com/alteryx/evalml/pull/2875
https://github.com/alteryx/evalml/pull/2880
https://github.com/alteryx/evalml/pull/2891

EvalML Documentation, Release 0.80.0

• Changes
– Updated pipelines to use a label encoder component instead of doing encoding on the pipeline

level #2821

– Deleted scikit-learn ensembler #2819

– Refactored pipeline building logic out of AutoMLSearch and into IterativeAlgorithm #2854

– Refactored names for methods in ComponentGraph and PipelineBase #2902

• Documentation Changes
– Updated install.ipynb to reflect flexibility for cmdstan version installation #2880

– Updated the conda section of our contributing guide #2899

• Testing Changes
– Updated test_all_estimators to account for Prophet being allowed for Python 3.9 #2892

– Updated linux tests to use cmdstan-builder==0.0.8 #2880

Warning:
Breaking Changes

• Updated pipelines to use a label encoder component instead of doing encoding on the pipeline level.
This means that pipelines will no longer automatically encode non-numerical targets. Please use a label
encoder if working with classification problems and non-numeric targets. #2821

• Deleted scikit-learn ensembler #2819

• IterativeAlgorithm now requires X, y, problem_type as required arguments as well as sam-
pler_name, allowed_model_families, allowed_component_graphs, max_batches, and verbose as op-
tional arguments #2854

• Changed method names of fit_features and compute_final_component_features to
fit_and_transform_all_but_final and transform_all_but_final in ComponentGraph, and
compute_estimator_features to transform_all_but_final in pipeline classes #2902

v0.34.0 Sep. 30, 2021
• Enhancements

– Updated to work with Woodwork 0.8.1 #2783

– Added validation that training_data and training_target are not None in prediction expla-
nations #2787

– Added support for training-only components in pipelines and component graphs #2776

– Added default argument for the parameters value for ComponentGraph.instantiate #2796

– Added TIME_SERIES_REGRESSION to LightGBMRegressor's supported problem types #2793

– Provided a JSON representation of a pipeline’s DAG structure #2812

– Added validation to holdout data passed to predict and predict_proba for time series #2804

– Added information about which row indices are outliers in OutliersDataCheck #2818

– Added verbose flag to top level search() method #2813

– Added support for linting jupyter notebooks and clearing the executed cells and empty cells #2829
#2837

2072 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2821
https://github.com/alteryx/evalml/pull/2819
https://github.com/alteryx/evalml/pull/2854
https://github.com/alteryx/evalml/pull/2902
https://github.com/alteryx/evalml/pull/2880
https://github.com/alteryx/evalml/pull/2899
https://github.com/alteryx/evalml/pull/2892
https://github.com/alteryx/evalml/pull/2880
https://github.com/alteryx/evalml/pull/2821
https://github.com/alteryx/evalml/pull/2819
https://github.com/alteryx/evalml/pull/2854
https://github.com/alteryx/evalml/pull/2902
https://github.com/alteryx/evalml/pull/2783
https://github.com/alteryx/evalml/pull/2787
https://github.com/alteryx/evalml/pull/2776
https://github.com/alteryx/evalml/pull/2796
https://github.com/alteryx/evalml/pull/2793
https://github.com/alteryx/evalml/pull/2812
https://github.com/alteryx/evalml/pull/2804
https://github.com/alteryx/evalml/pull/2818
https://github.com/alteryx/evalml/pull/2813
https://github.com/alteryx/evalml/pull/2829
https://github.com/alteryx/evalml/pull/2837

EvalML Documentation, Release 0.80.0

– Added “DROP_ROWS” action to output of OutliersDataCheck.validate() #2820

– Added the ability of AutoMLSearch to accept a SequentialEngine instance as engine input
#2838

– Added new label encoder component to EvalML #2853

– Added our own partial dependence implementation #2834

• Fixes
– Fixed bug where calculate_permutation_importance was not calculating the right value for

pipelines with target transformers #2782

– Fixed bug where transformed target values were not used in fit for time series pipelines #2780

– Fixed bug where score_pipelines method of AutoMLSearch would not work for time series
problems #2786

– Removed TargetTransformer class #2833

– Added tests to verify ComponentGraph support by pipelines #2830

– Fixed incorrect parameter for baseline regression pipeline in AutoMLSearch #2847

– Fixed bug where the desired estimator family order was not respected in IterativeAlgorithm
#2850

• Changes
– Changed woodwork initialization to use partial schemas #2774

– Made Transformer.transform() an abstract method #2744

– Deleted EmptyDataChecks class #2794

– Removed data check for checking log distributions in make_pipeline #2806

– Changed the minimum woodwork version to 0.8.0 #2783

– Pinned woodwork version to 0.8.0 #2832

– Removed model_family attribute from ComponentBase and transformers #2828

– Limited scikit-learn until new features and errors can be addressed #2842

– Show DeprecationWarning when Sklearn Ensemblers are called #2859

• Testing Changes
– Updated matched assertion message regarding monotonic indices in polynomial detrender tests

#2811

– Added a test to make sure pip versions match conda versions #2851

Warning:
Breaking Changes

• Made Transformer.transform() an abstract method #2744

• Deleted EmptyDataChecks class #2794

• Removed data check for checking log distributions in make_pipeline #2806

v0.33.0 Sep. 15, 2021

2073

https://github.com/alteryx/evalml/pull/2820
https://github.com/alteryx/evalml/pull/2838
https://github.com/alteryx/evalml/pull/2853
https://github.com/alteryx/evalml/pull/2834
https://github.com/alteryx/evalml/pull/2782
https://github.com/alteryx/evalml/pull/2780
https://github.com/alteryx/evalml/pull/2786
https://github.com/alteryx/evalml/pull/2833
https://github.com/alteryx/evalml/pull/2830
https://github.com/alteryx/evalml/pull/2847
https://github.com/alteryx/evalml/pull/2850
https://github.com/alteryx/evalml/pull/2774
https://github.com/alteryx/evalml/pull/2744
https://github.com/alteryx/evalml/pull/2794
https://github.com/alteryx/evalml/pull/2806
https://github.com/alteryx/evalml/pull/2783
https://github.com/alteryx/evalml/pull/2832
https://github.com/alteryx/evalml/pull/2828
https://github.com/alteryx/evalml/pull/2842
https://github.com/alteryx/evalml/pull/2859
https://github.com/alteryx/evalml/pull/2811
https://github.com/alteryx/evalml/pull/2851
https://github.com/alteryx/evalml/pull/2744
https://github.com/alteryx/evalml/pull/2794
https://github.com/alteryx/evalml/pull/2806

EvalML Documentation, Release 0.80.0

• Fixes
– Fixed bug where warnings during make_pipeline were not being raised to the user #2765

• Changes
– Refactored and removed SamplerBase class #2775

• Documentation Changes
– Added docstring linting packages pydocstyle and darglint to make-lint command #2670

v0.32.1 Sep. 10, 2021
• Enhancements

– Added verbose flag to AutoMLSearch to run search in silent mode by default #2645

– Added label encoder to XGBoostClassifier to remove the warning #2701

– Set eval_metric to logloss for XGBoostClassifier #2741

– Added support for woodwork versions 0.7.0 and 0.7.1 #2743

– Changed explain_predictions functions to display original feature values #2759

– Added X_train and y_train to graph_prediction_vs_actual_over_time and
get_prediction_vs_actual_over_time_data #2762

– Added forecast_horizon as a required parameter to time series pipelines and AutoMLSearch
#2697

– Added predict_in_sample and predict_proba_in_sample methods to time series pipelines
to predict on data where the target is known, e.g. cross-validation #2697

• Fixes
– Fixed bug where _catch_warnings assumed all warnings were PipelineNotUsed #2753

– Fixed bug where Imputer.transform would erase ww typing information prior to handing data
to the SimpleImputer #2752

– Fixed bug where Oversampler could not be copied #2755

• Changes
– Deleted drop_nan_target_rows utility method #2737

– Removed default logging setup and debugging log file #2645

– Changed the default n_jobs value for XGBoostClassifier and XGBoostRegressor to 12 #2757

– Changed TimeSeriesBaselineEstimator to only work on a time series pipeline with a
DelayedFeaturesTransformer #2697

– Added X_train and y_train as optional parameters to pipeline predict, predict_proba.
Only used for time series pipelines #2697

– Added training_data and training_target as optional parameters to
explain_predictions and explain_predictions_best_worst to support time series
pipelines #2697

– Changed time series pipeline predictions to no longer output series/dataframes padded with NaNs.
A prediction will be returned for every row in the X input #2697

• Documentation Changes
– Specified installation steps for Prophet #2713

2074 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2765
https://github.com/alteryx/evalml/pull/2775
https://github.com/alteryx/evalml/pull/2670
https://github.com/alteryx/evalml/pull/2645
https://github.com/alteryx/evalml/pull/2701
https://github.com/alteryx/evalml/pull/2741
https://github.com/alteryx/evalml/pull/2743
https://github.com/alteryx/evalml/pull/2759
https://github.com/alteryx/evalml/pull/2762
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2753
https://github.com/alteryx/evalml/pull/2752
https://github.com/alteryx/evalml/pull/2755
https://github.com/alteryx/evalml/pull/2737
https://github.com/alteryx/evalml/pull/2645
https://github.com/alteryx/evalml/pull/2757
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2713

EvalML Documentation, Release 0.80.0

– Added documentation for data exploration on data check actions #2696

– Added a user guide entry for time series modelling #2697

• Testing Changes
– Fixed flaky TargetDistributionDataCheck test for very_lognormal distribution #2748

Warning:
Breaking Changes

• Removed default logging setup and debugging log file #2645

• Added X_train and y_train to graph_prediction_vs_actual_over_time and
get_prediction_vs_actual_over_time_data #2762

• Added forecast_horizon as a required parameter to time series pipelines and AutoMLSearch #2697

• Changed TimeSeriesBaselineEstimator to only work on a time series pipeline with a
DelayedFeaturesTransformer #2697

• Added X_train and y_train as required parameters for predict and predict_proba in time series
pipelines #2697

• Added training_data and training_target as required parameters to explain_predictions
and explain_predictions_best_worst for time series pipelines #2697

v0.32.0 Aug. 31, 2021
• Enhancements

– Allow string for engine parameter for AutoMLSearch#2667

– Add ProphetRegressor to AutoML #2619

– Integrated DefaultAlgorithm into AutoMLSearch #2634

– Removed SVM “linear” and “precomputed” kernel hyperparameter options, and improved default
parameters #2651

– Updated ComponentGraph initalization to raise ValueError when user attempts to use .y for a
component that does not produce a tuple output #2662

– Updated to support Woodwork 0.6.0 #2690

– Updated pipeline graph() to distingush X and y edges #2654

– Added DropRowsTransformer component #2692

– Added DROP_ROWS to _make_component_list_from_actions and clean up metadata #2694

– Add new ensembler component #2653

• Fixes
– Updated Oversampler logic to select best SMOTE based on component input instead of pipeline

input #2695

– Added ability to explicitly close DaskEngine resources to improve runtime and reduce Dask warn-
ings #2667

– Fixed partial dependence bug for ensemble pipelines #2714

– Updated TargetLeakageDataCheck to maintain user-selected logical types #2711

2075

https://github.com/alteryx/evalml/pull/2696
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2748
https://github.com/alteryx/evalml/pull/2645
https://github.com/alteryx/evalml/pull/2762
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2697
https://github.com/alteryx/evalml/pull/2667
https://github.com/alteryx/evalml/pull/2619
https://github.com/alteryx/evalml/pull/2634
https://github.com/alteryx/evalml/pull/2651
https://github.com/alteryx/evalml/pull/2662
https://github.com/alteryx/evalml/pull/2690
https://github.com/alteryx/evalml/pull/2654
https://github.com/alteryx/evalml/pull/2692
https://github.com/alteryx/evalml/pull/2694
https://github.com/alteryx/evalml/pull/2653
https://github.com/alteryx/evalml/pull/2695
https://github.com/alteryx/evalml/pull/2667
https://github.com/alteryx/evalml/pull/2714
https://github.com/alteryx/evalml/pull/2711

EvalML Documentation, Release 0.80.0

• Changes
– Replaced SMOTEOversampler, SMOTENOversampler and SMOTENCOversampler with consoli-

dated Oversampler component #2695

– Removed LinearRegressor from the list of default AutoMLSearch estimators due to poor per-
formance #2660

• Documentation Changes
– Added user guide documentation for using ComponentGraph and added ComponentGraph to API

reference #2673

– Updated documentation to make parallelization of AutoML clearer #2667

• Testing Changes
– Removes the process-level parallelism from the test_cancel_job test #2666

– Installed numba 0.53 in windows CI to prevent problems installing version 0.54 #2710

Warning:
Breaking Changes

• Renamed the current top level search method to search_iterative and defined a new search
method for the DefaultAlgorithm #2634

• Replaced SMOTEOversampler, SMOTENOversampler and SMOTENCOversampler with consolidated
Oversampler component #2695

• Removed LinearRegressor from the list of default AutoMLSearch estimators due to poor perfor-
mance #2660

v0.31.0 Aug. 19, 2021
• Enhancements

– Updated the high variance check in AutoMLSearch to be robust to a variety of objectives and cv
scores #2622

– Use Woodwork’s outlier detection for the OutliersDataCheck #2637

– Added ability to utilize instantiated components when creating a pipeline #2643

– Sped up the all Nan and unknown check in infer_feature_types #2661

• Fixes

• Changes
– Deleted _put_into_original_order helper function #2639

– Refactored time series pipeline code using a time series pipeline base class #2649

– Renamed dask_tests to parallel_tests #2657

– Removed commented out code in pipeline_meta.py #2659

• Documentation Changes
– Add complete install command to README and Install section #2627

– Cleaned up documentation for MulticollinearityDataCheck #2664

• Testing Changes

2076 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2695
https://github.com/alteryx/evalml/pull/2660
https://github.com/alteryx/evalml/pull/2673
https://github.com/alteryx/evalml/pull/2667
https://github.com/alteryx/evalml/pull/2666
https://github.com/alteryx/evalml/pull/2710
https://github.com/alteryx/evalml/pull/2634
https://github.com/alteryx/evalml/pull/2695
https://github.com/alteryx/evalml/pull/2660
https://github.com/alteryx/evalml/pull/2622
https://github.com/alteryx/evalml/pull/2637
https://github.com/alteryx/evalml/pull/2643
https://github.com/alteryx/evalml/pull/2661
https://github.com/alteryx/evalml/pull/2639
https://github.com/alteryx/evalml/pull/2649
https://github.com/alteryx/evalml/pull/2657
https://github.com/alteryx/evalml/pull/2659
https://github.com/alteryx/evalml/pull/2627
https://github.com/alteryx/evalml/pull/2664

EvalML Documentation, Release 0.80.0

– Speed up CI by splitting Prophet tests into a separate workflow in GitHub #2644

Warning:
Breaking Changes

• TimeSeriesRegressionPipeline no longer inherits from TimeSeriesRegressionPipeline
#2649

v0.30.2 Aug. 16, 2021
• Fixes

– Updated changelog and version numbers to match the release. Release 0.30.1 was release erro-
neously without a change to the version numbers. 0.30.2 replaces it.

v0.30.1 Aug. 12, 2021
• Enhancements

– Added DatetimeFormatDataCheck for time series problems #2603

– Added ProphetRegressor to estimators #2242

– Updated ComponentGraph to handle not calling samplers’ transform during predict, and updated
samplers’ transform methods s.t. fit_transform is equivalent to fit(X, y).transform(X,
y) #2583

– Updated ComponentGraph _validate_component_dict logic to be stricter about input values
#2599

– Patched bug in xgboost estimators where predicting on a feature matrix of only booleans would
throw an exception. #2602

– Updated ARIMARegressor to use relative forecasting to predict values #2613

– Added support for creating pipelines without an estimator as the final component and added
transform(X, y) method to pipelines and component graphs #2625

– Updated to support Woodwork 0.5.1 #2610

• Fixes
– Updated AutoMLSearch to drop ARIMARegressor from allowed_estimators if an incompat-

ible frequency is detected #2632

– Updated get_best_sampler_for_data to consider all non-numeric datatypes as categorical for
SMOTE #2590

– Fixed inconsistent test results from TargetDistributionDataCheck #2608

– Adopted vectorized pd.NA checking for Woodwork 0.5.1 support #2626

– Pinned upper version of astroid to 2.6.6 to keep ReadTheDocs working. #2638

• Changes
– Renamed SMOTE samplers to SMOTE oversampler #2595

– Changed partial_dependence and graph_partial_dependence to raise a
PartialDependenceError instead of ValueError. This is not a breaking change because
PartialDependenceError is a subclass of ValueError #2604

– Cleaned up code duplication in ComponentGraph #2612

– Stored predict_proba results in .x for intermediate estimators in ComponentGraph #2629

2077

https://github.com/alteryx/evalml/pull/2644
https://github.com/alteryx/evalml/pull/2649
https://github.com/alteryx/evalml/pull/2603
https://github.com/alteryx/evalml/pull/2242
https://github.com/alteryx/evalml/pull/2583
https://github.com/alteryx/evalml/pull/2599
https://github.com/alteryx/evalml/pull/2602
https://github.com/alteryx/evalml/pull/2613
https://github.com/alteryx/evalml/pull/2625
https://github.com/alteryx/evalml/pull/2610
https://github.com/alteryx/evalml/pull/2632
https://github.com/alteryx/evalml/pull/2590
https://github.com/alteryx/evalml/pull/2608
https://github.com/alteryx/evalml/pull/2626
https://github.com/alteryx/evalml/pull/2638
https://github.com/alteryx/evalml/pull/2595
https://github.com/alteryx/evalml/pull/2604
https://github.com/alteryx/evalml/pull/2612
https://github.com/alteryx/evalml/pull/2629

EvalML Documentation, Release 0.80.0

• Documentation Changes
– To avoid local docs build error, only add warning disable and download headers on ReadTheDocs

builds, not locally #2617

• Testing Changes
– Updated partial_dependence tests to change the element-wise comparison per the Plotly 5.2.1

upgrade #2638

– Changed the lint CI job to only check against python 3.9 via the -t flag #2586

– Installed Prophet in linux nightlies test and fixed test_all_components #2598

– Refactored and fixed all make_pipeline tests to assert correct order and address new Woodwork
Unknown type inference #2572

– Removed component_graphs as a global variable in test_component_graphs.py #2609

Warning:
Breaking Changes

• Renamed SMOTE samplers to SMOTE oversampler. Please use SMOTEOversampler,
SMOTENCOversampler, SMOTENOversampler instead of SMOTESampler, SMOTENCSampler,
and SMOTENSampler #2595

v0.30.0 Aug. 3, 2021
• Enhancements

– Added LogTransformer and TargetDistributionDataCheck #2487

– Issue a warning to users when a pipeline parameter passed in isn’t used in the pipeline #2564

– Added Gini coefficient as an objective #2544

– Added repr to ComponentGraph #2565

– Added components to extract features from URL and EmailAddress Logical Types #2550

– Added support for NaN values in TextFeaturizer #2532

– Added SelectByType transformer #2531

– Added separate thresholds for percent null rows and columns in HighlyNullDataCheck #2562

– Added support for NaN natural language values #2577

• Fixes
– Raised error message for types URL, NaturalLanguage, and EmailAddress in
partial_dependence #2573

• Changes
– Updated PipelineBase implementation for creating pipelines from a list of components #2549

– Moved get_hyperparameter_ranges to PipelineBase class from automl/utils module #2546

– Renamed ComponentGraph’s get_parents to get_inputs #2540

– Removed ComponentGraph.linearized_component_graph and ComponentGraph.
from_list #2556

2078 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2617
https://github.com/alteryx/evalml/pull/2638
https://github.com/alteryx/evalml/pull/2586
https://github.com/alteryx/evalml/pull/2598
https://github.com/alteryx/evalml/pull/2572
https://github.com/alteryx/evalml/pull/2609
https://github.com/alteryx/evalml/pull/2595
https://github.com/alteryx/evalml/pull/2487
https://github.com/alteryx/evalml/pull/2564
https://github.com/alteryx/evalml/pull/2544
https://github.com/alteryx/evalml/pull/2565
https://github.com/alteryx/evalml/pull/2550
https://github.com/alteryx/evalml/pull/2532
https://github.com/alteryx/evalml/pull/2531
https://github.com/alteryx/evalml/pull/2562
https://github.com/alteryx/evalml/pull/2577
https://github.com/alteryx/evalml/pull/2573
https://github.com/alteryx/evalml/pull/2549
https://github.com/alteryx/evalml/pull/2546
https://github.com/alteryx/evalml/pull/2540
https://github.com/alteryx/evalml/pull/2556

EvalML Documentation, Release 0.80.0

– Updated ComponentGraph to enforce requiring .x and .y inputs for each component in the graph
#2563

– Renamed existing ensembler implementation from StackedEnsemblers to
SklearnStackedEnsemblers #2578

• Documentation Changes
– Added documentation for DaskEngine and CFEngine parallel engines #2560

– Improved detail of TextFeaturizer docstring and tutorial #2568

• Testing Changes
– Added test that makes sure split_data does not shuffle for time series problems #2552

Warning:
Breaking Changes

• Moved get_hyperparameter_ranges to PipelineBase class from automl/utils module #2546

• Renamed ComponentGraph’s get_parents to get_inputs #2540

• Removed ComponentGraph.linearized_component_graph and ComponentGraph.from_list
#2556

• Updated ComponentGraph to enforce requiring .x and .y inputs for each component in the graph #2563

v0.29.0 Jul. 21, 2021
• Enhancements

– Updated 1-way partial dependence support for datetime features #2454

– Added details on how to fix error caused by broken ww schema #2466

– Added ability to use built-in pickle for saving AutoMLSearch #2463

– Updated our components and component graphs to use latest features of ww 0.4.1, e.g.
concat_columns and drop in-place. #2465

– Added new, concurrent.futures based engine for parallel AutoML #2506

– Added support for new Woodwork Unknown type in AutoMLSearch #2477

– Updated our components with an attribute that describes if they modify features or targets and can
be used in list API for pipeline initialization #2504

– Updated ComponentGraph to accept X and y as inputs #2507

– Removed unused TARGET_BINARY_INVALID_VALUES from DataCheckMessageCode enum and
fixed formatting of objective documentation #2520

– Added EvalMLAlgorithm #2525

– Added support for NaN values in TextFeaturizer #2532

• Fixes
– Fixed FraudCost objective and reverted threshold optimization method for binary classification

to Golden #2450

– Added custom exception message for partial dependence on features with scales that are too small
#2455

2079

https://github.com/alteryx/evalml/pull/2563
https://github.com/alteryx/evalml/pull/2578
https://github.com/alteryx/evalml/pull/2560
https://github.com/alteryx/evalml/pull/2568
https://github.com/alteryx/evalml/pull/2552
https://github.com/alteryx/evalml/pull/2546
https://github.com/alteryx/evalml/pull/2540
https://github.com/alteryx/evalml/pull/2556
https://github.com/alteryx/evalml/pull/2563
https://github.com/alteryx/evalml/pull/2454
https://github.com/alteryx/evalml/pull/2466
https://github.com/alteryx/evalml/pull/2463
https://github.com/alteryx/evalml/pull/2465
https://github.com/alteryx/evalml/pull/2506
https://github.com/alteryx/evalml/pull/2477
https://github.com/alteryx/evalml/pull/2504
https://github.com/alteryx/evalml/pull/2507
https://github.com/alteryx/evalml/pull/2520
https://github.com/alteryx/evalml/pull/2525
https://github.com/alteryx/evalml/pull/2532
https://github.com/alteryx/evalml/pull/2450
https://github.com/alteryx/evalml/pull/2455

EvalML Documentation, Release 0.80.0

– Ensures the typing for Ordinal and Datetime ltypes are passed through _re-
tain_custom_types_and_initalize_woodwork #2461

– Updated to work with Pandas 1.3.0 #2442

– Updated to work with sktime 0.7.0 #2499

• Changes
– Updated XGBoost dependency to >=1.4.2 #2484, #2498

– Added a DeprecationWarning about deprecating the list API for ComponentGraph #2488

– Updated make_pipeline for AutoML to create dictionaries, not lists, to initialize pipelines #2504

– No longer installing graphviz on windows in our CI pipelines because release 0.17 breaks windows
3.7 #2516

• Documentation Changes
– Moved docstrings from __init__ to class pages, added missing docstrings for missing classes,

and updated missing default values #2452

– Build documentation with sphinx-autoapi #2458

– Change autoapi_ignore to only ignore files in evalml/tests/* #2530

• Testing Changes
– Fixed flaky dask tests #2471

– Removed shellcheck action from build_conda_pkg action #2514

– Added a tmp_dir fixture that deletes its contents after tests run #2505

– Added a test that makes sure all pipelines in AutoMLSearch get the same data splits #2513

– Condensed warning output in test logs #2521

Warning:
Breaking Changes

• NaN values in the Natural Language type are no longer supported by the Imputer with the pandas
upgrade. #2477

v0.28.0 Jul. 2, 2021
• Enhancements

– Added support for showing a Individual Conditional Expectations plot when graphing Partial De-
pendence #2386

– Exposed thread_count for Catboost estimators as n_jobs parameter #2410

– Updated Objectives API to allow for sample weighting #2433

• Fixes
– Deleted unreachable line from IterativeAlgorithm #2464

• Changes
– Pinned Woodwork version between 0.4.1 and 0.4.2 #2460

– Updated psutils minimum version in requirements #2438

2080 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2461
https://github.com/alteryx/evalml/pull/2442
https://github.com/alteryx/evalml/pull/2499
https://github.com/alteryx/evalml/pull/2484
https://github.com/alteryx/evalml/pull/2498
https://github.com/alteryx/evalml/pull/2488
https://github.com/alteryx/evalml/pull/2504
https://github.com/alteryx/evalml/pull/2516
https://github.com/alteryx/evalml/pull/2452
https://github.com/alteryx/evalml/pull/2458
https://github.com/alteryx/evalml/pull/2530
https://github.com/alteryx/evalml/pull/2471
https://github.com/alteryx/evalml/pull/2514
https://github.com/alteryx/evalml/pull/2505
https://github.com/alteryx/evalml/pull/2513
https://github.com/alteryx/evalml/pull/2521
https://github.com/alteryx/evalml/pull/2477
https://github.com/alteryx/evalml/pull/2386
https://github.com/alteryx/evalml/pull/2410
https://github.com/alteryx/evalml/pull/2433
https://github.com/alteryx/evalml/pull/2464
https://github.com/alteryx/evalml/pull/2460
https://github.com/alteryx/evalml/pull/2438

EvalML Documentation, Release 0.80.0

– Updated log_error_callback to not include filepath in logged message #2429

• Documentation Changes
– Sped up docs #2430

– Removed mentions of DataTable and DataColumn from the docs #2445

• Testing Changes
– Added slack integration for nightlies tests #2436

– Changed build_conda_pkg CI job to run only when dependencies are updates #2446

– Updated workflows to store pytest runtimes as test artifacts #2448

– Added AutoMLTestEnv test fixture for making it easy to mock automl tests #2406

v0.27.0 Jun. 22, 2021
• Enhancements

– Adds force plots for prediction explanations #2157

– Removed self-reference from AutoMLSearch #2304

– Added support for nonlinear pipelines for generate_pipeline_code #2332

– Added inverse_transform method to pipelines #2256

– Add optional automatic update checker #2350

– Added search_order to AutoMLSearch’s rankings and full_rankings tables #2345

– Updated threshold optimization method for binary classification #2315

– Updated demos to pull data from S3 instead of including demo data in package #2387

– Upgrade woodwork version to v0.4.1 #2379

• Fixes
– Preserve user-specified woodwork types throughout pipeline fit/predict #2297

– Fixed ComponentGraph appending target to final_component_features if there is a compo-
nent that returns both X and y #2358

– Fixed partial dependence graph method failing on multiclass problems when the class labels are
numeric #2372

– Added thresholding_objective argument to AutoMLSearch for binary classification prob-
lems #2320

– Added change for k_neighbors parameter in SMOTE Oversamplers to automatically handle
small samples #2375

– Changed naming for Logistic Regression Classifier file #2399

– Pinned pytest-timeout to fix minimum dependence checker #2425

– Replaced Elastic Net Classifier base class with Logistsic Regression to avoid NaN
outputs #2420

• Changes
– Cleaned up PipelineBase’s component_graph and _component_graph attributes. Updated
PipelineBase __repr__ and added __eq__ for ComponentGraph #2332

– Added and applied black linting package to the EvalML repo in place of autopep8 #2306

2081

https://github.com/alteryx/evalml/pull/2429
https://github.com/alteryx/evalml/pull/2430
https://github.com/alteryx/evalml/pull/2445
https://github.com/alteryx/evalml/pull/2436
https://github.com/alteryx/evalml/pull/2446
https://github.com/alteryx/evalml/pull/2448
https://github.com/alteryx/evalml/pull/2406
https://github.com/alteryx/evalml/pull/2157
https://github.com/alteryx/evalml/pull/2304
https://github.com/alteryx/evalml/pull/2332
https://github.com/alteryx/evalml/pull/2256
https://github.com/alteryx/evalml/pull/2350
https://github.com/alteryx/evalml/pull/2345
https://github.com/alteryx/evalml/pull/2315
https://github.com/alteryx/evalml/pull/2387
https://github.com/alteryx/evalml/pull/2379
https://github.com/alteryx/evalml/pull/2297
https://github.com/alteryx/evalml/pull/2358
https://github.com/alteryx/evalml/pull/2372
https://github.com/alteryx/evalml/pull/2320
https://github.com/alteryx/evalml/pull/2375
https://github.com/alteryx/evalml/pull/2399
https://github.com/alteryx/evalml/pull/2425
https://github.com/alteryx/evalml/pull/2420
https://github.com/alteryx/evalml/pull/2332
https://github.com/alteryx/evalml/pull/2306

EvalML Documentation, Release 0.80.0

– Separated custom_hyperparameters from pipelines and added them as an argument to
AutoMLSearch #2317

– Replaced allowed_pipelines with allowed_component_graphs #2364

– Removed private method _compute_features_during_fit from PipelineBase #2359

– Updated compute_order in ComponentGraph to be a read-only property #2408

– Unpinned PyZMQ version in requirements.txt #2389

– Uncapping LightGBM version in requirements.txt #2405

– Updated minimum version of plotly #2415

– Removed SensitivityLowAlert objective from core objectives #2418

• Documentation Changes
– Fixed lead scoring weights in the demos documentation #2315

– Fixed start page code and description dataset naming discrepancy #2370

• Testing Changes
– Update minimum unit tests to run on all pull requests #2314

– Pass token to authorize uploading of codecov reports #2344

– Add pytest-timeout. All tests that run longer than 6 minutes will fail. #2374

– Separated the dask tests out into separate github action jobs to isolate dask failures. #2376

– Refactored dask tests #2377

– Added the combined dask/non-dask unit tests back and renamed the dask only unit tests. #2382

– Sped up unit tests and split into separate jobs #2365

– Change CI job names, run lint for python 3.9, run nightlies on python 3.8 at 3am EST #2395 #2398

– Set fail-fast to false for CI jobs that run for PRs #2402

Warning:
Breaking Changes

• AutoMLSearch will accept allowed_component_graphs instead of allowed_pipelines #2364

• Removed PipelineBase’s _component_graph attribute. Updated PipelineBase __repr__ and
added __eq__ for ComponentGraph #2332

• pipeline_parameters will no longer accept skopt.space variables since hyperparameter ranges will now
be specified through custom_hyperparameters #2317

v0.25.0 Jun. 01, 2021
• Enhancements

– Upgraded minimum woodwork to version 0.3.1. Previous versions will not be supported #2181

– Added a new callback parameter for explain_predictions_best_worst #2308

• Fixes

• Changes
– Deleted the return_pandas flag from our demo data loaders #2181

2082 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2317
https://github.com/alteryx/evalml/pull/2364
https://github.com/alteryx/evalml/pull/2359
https://github.com/alteryx/evalml/pull/2408
https://github.com/alteryx/evalml/pull/2389
https://github.com/alteryx/evalml/pull/2405
https://github.com/alteryx/evalml/pull/2415
https://github.com/alteryx/evalml/pull/2418
https://github.com/alteryx/evalml/pull/2315
https://github.com/alteryx/evalml/pull/2370
https://github.com/alteryx/evalml/pull/2314
https://github.com/alteryx/evalml/pull/2344
https://github.com/alteryx/evalml/pull/2374
https://github.com/alteryx/evalml/pull/2376
https://github.com/alteryx/evalml/pull/2377
https://github.com/alteryx/evalml/pull/2382
https://github.com/alteryx/evalml/pull/2365
https://github.com/alteryx/evalml/pull/2395
https://github.com/alteryx/evalml/pull/2398
https://github.com/alteryx/evalml/pull/2402
https://github.com/alteryx/evalml/pull/2364
https://github.com/alteryx/evalml/pull/2332
https://github.com/alteryx/evalml/pull/2317
https://github.com/alteryx/evalml/pull/2181
https://github.com/alteryx/evalml/pull/2308
https://github.com/alteryx/evalml/pull/2181

EvalML Documentation, Release 0.80.0

– Moved default_parameters to ComponentGraph from PipelineBase #2307

• Documentation Changes
– Updated the release procedure documentation #2230

• Testing Changes
– Ignoring test_saving_png_file while building conda package #2323

Warning:
Breaking Changes

• Deleted the return_pandas flag from our demo data loaders #2181

• Upgraded minimum woodwork to version 0.3.1. Previous versions will not be supported #2181

• Due to the weak-ref in woodwork, set the result of infer_feature_types to a variable before access-
ing woodwork #2181

v0.24.2 May. 24, 2021
• Enhancements

– Added oversamplers to AutoMLSearch #2213 #2286

– Added dictionary input functionality for Undersampler component #2271

– Changed the default parameter values for Elastic Net Classifier and Elastic Net
Regressor #2269

– Added dictionary input functionality for the Oversampler components #2288

• Fixes
– Set default n_jobs to 1 for StackedEnsembleClassifier and StackedEnsembleRegressor until fix for

text-based parallelism in sklearn stacking can be found #2295

• Changes
– Updated start_iteration_callback to accept a pipeline instance instead of a pipeline class

and no longer accept pipeline parameters as a parameter #2290

– Refactored calculate_permutation_importance method and add per-column permutation
importance method #2302

– Updated logging information in AutoMLSearch.__init__ to clarify pipeline generation #2263

• Documentation Changes
– Minor changes to the release procedure #2230

• Testing Changes
– Use codecov action to update coverage reports #2238

– Removed MarkupSafe dependency version pin from requirements.txt and moved instead into RTD
docs build CI #2261

Warning:
Breaking Changes

2083

https://github.com/alteryx/evalml/pull/2307
https://github.com/alteryx/evalml/pull/2230
https://github.com/alteryx/evalml/pull/2323
https://github.com/alteryx/evalml/pull/2181
https://github.com/alteryx/evalml/pull/2181
https://github.com/alteryx/evalml/pull/2181
https://github.com/alteryx/evalml/pull/2213
https://github.com/alteryx/evalml/pull/2286
https://github.com/alteryx/evalml/pull/2271
https://github.com/alteryx/evalml/pull/2269
https://github.com/alteryx/evalml/pull/2288
https://github.com/alteryx/evalml/pull/2295
https://github.com/alteryx/evalml/pull/2290
https://github.com/alteryx/evalml/pull/2302
https://github.com/alteryx/evalml/pull/2263
https://github.com/alteryx/evalml/pull/2230
https://github.com/alteryx/evalml/pull/2238
https://github.com/alteryx/evalml/pull/2261

EvalML Documentation, Release 0.80.0

• Updated start_iteration_callback to accept a pipeline instance instead of a pipeline class and no
longer accept pipeline parameters as a parameter #2290

• Moved default_parameters to ComponentGraph from PipelineBase. A pipeline’s
default_parameters is now accessible via pipeline.component_graph.default_parameters
#2307

v0.24.1 May. 16, 2021
• Enhancements

– Integrated ARIMARegressor into AutoML #2009

– Updated HighlyNullDataCheck to also perform a null row check #2222

– Set max_depth to 1 in calls to featuretools dfs #2231

• Fixes
– Removed data splitter sampler calls during training #2253

– Set minimum required version for for pyzmq, colorama, and docutils #2254

– Changed BaseSampler to return None instead of y #2272

• Changes
– Removed ensemble split and indices in AutoMLSearch #2260

– Updated pipeline repr() and generate_pipeline_code to return pipeline instances without
generating custom pipeline class #2227

• Documentation Changes
– Capped Sphinx version under 4.0.0 #2244

• Testing Changes
– Change number of cores for pytest from 4 to 2 #2266

– Add minimum dependency checker to generate minimum requirement files #2267

– Add unit tests with minimum dependencies #2277

v0.24.0 May. 04, 2021
• Enhancements

– Added date_index as a required parameter for TimeSeries problems #2217

– Have the OneHotEncoder return the transformed columns as booleans rather than floats #2170

– Added Oversampler transformer component to EvalML #2079

– Added Undersampler to AutoMLSearch, as well as arguments _sampler_method and
sampler_balanced_ratio #2128

– Updated prediction explanations functions to allow pipelines with XGBoost estimators #2162

– Added partial dependence for datetime columns #2180

– Update precision-recall curve with positive label index argument, and fix for 2d predicted proba-
bilities #2090

– Add pct_null_rows to HighlyNullDataCheck #2211

– Added a standalone AutoML search method for convenience, which runs data checks and then
runs automl #2152

2084 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2290
https://github.com/alteryx/evalml/pull/2307
https://github.com/alteryx/evalml/pull/2009
https://github.com/alteryx/evalml/pull/2222
https://github.com/alteryx/evalml/pull/2231
https://github.com/alteryx/evalml/pull/2253
https://github.com/alteryx/evalml/pull/2254
https://github.com/alteryx/evalml/pull/2272
https://github.com/alteryx/evalml/pull/2260
https://github.com/alteryx/evalml/pull/2227
https://github.com/alteryx/evalml/pull/2244
https://github.com/alteryx/evalml/pull/2266
https://github.com/alteryx/evalml/pull/2267
https://github.com/alteryx/evalml/pull/2277
https://github.com/alteryx/evalml/pull/2217
https://github.com/alteryx/evalml/pull/2170
https://github.com/alteryx/evalml/pull/2079
https://github.com/alteryx/evalml/pull/2128
https://github.com/alteryx/evalml/pull/2162
https://github.com/alteryx/evalml/pull/2180
https://github.com/alteryx/evalml/pull/2090
https://github.com/alteryx/evalml/pull/2211
https://github.com/alteryx/evalml/pull/2152

EvalML Documentation, Release 0.80.0

– Make the first batch of AutoML have a predefined order, with linear models first and complex
models last #2223 #2225

– Added sampling dictionary support to BalancedClassficationSampler #2235

• Fixes
– Fixed partial dependence not respecting grid resolution parameter for numerical features #2180

– Enable prediction explanations for catboost for multiclass problems #2224

• Changes
– Deleted baseline pipeline classes #2202

– Reverting user specified date feature PR #2155 until pmdarima installation fix is found #2214

– Updated pipeline API to accept component graph and other class attributes as instance parameters.
Old pipeline API still works but will not be supported long-term. #2091

– Removed all old datasplitters from EvalML #2193

– Deleted make_pipeline_from_components #2218

• Documentation Changes
– Renamed dataset to clarify that its gzipped but not a tarball #2183

– Updated documentation to use pipeline instances instead of pipeline subclasses #2195

– Updated contributing guide with a note about GitHub Actions permissions #2090

– Updated automl and model understanding user guides #2090

• Testing Changes
– Use machineFL user token for dependency update bot, and add more reviewers #2189

Warning:
Breaking Changes

• All baseline pipeline classes (BaselineBinaryPipeline, BaselineMulticlassPipeline,
BaselineRegressionPipeline, etc.) have been deleted #2202

• Updated pipeline API to accept component graph and other class attributes as instance parameters.
Old pipeline API still works but will not be supported long-term. Pipelines can now be initialized by
specifying the component graph as the first parameter, and then passing in optional arguments such
as custom_name, parameters, etc. For example, BinaryClassificationPipeline(["Random
Forest Classifier"], parameters={}). #2091

• Removed all old datasplitters from EvalML #2193

• Deleted utility method make_pipeline_from_components #2218

v0.23.0 Apr. 20, 2021
• Enhancements

– Refactored EngineBase and SequentialEngine api. Adding DaskEngine #1975.

– Added optional engine argument to AutoMLSearch #1975

– Added a warning about how time series support is still in beta when a user passes in a time series
problem to AutoMLSearch #2118

2085

https://github.com/alteryx/evalml/pull/2223
https://github.com/alteryx/evalml/pull/2225
https://github.com/alteryx/evalml/pull/2235
https://github.com/alteryx/evalml/pull/2180
https://github.com/alteryx/evalml/pull/2224
https://github.com/alteryx/evalml/pull/2202
https://github.com/alteryx/evalml/pull/2155
https://github.com/alteryx/evalml/pull/2214
https://github.com/alteryx/evalml/pull/2091
https://github.com/alteryx/evalml/pull/2193
https://github.com/alteryx/evalml/pull/2218
https://github.com/alteryx/evalml/pull/2183
https://github.com/alteryx/evalml/pull/2195
https://github.com/alteryx/evalml/pull/2090
https://github.com/alteryx/evalml/pull/2090
https://github.com/alteryx/evalml/pull/2189
https://github.com/alteryx/evalml/pull/2202
https://github.com/alteryx/evalml/pull/2091
https://github.com/alteryx/evalml/pull/2193
https://github.com/alteryx/evalml/pull/2218
https://github.com/alteryx/evalml/pull/1975
https://github.com/alteryx/evalml/pull/1975
https://github.com/alteryx/evalml/pull/2118

EvalML Documentation, Release 0.80.0

– Added NaturalLanguageNaNDataCheck data check #2122

– Added ValueError to partial_dependence to prevent users from computing partial dependence
on columns with all NaNs #2120

– Added standard deviation of cv scores to rankings table #2154

• Fixes
– Fixed BalancedClassificationDataCVSplit, BalancedClassificationDataTVSplit,

and BalancedClassificationSampler to use minority:majority ratio instead of
majority:minority #2077

– Fixed bug where two-way partial dependence plots with categorical variables were not working
correctly #2117

– Fixed bug where hyperparameters were not displaying properly for pipelines with a list
component_graph and duplicate components #2133

– Fixed bug where pipeline_parameters argument in AutoMLSearch was not applied to
pipelines passed in as allowed_pipelines #2133

– Fixed bug where AutoMLSearch was not applying custom hyperparameters to pipelines with a
list component_graph and duplicate components #2133

• Changes
– Removed hyperparameter_ranges from Undersampler and renamed balanced_ratio to
sampling_ratio for samplers #2113

– Renamed TARGET_BINARY_NOT_TWO_EXAMPLES_PER_CLASS data check message code to
TARGET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS #2126

– Modified one-way partial dependence plots of categorical features to display data with a bar plot
#2117

– Renamed score column for automl.rankings as mean_cv_score #2135

– Remove ‘warning’ from docs tool output #2031

• Documentation Changes
– Fixed conf.py file #2112

– Added a sentence to the automl user guide stating that our support for time series problems is still
in beta. #2118

– Fixed documentation demos #2139

– Update test badge in README to use GitHub Actions #2150

• Testing Changes
– Fixed test_describe_pipeline for pandas v1.2.4 #2129

– Added a GitHub Action for building the conda package #1870 #2148

Warning:
Breaking Changes

• Renamed balanced_ratio to sampling_ratio for the BalancedClassificationDataCVSplit,
BalancedClassificationDataTVSplit, BalancedClassficationSampler, and Undersampler
#2113

2086 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/2122
https://github.com/alteryx/evalml/pull/2120
https://github.com/alteryx/evalml/pull/2154
https://github.com/alteryx/evalml/pull/2077
https://github.com/alteryx/evalml/pull/2117
https://github.com/alteryx/evalml/pull/2133
https://github.com/alteryx/evalml/pull/2133
https://github.com/alteryx/evalml/pull/2133
https://github.com/alteryx/evalml/pull/2113
https://github.com/alteryx/evalml/pull/2126
https://github.com/alteryx/evalml/pull/2117
https://github.com/alteryx/evalml/pull/2135
https://github.com/alteryx/evalml/pull/2031
https://github.com/alteryx/evalml/pull/2112
https://github.com/alteryx/evalml/pull/2118
https://github.com/alteryx/evalml/pull/2139
https://github.com/alteryx/evalml/pull/2150
https://github.com/alteryx/evalml/pull/2129
https://github.com/alteryx/evalml/pull/1870
https://github.com/alteryx/evalml/pull/2148
https://github.com/alteryx/evalml/pull/2113

EvalML Documentation, Release 0.80.0

• Deleted the “errors” key from automl results #1975

• Deleted the raise_and_save_error_callback and the log_and_save_error_callback #1975

• Fixed BalancedClassificationDataCVSplit, BalancedClassificationDataTVSplit, and
BalancedClassificationSampler to use minority:majority ratio instead of majority:minority
#2077

v0.22.0 Apr. 06, 2021
• Enhancements

– Added a GitHub Action for linux_unit_tests#2013

– Added recommended actions for InvalidTargetDataCheck, updated
_make_component_list_from_actions to address new action, and added TargetImputer
component #1989

– Updated AutoMLSearch._check_for_high_variance to not emit RuntimeWarning #2024

– Added exception when pipeline passed to explain_predictions is a Stacked Ensemble
pipeline #2033

– Added sensitivity at low alert rates as an objective #2001

– Added Undersampler transformer component #2030

• Fixes
– Updated Engine’s train_batch to apply undersampling #2038

– Fixed bug in where Time Series Classification pipelines were not encoding targets in predict
and predict_proba #2040

– Fixed data splitting errors if target is float for classification problems #2050

– Pinned docutils to <0.17 to fix ReadtheDocs warning issues #2088

• Changes
– Removed lists as acceptable hyperparameter ranges in AutoMLSearch #2028

– Renamed “details” to “metadata” for data check actions #2008

• Documentation Changes
– Catch and suppress warnings in documentation #1991 #2097

– Change spacing in start.ipynb to provide clarity for AutoMLSearch #2078

– Fixed start code on README #2108

• Testing Changes

v0.21.0 Mar. 24, 2021
• Enhancements

– Changed AutoMLSearch to default optimize_thresholds to True #1943

– Added multiple oversampling and undersampling sampling methods as data splitters for imbal-
anced classification #1775

– Added params to balanced classification data splitters for visibility #1966

– Updated make_pipeline to not add Imputer if input data does not have numeric or categorical
columns #1967

2087

https://github.com/alteryx/evalml/pull/1975
https://github.com/alteryx/evalml/pull/1975
https://github.com/alteryx/evalml/pull/2077
https://github.com/alteryx/evalml/pull/2013
https://github.com/alteryx/evalml/pull/1989
https://github.com/alteryx/evalml/pull/2024
https://github.com/alteryx/evalml/pull/2033
https://github.com/alteryx/evalml/pull/2001
https://github.com/alteryx/evalml/pull/2030
https://github.com/alteryx/evalml/pull/2038
https://github.com/alteryx/evalml/pull/2040
https://github.com/alteryx/evalml/pull/2050
https://github.com/alteryx/evalml/pull/2088
https://github.com/alteryx/evalml/pull/2028
https://github.com/alteryx/evalml/pull/2008
https://github.com/alteryx/evalml/pull/1991
https://github.com/alteryx/evalml/pull/2097
https://github.com/alteryx/evalml/pull/2078
https://github.com/alteryx/evalml/pull/2108
https://github.com/alteryx/evalml/pull/1943
https://github.com/alteryx/evalml/pull/1775
https://github.com/alteryx/evalml/pull/1966
https://github.com/alteryx/evalml/pull/1967

EvalML Documentation, Release 0.80.0

– Updated ClassImbalanceDataCheck to better handle multiclass imbalances #1986

– Added recommended actions for the output of data check’s validate method #1968

– Added error message for partial_dependence when features are mostly the same value #1994

– Updated OneHotEncoder to drop one redundant feature by default for features with two categories
#1997

– Added a PolynomialDecomposer component #1992

– Added DateTimeNaNDataCheck data check #2039

• Fixes
– Changed best pipeline to train on the entire dataset rather than just ensemble indices for ensemble

problems #2037

– Updated binary classification pipelines to use objective decision function during scoring of custom
objectives #1934

• Changes
– Removed data_checks parameter, data_check_results and data checks logic from
AutoMLSearch #1935

– Deleted random_state argument #1985

– Updated Woodwork version requirement to v0.0.11 #1996

• Documentation Changes

• Testing Changes
– Removed build_docs CI job in favor of RTD GH builder #1974

– Added tests to confirm support for Python 3.9 #1724

– Added tests to support Dask AutoML/Engine #1990

– Changed build_conda_pkg job to use latest_release_changes branch in the feedstock.
#1979

Warning:
Breaking Changes

• Changed AutoMLSearch to default optimize_thresholds to True #1943

• Removed data_checks parameter, data_check_results and data checks logic from
AutoMLSearch. To run the data checks which were previously run by default in AutoMLSearch, please
call DefaultDataChecks().validate(X_train, y_train) or take a look at our documentation
for more examples. #1935

• Deleted random_state argument #1985

v0.20.0 Mar. 10, 2021
• Enhancements

– Added a GitHub Action for Detecting dependency changes #1933

– Create a separate CV split to train stacked ensembler on for AutoMLSearch #1814

– Added a GitHub Action for Linux unit tests #1846

2088 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1986
https://github.com/alteryx/evalml/pull/1968
https://github.com/alteryx/evalml/pull/1994
https://github.com/alteryx/evalml/pull/1997
https://github.com/alteryx/evalml/pull/1992
https://github.com/alteryx/evalml/pull/2039
https://github.com/alteryx/evalml/pull/2037
https://github.com/alteryx/evalml/pull/1934
https://github.com/alteryx/evalml/pull/1935
https://github.com/alteryx/evalml/pull/1985
https://github.com/alteryx/evalml/pull/1996
https://github.com/alteryx/evalml/pull/1974
https://github.com/alteryx/evalml/pull/1724
https://github.com/alteryx/evalml/pull/1990
https://github.com/alteryx/evalml/pull/1979
https://github.com/alteryx/evalml/pull/1943
https://github.com/alteryx/evalml/pull/1935
https://github.com/alteryx/evalml/pull/1985
https://github.com/alteryx/evalml/pull/1933
https://github.com/alteryx/evalml/pull/1814
https://github.com/alteryx/evalml/pull/1846

EvalML Documentation, Release 0.80.0

– Added ARIMARegressor estimator #1894

– Added DataCheckAction class and DataCheckActionCode enum #1896

– Updated Woodwork requirement to v0.0.10 #1900

– Added BalancedClassificationDataCVSplit and BalancedClassificationDataTVSplit
to AutoMLSearch #1875

– Update default classification data splitter to use downsampling for highly imbalanced data #1875

– Updated describe_pipeline to return more information, including id of pipelines used for
ensemble models #1909

– Added utility method to create list of components from a list of DataCheckAction #1907

– Updated validate method to include a action key in returned dictionary for all
DataCheck``and ``DataChecks #1916

– Aggregating the shap values for predictions that we know the provenance of, e.g. OHE, text, and
date-time. #1901

– Improved error message when custom objective is passed as a string in pipeline.score #1941

– Added score_pipelines and train_pipelines methods to AutoMLSearch #1913

– Added support for pandas version 1.2.0 #1708

– Added score_batch and train_batch abstact methods to EngineBase and implementations
in SequentialEngine #1913

– Added ability to handle index columns in AutoMLSearch and DataChecks #2138

• Fixes
– Removed CI check for check_dependencies_updated_linux #1950

– Added metaclass for time series pipelines and fix binary classification pipeline predict not using
objective if it is passed as a named argument #1874

– Fixed stack trace in prediction explanation functions caused by mixed string/numeric pandas col-
umn names #1871

– Fixed stack trace caused by passing pipelines with duplicate names to AutoMLSearch #1932

– Fixed AutoMLSearch.get_pipelines returning pipelines with the same attributes #1958

• Changes
– Reversed GitHub Action for Linux unit tests until a fix for report generation is found #1920

– Updated add_results in AutoMLAlgorithm to take in entire pipeline results dictionary from
AutoMLSearch #1891

– Updated ClassImbalanceDataCheck to look for severe class imbalance scenarios #1905

– Deleted the explain_prediction function #1915

– Removed HighVarianceCVDataCheck and convered it to an AutoMLSearch method instead
#1928

– Removed warning in InvalidTargetDataCheck returned when numeric binary classification
targets are not (0, 1) #1959

• Documentation Changes
– Updated model_understanding.ipynb to demo the two-way partial dependence capability

#1919

2089

https://github.com/alteryx/evalml/pull/1894
https://github.com/alteryx/evalml/pull/1896
https://github.com/alteryx/evalml/pull/1900
https://github.com/alteryx/evalml/pull/1875
https://github.com/alteryx/evalml/pull/1875
https://github.com/alteryx/evalml/pull/1909
https://github.com/alteryx/evalml/pull/1907
https://github.com/alteryx/evalml/pull/1916
https://github.com/alteryx/evalml/pull/1901
https://github.com/alteryx/evalml/pull/1941
https://github.com/alteryx/evalml/pull/1913
https://github.com/alteryx/evalml/pull/1708
https://github.com/alteryx/evalml/pull/1913
https://github.com/alteryx/evalml/pull/2138
https://github.com/alteryx/evalml/pull/1950
https://github.com/alteryx/evalml/pull/1874
https://github.com/alteryx/evalml/pull/1871
https://github.com/alteryx/evalml/pull/1932
https://github.com/alteryx/evalml/pull/1958
https://github.com/alteryx/evalml/pull/1920
https://github.com/alteryx/evalml/pull/1891
https://github.com/alteryx/evalml/pull/1905
https://github.com/alteryx/evalml/pull/1915
https://github.com/alteryx/evalml/pull/1928
https://github.com/alteryx/evalml/pull/1959
https://github.com/alteryx/evalml/pull/1919

EvalML Documentation, Release 0.80.0

• Testing Changes

Warning:
Breaking Changes

• Deleted the explain_prediction function #1915

• Removed HighVarianceCVDataCheck and convered it to an AutoMLSearch method instead #1928

• Added score_batch and train_batch abstact methods to EngineBase. These need to be imple-
mented in Engine subclasses #1913

v0.19.0 Feb. 23, 2021
• Enhancements

– Added a GitHub Action for Python windows unit tests #1844

– Added a GitHub Action for checking updated release notes #1849

– Added a GitHub Action for Python lint checks #1837

– Adjusted explain_prediction, explain_predictions and
explain_predictions_best_worst to handle timeseries problems. #1818

– Updated InvalidTargetDataCheck to check for mismatched indices in target and features #1816

– Updated Woodwork structures returned from components to support Woodwork logical type over-
rides set by the user #1784

– Updated estimators to keep track of input feature names during fit() #1794

– Updated visualize_decision_tree to include feature names in output #1813

– Added is_bounded_like_percentage property for objectives. If true, the
calculate_percent_difference method will return the absolute difference rather than
relative difference #1809

– Added full error traceback to AutoMLSearch logger file #1840

– Changed TargetEncoder to preserve custom indices in the data #1836

– Refactored explain_predictions and explain_predictions_best_worst to only compute
features once for all rows that need to be explained #1843

– Added custom random undersampler data splitter for classification #1857

– Updated OutliersDataCheck implementation to calculate the probability of having no outliers
#1855

– Added Engines pipeline processing API #1838

• Fixes
– Changed EngineBase random_state arg to random_seed and same for user guide docs #1889

• Changes
– Modified calculate_percent_difference so that division by 0 is now inf rather than nan

#1809

– Removed text_columns parameter from LSA and TextFeaturizer components #1652

– Added random_seed as an argument to our automl/pipeline/component API. Using
random_state will raise a warning #1798

2090 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1915
https://github.com/alteryx/evalml/pull/1928
https://github.com/alteryx/evalml/pull/1913
https://github.com/alteryx/evalml/pull/1844
https://github.com/alteryx/evalml/pull/1849
https://github.com/alteryx/evalml/pull/1837
https://github.com/alteryx/evalml/pull/1818
https://github.com/alteryx/evalml/pull/1816
https://github.com/alteryx/evalml/pull/1784
https://github.com/alteryx/evalml/pull/1794
https://github.com/alteryx/evalml/pull/1813
https://github.com/alteryx/evalml/pull/1809
https://github.com/alteryx/evalml/pull/1840
https://github.com/alteryx/evalml/pull/1836
https://github.com/alteryx/evalml/pull/1843
https://github.com/alteryx/evalml/pull/1857
https://github.com/alteryx/evalml/pull/1855
https://github.com/alteryx/evalml/pull/1838
https://github.com/alteryx/evalml/pull/1889
https://github.com/alteryx/evalml/pull/1809
https://github.com/alteryx/evalml/pull/1652
https://github.com/alteryx/evalml/pull/1798

EvalML Documentation, Release 0.80.0

– Added DataCheckError message in InvalidTargetDataCheck if input target is None and re-
moved exception raised #1866

• Documentation Changes

• Testing Changes
– Added back coverage for _get_feature_provenance in TextFeaturizer after
text_columns was removed #1842

– Pin graphviz version for windows builds #1847

– Unpin graphviz version for windows builds #1851

Warning:
Breaking Changes

• Added a deprecation warning to explain_prediction. It will be deleted in the next release. #1860

v0.18.2 Feb. 10, 2021
• Enhancements

– Added uniqueness score data check #1785

– Added “dataframe” output format for prediction explanations #1781

– Updated LightGBM estimators to handle pandas.MultiIndex #1770

– Sped up permutation importance for some pipelines #1762

– Added sparsity data check #1797

– Confirmed support for threshold tuning for binary time series classification problems #1803

• Fixes

• Changes

• Documentation Changes
– Added section on conda to the contributing guide #1771

– Updated release process to reflect freezing main before perf tests #1787

– Moving some prs to the right section of the release notes #1789

– Tweak README.md. #1800

– Fixed back arrow on install page docs #1795

– Fixed docstring for ClassImbalanceDataCheck.validate() #1817

• Testing Changes

v0.18.1 Feb. 1, 2021
• Enhancements

– Added graph_t_sne as a visualization tool for high dimensional data #1731

– Added the ability to see the linear coefficients of features in linear models terms #1738

– Added support for scikit-learn v0.24.0 #1733

– Added support for scipy v1.6.0 #1752

2091

https://github.com/alteryx/evalml/pull/1866
https://github.com/alteryx/evalml/pull/1842
https://github.com/alteryx/evalml/pull/1847
https://github.com/alteryx/evalml/pull/1851
https://github.com/alteryx/evalml/pull/1860
https://github.com/alteryx/evalml/pull/1785
https://github.com/alteryx/evalml/pull/1781
https://github.com/alteryx/evalml/pull/1770
https://github.com/alteryx/evalml/pull/1762
https://github.com/alteryx/evalml/pull/1797
https://github.com/alteryx/evalml/pull/1803
https://github.com/alteryx/evalml/pull/1771
https://github.com/alteryx/evalml/pull/1787
https://github.com/alteryx/evalml/pull/1789
https://github.com/alteryx/evalml/pull/1800
https://github.com/alteryx/evalml/pull/1795
https://github.com/alteryx/evalml/pull/1817
https://github.com/alteryx/evalml/pull/1731
https://github.com/alteryx/evalml/pull/1738
https://github.com/alteryx/evalml/pull/1733
https://github.com/alteryx/evalml/pull/1752

EvalML Documentation, Release 0.80.0

– Added SVM Classifier and Regressor to estimators #1714 #1761

• Fixes
– Addressed bug with partial_dependence and categorical data with more categories than grid

resolution #1748

– Removed random_state arg from get_pipelines in AutoMLSearch #1719

– Pinned pyzmq at less than 22.0.0 till we add support #1756

• Changes
– Updated components and pipelines to return Woodwork data structures #1668

– Updated clone() for pipelines and components to copy over random state automatically #1753

– Dropped support for Python version 3.6 #1751

– Removed deprecated verbose flag from AutoMLSearch parameters #1772

• Documentation Changes
– Add Twitter and Github link to documentation toolbar #1754

– Added Open Graph info to documentation #1758

• Testing Changes

Warning:
Breaking Changes

• Components and pipelines return Woodwork data structures instead of pandas data structures #1668

• Python 3.6 will not be actively supported due to discontinued support from EvalML dependencies.

• Deprecated verbose flag is removed for AutoMLSearch #1772

v0.18.0 Jan. 26, 2021
• Enhancements

– Added RMSLE, MSLE, and MAPE to core objectives while checking for negative target values
in invalid_targets_data_check #1574

– Added validation checks for binary problems with regression-like datasets and multiclass problems
without true multiclass targets in invalid_targets_data_check #1665

– Added time series support for make_pipeline #1566

– Added target name for output of pipeline predict method #1578

– Added multiclass check to InvalidTargetDataCheck for two examples per class #1596

– Added support for graphviz v0.16 #1657

– Enhanced time series pipelines to accept empty features #1651

– Added KNN Classifier to estimators. #1650

– Added support for list inputs for objectives #1663

– Added support for AutoMLSearch to handle time series classification pipelines #1666

– Enhanced DelayedFeaturesTransformer to encode categorical features and targets before de-
laying them #1691

2092 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1714
https://github.com/alteryx/evalml/pull/1761
https://github.com/alteryx/evalml/pull/1748
https://github.com/alteryx/evalml/pull/1719
https://github.com/alteryx/evalml/pull/1756
https://github.com/alteryx/evalml/pull/1668
https://github.com/alteryx/evalml/pull/1753
https://github.com/alteryx/evalml/pull/1751
https://github.com/alteryx/evalml/pull/1772
https://github.com/alteryx/evalml/pull/1754
https://github.com/alteryx/evalml/pull/1758
https://github.com/alteryx/evalml/pull/1668
https://github.com/alteryx/evalml/pull/1772
https://github.com/alteryx/evalml/pull/1574
https://github.com/alteryx/evalml/pull/1665
https://github.com/alteryx/evalml/pull/1566
https://github.com/alteryx/evalml/pull/1578
https://github.com/alteryx/evalml/pull/1596
https://github.com/alteryx/evalml/pull/1657
https://github.com/alteryx/evalml/pull/1651
https://github.com/alteryx/evalml/pull/1650
https://github.com/alteryx/evalml/pull/1663
https://github.com/alteryx/evalml/pull/1666
https://github.com/alteryx/evalml/pull/1691

EvalML Documentation, Release 0.80.0

– Added 2-way dependence plots. #1690

– Added ability to directly iterate through components within Pipelines #1583

• Fixes
– Fixed inconsistent attributes and added Exceptions to docs #1673

– Fixed TargetLeakageDataCheck to use Woodwork mutual_information rather than using
Pandas’ Pearson Correlation #1616

– Fixed thresholding for pipelines in AutoMLSearch to only threshold binary classification pipelines
#1622 #1626

– Updated load_data to return Woodwork structures and update default parameter value for index
to None #1610

– Pinned scipy at < 1.6.0 while we work on adding support #1629

– Fixed data check message formatting in AutoMLSearch #1633

– Addressed stacked ensemble component for scikit-learn v0.24 support by setting
shuffle=True for default CV #1613

– Fixed bug where Imputer reset the index on X #1590

– Fixed AutoMLSearch stacktrace when a cutom objective was passed in as a primary objective or
additional objective #1575

– Fixed custom index bug for MAPE objective #1641

– Fixed index bug for TextFeaturizer and LSA components #1644

– Limited load_fraud dataset loaded into automl.ipynb #1646

– add_to_rankings updates AutoMLSearch.best_pipeline when necessary #1647

– Fixed bug where time series baseline estimators were not receiving gap and max_delay in
AutoMLSearch #1645

– Fixed jupyter notebooks to help the RTD buildtime #1654

– Added positive_only objectives to non_core_objectives #1661

– Fixed stacking argument n_jobs for IterativeAlgorithm #1706

– Updated CatBoost estimators to return self in .fit() rather than the underlying model for con-
sistency #1701

– Added ability to initialize pipeline parameters in AutoMLSearch constructor #1676

• Changes
– Added labeling to graph_confusion_matrix #1632

– Rerunning search for AutoMLSearch results in a message thrown rather than failing the search,
and removed has_searched property #1647

– Changed tuner class to allow and ignore single parameter values as input #1686

– Capped LightGBM version limit to remove bug in docs #1711

– Removed support for np.random.RandomState in EvalML #1727

• Documentation Changes
– Update Model Understanding in the user guide to include visualize_decision_tree #1678

2093

https://github.com/alteryx/evalml/pull/1690
https://github.com/alteryx/evalml/pull/1583
https://github.com/alteryx/evalml/pull/1673
https://github.com/alteryx/evalml/pull/1616
https://github.com/alteryx/evalml/pull/1622
https://github.com/alteryx/evalml/pull/1626
https://github.com/alteryx/evalml/pull/1610
https://github.com/alteryx/evalml/pull/1629
https://github.com/alteryx/evalml/pull/1633
https://github.com/alteryx/evalml/pull/1613
https://github.com/alteryx/evalml/pull/1590
https://github.com/alteryx/evalml/pull/1575
https://github.com/alteryx/evalml/pull/1641
https://github.com/alteryx/evalml/pull/1644
https://github.com/alteryx/evalml/pull/1646
https://github.com/alteryx/evalml/pull/1647
https://github.com/alteryx/evalml/pull/1645
https://github.com/alteryx/evalml/pull/1654
https://github.com/alteryx/evalml/pull/1661
https://github.com/alteryx/evalml/pull/1706
https://github.com/alteryx/evalml/pull/1701
https://github.com/alteryx/evalml/pull/1676
https://github.com/alteryx/evalml/pull/1632
https://github.com/alteryx/evalml/pull/1647
https://github.com/alteryx/evalml/pull/1686
https://github.com/alteryx/evalml/pull/1711
https://github.com/alteryx/evalml/pull/1727
https://github.com/alteryx/evalml/pull/1678

EvalML Documentation, Release 0.80.0

– Updated docs to include information about AutoMLSearch callback parameters and methods
#1577

– Updated docs to prompt users to install graphiz on Mac #1656

– Added infer_feature_types to the start.ipynb guide #1700

– Added multicollinearity data check to API reference and docs #1707

• Testing Changes

Warning:
Breaking Changes

• Removed has_searched property from AutoMLSearch #1647

• Components and pipelines return Woodwork data structures instead of pandas data structures #1668

• Removed support for np.random.RandomState in EvalML. Rather than passing np.random.
RandomState as component and pipeline random_state values, we use int random_seed #1727

v0.17.0 Dec. 29, 2020
• Enhancements

– Added save_plot that allows for saving figures from different backends #1588

– Added LightGBM Regressor to regression components #1459

– Added visualize_decision_tree for tree visualization with
decision_tree_data_from_estimator and decision_tree_data_from_pipeline
to reformat tree structure output #1511

– Added DFS Transformer component into transformer components #1454

– Added MAPE to the standard metrics for time series problems and update objectives #1510

– Added graph_prediction_vs_actual_over_time and get_prediction_vs_actual_over_time_data
to the model understanding module for time series problems #1483

– Added a ComponentGraph class that will support future pipelines as directed acyclic graphs #1415

– Updated data checks to accept Woodwork data structures #1481

– Added parameter to InvalidTargetDataCheck to show only top unique values rather than all
unique values #1485

– Added multicollinearity data check #1515

– Added baseline pipeline and components for time series regression problems #1496

– Added more information to users about ensembling behavior in AutoMLSearch #1527

– Add woodwork support for more utility and graph methods #1544

– Changed DateTimeFeaturizer to encode features as int #1479

– Return trained pipelines from AutoMLSearch.best_pipeline #1547

– Added utility method so that users can set feature types without having to learn about Woodwork
directly #1555

– Added Linear Discriminant Analysis transformer for dimensionality reduction #1331

– Added multiclass support for partial_dependence and graph_partial_dependence #1554

2094 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1577
https://github.com/alteryx/evalml/pull/1656
https://github.com/alteryx/evalml/pull/1700
https://github.com/alteryx/evalml/pull/1707
https://github.com/alteryx/evalml/pull/1647
https://github.com/alteryx/evalml/pull/1668
https://github.com/alteryx/evalml/pull/1727
https://github.com/alteryx/evalml/pull/1588
https://github.com/alteryx/evalml/pull/1459
https://github.com/alteryx/evalml/pull/1511
https://github.com/alteryx/evalml/pull/1454
https://github.com/alteryx/evalml/pull/1510
https://github.com/alteryx/evalml/pull/1483
https://github.com/alteryx/evalml/pull/1415
https://github.com/alteryx/evalml/pull/1481
https://github.com/alteryx/evalml/pull/1485
https://github.com/alteryx/evalml/pull/1515
https://github.com/alteryx/evalml/pull/1496
https://github.com/alteryx/evalml/pull/1527
https://github.com/alteryx/evalml/pull/1544
https://github.com/alteryx/evalml/pull/1479
https://github.com/alteryx/evalml/pull/1547
https://github.com/alteryx/evalml/pull/1555
https://github.com/alteryx/evalml/pull/1331
https://github.com/alteryx/evalml/pull/1554

EvalML Documentation, Release 0.80.0

– Added TimeSeriesBinaryClassificationPipeline and TimeSeriesMulticlassClassificationPipeline
classes #1528

– Added make_data_splitter method for easier automl data split customization #1568

– Integrated ComponentGraph class into Pipelines for full non-linear pipeline support #1543

– Update AutoMLSearch constructor to take training data instead of search and
add_to_leaderboard #1597

– Update split_data helper args #1597

– Add problem type utils is_regression, is_classification, is_timeseries #1597

– Rename AutoMLSearch data_split arg to data_splitter #1569

• Fixes
– Fix AutoML not passing CV folds to DefaultDataChecks for usage by
ClassImbalanceDataCheck #1619

– Fix Windows CI jobs: install numba via conda, required for shap #1490

– Added custom-index support for reset-index-get_prediction_vs_actual_over_time_data #1494

– Fix generate_pipeline_code to account for boolean and None differences between Python and
JSON #1524 #1531

– Set max value for plotly and xgboost versions while we debug CI failures with newer versions
#1532

– Undo version pinning for plotly #1533

– Fix ReadTheDocs build by updating the version of setuptools #1561

– Set random_state of data splitter in AutoMLSearch to take int to keep consistency in the resulting
splits #1579

– Pin sklearn version while we work on adding support #1594

– Pin pandas at <1.2.0 while we work on adding support #1609

– Pin graphviz at < 0.16 while we work on adding support #1609

• Changes
– Reverting save_graph #1550 to resolve kaleido build issues #1585

– Update circleci badge to apply to main #1489

– Added script to generate github markdown for releases #1487

– Updated selection using pandas dtypes to selecting using Woodwork logical types #1551

– Updated dependencies to fix ImportError: cannot import name 'MaskedArray' from
'sklearn.utils.fixes' error and to address Woodwork and Featuretool dependencies #1540

– Made get_prediction_vs_actual_data() a public method #1553

– Updated Woodwork version requirement to v0.0.7 #1560

– Move data splitters from evalml.automl.data_splitters to evalml.preprocessing.
data_splitters #1597

– Rename “# Testing” in automl log output to “# Validation” #1597

• Documentation Changes
– Added partial dependence methods to API reference #1537

2095

https://github.com/alteryx/evalml/pull/1528
https://github.com/alteryx/evalml/pull/1568
https://github.com/alteryx/evalml/pull/1543
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1569
https://github.com/alteryx/evalml/pull/1619
https://github.com/alteryx/evalml/pull/1490
https://github.com/alteryx/evalml/pull/1494
https://github.com/alteryx/evalml/pull/1524
https://github.com/alteryx/evalml/pull/1531
https://github.com/alteryx/evalml/pull/1532
https://github.com/alteryx/evalml/pull/1533
https://github.com/alteryx/evalml/pull/1561
https://github.com/alteryx/evalml/pull/1579
https://github.com/alteryx/evalml/pull/1594
https://github.com/alteryx/evalml/pull/1609
https://github.com/alteryx/evalml/pull/1609
https://github.com/alteryx/evalml/pull/1550
https://github.com/alteryx/evalml/pull/1585
https://github.com/alteryx/evalml/pull/1489
https://github.com/alteryx/evalml/pull/1487
https://github.com/alteryx/evalml/pull/1551
https://github.com/alteryx/evalml/pull/1540
https://github.com/alteryx/evalml/pull/1553
https://github.com/alteryx/evalml/pull/1560
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1537

EvalML Documentation, Release 0.80.0

– Updated documentation for confusion matrix methods #1611

• Testing Changes
– Set n_jobs=1 in most unit tests to reduce memory #1505

Warning:
Breaking Changes

• Updated minimal dependencies: numpy>=1.19.1, pandas>=1.1.0, scikit-learn>=0.23.1,
scikit-optimize>=0.8.1

• Updated AutoMLSearch.best_pipeline to return a trained pipeline. Pass in
train_best_pipeline=False to AutoMLSearch in order to return an untrained pipeline.

• Pipeline component instances can no longer be iterated through using Pipeline.component_graph
#1543

• Update AutoMLSearch constructor to take training data instead of search and add_to_leaderboard
#1597

• Update split_data helper args #1597

• Move data splitters from evalml.automl.data_splitters to evalml.preprocessing.
data_splitters #1597

• Rename AutoMLSearch data_split arg to data_splitter #1569

v0.16.1 Dec. 1, 2020
• Enhancements

– Pin woodwork version to v0.0.6 to avoid breaking changes #1484

– Updated Woodwork to >=0.0.5 in core-requirements.txt #1473

– Removed copy_dataframe parameter for Woodwork, updated Woodwork to >=0.0.6 in
core-requirements.txt #1478

– Updated detect_problem_type to use pandas.api.is_numeric_dtype #1476

• Changes
– Changed make clean to delete coverage reports as a convenience for developers #1464

– Set n_jobs=-1 by default for stacked ensemble components #1472

• Documentation Changes
– Updated pipeline and component documentation and demos to use Woodwork #1466

• Testing Changes
– Update dependency update checker to use everything from core and optional dependencies #1480

v0.16.0 Nov. 24, 2020
• Enhancements

– Updated pipelines and make_pipeline to accept Woodwork inputs #1393

– Updated components to accept Woodwork inputs #1423

– Added ability to freeze hyperparameters for AutoMLSearch #1284

– Added Target Encoder into transformer components #1401

2096 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1611
https://github.com/alteryx/evalml/pull/1505
https://github.com/alteryx/evalml/pull/1543
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1597
https://github.com/alteryx/evalml/pull/1569
https://github.com/alteryx/evalml/pull/1484
https://github.com/alteryx/evalml/pull/1473
https://github.com/alteryx/evalml/pull/1478
https://github.com/alteryx/evalml/pull/1476
https://github.com/alteryx/evalml/pull/1464
https://github.com/alteryx/evalml/pull/1472
https://github.com/alteryx/evalml/pull/1466
https://github.com/alteryx/evalml/pull/1480
https://github.com/alteryx/evalml/pull/1393
https://github.com/alteryx/evalml/pull/1423
https://github.com/alteryx/evalml/pull/1284
https://github.com/alteryx/evalml/pull/1401

EvalML Documentation, Release 0.80.0

– Added callback for error handling in AutoMLSearch #1403

– Added the index id to the explain_predictions_best_worst output to help users identify
which rows in their data are included #1365

– The top_k features displayed in explain_predictions_* functions are now determined by the
magnitude of shap values as opposed to the top_k largest and smallest shap values. #1374

– Added a problem type for time series regression #1386

– Added a is_defined_for_problem_type method to ObjectiveBase #1386

– Added a random_state parameter to make_pipeline_from_components function #1411

– Added DelayedFeaturesTransformer #1396

– Added a TimeSeriesRegressionPipeline class #1418

– Removed core-requirements.txt from the package distribution #1429

– Updated data check messages to include a “code” and “details” fields #1451, #1462

– Added a TimeSeriesSplit data splitter for time series problems #1441

– Added a problem_configuration parameter to AutoMLSearch #1457

• Fixes
– Fixed IndexError raised in AutoMLSearch when ensembling = True but only one pipeline

to iterate over #1397

– Fixed stacked ensemble input bug and LightGBM warning and bug in AutoMLSearch #1388

– Updated enum classes to show possible enum values as attributes #1391

– Updated calls to Woodwork’s to_pandas() to to_series() and to_dataframe() #1428

– Fixed bug in OHE where column names were not guaranteed to be unique #1349

– Fixed bug with percent improvement of ExpVariance objective on data with highly skewed target
#1467

– Fix SimpleImputer error which occurs when all features are bool type #1215

• Changes
– Changed OutliersDataCheck to return the list of columns, rather than rows, that contain outliers

#1377

– Simplified and cleaned output for Code Generation #1371

– Reverted changes from #1337 #1409

– Updated data checks to return dictionary of warnings and errors instead of a list #1448

– Updated AutoMLSearch to pass Woodwork data structures to every pipeline (instead of pandas
DataFrames) #1450

– Update AutoMLSearch to default to max_batches=1 instead of max_iterations=5 #1452

– Updated _evaluate_pipelines to consolidate side effects #1410

• Documentation Changes
– Added description of CLA to contributing guide, updated description of draft PRs #1402

– Updated documentation to include all data checks, DataChecks, and usage of data checks in
AutoML #1412

2097

https://github.com/alteryx/evalml/pull/1403
https://github.com/alteryx/evalml/pull/1365
https://github.com/alteryx/evalml/pull/1374
https://github.com/alteryx/evalml/pull/1386
https://github.com/alteryx/evalml/pull/1386
https://github.com/alteryx/evalml/pull/1411
https://github.com/alteryx/evalml/pull/1396
https://github.com/alteryx/evalml/pull/1418
https://github.com/alteryx/evalml/pull/1429
https://github.com/alteryx/evalml/pull/1451
https://github.com/alteryx/evalml/pull/1462
https://github.com/alteryx/evalml/pull/1441
https://github.com/alteryx/evalml/pull/1457
https://github.com/alteryx/evalml/pull/1397
https://github.com/alteryx/evalml/pull/1388
https://github.com/alteryx/evalml/pull/1391
https://github.com/alteryx/evalml/pull/1428
https://github.com/alteryx/evalml/pull/1349
https://github.com/alteryx/evalml/pull/1467
https://github.com/alteryx/evalml/pull/1215
https://github.com/alteryx/evalml/pull/1377
https://github.com/alteryx/evalml/pull/1371
https://github.com/alteryx/evalml/pull/1337
https://github.com/alteryx/evalml/pull/1409
https://github.com/alteryx/evalml/pull/1448
https://github.com/alteryx/evalml/pull/1450
https://github.com/alteryx/evalml/pull/1452
https://github.com/alteryx/evalml/pull/1410
https://github.com/alteryx/evalml/pull/1402
https://github.com/alteryx/evalml/pull/1412

EvalML Documentation, Release 0.80.0

– Updated docstrings from np.array to np.ndarray #1417

– Added section on stacking ensembles in AutoMLSearch documentation #1425

• Testing Changes
– Removed category_encoders from test-requirements.txt #1373

– Tweak codecov.io settings again to avoid flakes #1413

– Modified make lint to check notebook versions in the docs #1431

– Modified make lint-fix to standardize notebook versions in the docs #1431

– Use new version of pull request Github Action for dependency check (#1443)

– Reduced number of workers for tests to 4 #1447

Warning:
Breaking Changes

• The top_k and top_k_features parameters in explain_predictions_* functions now return k
features as opposed to 2 * k features #1374

• Renamed problem_type to problem_types in RegressionObjective,
BinaryClassificationObjective, and MulticlassClassificationObjective #1319

• Data checks now return a dictionary of warnings and errors instead of a list #1448

v0.15.0 Oct. 29, 2020
• Enhancements

– Added stacked ensemble component classes (StackedEnsembleClassifier,
StackedEnsembleRegressor) #1134

– Added stacked ensemble components to AutoMLSearch #1253

– Added DecisionTreeClassifier and DecisionTreeRegressor to AutoML #1255

– Added graph_prediction_vs_actual in model_understanding for regression problems
#1252

– Added parameter to OneHotEncoder to enable filtering for features to encode for #1249

– Added percent-better-than-baseline for all objectives to automl.results #1244

– Added HighVarianceCVDataCheck and replaced synonymous warning in AutoMLSearch
#1254

– Added PCA Transformer component for dimensionality reduction #1270

– Added generate_pipeline_code and generate_component_code to allow for code genera-
tion given a pipeline or component instance #1306

– Added PCA Transformer component for dimensionality reduction #1270

– Updated AutoMLSearch to support Woodwork data structures #1299

– Added cv_folds to ClassImbalanceDataCheck and added this check to DefaultDataChecks
#1333

– Make max_batches argument to AutoMLSearch.search public #1320

– Added text support to automl search #1062

2098 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1417
https://github.com/alteryx/evalml/pull/1425
https://github.com/alteryx/evalml/pull/1373
https://github.com/alteryx/evalml/pull/1413
https://github.com/alteryx/evalml/pull/1431
https://github.com/alteryx/evalml/pull/1431
https://github.com/alteryx/evalml/pull/1443
https://github.com/alteryx/evalml/pull/1447
https://github.com/alteryx/evalml/pull/1374
https://github.com/alteryx/evalml/pull/1319
https://github.com/alteryx/evalml/pull/1448
https://github.com/alteryx/evalml/pull/1134
https://github.com/alteryx/evalml/pull/1253
https://github.com/alteryx/evalml/pull/1255
https://github.com/alteryx/evalml/pull/1252
https://github.com/alteryx/evalml/pull/1249
https://github.com/alteryx/evalml/pull/1244
https://github.com/alteryx/evalml/pull/1254
https://github.com/alteryx/evalml/pull/1270
https://github.com/alteryx/evalml/pull/1306
https://github.com/alteryx/evalml/pull/1270
https://github.com/alteryx/evalml/pull/1299
https://github.com/alteryx/evalml/pull/1333
https://github.com/alteryx/evalml/pull/1320
https://github.com/alteryx/evalml/pull/1062

EvalML Documentation, Release 0.80.0

– Added _pipelines_per_batch as a private argument to AutoMLSearch #1355

• Fixes
– Fixed ML performance issue with ordered datasets: always shuffle data in automl’s default CV

splits #1265

– Fixed broken evalml info CLI command #1293

– Fixed boosting type='rf' for LightGBM Classifier, as well as num_leaves error #1302

– Fixed bug in explain_predictions_best_worst where a custom index in the target variable
would cause a ValueError #1318

– Added stacked ensemble estimators to to evalml.pipelines.__init__ file #1326

– Fixed bug in OHE where calls to transform were not deterministic if top_n was less than the
number of categories in a column #1324

– Fixed LightGBM warning messages during AutoMLSearch #1342

– Fix warnings thrown during AutoMLSearch in HighVarianceCVDataCheck #1346

– Fixed bug where TrainingValidationSplit would return invalid location indices for dataframes with
a custom index #1348

– Fixed bug where the AutoMLSearch random_state was not being passed to the created pipelines
#1321

• Changes
– Allow add_to_rankings to be called before AutoMLSearch is called #1250

– Removed Graphviz from test-requirements to add to requirements.txt #1327

– Removed max_pipelines parameter from AutoMLSearch #1264

– Include editable installs in all install make targets #1335

– Made pip dependencies featuretools and nlp_primitives core dependencies #1062

– Removed PartOfSpeechCount from TextFeaturizer transform primitives #1062

– Added warning for partial_dependency when the feature includes null values #1352

• Documentation Changes
– Fixed and updated code blocks in Release Notes #1243

– Added DecisionTree estimators to API Reference #1246

– Changed class inheritance display to flow vertically #1248

– Updated cost-benefit tutorial to use a holdout/test set #1159

– Added evalml info command to documentation #1293

– Miscellaneous doc updates #1269

– Removed conda pre-release testing from the release process document #1282

– Updates to contributing guide #1310

– Added Alteryx footer to docs with Twitter and Github link #1312

– Added documentation for evalml installation for Python 3.6 #1322

– Added documentation changes to make the API Docs easier to understand #1323

– Fixed documentation for feature_importance #1353

2099

https://github.com/alteryx/evalml/pull/1355
https://github.com/alteryx/evalml/pull/1265
https://github.com/alteryx/evalml/pull/1293
https://github.com/alteryx/evalml/pull/1302
https://github.com/alteryx/evalml/pull/1318
https://github.com/alteryx/evalml/pull/1326
https://github.com/alteryx/evalml/pull/1324
https://github.com/alteryx/evalml/pull/1342
https://github.com/alteryx/evalml/pull/1346
https://github.com/alteryx/evalml/pull/1348
https://github.com/alteryx/evalml/pull/1321
https://github.com/alteryx/evalml/pull/1250
https://github.com/alteryx/evalml/pull/1327
https://github.com/alteryx/evalml/pull/1264
https://github.com/alteryx/evalml/pull/1335
https://github.com/alteryx/evalml/pull/1062
https://github.com/alteryx/evalml/pull/1062
https://github.com/alteryx/evalml/pull/1352
https://github.com/alteryx/evalml/pull/1243
https://github.com/alteryx/evalml/pull/1246
https://github.com/alteryx/evalml/pull/1248
https://github.com/alteryx/evalml/pull/1159
https://github.com/alteryx/evalml/pull/1293
https://github.com/alteryx/evalml/pull/1269
https://github.com/alteryx/evalml/pull/1282
https://github.com/alteryx/evalml/pull/1310
https://github.com/alteryx/evalml/pull/1312
https://github.com/alteryx/evalml/pull/1322
https://github.com/alteryx/evalml/pull/1323
https://github.com/alteryx/evalml/pull/1353

EvalML Documentation, Release 0.80.0

– Added tutorial for running AutoML with text data #1357

– Added documentation for woodwork integration with automl search #1361

• Testing Changes
– Added tests for jupyter_check to handle IPython #1256

– Cleaned up make_pipeline tests to test for all estimators #1257

– Added a test to check conda build after merge to main #1247

– Removed code that was lacking codecov for __main__.py and unnecessary #1293

– Codecov: round coverage up instead of down #1334

– Add DockerHub credentials to CI testing environment #1356

– Add DockerHub credentials to conda testing environment #1363

Warning:
Breaking Changes

• Renamed LabelLeakageDataCheck to TargetLeakageDataCheck #1319

• max_pipelines parameter has been removed from AutoMLSearch. Please use max_iterations
instead. #1264

• AutoMLSearch.search() will now log a warning if the input is not a Woodwork data structure
(pandas, numpy) #1299

• Make max_batches argument to AutoMLSearch.search public #1320

• Removed unused argument feature_types from AutoMLSearch.search #1062

v0.14.1 Sep. 29, 2020
• Enhancements

– Updated partial dependence methods to support calculating numeric columns in a dataset with
non-numeric columns #1150

– Added get_feature_names on OneHotEncoder #1193

– Added detect_problem_type to problem_type/utils.py to automatically detect the prob-
lem type given targets #1194

– Added LightGBM to AutoMLSearch #1199

– Updated scikit-learn and scikit-optimize to use latest versions - 0.23.2 and 0.8.1 respec-
tively #1141

– Added __str__ and __repr__ for pipelines and components #1218

– Included internal target check for both training and validation data in AutoMLSearch #1226

– Added ProblemTypes.all_problem_types helper to get list of supported problem types #1219

– Added DecisionTreeClassifier and DecisionTreeRegressor classes #1223

– Added ProblemTypes.all_problem_types helper to get list of supported problem types #1219

– DataChecks can now be parametrized by passing a list of DataCheck classes and a parameter
dictionary #1167

– Added first CV fold score as validation score in AutoMLSearch.rankings #1221

2100 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1357
https://github.com/alteryx/evalml/pull/1361
https://github.com/alteryx/evalml/pull/1256
https://github.com/alteryx/evalml/pull/1257
https://github.com/alteryx/evalml/pull/1247
https://github.com/alteryx/evalml/pull/1293
https://github.com/alteryx/evalml/pull/1334
https://github.com/alteryx/evalml/pull/1356
https://github.com/alteryx/evalml/pull/1363
https://github.com/alteryx/evalml/pull/1319
https://github.com/alteryx/evalml/pull/1264
https://github.com/alteryx/evalml/pull/1299
https://github.com/alteryx/evalml/pull/1320
https://github.com/alteryx/evalml/pull/1062
https://github.com/alteryx/evalml/pull/1150
https://github.com/alteryx/evalml/pull/1193
https://github.com/alteryx/evalml/pull/1194
https://github.com/alteryx/evalml/pull/1199
https://github.com/alteryx/evalml/pull/1141
https://github.com/alteryx/evalml/pull/1218
https://github.com/alteryx/evalml/pull/1226
https://github.com/alteryx/evalml/pull/1219
https://github.com/alteryx/evalml/pull/1223
https://github.com/alteryx/evalml/pull/1219
https://github.com/alteryx/evalml/pull/1167
https://github.com/alteryx/evalml/pull/1221

EvalML Documentation, Release 0.80.0

– Updated flake8 configuration to enable linting on __init__.py files #1234

– Refined make_pipeline_from_components implementation #1204

• Fixes
– Updated GitHub URL after migration to Alteryx GitHub org #1207

– Changed Problem Type enum to be more similar to the string name #1208

– Wrapped call to scikit-learn’s partial dependence method in a try/finally block #1232

• Changes
– Added allow_writing_files as a named argument to CatBoost estimators. #1202

– Added solver and multi_class as named arguments to LogisticRegressionClassifier
#1202

– Replaced pipeline’s ._transform method to evaluate all the preprocessing steps of a pipeline
with .compute_estimator_features #1231

– Changed default large dataset train/test splitting behavior #1205

• Documentation Changes
– Included description of how to access the component instances and features for pipeline user guide

#1163

– Updated API docs to refer to target as “target” instead of “labels” for non-classification tasks and
minor docs cleanup #1160

– Added Class Imbalance Data Check to api_reference.rst #1190 #1200

– Added pipeline properties to API reference #1209

– Clarified what the objective parameter in AutoML is used for in AutoML API reference and Au-
toML user guide #1222

– Updated API docs to include skopt.space.Categorical option for component hyperparameter
range definition #1228

– Added install documentation for libomp in order to use LightGBM on Mac #1233

– Improved description of max_iterations in documentation #1212

– Removed unused code from sphinx conf #1235

• Testing Changes

Warning:
Breaking Changes

• DefaultDataChecks now accepts a problem_type parameter that must be specified #1167

• Pipeline’s ._transform method to evaluate all the preprocessing steps of a pipeline has been replaced
with .compute_estimator_features #1231

• get_objectives has been renamed to get_core_objectives. This function will now return a list
of valid objective instances #1230

v0.13.2 Sep. 17, 2020
• Enhancements

2101

https://github.com/alteryx/evalml/pull/1234
https://github.com/alteryx/evalml/pull/1204
https://github.com/alteryx/evalml/pull/1207
https://github.com/alteryx/evalml/pull/1208
https://github.com/alteryx/evalml/pull/1232
https://github.com/alteryx/evalml/pull/1202
https://github.com/alteryx/evalml/pull/1202
https://github.com/alteryx/evalml/pull/1231
https://github.com/alteryx/evalml/pull/1205
https://github.com/alteryx/evalml/pull/1163
https://github.com/alteryx/evalml/pull/1160
https://github.com/alteryx/evalml/pull/1190
https://github.com/alteryx/evalml/pull/1200
https://github.com/alteryx/evalml/pull/1209
https://github.com/alteryx/evalml/pull/1222
https://github.com/alteryx/evalml/pull/1228
https://github.com/alteryx/evalml/pull/1233
https://github.com/alteryx/evalml/pull/1212
https://github.com/alteryx/evalml/pull/1235
https://github.com/alteryx/evalml/pull/1167
https://github.com/alteryx/evalml/pull/1231
https://github.com/alteryx/evalml/pull/1230

EvalML Documentation, Release 0.80.0

– Added output_format field to explain predictions functions #1107

– Modified get_objective and get_objectives to be able to return any objective in evalml.
objectives #1132

– Added a return_instance boolean parameter to get_objective #1132

– Added ClassImbalanceDataCheck to determine whether target imbalance falls below a given
threshold #1135

– Added label encoder to LightGBM for binary classification #1152

– Added labels for the row index of confusion matrix #1154

– Added AutoMLSearch object as another parameter in search callbacks #1156

– Added the corresponding probability threshold for each point displayed in graph_roc_curve
#1161

– Added __eq__ for ComponentBase and PipelineBase #1178

– Added support for multiclass classification for roc_curve #1164

– Added categories accessor to OneHotEncoder for listing the categories associated with a fea-
ture #1182

– Added utility function to create pipeline instances from a list of component instances #1176

• Fixes
– Fixed XGBoost column names for partial dependence methods #1104

– Removed dead code validating column type from TextFeaturizer #1122

– Fixed issue where Imputer cannot fit when there is None in a categorical or boolean column
#1144

– OneHotEncoder preserves the custom index in the input data #1146

– Fixed representation for ModelFamily #1165

– Removed duplicate nbsphinx dependency in dev-requirements.txt #1168

– Users can now pass in any valid kwargs to all estimators #1157

– Remove broken accessor OneHotEncoder.get_feature_names and unneeded base class #1179

– Removed LightGBM Estimator from AutoML models #1186

• Changes
– Pinned scikit-optimize version to 0.7.4 #1136

– Removed tqdm as a dependency #1177

– Added lightgbm version 3.0.0 to latest_dependency_versions.txt #1185

– Rename max_pipelines to max_iterations #1169

• Documentation Changes
– Fixed API docs for AutoMLSearch add_result_callback #1113

– Added a step to our release process for pushing our latest version to conda-forge #1118

– Added warning for missing ipywidgets dependency for using PipelineSearchPlots on Jupyter-
lab #1145

– Updated README.md example to load demo dataset #1151

2102 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1107
https://github.com/alteryx/evalml/pull/1132
https://github.com/alteryx/evalml/pull/1132
https://github.com/alteryx/evalml/pull/1135
https://github.com/alteryx/evalml/pull/1152
https://github.com/alteryx/evalml/pull/1154
https://github.com/alteryx/evalml/pull/1156
https://github.com/alteryx/evalml/pull/1161
https://github.com/alteryx/evalml/pull/1178
https://github.com/alteryx/evalml/pull/1164
https://github.com/alteryx/evalml/pull/1182
https://github.com/alteryx/evalml/pull/1176
https://github.com/alteryx/evalml/pull/1104
https://github.com/alteryx/evalml/pull/1122
https://github.com/alteryx/evalml/pull/1144
https://github.com/alteryx/evalml/pull/1146
https://github.com/alteryx/evalml/pull/1165
https://github.com/alteryx/evalml/pull/1168
https://github.com/alteryx/evalml/pull/1157
https://github.com/alteryx/evalml/pull/1179
https://github.com/alteryx/evalml/pull/1186
https://github.com/alteryx/evalml/pull/1136
https://github.com/alteryx/evalml/pull/1177
https://github.com/alteryx/evalml/pull/1185
https://github.com/alteryx/evalml/pull/1169
https://github.com/alteryx/evalml/pull/1113
https://github.com/alteryx/evalml/pull/1118
https://github.com/alteryx/evalml/pull/1145
https://github.com/alteryx/evalml/pull/1151

EvalML Documentation, Release 0.80.0

– Swapped mapping of breast cancer targets in model_understanding.ipynb #1170

• Testing Changes
– Added test confirming TextFeaturizer never outputs null values #1122

– Changed Python version of Update Dependencies action to 3.8.x #1137

– Fixed release notes check-in test for Update Dependencies actions #1172

Warning:
Breaking Changes

• get_objective will now return a class definition rather than an instance by default #1132

• Deleted OPTIONS dictionary in evalml.objectives.utils.py #1132

• If specifying an objective by string, the string must now match the objective’s name field, case-
insensitive #1132

• Passing “Cost Benefit Matrix”, “Fraud Cost”, “Lead Scoring”, “Mean Squared Log Error”,
“Recall”, “Recall Macro”, “Recall Micro”, “Recall Weighted”, or “Root Mean Squared Log Error”
to AutoMLSearch will now result in a ValueError rather than an ObjectiveNotFoundError
#1132

• Search callbacks start_iteration_callback and add_results_callback have changed to in-
clude a copy of the AutoMLSearch object as a third parameter #1156

• Deleted OneHotEncoder.get_feature_names method which had been broken for a while, in favor
of pipelines’ input_feature_names #1179

• Deleted empty base class CategoricalEncoder which OneHotEncoder component was inheriting
from #1176

• Results from roc_curve will now return as a list of dictionaries with each dictionary representing a
class #1164

• max_pipelines now raises a DeprecationWarning and will be removed in the next release.
max_iterations should be used instead. #1169

v0.13.1 Aug. 25, 2020
• Enhancements

– Added Cost-Benefit Matrix objective for binary classification #1038

– Split fill_value into categorical_fill_value and numeric_fill_value for Imputer
#1019

– Added explain_predictions and explain_predictions_best_worst for explaining mul-
tiple predictions with SHAP #1016

– Added new LSA component for text featurization #1022

– Added guide on installing with conda #1041

– Added a “cost-benefit curve” util method to graph cost-benefit matrix scores vs. binary classifica-
tion thresholds #1081

– Standardized error when calling transform/predict before fit for pipelines #1048

– Added percent_better_than_baseline to AutoML search rankings and full rankings table
#1050

2103

https://github.com/alteryx/evalml/pull/1170
https://github.com/alteryx/evalml/pull/1122
https://github.com/alteryx/evalml/pull/1137
https://github.com/alteryx/evalml/pull/1172
https://github.com/alteryx/evalml/pull/1132
https://github.com/alteryx/evalml/pull/1132
https://github.com/alteryx/evalml/pull/1132
https://github.com/alteryx/evalml/pull/1132
https://github.com/alteryx/evalml/pull/1156
https://github.com/alteryx/evalml/pull/1179
https://github.com/alteryx/evalml/pull/1176
https://github.com/alteryx/evalml/pull/1164
https://github.com/alteryx/evalml/pull/1169
https://github.com/alteryx/evalml/pull/1038
https://github.com/alteryx/evalml/pull/1019
https://github.com/alteryx/evalml/pull/1016
https://github.com/alteryx/evalml/pull/1022
https://github.com/alteryx/evalml/pull/1041
https://github.com/alteryx/evalml/pull/1081
https://github.com/alteryx/evalml/pull/1048
https://github.com/alteryx/evalml/pull/1050

EvalML Documentation, Release 0.80.0

– Added one-way partial dependence and partial dependence plots #1079

– Added “Feature Value” column to prediction explanation reports. #1064

– Added LightGBM classification estimator #1082, #1114

– Added max_batches parameter to AutoMLSearch #1087

• Fixes
– Updated TextFeaturizer component to no longer require an internet connection to run #1022

– Fixed non-deterministic element of TextFeaturizer transformations #1022

– Added a StandardScaler to all ElasticNet pipelines #1065

– Updated cost-benefit matrix to normalize score #1099

– Fixed logic in calculate_percent_difference so that it can handle negative values #1100

• Changes
– Added needs_fitting property to ComponentBase #1044

– Updated references to data types to use datatype lists defined in evalml.utils.gen_utils
#1039

– Remove maximum version limit for SciPy dependency #1051

– Moved all_components and other component importers into runtime methods #1045

– Consolidated graphing utility methods under evalml.utils.graph_utils #1060

– Made slight tweaks to how TextFeaturizer uses featuretools, and did some refactoring of
that and of LSA #1090

– Changed show_all_features parameter into importance_threshold, which allows for
thresholding feature importance #1097, #1103

• Documentation Changes
– Update setup.py URL to point to the github repo #1037

– Added tutorial for using the cost-benefit matrix objective #1088

– Updated model_understanding.ipynb to include documentation for using plotly on Jupyter
Lab #1108

• Testing Changes
– Refactor CircleCI tests to use matrix jobs (#1043)

– Added a test to check that all test directories are included in evalml package #1054

Warning:
Breaking Changes

• confusion_matrix and normalize_confusion_matrix have been moved to evalml.utils #1038

• All graph utility methods previously under evalml.pipelines.graph_utils have been moved to
evalml.utils.graph_utils #1060

v0.12.2 Aug. 6, 2020
• Enhancements

2104 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1079
https://github.com/alteryx/evalml/pull/1064
https://github.com/alteryx/evalml/pull/1082
https://github.com/alteryx/evalml/pull/1114
https://github.com/alteryx/evalml/pull/1087
https://github.com/alteryx/evalml/pull/1022
https://github.com/alteryx/evalml/pull/1022
https://github.com/alteryx/evalml/pull/1065
https://github.com/alteryx/evalml/pull/1099
https://github.com/alteryx/evalml/pull/1100
https://github.com/alteryx/evalml/pull/1044
https://github.com/alteryx/evalml/pull/1039
https://github.com/alteryx/evalml/pull/1051
https://github.com/alteryx/evalml/pull/1045
https://github.com/alteryx/evalml/pull/1060
https://github.com/alteryx/evalml/pull/1090
https://github.com/alteryx/evalml/pull/1097
https://github.com/alteryx/evalml/pull/1103
https://github.com/alteryx/evalml/pull/1037
https://github.com/alteryx/evalml/pull/1088
https://github.com/alteryx/evalml/pull/1108
https://github.com/alteryx/evalml/pull/1043
https://github.com/alteryx/evalml/pull/1054
https://github.com/alteryx/evalml/pull/1038
https://github.com/alteryx/evalml/pull/1060

EvalML Documentation, Release 0.80.0

– Add save/load method to components #1023

– Expose pickle protocol as optional arg to save/load #1023

– Updated estimators used in AutoML to include ExtraTrees and ElasticNet estimators #1030

• Fixes

• Changes
– Removed DeprecationWarning for SimpleImputer #1018

• Documentation Changes
– Add note about version numbers to release process docs #1034

• Testing Changes
– Test files are now included in the evalml package #1029

v0.12.0 Aug. 3, 2020
• Enhancements

– Added string and categorical targets support for binary and multiclass pipelines and check for
numeric targets for DetectLabelLeakage data check #932

– Added clear exception for regression pipelines if target datatype is string or categorical #960

– Added target column names and class labels in predict and predict_proba output for pipelines
#951

– Added _compute_shap_values and normalize_values to pipelines/explanations mod-
ule #958

– Added explain_prediction feature which explains single predictions with SHAP #974

– Added Imputer to allow different imputation strategies for numerical and categorical dtypes #991

– Added support for configuring logfile path using env var, and don’t create logger if there are filesys-
tem errors #975

– Updated catboost estimators’ default parameters and automl hyperparameter ranges to speed up
fit time #998

• Fixes
– Fixed ReadtheDocs warning failure regarding embedded gif #943

– Removed incorrect parameter passed to pipeline classes in _add_baseline_pipelines #941

– Added universal error for calling predict, predict_proba, transform, and
feature_importances before fitting #969, #994

– Made TextFeaturizer component and pip dependencies featuretools and nlp_primitives
optional #976

– Updated imputation strategy in automl to no longer limit impute strategy to most_frequent for
all features if there are any categorical columns #991

– Fixed UnboundLocalError for cv_pipeline when automl search errors #996

– Fixed Imputer to reset dataframe index to preserve behavior expected from SimpleImputer
#1009

• Changes
– Moved get_estimators to evalml.pipelines.components.utils #934

2105

https://github.com/alteryx/evalml/pull/1023
https://github.com/alteryx/evalml/pull/1023
https://github.com/alteryx/evalml/pull/1030
https://github.com/alteryx/evalml/pull/1018
https://github.com/alteryx/evalml/pull/1034
https://github.com/alteryx/evalml/pull/1029
https://github.com/alteryx/evalml/pull/932
https://github.com/alteryx/evalml/pull/960
https://github.com/alteryx/evalml/pull/951
https://github.com/alteryx/evalml/pull/958
https://github.com/alteryx/evalml/pull/974
https://github.com/alteryx/evalml/pull/991
https://github.com/alteryx/evalml/pull/975
https://github.com/alteryx/evalml/pull/998
https://github.com/alteryx/evalml/pull/943
https://github.com/alteryx/evalml/pull/941
https://github.com/alteryx/evalml/pull/969
https://github.com/alteryx/evalml/pull/994
https://github.com/alteryx/evalml/pull/976
https://github.com/alteryx/evalml/pull/991
https://github.com/alteryx/evalml/pull/996
https://github.com/alteryx/evalml/pull/1009
https://github.com/alteryx/evalml/pull/934

EvalML Documentation, Release 0.80.0

– Modified Pipelines to raise PipelineScoreError when they encounter an error during scoring
#936

– Moved evalml.model_families.list_model_families to evalml.pipelines.
components.allowed_model_families #959

– Renamed DateTimeFeaturization to DateTimeFeaturizer #977

– Added check to stop search and raise an error if all pipelines in a batch return NaN scores #1015

• Documentation Changes
– Updated README.md #963

– Reworded message when errors are returned from data checks in search #982

– Added section on understanding model predictions with explain_prediction to User Guide
#981

– Added a section to the user guide and api reference about how XGBoost and CatBoost are not
fully supported. #992

– Added custom components section in user guide #993

– Updated FAQ section formatting #997

– Updated release process documentation #1003

• Testing Changes
– Moved predict_proba and predict tests regarding string / categorical targets to
test_pipelines.py #972

– Fixed dependency update bot by updating python version to 3.7 to avoid frequent github version
updates #1002

Warning:
Breaking Changes

• get_estimators has been moved to evalml.pipelines.components.utils (previously was un-
der evalml.pipelines.utils) #934

• Removed the raise_errors flag in AutoML search. All errors during pipeline evaluation will be
caught and logged. #936

• evalml.model_families.list_model_families has been moved to evalml.pipelines.
components.allowed_model_families #959

• TextFeaturizer: the featuretools and nlp_primitives packages must be installed after in-
stalling evalml in order to use this component #976

• Renamed DateTimeFeaturization to DateTimeFeaturizer #977

v0.11.2 July 16, 2020
• Enhancements

– Added NoVarianceDataCheck to DefaultDataChecks #893

– Added text processing and featurization component TextFeaturizer #913, #924

– Added additional checks to InvalidTargetDataCheck to handle invalid target data types #929

– AutoMLSearch will now handle KeyboardInterrupt and prompt user for confirmation #915

2106 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/936
https://github.com/alteryx/evalml/pull/959
https://github.com/alteryx/evalml/pull/977
https://github.com/alteryx/evalml/pull/1015
https://github.com/alteryx/evalml/pull/963
https://github.com/alteryx/evalml/pull/982
https://github.com/alteryx/evalml/pull/981
https://github.com/alteryx/evalml/pull/992
https://github.com/alteryx/evalml/pull/993
https://github.com/alteryx/evalml/pull/997
https://github.com/alteryx/evalml/pull/1003
https://github.com/alteryx/evalml/pull/972
https://github.com/alteryx/evalml/pull/1002
https://github.com/alteryx/evalml/pull/934
https://github.com/alteryx/evalml/pull/936
https://github.com/alteryx/evalml/pull/959
https://github.com/alteryx/evalml/pull/976
https://github.com/alteryx/evalml/pull/977
https://github.com/alteryx/evalml/pull/893
https://github.com/alteryx/evalml/pull/913
https://github.com/alteryx/evalml/pull/924
https://github.com/alteryx/evalml/pull/929
https://github.com/alteryx/evalml/pull/915

EvalML Documentation, Release 0.80.0

• Fixes
– Makes automl results a read-only property #919

• Changes
– Deleted static pipelines and refactored tests involving static pipelines, removed
all_pipelines() and get_pipelines() #904

– Moved list_model_families to evalml.model_family.utils #903

– Updated all_pipelines, all_estimators, all_components to use the same mechanism for
dynamically generating their elements #898

– Rename master branch to main #918

– Add pypi release github action #923

– Updated AutoMLSearch.search stdout output and logging and removed tqdm progress bar #921

– Moved automl config checks previously in search() to init #933

• Documentation Changes
– Reorganized and rewrote documentation #937

– Updated to use pydata sphinx theme #937

– Updated docs to use release_notes instead of changelog #942

• Testing Changes
– Cleaned up fixture names and usages in tests #895

Warning:
Breaking Changes

• list_model_families has been moved to evalml.model_family.utils (previously was under
evalml.pipelines.utils) #903

• get_estimators has been moved to evalml.pipelines.components.utils (previously was un-
der evalml.pipelines.utils) #934

• Static pipeline definitions have been removed, but similar pipelines can still be constructed via creating
an instance of PipelineBase #904

• all_pipelines() and get_pipelines() utility methods have been removed #904

v0.11.0 June 30, 2020
• Enhancements

– Added multiclass support for ROC curve graphing #832

– Added preprocessing component to drop features whose percentage of NaN values exceeds a spec-
ified threshold #834

– Added data check to check for problematic target labels #814

– Added PerColumnImputer that allows imputation strategies per column #824

– Added transformer to drop specific columns #827

– Added support for categories, handle_error, and drop parameters in OneHotEncoder #830
#897

2107

https://github.com/alteryx/evalml/pull/919
https://github.com/alteryx/evalml/pull/904
https://github.com/alteryx/evalml/pull/903
https://github.com/alteryx/evalml/pull/898
https://github.com/alteryx/evalml/pull/918
https://github.com/alteryx/evalml/pull/923
https://github.com/alteryx/evalml/pull/921
https://github.com/alteryx/evalml/pull/933
https://github.com/alteryx/evalml/pull/937
https://github.com/alteryx/evalml/pull/937
https://github.com/alteryx/evalml/pull/942
https://github.com/alteryx/evalml/pull/895
https://github.com/alteryx/evalml/pull/903
https://github.com/alteryx/evalml/pull/934
https://github.com/alteryx/evalml/pull/904
https://github.com/alteryx/evalml/pull/904
https://github.com/alteryx/evalml/pull/832
https://github.com/alteryx/evalml/pull/834
https://github.com/alteryx/evalml/pull/814
https://github.com/alteryx/evalml/pull/824
https://github.com/alteryx/evalml/pull/827
https://github.com/alteryx/evalml/pull/830
https://github.com/alteryx/evalml/pull/897

EvalML Documentation, Release 0.80.0

– Added preprocessing component to handle DateTime columns featurization #838

– Added ability to clone pipelines and components #842

– Define getter method for component parameters #847

– Added utility methods to calculate and graph permutation importances #860, #880

– Added new utility functions necessary for generating dynamic preprocessing pipelines #852

– Added kwargs to all components #863

– Updated AutoSearchBase to use dynamically generated preprocessing pipelines #870

– Added SelectColumns transformer #873

– Added ability to evaluate additional pipelines for automl search #874

– Added default_parameters class property to components and pipelines #879

– Added better support for disabling data checks in automl search #892

– Added ability to save and load AutoML objects to file #888

– Updated AutoSearchBase.get_pipelines to return an untrained pipeline instance #876

– Saved learned binary classification thresholds in automl results cv data dict #876

• Fixes
– Fixed bug where SimpleImputer cannot handle dropped columns #846

– Fixed bug where PerColumnImputer cannot handle dropped columns #855

– Enforce requirement that builtin components save all inputted values in their parameters dict #847

– Don’t list base classes in all_components output #847

– Standardize all components to output pandas data structures, and accept either pandas or numpy
#853

– Fixed rankings and full_rankings error when search has not been run #894

• Changes
– Update all_pipelines and all_components to try initializing pipelines/components, and on

failure exclude them #849

– Refactor handle_components to handle_components_class, standardize to ComponentBase
subclass instead of instance #850

– Refactor “blacklist”/”whitelist” to “allow”/”exclude” lists #854

– Replaced AutoClassificationSearch and AutoRegressionSearch with AutoMLSearch
#871

– Renamed feature_importances and permutation_importances methods to use singular names (fea-
ture_importance and permutation_importance) #883

– Updated automl default data splitter to train/validation split for large datasets #877

– Added open source license, update some repo metadata #887

– Removed dead code in _get_preprocessing_components #896

• Documentation Changes
– Fix some typos and update the EvalML logo #872

• Testing Changes

2108 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/838
https://github.com/alteryx/evalml/pull/842
https://github.com/alteryx/evalml/pull/847
https://github.com/alteryx/evalml/pull/860
https://github.com/alteryx/evalml/pull/880
https://github.com/alteryx/evalml/pull/852
https://github.com/alteryx/evalml/pull/863
https://github.com/alteryx/evalml/pull/870
https://github.com/alteryx/evalml/pull/873
https://github.com/alteryx/evalml/pull/874
https://github.com/alteryx/evalml/pull/879
https://github.com/alteryx/evalml/pull/892
https://github.com/alteryx/evalml/pull/888
https://github.com/alteryx/evalml/pull/876
https://github.com/alteryx/evalml/pull/876
https://github.com/alteryx/evalml/pull/846
https://github.com/alteryx/evalml/pull/855
https://github.com/alteryx/evalml/pull/847
https://github.com/alteryx/evalml/pull/847
https://github.com/alteryx/evalml/pull/853
https://github.com/alteryx/evalml/pull/894
https://github.com/alteryx/evalml/pull/849
https://github.com/alteryx/evalml/pull/850
https://github.com/alteryx/evalml/pull/854
https://github.com/alteryx/evalml/pull/871
https://github.com/alteryx/evalml/pull/883
https://github.com/alteryx/evalml/pull/877
https://github.com/alteryx/evalml/pull/887
https://github.com/alteryx/evalml/pull/896
https://github.com/alteryx/evalml/pull/872

EvalML Documentation, Release 0.80.0

– Update the changelog check job to expect the new branching pattern for the deps update bot #836

– Check that all components output pandas datastructures, and can accept either pandas or numpy
#853

– Replaced AutoClassificationSearch and AutoRegressionSearch with AutoMLSearch
#871

Warning:
Breaking Changes

• Pipelines’ static component_graph field must contain either ComponentBase subclasses or str, in-
stead of ComponentBase subclass instances #850

• Rename handle_component to handle_component_class. Now standardizes to ComponentBase
subclasses instead of ComponentBase subclass instances #850

• Renamed automl’s cv argument to data_split #877

• Pipelines’ and classifiers’ feature_importances is renamed feature_importance,
graph_feature_importances is renamed graph_feature_importance #883

• Passing data_checks=None to automl search will not perform any data checks as opposed to default
checks. #892

• Pipelines to search for in AutoML are now determined automatically, rather than using the statically-
defined pipeline classes. #870

• Updated AutoSearchBase.get_pipelines to return an untrained pipeline instance, instead of one
which happened to be trained on the final cross-validation fold #876

v0.10.0 May 29, 2020
• Enhancements

– Added baseline models for classification and regression, add functionality to calculate baseline
models before searching in AutoML #746

– Port over highly-null guardrail as a data check and define DefaultDataChecks and
DisableDataChecks classes #745

– Update Tuner classes to work directly with pipeline parameters dicts instead of flat parameter lists
#779

– Add Elastic Net as a pipeline option #812

– Added new Pipeline option ExtraTrees #790

– Added precicion-recall curve metrics and plot for binary classification problems in evalml.
pipeline.graph_utils #794

– Update the default automl algorithm to search in batches, starting with default parameters for each
pipeline and iterating from there #793

– Added AutoMLAlgorithm class and IterativeAlgorithm impl, separated from
AutoSearchBase #793

• Fixes
– Update pipeline score to return nan score for any objective which throws an exception during

scoring #787

2109

https://github.com/alteryx/evalml/pull/836
https://github.com/alteryx/evalml/pull/853
https://github.com/alteryx/evalml/pull/871
https://github.com/alteryx/evalml/pull/850
https://github.com/alteryx/evalml/pull/850
https://github.com/alteryx/evalml/pull/877
https://github.com/alteryx/evalml/pull/883
https://github.com/alteryx/evalml/pull/892
https://github.com/alteryx/evalml/pull/870
https://github.com/alteryx/evalml/pull/876
https://github.com/alteryx/evalml/pull/746
https://github.com/alteryx/evalml/pull/745
https://github.com/alteryx/evalml/pull/779
https://github.com/alteryx/evalml/pull/812
https://github.com/alteryx/evalml/pull/790
https://github.com/alteryx/evalml/pull/794
https://github.com/alteryx/evalml/pull/793
https://github.com/alteryx/evalml/pull/793
https://github.com/alteryx/evalml/pull/787

EvalML Documentation, Release 0.80.0

– Fixed bug introduced in #787 where binary classification metrics requiring predicted probabilities
error in scoring #798

– CatBoost and XGBoost classifiers and regressors can no longer have a learning rate of 0 #795

• Changes
– Cleanup pipeline score code, and cleanup codecov #711

– Remove pass for abstract methods for codecov #730

– Added __str__ for AutoSearch object #675

– Add util methods to graph ROC and confusion matrix #720

– Refactor AutoBase to AutoSearchBase #758

– Updated AutoBase with data_checks parameter, removed previous detect_label_leakage
parameter, and added functionality to run data checks before search in AutoML #765

– Updated our logger to use Python’s logging utils #763

– Refactor most of AutoSearchBase._do_iteration impl into AutoSearchBase._evaluate
#762

– Port over all guardrails to use the new DataCheck API #789

– Expanded import_or_raise to catch all exceptions #759

– Adds RMSE, MSLE, RMSLE as standard metrics #788

– Don’t allow Recall to be used as an objective for AutoML #784

– Removed feature selection from pipelines #819

– Update default estimator parameters to make automl search faster and more accurate #793

• Documentation Changes
– Add instructions to freeze master on release.md #726

– Update release instructions with more details #727 #733

– Add objective base classes to API reference #736

– Fix components API to match other modules #747

• Testing Changes
– Delete codecov yml, use codecov.io’s default #732

– Added unit tests for fraud cost, lead scoring, and standard metric objectives #741

– Update codecov client #782

– Updated AutoBase __str__ test to include no parameters case #783

– Added unit tests for ExtraTrees pipeline #790

– If codecov fails to upload, fail build #810

– Updated Python version of dependency action #816

– Update the dependency update bot to use a suffix when creating branches #817

Warning:
Breaking Changes

2110 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/787
https://github.com/alteryx/evalml/pull/798
https://github.com/alteryx/evalml/pull/795
https://github.com/alteryx/evalml/pull/711
https://github.com/alteryx/evalml/pull/730
https://github.com/alteryx/evalml/pull/675
https://github.com/alteryx/evalml/pull/720
https://github.com/alteryx/evalml/pull/758
https://github.com/alteryx/evalml/pull/765
https://github.com/alteryx/evalml/pull/763
https://github.com/alteryx/evalml/pull/762
https://github.com/alteryx/evalml/pull/789
https://github.com/alteryx/evalml/pull/759
https://github.com/alteryx/evalml/pull/788
https://github.com/alteryx/evalml/pull/784
https://github.com/alteryx/evalml/pull/819
https://github.com/alteryx/evalml/pull/793
https://github.com/alteryx/evalml/pull/726
https://github.com/alteryx/evalml/pull/727
https://github.com/alteryx/evalml/pull/733
https://github.com/alteryx/evalml/pull/736
https://github.com/alteryx/evalml/pull/747
https://github.com/alteryx/evalml/pull/732
https://github.com/alteryx/evalml/pull/741
https://github.com/alteryx/evalml/pull/782
https://github.com/alteryx/evalml/pull/783
https://github.com/alteryx/evalml/pull/790
https://github.com/alteryx/evalml/pull/810
https://github.com/alteryx/evalml/pull/816
https://github.com/alteryx/evalml/pull/817

EvalML Documentation, Release 0.80.0

• The detect_label_leakage parameter for AutoML classes has been removed and replaced by a
data_checks parameter #765

• Moved ROC and confusion matrix methods from evalml.pipeline.plot_utils to evalml.
pipeline.graph_utils #720

• Tuner classes require a pipeline hyperparameter range dict as an init arg instead of a space definition
#779

• Tuner.propose and Tuner.add work directly with pipeline parameters dicts instead of flat parameter
lists #779

• PipelineBase.hyperparameters and custom_hyperparameters use pipeline parameters dict for-
mat instead of being represented as a flat list #779

• All guardrail functions previously under evalml.guardrails.utils will be removed and replaced
by data checks #789

• Recall disallowed as an objective for AutoML #784

• AutoSearchBase parameter tuner has been renamed to tuner_class #793

• AutoSearchBase parameter possible_pipelines and possible_model_families have been re-
named to allowed_pipelines and allowed_model_families #793

v0.9.0 Apr. 27, 2020
• Enhancements

– Added Accuracy as an standard objective #624

– Added verbose parameter to load_fraud #560

– Added Balanced Accuracy metric for binary, multiclass #612 #661

– Added XGBoost regressor and XGBoost regression pipeline #666

– Added Accuracy metric for multiclass #672

– Added objective name in AutoBase.describe_pipeline #686

– Added DataCheck and DataChecks, Message classes and relevant subclasses #739

• Fixes
– Removed direct access to cls.component_graph #595

– Add testing files to .gitignore #625

– Remove circular dependencies from Makefile #637

– Add error case for normalize_confusion_matrix() #640

– Fixed XGBoostClassifier and XGBoostRegressor bug with feature names that contain [,], or
< #659

– Update make_pipeline_graph to not accidentally create empty file when testing if path is valid
#649

– Fix pip installation warning about docsutils version, from boto dependency #664

– Removed zero division warning for F1/precision/recall metrics #671

– Fixed summary for pipelines without estimators #707

• Changes

2111

https://github.com/alteryx/evalml/pull/765
https://github.com/alteryx/evalml/pull/720
https://github.com/alteryx/evalml/pull/779
https://github.com/alteryx/evalml/pull/779
https://github.com/alteryx/evalml/pull/779
https://github.com/alteryx/evalml/pull/789
https://github.com/alteryx/evalml/pull/784
https://github.com/alteryx/evalml/pull/793
https://github.com/alteryx/evalml/pull/793
https://github.com/alteryx/evalml/pull/624
https://github.com/alteryx/evalml/pull/560
https://github.com/alteryx/evalml/pull/612
https://github.com/alteryx/evalml/pull/661
https://github.com/alteryx/evalml/pull/666
https://github.com/alteryx/evalml/pull/672
https://github.com/alteryx/evalml/pull/686
https://github.com/alteryx/evalml/pull/739
https://github.com/alteryx/evalml/pull/595
https://github.com/alteryx/evalml/pull/625
https://github.com/alteryx/evalml/pull/637
https://github.com/alteryx/evalml/pull/640
https://github.com/alteryx/evalml/pull/659
https://github.com/alteryx/evalml/pull/649
https://github.com/alteryx/evalml/pull/664
https://github.com/alteryx/evalml/pull/671
https://github.com/alteryx/evalml/pull/707

EvalML Documentation, Release 0.80.0

– Updated default objective for binary/multiclass classification to log loss #613

– Created classification and regression pipeline subclasses and removed objective as an attribute of
pipeline classes #405

– Changed the output of score to return one dictionary #429

– Created binary and multiclass objective subclasses #504

– Updated objectives API #445

– Removed call to get_plot_data from AutoML #615

– Set raise_error to default to True for AutoML classes #638

– Remove unnecessary “u” prefixes on some unicode strings #641

– Changed one-hot encoder to return uint8 dtypes instead of ints #653

– Pipeline _name field changed to custom_name #650

– Removed graphs.py and moved methods into PipelineBase #657, #665

– Remove s3fs as a dev dependency #664

– Changed requirements-parser to be a core dependency #673

– Replace supported_problem_types field on pipelines with problem_type attribute on base
classes #678

– Changed AutoML to only show best results for a given pipeline template in rankings, added
full_rankings property to show all #682

– Update ModelFamily values: don’t list xgboost/catboost as classifiers now that we have regression
pipelines for them #677

– Changed AutoML’s describe_pipeline to get problem type from pipeline instead #685

– Standardize import_or_raise error messages #683

– Updated argument order of objectives to align with sklearn’s #698

– Renamed pipeline.feature_importance_graph to pipeline.
graph_feature_importances #700

– Moved ROC and confusion matrix methods to evalml.pipelines.plot_utils #704

– Renamed MultiClassificationObjective to MulticlassClassificationObjective, to
align with pipeline naming scheme #715

• Documentation Changes
– Fixed some sphinx warnings #593

– Fixed docstring for AutoClassificationSearch with correct command #599

– Limit readthedocs formats to pdf, not htmlzip and epub #594 #600

– Clean up objectives API documentation #605

– Fixed function on Exploring search results page #604

– Update release process doc #567

– AutoClassificationSearch and AutoRegressionSearch show inherited methods in API
reference #651

– Fixed improperly formatted code in breaking changes for changelog #655

2112 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/613
https://github.com/alteryx/evalml/pull/405
https://github.com/alteryx/evalml/pull/429
https://github.com/alteryx/evalml/pull/504
https://github.com/alteryx/evalml/pull/445
https://github.com/alteryx/evalml/pull/615
https://github.com/alteryx/evalml/pull/638
https://github.com/alteryx/evalml/pull/641
https://github.com/alteryx/evalml/pull/653
https://github.com/alteryx/evalml/pull/650
https://github.com/alteryx/evalml/pull/657
https://github.com/alteryx/evalml/pull/665
https://github.com/alteryx/evalml/pull/664
https://github.com/alteryx/evalml/pull/673
https://github.com/alteryx/evalml/pull/678
https://github.com/alteryx/evalml/pull/682
https://github.com/alteryx/evalml/pull/677
https://github.com/alteryx/evalml/pull/685
https://github.com/alteryx/evalml/pull/683
https://github.com/alteryx/evalml/pull/698
https://github.com/alteryx/evalml/pull/700
https://github.com/alteryx/evalml/pull/704
https://github.com/alteryx/evalml/pull/715
https://github.com/alteryx/evalml/pull/593
https://github.com/alteryx/evalml/pull/599
https://github.com/alteryx/evalml/pull/594
https://github.com/alteryx/evalml/pull/600
https://github.com/alteryx/evalml/pull/605
https://github.com/alteryx/evalml/pull/604
https://github.com/alteryx/evalml/pull/567
https://github.com/alteryx/evalml/pull/651
https://github.com/alteryx/evalml/pull/655

EvalML Documentation, Release 0.80.0

– Added configuration to treat Sphinx warnings as errors #660

– Removed separate plotting section for pipelines in API reference #657, #665

– Have leads example notebook load S3 files using https, so we can delete s3fs dev dependency #664

– Categorized components in API reference and added descriptions for each category #663

– Fixed Sphinx warnings about BalancedAccuracy objective #669

– Updated API reference to include missing components and clean up pipeline docstrings #689

– Reorganize API ref, and clarify pipeline sub-titles #688

– Add and update preprocessing utils in API reference #687

– Added inheritance diagrams to API reference #695

– Documented which default objective AutoML optimizes for #699

– Create seperate install page #701

– Include more utils in API ref, like import_or_raise #704

– Add more color to pipeline documentation #705

• Testing Changes
– Matched install commands of check_latest_dependencies test and it’s GitHub action #578

– Added Github app to auto assign PR author as assignee #477

– Removed unneeded conda installation of xgboost in windows checkin tests #618

– Update graph tests to always use tmpfile dir #649

– Changelog checkin test workaround for release PRs: If ‘future release’ section is empty of PR refs,
pass check #658

– Add changelog checkin test exception for dep-update branch #723

Warning: Breaking Changes
• Pipelines will now no longer take an objective parameter during instantiation, and will no longer have an

objective attribute.

• fit() and predict() now use an optional objective parameter, which is only used in binary classification
pipelines to fit for a specific objective.

• score() will now use a required objectives parameter that is used to determine all the objectives to score
on. This differs from the previous behavior, where the pipeline’s objective was scored on regardless.

• score() will now return one dictionary of all objective scores.

• ROC and ConfusionMatrix plot methods via Auto(*).plot have been removed by #615 and are replaced
by roc_curve and confusion_matrix in evamlm.pipelines.plot_utils in #704

• normalize_confusion_matrix has been moved to evalml.pipelines.plot_utils #704

• Pipelines _name field changed to custom_name

• Pipelines supported_problem_types field is removed because it is no longer necessary #678

• Updated argument order of objectives’ objective_function to align with sklearn #698

• pipeline.feature_importance_graph has been renamed to pipeline.
graph_feature_importances in #700

2113

https://github.com/alteryx/evalml/pull/660
https://github.com/alteryx/evalml/pull/657
https://github.com/alteryx/evalml/pull/665
https://github.com/alteryx/evalml/pull/664
https://github.com/alteryx/evalml/pull/663
https://github.com/alteryx/evalml/pull/669
https://github.com/alteryx/evalml/pull/689
https://github.com/alteryx/evalml/pull/688
https://github.com/alteryx/evalml/pull/687
https://github.com/alteryx/evalml/pull/695
https://github.com/alteryx/evalml/pull/699
https://github.com/alteryx/evalml/pull/701
https://github.com/alteryx/evalml/pull/704
https://github.com/alteryx/evalml/pull/705
https://github.com/alteryx/evalml/pull/578
https://github.com/alteryx/evalml/pull/477
https://github.com/alteryx/evalml/pull/618
https://github.com/alteryx/evalml/pull/649
https://github.com/alteryx/evalml/pull/658
https://github.com/alteryx/evalml/pull/723
https://github.com/alteryx/evalml/pull/615
https://github.com/alteryx/evalml/pull/704
https://github.com/alteryx/evalml/pull/704
https://github.com/alteryx/evalml/pull/678
https://github.com/alteryx/evalml/pull/698
https://github.com/alteryx/evalml/pull/700

EvalML Documentation, Release 0.80.0

• Removed unsupported MSLE objective #704

v0.8.0 Apr. 1, 2020
• Enhancements

– Add normalization option and information to confusion matrix #484

– Add util function to drop rows with NaN values #487

– Renamed PipelineBase.name as PipelineBase.summary and redefined PipelineBase.
name as class property #491

– Added access to parameters in Pipelines with PipelineBase.parameters (used to be return of
PipelineBase.describe) #501

– Added fill_value parameter for SimpleImputer #509

– Added functionality to override component hyperparameters and made pipelines take hyper-
paremeters from components #516

– Allow numpy.random.RandomState for random_state parameters #556

• Fixes
– Removed unused dependency matplotlib, and move category_encoders to test reqs #572

• Changes
– Undo version cap in XGBoost placed in #402 and allowed all released of XGBoost #407

– Support pandas 1.0.0 #486

– Made all references to the logger static #503

– Refactored model_type parameter for components and pipelines to model_family #507

– Refactored problem_types for pipelines and components into supported_problem_types
#515

– Moved pipelines/utils.save_pipeline and pipelines/utils.load_pipeline to
PipelineBase.save and PipelineBase.load #526

– Limit number of categories encoded by OneHotEncoder #517

• Documentation Changes
– Updated API reference to remove PipelinePlot and added moved PipelineBase plotting

methods #483

– Add code style and github issue guides #463 #512

– Updated API reference for to surface class variables for pipelines and components #537

– Fixed README documentation link #535

– Unhid PR references in changelog #656

• Testing Changes
– Added automated dependency check PR #482, #505

– Updated automated dependency check comment #497

– Have build_docs job use python executor, so that env vars are set properly #547

2114 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/704
https://github.com/alteryx/evalml/pull/484
https://github.com/alteryx/evalml/pull/487
https://github.com/alteryx/evalml/pull/491
https://github.com/alteryx/evalml/pull/501
https://github.com/alteryx/evalml/pull/509
https://github.com/alteryx/evalml/pull/516
https://github.com/alteryx/evalml/pull/556
https://github.com/alteryx/evalml/pull/572
https://github.com/alteryx/evalml/pull/402
https://github.com/alteryx/evalml/pull/407
https://github.com/alteryx/evalml/pull/486
https://github.com/alteryx/evalml/pull/503
https://github.com/alteryx/evalml/pull/507
https://github.com/alteryx/evalml/pull/515
https://github.com/alteryx/evalml/pull/526
https://github.com/alteryx/evalml/pull/517
https://github.com/alteryx/evalml/pull/483
https://github.com/alteryx/evalml/pull/463
https://github.com/alteryx/evalml/pull/512
https://github.com/alteryx/evalml/pull/537
https://github.com/alteryx/evalml/pull/535
https://github.com/alteryx/evalml/pull/656
https://github.com/alteryx/evalml/pull/482
https://github.com/alteryx/evalml/pull/505
https://github.com/alteryx/evalml/pull/497
https://github.com/alteryx/evalml/pull/547

EvalML Documentation, Release 0.80.0

– Added simple test to make sure OneHotEncoder’s top_n works with large number of categories
#552

– Run windows unit tests on PRs #557

Warning: Breaking Changes
• AutoClassificationSearch and AutoRegressionSearch’s model_types parameter has been refac-

tored into allowed_model_families

• ModelTypes enum has been changed to ModelFamily

• Components and Pipelines now have a model_family field instead of model_type

• get_pipelines utility function now accepts model_families as an argument instead of model_types

• PipelineBase.name no longer returns structure of pipeline and has been replaced by PipelineBase.
summary

• PipelineBase.problem_types and Estimator.problem_types has been renamed to
supported_problem_types

• pipelines/utils.save_pipeline and pipelines/utils.load_pipelinemoved to PipelineBase.
save and PipelineBase.load

v0.7.0 Mar. 9, 2020
• Enhancements

– Added emacs buffers to .gitignore #350

– Add CatBoost (gradient-boosted trees) classification and regression components and pipelines
#247

– Added Tuner abstract base class #351

– Added n_jobs as parameter for AutoClassificationSearch and AutoRegressionSearch
#403

– Changed colors of confusion matrix to shades of blue and updated axis order to match scikit-learn’s
#426

– Added PipelineBase .graph and .feature_importance_graph methods, moved from pre-
vious location #423

– Added support for python 3.8 #462

• Fixes
– Fixed ROC and confusion matrix plots not being calculated if user passed own addi-

tional_objectives #276

– Fixed ReadtheDocs FileNotFoundError exception for fraud dataset #439

• Changes
– Added n_estimators as a tunable parameter for XGBoost #307

– Remove unused parameter ObjectiveBase.fit_needs_proba #320

– Remove extraneous parameter component_type from all components #361

– Remove unused rankings.csv file #397

– Downloaded demo and test datasets so unit tests can run offline #408

2115

https://github.com/alteryx/evalml/pull/552
https://github.com/alteryx/evalml/pull/557
https://github.com/alteryx/evalml/pull/350
https://github.com/alteryx/evalml/pull/247
https://github.com/alteryx/evalml/pull/351
https://github.com/alteryx/evalml/pull/403
https://github.com/alteryx/evalml/pull/426
https://github.com/alteryx/evalml/pull/423
https://github.com/alteryx/evalml/pull/462
https://github.com/alteryx/evalml/pull/276
https://github.com/alteryx/evalml/pull/439
https://github.com/alteryx/evalml/pull/307
https://github.com/alteryx/evalml/pull/320
https://github.com/alteryx/evalml/pull/361
https://github.com/alteryx/evalml/pull/397
https://github.com/alteryx/evalml/pull/408

EvalML Documentation, Release 0.80.0

– Remove _needs_fitting attribute from Components #398

– Changed plot.feature_importance to show only non-zero feature importances by default, added
optional parameter to show all #413

– Refactored PipelineBase to take in parameter dictionary and moved pipeline metadata to class
attribute #421

– Dropped support for Python 3.5 #438

– Removed unused apply.py file #449

– Clean up requirements.txt to remove unused deps #451

– Support installation without all required dependencies #459

• Documentation Changes
– Update release.md with instructions to release to internal license key #354

• Testing Changes
– Added tests for utils (and moved current utils to gen_utils) #297

– Moved XGBoost install into it’s own separate step on Windows using Conda #313

– Rewind pandas version to before 1.0.0, to diagnose test failures for that version #325

– Added dependency update checkin test #324

– Rewind XGBoost version to before 1.0.0 to diagnose test failures for that version #402

– Update dependency check to use a whitelist #417

– Update unit test jobs to not install dev deps #455

Warning: Breaking Changes
• Python 3.5 will not be actively supported.

v0.6.0 Dec. 16, 2019
• Enhancements

– Added ability to create a plot of feature importances #133

– Add early stopping to AutoML using patience and tolerance parameters #241

– Added ROC and confusion matrix metrics and plot for classification problems and introduce
PipelineSearchPlots class #242

– Enhanced AutoML results with search order #260

– Added utility function to show system and environment information #300

• Fixes
– Lower botocore requirement #235

– Fixed decision_function calculation for FraudCost objective #254

– Fixed return value of Recall metrics #264

– Components return self on fit #289

• Changes
– Renamed automl classes to AutoRegressionSearch and AutoClassificationSearch #287

2116 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/398
https://github.com/alteryx/evalml/pull/413
https://github.com/alteryx/evalml/pull/421
https://github.com/alteryx/evalml/pull/438
https://github.com/alteryx/evalml/pull/449
https://github.com/alteryx/evalml/pull/451
https://github.com/alteryx/evalml/pull/459
https://github.com/alteryx/evalml/pull/354
https://github.com/alteryx/evalml/pull/297
https://github.com/alteryx/evalml/pull/313
https://github.com/alteryx/evalml/pull/325
https://github.com/alteryx/evalml/pull/324
https://github.com/alteryx/evalml/pull/402
https://github.com/alteryx/evalml/pull/417
https://github.com/alteryx/evalml/pull/455
https://github.com/alteryx/evalml/pull/133
https://github.com/alteryx/evalml/pull/241
https://github.com/alteryx/evalml/pull/242
https://github.com/alteryx/evalml/pull/260
https://github.com/alteryx/evalml/pull/300
https://github.com/alteryx/evalml/pull/235
https://github.com/alteryx/evalml/pull/254
https://github.com/alteryx/evalml/pull/264
https://github.com/alteryx/evalml/pull/289
https://github.com/alteryx/evalml/pull/287

EvalML Documentation, Release 0.80.0

– Updating demo datasets to retain column names #223

– Moving pipeline visualization to PipelinePlot class #228

– Standarizing inputs as pd.Dataframe / pd.Series #130

– Enforcing that pipelines must have an estimator as last component #277

– Added ipywidgets as a dependency in requirements.txt #278

– Added Random and Grid Search Tuners #240

• Documentation Changes
– Adding class properties to API reference #244

– Fix and filter FutureWarnings from scikit-learn #249, #257

– Adding Linear Regression to API reference and cleaning up some Sphinx warnings #227

• Testing Changes
– Added support for testing on Windows with CircleCI #226

– Added support for doctests #233

Warning: Breaking Changes
• The fit() method for AutoClassifier and AutoRegressor has been renamed to search().

• AutoClassifier has been renamed to AutoClassificationSearch

• AutoRegressor has been renamed to AutoRegressionSearch

• AutoClassificationSearch.results and AutoRegressionSearch.results now is a dictionary with
pipeline_results and search_order keys. pipeline_results can be used to access a dictionary that
is identical to the old .results dictionary. Whereas, search_order returns a list of the search order in
terms of pipeline_id.

• Pipelines now require an estimator as the last component in component_list. Slicing pipelines now throws
an NotImplementedError to avoid returning pipelines without an estimator.

v0.5.2 Nov. 18, 2019
• Enhancements

– Adding basic pipeline structure visualization #211

• Documentation Changes
– Added notebooks to build process #212

v0.5.1 Nov. 15, 2019
• Enhancements

– Added basic outlier detection guardrail #151

– Added basic ID column guardrail #135

– Added support for unlimited pipelines with a max_time limit #70

– Updated .readthedocs.yaml to successfully build #188

• Fixes
– Removed MSLE from default additional objectives #203

2117

https://github.com/alteryx/evalml/pull/223
https://github.com/alteryx/evalml/pull/228
https://github.com/alteryx/evalml/pull/130
https://github.com/alteryx/evalml/pull/277
https://github.com/alteryx/evalml/pull/278
https://github.com/alteryx/evalml/pull/240
https://github.com/alteryx/evalml/pull/244
https://github.com/alteryx/evalml/pull/249
https://github.com/alteryx/evalml/pull/257
https://github.com/alteryx/evalml/pull/227
https://github.com/alteryx/evalml/pull/226
https://github.com/alteryx/evalml/pull/233
https://github.com/alteryx/evalml/pull/211
https://github.com/alteryx/evalml/pull/212
https://github.com/alteryx/evalml/pull/151
https://github.com/alteryx/evalml/pull/135
https://github.com/alteryx/evalml/pull/70
https://github.com/alteryx/evalml/pull/188
https://github.com/alteryx/evalml/pull/203

EvalML Documentation, Release 0.80.0

– Fixed random_state passed in pipelines #204

– Fixed slow down in RFRegressor #206

• Changes
– Pulled information for describe_pipeline from pipeline’s new describe method #190

– Refactored pipelines #108

– Removed guardrails from Auto(*) #202, #208

• Documentation Changes
– Updated documentation to show max_time enhancements #189

– Updated release instructions for RTD #193

– Added notebooks to build process #212

– Added contributing instructions #213

– Added new content #222

v0.5.0 Oct. 29, 2019
• Enhancements

– Added basic one hot encoding #73

– Use enums for model_type #110

– Support for splitting regression datasets #112

– Auto-infer multiclass classification #99

– Added support for other units in max_time #125

– Detect highly null columns #121

– Added additional regression objectives #100

– Show an interactive iteration vs. score plot when using fit() #134

• Fixes
– Reordered describe_pipeline #94

– Added type check for model_type #109

– Fixed s units when setting string max_time #132

– Fix objectives not appearing in API documentation #150

• Changes
– Reorganized tests #93

– Moved logging to its own module #119

– Show progress bar history #111

– Using cloudpickle instead of pickle to allow unloading of custom objectives #113

– Removed render.py #154

• Documentation Changes
– Update release instructions #140

– Include additional_objectives parameter #124

2118 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/204
https://github.com/alteryx/evalml/pull/206
https://github.com/alteryx/evalml/pull/190
https://github.com/alteryx/evalml/pull/108
https://github.com/alteryx/evalml/pull/202
https://github.com/alteryx/evalml/pull/208
https://github.com/alteryx/evalml/pull/189
https://github.com/alteryx/evalml/pull/193
https://github.com/alteryx/evalml/pull/212
https://github.com/alteryx/evalml/pull/213
https://github.com/alteryx/evalml/pull/222
https://github.com/alteryx/evalml/pull/73
https://github.com/alteryx/evalml/pull/110
https://github.com/alteryx/evalml/pull/112
https://github.com/alteryx/evalml/pull/99
https://github.com/alteryx/evalml/pull/125
https://github.com/alteryx/evalml/pull/121
https://github.com/alteryx/evalml/pull/100
https://github.com/alteryx/evalml/pull/134
https://github.com/alteryx/evalml/pull/94
https://github.com/alteryx/evalml/pull/109
https://github.com/alteryx/evalml/pull/132
https://github.com/alteryx/evalml/pull/150
https://github.com/alteryx/evalml/pull/93
https://github.com/alteryx/evalml/pull/119
https://github.com/alteryx/evalml/pull/111
https://github.com/alteryx/evalml/pull/113
https://github.com/alteryx/evalml/pull/154
https://github.com/alteryx/evalml/pull/140
https://github.com/alteryx/evalml/pull/124

EvalML Documentation, Release 0.80.0

– Added Changelog #136

• Testing Changes
– Code coverage #90

– Added CircleCI tests for other Python versions #104

– Added doc notebooks as tests #139

– Test metadata for CircleCI and 2 core parallelism #137

v0.4.1 Sep. 16, 2019
• Enhancements

– Added AutoML for classification and regressor using Autobase and Skopt #7 #9

– Implemented standard classification and regression metrics #7

– Added logistic regression, random forest, and XGBoost pipelines #7

– Implemented support for custom objectives #15

– Feature importance for pipelines #18

– Serialization for pipelines #19

– Allow fitting on objectives for optimal threshold #27

– Added detect label leakage #31

– Implemented callbacks #42

– Allow for multiclass classification #21

– Added support for additional objectives #79

• Fixes
– Fixed feature selection in pipelines #13

– Made random_seed usage consistent #45

• Documentation Changes
– Documentation Changes

– Added docstrings #6

– Created notebooks for docs #6

– Initialized readthedocs EvalML #6

– Added favicon #38

• Testing Changes
– Added testing for loading data #39

v0.2.0 Aug. 13, 2019
• Enhancements

– Created fraud detection objective #4

v0.1.0 July. 31, 2019
• First Release

• Enhancements

2119

https://github.com/alteryx/evalml/pull/136
https://github.com/alteryx/evalml/pull/90
https://github.com/alteryx/evalml/pull/104
https://github.com/alteryx/evalml/pull/139
https://github.com/alteryx/evalml/pull/137
https://github.com/alteryx/evalml/pull/7
https://github.com/alteryx/evalml/pull/9
https://github.com/alteryx/evalml/pull/7
https://github.com/alteryx/evalml/pull/7
https://github.com/alteryx/evalml/pull/15
https://github.com/alteryx/evalml/pull/18
https://github.com/alteryx/evalml/pull/19
https://github.com/alteryx/evalml/pull/27
https://github.com/alteryx/evalml/pull/31
https://github.com/alteryx/evalml/pull/42
https://github.com/alteryx/evalml/pull/21
https://github.com/alteryx/evalml/pull/79
https://github.com/alteryx/evalml/pull/13
https://github.com/alteryx/evalml/pull/45
https://github.com/alteryx/evalml/pull/6
https://github.com/alteryx/evalml/pull/6
https://github.com/alteryx/evalml/pull/6
https://github.com/alteryx/evalml/pull/38
https://github.com/alteryx/evalml/pull/39
https://github.com/alteryx/evalml/pull/4

EvalML Documentation, Release 0.80.0

– Added lead scoring objecitve #1

– Added basic classifier #1

• Documentation Changes
– Initialized Sphinx for docs #1

2120 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/1
https://github.com/alteryx/evalml/pull/1
https://github.com/alteryx/evalml/pull/1

PYTHON MODULE INDEX

e
evalml, 278
evalml.automl, 278
evalml.automl.automl_algorithm, 279
evalml.automl.automl_algorithm.automl_algorithm,

279
evalml.automl.automl_algorithm.default_algorithm,

281
evalml.automl.automl_algorithm.iterative_algorithm,

284
evalml.automl.automl_search, 314
evalml.automl.callbacks, 324
evalml.automl.engine, 295
evalml.automl.engine.cf_engine, 295
evalml.automl.engine.dask_engine, 298
evalml.automl.engine.engine_base, 301
evalml.automl.engine.sequential_engine, 305
evalml.automl.pipeline_search_plots, 325
evalml.automl.progress, 326
evalml.automl.utils, 328
evalml.data_checks, 344
evalml.data_checks.class_imbalance_data_check,

345
evalml.data_checks.data_check, 348
evalml.data_checks.data_check_action, 348
evalml.data_checks.data_check_action_code,

349
evalml.data_checks.data_check_action_option,

350
evalml.data_checks.data_check_message, 353
evalml.data_checks.data_check_message_code,

355
evalml.data_checks.data_check_message_type,

357
evalml.data_checks.data_checks, 358
evalml.data_checks.datetime_format_data_check,

358
evalml.data_checks.default_data_checks, 366
evalml.data_checks.id_columns_data_check, 367
evalml.data_checks.invalid_target_data_check,

371
evalml.data_checks.multicollinearity_data_check,

375
evalml.data_checks.no_variance_data_check,

377
evalml.data_checks.null_data_check, 380
evalml.data_checks.outliers_data_check, 384
evalml.data_checks.sparsity_data_check, 387
evalml.data_checks.target_distribution_data_check,

389
evalml.data_checks.target_leakage_data_check,

391
evalml.data_checks.ts_parameters_data_check,

393
evalml.data_checks.ts_splitting_data_check,

395
evalml.data_checks.uniqueness_data_check, 397
evalml.data_checks.utils, 399
evalml.demos, 446
evalml.demos.breast_cancer, 447
evalml.demos.churn, 447
evalml.demos.diabetes, 448
evalml.demos.fraud, 448
evalml.demos.weather, 449
evalml.demos.wine, 449
evalml.exceptions, 451
evalml.exceptions.exceptions, 451
evalml.model_family, 457
evalml.model_family.model_family, 457
evalml.model_family.utils, 459
evalml.model_understanding, 461
evalml.model_understanding.decision_boundary,

468
evalml.model_understanding.feature_explanations,

469
evalml.model_understanding.force_plots, 470
evalml.model_understanding.metrics, 472
evalml.model_understanding.partial_dependence_functions,

475
evalml.model_understanding.permutation_importance,

478
evalml.model_understanding.prediction_explanations,

461
evalml.model_understanding.prediction_explanations.explainers,

2121

EvalML Documentation, Release 0.80.0

461
evalml.model_understanding.visualizations,

480
evalml.objectives, 499
evalml.objectives.binary_classification_objective,

499
evalml.objectives.cost_benefit_matrix, 502
evalml.objectives.fraud_cost, 505
evalml.objectives.lead_scoring, 508
evalml.objectives.multiclass_classification_objective,

511
evalml.objectives.objective_base, 514
evalml.objectives.regression_objective, 516
evalml.objectives.sensitivity_low_alert, 519
evalml.objectives.standard_metrics, 522
evalml.objectives.time_series_regression_objective,

592
evalml.objectives.utils, 595
evalml.pipelines, 692
evalml.pipelines.binary_classification_pipeline,

1653
evalml.pipelines.binary_classification_pipeline_mixin,

1661
evalml.pipelines.classification_pipeline,

1662
evalml.pipelines.component_graph, 1669
evalml.pipelines.components, 692
evalml.pipelines.components.component_base,

1417
evalml.pipelines.components.component_base_meta,

1420
evalml.pipelines.components.ensemble, 693
evalml.pipelines.components.ensemble.stacked_ensemble_base,

693
evalml.pipelines.components.ensemble.stacked_ensemble_classifier,

696
evalml.pipelines.components.ensemble.stacked_ensemble_regressor,

700
evalml.pipelines.components.estimators, 715
evalml.pipelines.components.estimators.classifiers,

715
evalml.pipelines.components.estimators.classifiers.baseline_classifier,

715
evalml.pipelines.components.estimators.classifiers.catboost_classifier,

719
evalml.pipelines.components.estimators.classifiers.decision_tree_classifier,

723
evalml.pipelines.components.estimators.classifiers.elasticnet_classifier,

727
evalml.pipelines.components.estimators.classifiers.et_classifier,

731
evalml.pipelines.components.estimators.classifiers.kneighbors_classifier,

736
evalml.pipelines.components.estimators.classifiers.lightgbm_classifier,

740
evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier,

744
evalml.pipelines.components.estimators.classifiers.rf_classifier,

748
evalml.pipelines.components.estimators.classifiers.svm_classifier,

751
evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers,

755
evalml.pipelines.components.estimators.classifiers.xgboost_classifier,

765
evalml.pipelines.components.estimators.estimator,

941
evalml.pipelines.components.estimators.regressors,

814
evalml.pipelines.components.estimators.regressors.arima_regressor,

814
evalml.pipelines.components.estimators.regressors.baseline_regressor,

819
evalml.pipelines.components.estimators.regressors.catboost_regressor,

822
evalml.pipelines.components.estimators.regressors.decision_tree_regressor,

826
evalml.pipelines.components.estimators.regressors.elasticnet_regressor,

831
evalml.pipelines.components.estimators.regressors.et_regressor,

834
evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor,

839
evalml.pipelines.components.estimators.regressors.lightgbm_regressor,

843
evalml.pipelines.components.estimators.regressors.linear_regressor,

847
evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor,

850
evalml.pipelines.components.estimators.regressors.prophet_regressor,

854
evalml.pipelines.components.estimators.regressors.rf_regressor,

859
evalml.pipelines.components.estimators.regressors.svm_regressor,

863
evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator,

867
evalml.pipelines.components.estimators.regressors.varmax_regressor,

870
evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor,

874
evalml.pipelines.components.estimators.regressors.xgboost_regressor,

878
evalml.pipelines.components.transformers,

1051
evalml.pipelines.components.transformers.column_selectors,

1295
evalml.pipelines.components.transformers.dimensionality_reduction,

2122 Python Module Index

EvalML Documentation, Release 0.80.0

1051
evalml.pipelines.components.transformers.dimensionality_reduction.lda,

1051
evalml.pipelines.components.transformers.dimensionality_reduction.pca,

1054
evalml.pipelines.components.transformers.encoders,

1062
evalml.pipelines.components.transformers.encoders.label_encoder,

1062
evalml.pipelines.components.transformers.encoders.onehot_encoder,

1065
evalml.pipelines.components.transformers.encoders.ordinal_encoder,

1070
evalml.pipelines.components.transformers.encoders.target_encoder,

1074
evalml.pipelines.components.transformers.feature_selection,

1090
evalml.pipelines.components.transformers.feature_selection.feature_selector,

1090
evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector,

1093
evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector,

1103
evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector,

1107
evalml.pipelines.components.transformers.imputers,

1126
evalml.pipelines.components.transformers.imputers.imputer,

1126
evalml.pipelines.components.transformers.imputers.knn_imputer,

1130
evalml.pipelines.components.transformers.imputers.per_column_imputer,

1133
evalml.pipelines.components.transformers.imputers.simple_imputer,

1136
evalml.pipelines.components.transformers.imputers.target_imputer,

1139
evalml.pipelines.components.transformers.imputers.time_series_imputer,

1142
evalml.pipelines.components.transformers.preprocessing,

1162
evalml.pipelines.components.transformers.preprocessing.datetime_featurizer,

1162
evalml.pipelines.components.transformers.preprocessing.decomposer,

1165
evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer,

1170
evalml.pipelines.components.transformers.preprocessing.drop_null_columns,

1173
evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer,

1176
evalml.pipelines.components.transformers.preprocessing.featuretools,

1179
evalml.pipelines.components.transformers.preprocessing.log_transformer,

1182
evalml.pipelines.components.transformers.preprocessing.lsa,

1185
evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer,

1188
evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer,

1191
evalml.pipelines.components.transformers.preprocessing.replace_nullable_types,

1197
evalml.pipelines.components.transformers.preprocessing.stl_decomposer,

1200
evalml.pipelines.components.transformers.preprocessing.text_transformer,

1206
evalml.pipelines.components.transformers.preprocessing.time_series_featurizer,

1209
evalml.pipelines.components.transformers.preprocessing.time_series_regularizer,

1213
evalml.pipelines.components.transformers.preprocessing.transform_primitive_components,

1216
evalml.pipelines.components.transformers.samplers,

1274
evalml.pipelines.components.transformers.samplers.base_sampler,

1274
evalml.pipelines.components.transformers.samplers.oversampler,

1277
evalml.pipelines.components.transformers.samplers.undersampler,

1280
evalml.pipelines.components.transformers.scalers,

1289
evalml.pipelines.components.transformers.scalers.standard_scaler,

1289
evalml.pipelines.components.transformers.transformer,

1305
evalml.pipelines.components.utils, 1421
evalml.pipelines.multiclass_classification_pipeline,

1675
evalml.pipelines.multiseries_regression_pipeline,

1682
evalml.pipelines.pipeline_base, 1690
evalml.pipelines.pipeline_meta, 1696
evalml.pipelines.regression_pipeline, 1698
evalml.pipelines.time_series_classification_pipelines,

1704
evalml.pipelines.time_series_pipeline_base,

1728
evalml.pipelines.time_series_regression_pipeline,

1735
evalml.pipelines.utils, 1744
evalml.preprocessing, 1972
evalml.preprocessing.data_splitters, 1972
evalml.preprocessing.data_splitters.no_split,

1973
evalml.preprocessing.data_splitters.sk_splitters,

1974

Python Module Index 2123

EvalML Documentation, Release 0.80.0

evalml.preprocessing.data_splitters.time_series_split,
1976

evalml.preprocessing.data_splitters.training_validation_split,
1979

evalml.preprocessing.utils, 1988
evalml.problem_types, 1999
evalml.problem_types.problem_types, 1999
evalml.problem_types.utils, 2000
evalml.tuners, 2007
evalml.tuners.grid_search_tuner, 2007
evalml.tuners.random_search_tuner, 2009
evalml.tuners.skopt_tuner, 2011
evalml.tuners.tuner, 2013
evalml.tuners.tuner_exceptions, 2014
evalml.utils, 2021
evalml.utils.base_meta, 2021
evalml.utils.cli_utils, 2022
evalml.utils.gen_utils, 2023
evalml.utils.logger, 2029
evalml.utils.nullable_type_utils, 2030
evalml.utils.update_checker, 2030
evalml.utils.woodwork_utils, 2030

2124 Python Module Index

INDEX

A
abs_error() (in module

evalml.model_understanding.prediction_explanations.explainers),
462

AccuracyBinary (class in evalml.objectives), 601
AccuracyBinary (class in

evalml.objectives.standard_metrics), 523
AccuracyMulticlass (class in evalml.objectives), 603
AccuracyMulticlass (class in

evalml.objectives.standard_metrics), 525
add() (evalml.tuners.grid_search_tuner.GridSearchTuner

method), 2008
add() (evalml.tuners.GridSearchTuner method), 2015
add() (evalml.tuners.random_search_tuner.RandomSearchTuner

method), 2010
add() (evalml.tuners.RandomSearchTuner method),

2017
add() (evalml.tuners.skopt_tuner.SKOptTuner method),

2012
add() (evalml.tuners.SKOptTuner method), 2019
add() (evalml.tuners.Tuner method), 2020
add() (evalml.tuners.tuner.Tuner method), 2013
add_result() (evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm

method), 280
add_result() (evalml.automl.automl_algorithm.AutoMLAlgorithm

method), 289
add_result() (evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm

method), 283
add_result() (evalml.automl.automl_algorithm.DefaultAlgorithm

method), 292
add_result() (evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm

method), 287
add_result() (evalml.automl.automl_algorithm.IterativeAlgorithm

method), 294
add_to_rankings() (evalml.automl.automl_search.AutoMLSearch

method), 319
add_to_rankings() (evalml.automl.AutoMLSearch

method), 336
add_to_rankings() (evalml.AutoMLSearch method),

2041
all_components() (in module

evalml.pipelines.components.utils), 1422

all_parameter_types()
(evalml.data_checks.data_check_action_option.DCAOParameterType
method), 353

all_parameter_types()
(evalml.data_checks.DCAOParameterType
method), 418

all_problem_types()
(evalml.problem_types.problem_types.ProblemTypes
method), 1999

all_problem_types()
(evalml.problem_types.ProblemTypes method),
2006

allowed_model_families() (in module
evalml.pipelines.components.utils), 1422

are_datasets_separated_by_gap_time_index()
(in module evalml.utils.gen_utils), 2025

are_ts_parameters_valid_for_split() (in module
evalml.utils.gen_utils), 2025

ARIMARegressor (class in evalml.pipelines), 1752
ARIMARegressor (class in

evalml.pipelines.components), 1432
ARIMARegressor (class in

evalml.pipelines.components.estimators),
947

ARIMARegressor (class in
evalml.pipelines.components.estimators.regressors),
884

ARIMARegressor (class in
evalml.pipelines.components.estimators.regressors.arima_regressor),
814

AUC (class in evalml.objectives), 604
AUC (class in evalml.objectives.standard_metrics), 527
AUCMacro (class in evalml.objectives), 607
AUCMacro (class in evalml.objectives.standard_metrics),

529
AUCMicro (class in evalml.objectives), 608
AUCMicro (class in evalml.objectives.standard_metrics),

531
AUCWeighted (class in evalml.objectives), 610
AUCWeighted (class in

evalml.objectives.standard_metrics), 533
AutoMLAlgorithm (class in

2125

EvalML Documentation, Release 0.80.0

evalml.automl.automl_algorithm), 288
AutoMLAlgorithm (class in

evalml.automl.automl_algorithm.automl_algorithm),
279

AutoMLAlgorithmException, 281, 289
AutoMLConfig (in module evalml.automl.utils), 329
AutoMLSearch (class in evalml), 2037
AutoMLSearch (class in evalml.automl), 332
AutoMLSearch (class in evalml.automl.automl_search),

315
AutoMLSearchException, 451, 454

B
BalancedAccuracyBinary (class in evalml.objectives),

612
BalancedAccuracyBinary (class in

evalml.objectives.standard_metrics), 534
BalancedAccuracyMulticlass (class in

evalml.objectives), 614
BalancedAccuracyMulticlass (class in

evalml.objectives.standard_metrics), 537
BaselineClassifier (class in

evalml.pipelines.components), 1435
BaselineClassifier (class in

evalml.pipelines.components.estimators),
950

BaselineClassifier (class in
evalml.pipelines.components.estimators.classifiers),
769

BaselineClassifier (class in
evalml.pipelines.components.estimators.classifiers.baseline_classifier),
716

BaselineRegressor (class in
evalml.pipelines.components), 1438

BaselineRegressor (class in
evalml.pipelines.components.estimators),
953

BaselineRegressor (class in
evalml.pipelines.components.estimators.regressors),
887

BaselineRegressor (class in
evalml.pipelines.components.estimators.regressors.baseline_regressor),
819

BaseMeta (class in evalml.utils.base_meta), 2021
BaseSampler (class in

evalml.pipelines.components.transformers.samplers.base_sampler),
1274

batch_number (evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm
property), 280

batch_number (evalml.automl.automl_algorithm.AutoMLAlgorithm
property), 289

batch_number (evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm
property), 284

batch_number (evalml.automl.automl_algorithm.DefaultAlgorithm
property), 292

batch_number (evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm
property), 287

batch_number (evalml.automl.automl_algorithm.IterativeAlgorithm
property), 295

best_pipeline (evalml.automl.automl_search.AutoMLSearch
property), 319

best_pipeline (evalml.automl.AutoMLSearch prop-
erty), 336

best_pipeline (evalml.AutoMLSearch property), 2041
binary_objective_vs_threshold() (in module

evalml.model_understanding), 487
binary_objective_vs_threshold() (in module

evalml.model_understanding.visualizations),
480

BinaryClassificationObjective (class in
evalml.objectives), 616

BinaryClassificationObjective (class in
evalml.objectives.binary_classification_objective),
499

BinaryClassificationPipeline (class in
evalml.pipelines), 1755

BinaryClassificationPipeline (class in
evalml.pipelines.binary_classification_pipeline),
1654

BinaryClassificationPipelineMixin (class in
evalml.pipelines.binary_classification_pipeline_mixin),
1662

build_engine_from_str() (in module
evalml.automl.automl_search), 322

build_prophet_df() (evalml.pipelines.components.estimators.ProphetRegressor
static method), 1014

build_prophet_df() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor
static method), 857

build_prophet_df() (evalml.pipelines.components.estimators.regressors.ProphetRegressor
static method), 920

build_prophet_df() (evalml.pipelines.components.ProphetRegressor
static method), 1555

build_prophet_df() (evalml.pipelines.ProphetRegressor
static method), 1866

C
calculate_percent_difference()

(evalml.objectives.AccuracyBinary class
method), 601

calculate_percent_difference()
(evalml.objectives.AccuracyMulticlass class
method), 603

calculate_percent_difference()
(evalml.objectives.AUC class method), 605

calculate_percent_difference()
(evalml.objectives.AUCMacro class method),
607

2126 Index

EvalML Documentation, Release 0.80.0

calculate_percent_difference()
(evalml.objectives.AUCMicro class method),
609

calculate_percent_difference()
(evalml.objectives.AUCWeighted class method),
611

calculate_percent_difference()
(evalml.objectives.BalancedAccuracyBinary
class method), 613

calculate_percent_difference()
(evalml.objectives.BalancedAccuracyMulticlass
class method), 615

calculate_percent_difference()
(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
class method), 500

calculate_percent_difference()
(evalml.objectives.BinaryClassificationObjective
class method), 617

calculate_percent_difference()
(evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
class method), 503

calculate_percent_difference()
(evalml.objectives.CostBenefitMatrix class
method), 620

calculate_percent_difference()
(evalml.objectives.ExpVariance class method),
622

calculate_percent_difference()
(evalml.objectives.F1 class method), 624

calculate_percent_difference()
(evalml.objectives.F1Macro class method),
626

calculate_percent_difference()
(evalml.objectives.F1Micro class method),
628

calculate_percent_difference()
(evalml.objectives.F1Weighted class method),
629

calculate_percent_difference()
(evalml.objectives.fraud_cost.FraudCost
class method), 506

calculate_percent_difference()
(evalml.objectives.FraudCost class method),
631

calculate_percent_difference()
(evalml.objectives.Gini class method), 636

calculate_percent_difference()
(evalml.objectives.lead_scoring.LeadScoring
class method), 509

calculate_percent_difference()
(evalml.objectives.LeadScoring class method),
638

calculate_percent_difference()
(evalml.objectives.LogLossBinary class

method), 640
calculate_percent_difference()

(evalml.objectives.LogLossMulticlass class
method), 643

calculate_percent_difference()
(evalml.objectives.MAE class method), 644

calculate_percent_difference()
(evalml.objectives.MAPE class method),
646

calculate_percent_difference()
(evalml.objectives.MASE class method),
648

calculate_percent_difference()
(evalml.objectives.MaxError class method),
650

calculate_percent_difference()
(evalml.objectives.MCCBinary class method),
652

calculate_percent_difference()
(evalml.objectives.MCCMulticlass class
method), 654

calculate_percent_difference()
(evalml.objectives.MeanSquaredLogError
class method), 655

calculate_percent_difference()
(evalml.objectives.MedianAE class method),
657

calculate_percent_difference()
(evalml.objectives.MSE class method), 659

calculate_percent_difference()
(evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
class method), 512

calculate_percent_difference()
(evalml.objectives.MulticlassClassificationObjective
class method), 661

calculate_percent_difference()
(evalml.objectives.objective_base.ObjectiveBase
class method), 514

calculate_percent_difference()
(evalml.objectives.ObjectiveBase class
method), 663

calculate_percent_difference()
(evalml.objectives.Precision class method),
666

calculate_percent_difference()
(evalml.objectives.PrecisionMacro class
method), 668

calculate_percent_difference()
(evalml.objectives.PrecisionMicro class
method), 670

calculate_percent_difference()
(evalml.objectives.PrecisionWeighted class
method), 671

calculate_percent_difference()

Index 2127

EvalML Documentation, Release 0.80.0

(evalml.objectives.R2 class method), 673
calculate_percent_difference()

(evalml.objectives.Recall class method),
675

calculate_percent_difference()
(evalml.objectives.RecallMacro class method),
677

calculate_percent_difference()
(evalml.objectives.RecallMicro class method),
679

calculate_percent_difference()
(evalml.objectives.RecallWeighted class
method), 681

calculate_percent_difference()
(evalml.objectives.regression_objective.RegressionObjective
class method), 517

calculate_percent_difference()
(evalml.objectives.RegressionObjective class
method), 683

calculate_percent_difference()
(evalml.objectives.RootMeanSquaredError
class method), 685

calculate_percent_difference()
(evalml.objectives.RootMeanSquaredLogError
class method), 687

calculate_percent_difference()
(evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
class method), 520

calculate_percent_difference()
(evalml.objectives.SensitivityLowAlert class
method), 689

calculate_percent_difference()
(evalml.objectives.SMAPE class method),
691

calculate_percent_difference()
(evalml.objectives.standard_metrics.AccuracyBinary
class method), 524

calculate_percent_difference()
(evalml.objectives.standard_metrics.AccuracyMulticlass
class method), 526

calculate_percent_difference()
(evalml.objectives.standard_metrics.AUC
class method), 528

calculate_percent_difference()
(evalml.objectives.standard_metrics.AUCMacro
class method), 530

calculate_percent_difference()
(evalml.objectives.standard_metrics.AUCMicro
class method), 532

calculate_percent_difference()
(evalml.objectives.standard_metrics.AUCWeighted
class method), 533

calculate_percent_difference()
(evalml.objectives.standard_metrics.BalancedAccuracyBinary

class method), 535
calculate_percent_difference()

(evalml.objectives.standard_metrics.BalancedAccuracyMulticlass
class method), 537

calculate_percent_difference()
(evalml.objectives.standard_metrics.ExpVariance
class method), 539

calculate_percent_difference()
(evalml.objectives.standard_metrics.F1 class
method), 541

calculate_percent_difference()
(evalml.objectives.standard_metrics.F1Macro
class method), 543

calculate_percent_difference()
(evalml.objectives.standard_metrics.F1Micro
class method), 545

calculate_percent_difference()
(evalml.objectives.standard_metrics.F1Weighted
class method), 546

calculate_percent_difference()
(evalml.objectives.standard_metrics.Gini
class method), 548

calculate_percent_difference()
(evalml.objectives.standard_metrics.LogLossBinary
class method), 550

calculate_percent_difference()
(evalml.objectives.standard_metrics.LogLossMulticlass
class method), 553

calculate_percent_difference()
(evalml.objectives.standard_metrics.MAE
class method), 554

calculate_percent_difference()
(evalml.objectives.standard_metrics.MAPE
class method), 556

calculate_percent_difference()
(evalml.objectives.standard_metrics.MASE
class method), 558

calculate_percent_difference()
(evalml.objectives.standard_metrics.MaxError
class method), 560

calculate_percent_difference()
(evalml.objectives.standard_metrics.MCCBinary
class method), 562

calculate_percent_difference()
(evalml.objectives.standard_metrics.MCCMulticlass
class method), 564

calculate_percent_difference()
(evalml.objectives.standard_metrics.MeanSquaredLogError
class method), 565

calculate_percent_difference()
(evalml.objectives.standard_metrics.MedianAE
class method), 567

calculate_percent_difference()
(evalml.objectives.standard_metrics.MSE

2128 Index

EvalML Documentation, Release 0.80.0

class method), 569
calculate_percent_difference()

(evalml.objectives.standard_metrics.Precision
class method), 571

calculate_percent_difference()
(evalml.objectives.standard_metrics.PrecisionMacro
class method), 573

calculate_percent_difference()
(evalml.objectives.standard_metrics.PrecisionMicro
class method), 575

calculate_percent_difference()
(evalml.objectives.standard_metrics.PrecisionWeighted
class method), 576

calculate_percent_difference()
(evalml.objectives.standard_metrics.R2 class
method), 578

calculate_percent_difference()
(evalml.objectives.standard_metrics.Recall
class method), 580

calculate_percent_difference()
(evalml.objectives.standard_metrics.RecallMacro
class method), 582

calculate_percent_difference()
(evalml.objectives.standard_metrics.RecallMicro
class method), 584

calculate_percent_difference()
(evalml.objectives.standard_metrics.RecallWeighted
class method), 586

calculate_percent_difference()
(evalml.objectives.standard_metrics.RootMeanSquaredError
class method), 587

calculate_percent_difference()
(evalml.objectives.standard_metrics.RootMeanSquaredLogError
class method), 589

calculate_percent_difference()
(evalml.objectives.standard_metrics.SMAPE
class method), 591

calculate_percent_difference()
(evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
class method), 593

calculate_permutation_importance() (in module
evalml.model_understanding), 487

calculate_permutation_importance() (in module
evalml.model_understanding.permutation_importance),
478

calculate_permutation_importance_one_column()
(in module evalml.model_understanding), 487

calculate_permutation_importance_one_column()
(in module evalml.model_understanding.permutation_importance),
478

can_optimize_threshold
(evalml.objectives.AccuracyBinary property),
602

can_optimize_threshold (evalml.objectives.AUC

property), 606
can_optimize_threshold

(evalml.objectives.BalancedAccuracyBinary
property), 613

can_optimize_threshold
(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
property), 500

can_optimize_threshold
(evalml.objectives.BinaryClassificationObjective
property), 617

can_optimize_threshold
(evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
property), 504

can_optimize_threshold
(evalml.objectives.CostBenefitMatrix prop-
erty), 620

can_optimize_threshold (evalml.objectives.F1 prop-
erty), 624

can_optimize_threshold
(evalml.objectives.fraud_cost.FraudCost
property), 507

can_optimize_threshold
(evalml.objectives.FraudCost property),
632

can_optimize_threshold (evalml.objectives.Gini
property), 636

can_optimize_threshold
(evalml.objectives.lead_scoring.LeadScoring
property), 509

can_optimize_threshold
(evalml.objectives.LeadScoring property),
638

can_optimize_threshold
(evalml.objectives.LogLossBinary property),
641

can_optimize_threshold
(evalml.objectives.MCCBinary property),
652

can_optimize_threshold (evalml.objectives.Precision
property), 666

can_optimize_threshold (evalml.objectives.Recall
property), 675

can_optimize_threshold
(evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
property), 520

can_optimize_threshold
(evalml.objectives.SensitivityLowAlert prop-
erty), 689

can_optimize_threshold
(evalml.objectives.standard_metrics.AccuracyBinary
property), 524

can_optimize_threshold
(evalml.objectives.standard_metrics.AUC
property), 528

Index 2129

EvalML Documentation, Release 0.80.0

can_optimize_threshold
(evalml.objectives.standard_metrics.BalancedAccuracyBinary
property), 536

can_optimize_threshold
(evalml.objectives.standard_metrics.F1 prop-
erty), 541

can_optimize_threshold
(evalml.objectives.standard_metrics.Gini
property), 549

can_optimize_threshold
(evalml.objectives.standard_metrics.LogLossBinary
property), 551

can_optimize_threshold
(evalml.objectives.standard_metrics.MCCBinary
property), 562

can_optimize_threshold
(evalml.objectives.standard_metrics.Precision
property), 571

can_optimize_threshold
(evalml.objectives.standard_metrics.Recall
property), 580

can_tune_threshold_with_objective()
(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1657

can_tune_threshold_with_objective()
(evalml.pipelines.BinaryClassificationPipeline
method), 1758

can_tune_threshold_with_objective()
(evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1664

can_tune_threshold_with_objective()
(evalml.pipelines.ClassificationPipeline
method), 1770

can_tune_threshold_with_objective()
(evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1677

can_tune_threshold_with_objective()
(evalml.pipelines.MulticlassClassificationPipeline
method), 1837

can_tune_threshold_with_objective()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1684

can_tune_threshold_with_objective()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1843

can_tune_threshold_with_objective()
(evalml.pipelines.pipeline_base.PipelineBase
method), 1692

can_tune_threshold_with_objective()
(evalml.pipelines.PipelineBase method),
1860

can_tune_threshold_with_objective()
(evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1700

can_tune_threshold_with_objective()
(evalml.pipelines.RegressionPipeline method),
1876

can_tune_threshold_with_objective()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1707

can_tune_threshold_with_objective()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1715

can_tune_threshold_with_objective()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1722

can_tune_threshold_with_objective()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1730

can_tune_threshold_with_objective()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1738

can_tune_threshold_with_objective()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1913

can_tune_threshold_with_objective()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1921

can_tune_threshold_with_objective()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1934

can_tune_threshold_with_objective()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1942

cancel() (evalml.automl.engine.cf_engine.CFComputation
method), 296

cancel() (evalml.automl.engine.dask_engine.DaskComputation
method), 299

cancel() (evalml.automl.engine.engine_base.EngineComputation
method), 302

cancel() (evalml.automl.engine.EngineComputation
method), 311

cancel() (evalml.automl.engine.sequential_engine.SequentialComputation
method), 305

CatBoostClassifier (class in evalml.pipelines), 1762
CatBoostClassifier (class in

evalml.pipelines.components), 1441
CatBoostClassifier (class in

evalml.pipelines.components.estimators),
956

CatBoostClassifier (class in
evalml.pipelines.components.estimators.classifiers),
772

CatBoostClassifier (class in
evalml.pipelines.components.estimators.classifiers.catboost_classifier),
720

CatBoostRegressor (class in evalml.pipelines), 1765
CatBoostRegressor (class in

2130 Index

EvalML Documentation, Release 0.80.0

evalml.pipelines.components), 1445
CatBoostRegressor (class in

evalml.pipelines.components.estimators),
960

CatBoostRegressor (class in
evalml.pipelines.components.estimators.regressors),
890

CatBoostRegressor (class in
evalml.pipelines.components.estimators.regressors.catboost_regressor),
823

categories() (evalml.pipelines.components.OneHotEncoder
method), 1536

categories() (evalml.pipelines.components.OrdinalEncoder
method), 1539

categories() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
method), 1067

categories() (evalml.pipelines.components.transformers.encoders.OneHotEncoder
method), 1082

categories() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
method), 1071

categories() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder
method), 1085

categories() (evalml.pipelines.components.transformers.OneHotEncoder
method), 1346

categories() (evalml.pipelines.components.transformers.OrdinalEncoder
method), 1349

categories() (evalml.pipelines.OneHotEncoder
method), 1851

categories() (evalml.pipelines.OrdinalEncoder
method), 1854

CFClient (class in evalml.automl.engine.cf_engine), 296
CFComputation (class in

evalml.automl.engine.cf_engine), 296
CFEngine (class in evalml.automl.engine), 307
CFEngine (class in evalml.automl.engine.cf_engine), 297
check_all_pipeline_names_unique() (in module

evalml.automl.utils), 329
check_distribution() (in module

evalml.model_understanding.metrics), 472
check_for_fit() (evalml.pipelines.components.component_base_meta.ComponentBaseMeta

class method), 1421
check_for_fit() (evalml.pipelines.components.ComponentBaseMeta

class method), 1451
check_for_fit() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoderMeta

class method), 1069
check_for_fit() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoderMeta

class method), 1074
check_for_fit() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta

class method), 1142
check_for_fit() (evalml.pipelines.pipeline_meta.PipelineBaseMeta

class method), 1697
classes_ (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

property), 1657
classes_ (evalml.pipelines.BinaryClassificationPipeline

property), 1758
classes_ (evalml.pipelines.classification_pipeline.ClassificationPipeline

property), 1665
classes_ (evalml.pipelines.ClassificationPipeline prop-

erty), 1771
classes_ (evalml.pipelines.components.BaselineClassifier

property), 1436
classes_ (evalml.pipelines.components.estimators.BaselineClassifier

property), 951
classes_ (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

property), 717
classes_ (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

property), 770
classes_ (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

property), 1678
classes_ (evalml.pipelines.MulticlassClassificationPipeline

property), 1838
classes_ (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

property), 1707
classes_ (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

property), 1715
classes_ (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1723
classes_ (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

property), 1913
classes_ (evalml.pipelines.TimeSeriesClassificationPipeline

property), 1921
classes_ (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1934
ClassificationPipeline (class in evalml.pipelines),

1768
ClassificationPipeline (class in

evalml.pipelines.classification_pipeline),
1663

ClassImbalanceDataCheck (class in
evalml.data_checks), 402

ClassImbalanceDataCheck (class in
evalml.data_checks.class_imbalance_data_check),
345

classproperty (class in evalml.utils), 2033
classproperty (class in evalml.utils.gen_utils), 2025
clone() (evalml.pipelines.ARIMARegressor method),

1753
clone() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

method), 1657
clone() (evalml.pipelines.BinaryClassificationPipeline

method), 1758
clone() (evalml.pipelines.CatBoostClassifier method),

1763
clone() (evalml.pipelines.CatBoostRegressor method),

1766
clone() (evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1665
clone() (evalml.pipelines.ClassificationPipeline

Index 2131

EvalML Documentation, Release 0.80.0

method), 1771
clone() (evalml.pipelines.components.ARIMARegressor

method), 1433
clone() (evalml.pipelines.components.BaselineClassifier

method), 1436
clone() (evalml.pipelines.components.BaselineRegressor

method), 1439
clone() (evalml.pipelines.components.CatBoostClassifier

method), 1443
clone() (evalml.pipelines.components.CatBoostRegressor

method), 1446
clone() (evalml.pipelines.components.component_base.ComponentBase

method), 1418
clone() (evalml.pipelines.components.ComponentBase

method), 1449
clone() (evalml.pipelines.components.DateTimeFeaturizer

method), 1452
clone() (evalml.pipelines.components.DecisionTreeClassifier

method), 1455
clone() (evalml.pipelines.components.DecisionTreeRegressor

method), 1459
clone() (evalml.pipelines.components.DFSTransformer

method), 1462
clone() (evalml.pipelines.components.DropColumns

method), 1465
clone() (evalml.pipelines.components.DropNaNRowsTransformer

method), 1467
clone() (evalml.pipelines.components.DropNullColumns

method), 1470
clone() (evalml.pipelines.components.DropRowsTransformer

method), 1472
clone() (evalml.pipelines.components.ElasticNetClassifier

method), 1475
clone() (evalml.pipelines.components.ElasticNetRegressor

method), 1478
clone() (evalml.pipelines.components.EmailFeaturizer

method), 1481
clone() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase

method), 694
clone() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier

method), 698
clone() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor

method), 702
clone() (evalml.pipelines.components.ensemble.StackedEnsembleBase

method), 705
clone() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier

method), 709
clone() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor

method), 713
clone() (evalml.pipelines.components.Estimator

method), 1484
clone() (evalml.pipelines.components.estimators.ARIMARegressor

method), 948
clone() (evalml.pipelines.components.estimators.BaselineClassifier

method), 951
clone() (evalml.pipelines.components.estimators.BaselineRegressor

method), 954
clone() (evalml.pipelines.components.estimators.CatBoostClassifier

method), 958
clone() (evalml.pipelines.components.estimators.CatBoostRegressor

method), 961
clone() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

method), 717
clone() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

method), 770
clone() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

method), 721
clone() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

method), 773
clone() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

method), 725
clone() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

method), 777
clone() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

method), 729
clone() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

method), 780
clone() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

method), 733
clone() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

method), 784
clone() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

method), 737
clone() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

method), 788
clone() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

method), 741
clone() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

method), 791
clone() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

method), 745
clone() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

method), 795
clone() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

method), 798
clone() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

method), 749
clone() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

method), 753
clone() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

method), 801
clone() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

method), 756
clone() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

method), 759
clone() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

method), 763
clone() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier

2132 Index

EvalML Documentation, Release 0.80.0

method), 805
clone() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

method), 808
clone() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

method), 766
clone() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

method), 811
clone() (evalml.pipelines.components.estimators.DecisionTreeClassifier

method), 965
clone() (evalml.pipelines.components.estimators.DecisionTreeRegressor

method), 969
clone() (evalml.pipelines.components.estimators.ElasticNetClassifier

method), 972
clone() (evalml.pipelines.components.estimators.ElasticNetRegressor

method), 975
clone() (evalml.pipelines.components.estimators.Estimator

method), 978
clone() (evalml.pipelines.components.estimators.estimator.Estimator

method), 943
clone() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

method), 982
clone() (evalml.pipelines.components.estimators.ExtraTreesClassifier

method), 986
clone() (evalml.pipelines.components.estimators.ExtraTreesRegressor

method), 989
clone() (evalml.pipelines.components.estimators.KNeighborsClassifier

method), 993
clone() (evalml.pipelines.components.estimators.LightGBMClassifier

method), 997
clone() (evalml.pipelines.components.estimators.LightGBMRegressor

method), 1000
clone() (evalml.pipelines.components.estimators.LinearRegressor

method), 1003
clone() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

method), 1007
clone() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

method), 1010
clone() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1014
clone() (evalml.pipelines.components.estimators.RandomForestClassifier

method), 1017
clone() (evalml.pipelines.components.estimators.RandomForestRegressor

method), 1020
clone() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

method), 817
clone() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

method), 885
clone() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

method), 820
clone() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

method), 888
clone() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

method), 824
clone() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

method), 892
clone() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

method), 828
clone() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

method), 895
clone() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

method), 832
clone() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

method), 899
clone() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

method), 836
clone() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

method), 841
clone() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

method), 903
clone() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

method), 906
clone() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

method), 844
clone() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

method), 910
clone() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

method), 848
clone() (evalml.pipelines.components.estimators.regressors.LinearRegressor

method), 913
clone() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

method), 851
clone() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

method), 916
clone() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 857
clone() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 920
clone() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

method), 923
clone() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

method), 861
clone() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

method), 864
clone() (evalml.pipelines.components.estimators.regressors.SVMRegressor

method), 926
clone() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

method), 868
clone() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

method), 929
clone() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

method), 872
clone() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

method), 933
clone() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

method), 876
clone() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

method), 936
clone() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor

Index 2133

EvalML Documentation, Release 0.80.0

method), 880
clone() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

method), 939
clone() (evalml.pipelines.components.estimators.SVMClassifier

method), 1023
clone() (evalml.pipelines.components.estimators.SVMRegressor

method), 1026
clone() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

method), 1029
clone() (evalml.pipelines.components.estimators.VARMAXRegressor

method), 1033
clone() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

method), 1036
clone() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

method), 1039
clone() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

method), 1042
clone() (evalml.pipelines.components.estimators.XGBoostClassifier

method), 1045
clone() (evalml.pipelines.components.estimators.XGBoostRegressor

method), 1048
clone() (evalml.pipelines.components.ExponentialSmoothingRegressor

method), 1487
clone() (evalml.pipelines.components.ExtraTreesClassifier

method), 1491
clone() (evalml.pipelines.components.ExtraTreesRegressor

method), 1494
clone() (evalml.pipelines.components.FeatureSelector

method), 1497
clone() (evalml.pipelines.components.Imputer method),

1500
clone() (evalml.pipelines.components.KNeighborsClassifier

method), 1503
clone() (evalml.pipelines.components.LabelEncoder

method), 1506
clone() (evalml.pipelines.components.LightGBMClassifier

method), 1509
clone() (evalml.pipelines.components.LightGBMRegressor

method), 1513
clone() (evalml.pipelines.components.LinearDiscriminantAnalysis

method), 1516
clone() (evalml.pipelines.components.LinearRegressor

method), 1518
clone() (evalml.pipelines.components.LogisticRegressionClassifier

method), 1522
clone() (evalml.pipelines.components.LogTransformer

method), 1525
clone() (evalml.pipelines.components.LSA method),

1527
clone() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

method), 1530
clone() (evalml.pipelines.components.NaturalLanguageFeaturizer

method), 1533
clone() (evalml.pipelines.components.OneHotEncoder

method), 1536
clone() (evalml.pipelines.components.OrdinalEncoder

method), 1539
clone() (evalml.pipelines.components.Oversampler

method), 1542
clone() (evalml.pipelines.components.PCA method),

1544
clone() (evalml.pipelines.components.PerColumnImputer

method), 1547
clone() (evalml.pipelines.components.PolynomialDecomposer

method), 1550
clone() (evalml.pipelines.components.ProphetRegressor

method), 1555
clone() (evalml.pipelines.components.RandomForestClassifier

method), 1558
clone() (evalml.pipelines.components.RandomForestRegressor

method), 1561
clone() (evalml.pipelines.components.ReplaceNullableTypes

method), 1564
clone() (evalml.pipelines.components.RFClassifierRFESelector

method), 1567
clone() (evalml.pipelines.components.RFClassifierSelectFromModel

method), 1570
clone() (evalml.pipelines.components.RFRegressorRFESelector

method), 1573
clone() (evalml.pipelines.components.RFRegressorSelectFromModel

method), 1576
clone() (evalml.pipelines.components.SelectByType

method), 1578
clone() (evalml.pipelines.components.SelectColumns

method), 1581
clone() (evalml.pipelines.components.SimpleImputer

method), 1583
clone() (evalml.pipelines.components.StackedEnsembleBase

method), 1586
clone() (evalml.pipelines.components.StackedEnsembleClassifier

method), 1590
clone() (evalml.pipelines.components.StackedEnsembleRegressor

method), 1594
clone() (evalml.pipelines.components.StandardScaler

method), 1596
clone() (evalml.pipelines.components.STLDecomposer

method), 1599
clone() (evalml.pipelines.components.SVMClassifier

method), 1604
clone() (evalml.pipelines.components.SVMRegressor

method), 1607
clone() (evalml.pipelines.components.TargetEncoder

method), 1610
clone() (evalml.pipelines.components.TargetImputer

method), 1613
clone() (evalml.pipelines.components.TimeSeriesBaselineEstimator

method), 1616
clone() (evalml.pipelines.components.TimeSeriesFeaturizer

2134 Index

EvalML Documentation, Release 0.80.0

method), 1619
clone() (evalml.pipelines.components.TimeSeriesImputer

method), 1622
clone() (evalml.pipelines.components.TimeSeriesRegularizer

method), 1625
clone() (evalml.pipelines.components.Transformer

method), 1628
clone() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector

method), 1296
clone() (evalml.pipelines.components.transformers.column_selectors.DropColumns

method), 1298
clone() (evalml.pipelines.components.transformers.column_selectors.SelectByType

method), 1301
clone() (evalml.pipelines.components.transformers.column_selectors.SelectColumns

method), 1303
clone() (evalml.pipelines.components.transformers.DateTimeFeaturizer

method), 1310
clone() (evalml.pipelines.components.transformers.DFSTransformer

method), 1313
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis

method), 1052
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis

method), 1058
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA

method), 1060
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA

method), 1055
clone() (evalml.pipelines.components.transformers.DropColumns

method), 1316
clone() (evalml.pipelines.components.transformers.DropNaNRowsTransformer

method), 1318
clone() (evalml.pipelines.components.transformers.DropNullColumns

method), 1320
clone() (evalml.pipelines.components.transformers.DropRowsTransformer

method), 1323
clone() (evalml.pipelines.components.transformers.EmailFeaturizer

method), 1325
clone() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder

method), 1063
clone() (evalml.pipelines.components.transformers.encoders.LabelEncoder

method), 1079
clone() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder

method), 1067
clone() (evalml.pipelines.components.transformers.encoders.OneHotEncoder

method), 1082
clone() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder

method), 1072
clone() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder

method), 1086
clone() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder

method), 1076
clone() (evalml.pipelines.components.transformers.encoders.TargetEncoder

method), 1088
clone() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector

method), 1091
clone() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector

method), 1111
clone() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector

method), 1095
clone() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector

method), 1098
clone() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector

method), 1101
clone() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel

method), 1105
clone() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel

method), 1108
clone() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector

method), 1115
clone() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel

method), 1118
clone() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector

method), 1121
clone() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel

method), 1124
clone() (evalml.pipelines.components.transformers.FeatureSelector

method), 1328
clone() (evalml.pipelines.components.transformers.Imputer

method), 1331
clone() (evalml.pipelines.components.transformers.imputers.Imputer

method), 1147
clone() (evalml.pipelines.components.transformers.imputers.imputer.Imputer

method), 1128
clone() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer

method), 1131
clone() (evalml.pipelines.components.transformers.imputers.KNNImputer

method), 1149
clone() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer

method), 1134
clone() (evalml.pipelines.components.transformers.imputers.PerColumnImputer

method), 1152
clone() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer

method), 1137
clone() (evalml.pipelines.components.transformers.imputers.SimpleImputer

method), 1154
clone() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer

method), 1140
clone() (evalml.pipelines.components.transformers.imputers.TargetImputer

method), 1157
clone() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer

method), 1144
clone() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer

method), 1160
clone() (evalml.pipelines.components.transformers.LabelEncoder

method), 1333
clone() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis

method), 1336
clone() (evalml.pipelines.components.transformers.LogTransformer

Index 2135

EvalML Documentation, Release 0.80.0

method), 1338
clone() (evalml.pipelines.components.transformers.LSA

method), 1341
clone() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer

method), 1343
clone() (evalml.pipelines.components.transformers.OneHotEncoder

method), 1346
clone() (evalml.pipelines.components.transformers.OrdinalEncoder

method), 1350
clone() (evalml.pipelines.components.transformers.Oversampler

method), 1353
clone() (evalml.pipelines.components.transformers.PCA

method), 1355
clone() (evalml.pipelines.components.transformers.PerColumnImputer

method), 1358
clone() (evalml.pipelines.components.transformers.PolynomialDecomposer

method), 1361
clone() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer

method), 1163
clone() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer

method), 1223
clone() (evalml.pipelines.components.transformers.preprocessing.Decomposer

method), 1226
clone() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer

method), 1167
clone() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer

method), 1230
clone() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer

method), 1171
clone() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns

method), 1174
clone() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer

method), 1177
clone() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer

method), 1233
clone() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns

method), 1235
clone() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer

method), 1238
clone() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer

method), 1240
clone() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

method), 1180
clone() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer

method), 1183
clone() (evalml.pipelines.components.transformers.preprocessing.LogTransformer

method), 1242
clone() (evalml.pipelines.components.transformers.preprocessing.LSA

method), 1245
clone() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA

method), 1186
clone() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer

method), 1189
clone() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer

method), 1247
clone() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer

method), 1193
clone() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer

method), 1251
clone() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes

method), 1198
clone() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes

method), 1255
clone() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer

method), 1202
clone() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer

method), 1258
clone() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer

method), 1207
clone() (evalml.pipelines.components.transformers.preprocessing.TextTransformer

method), 1263
clone() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer

method), 1211
clone() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer

method), 1214
clone() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer

method), 1266
clone() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer

method), 1269
clone() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer

method), 1217
clone() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer

method), 1220
clone() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer

method), 1272
clone() (evalml.pipelines.components.transformers.ReplaceNullableTypes

method), 1365
clone() (evalml.pipelines.components.transformers.RFClassifierRFESelector

method), 1368
clone() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel

method), 1371
clone() (evalml.pipelines.components.transformers.RFRegressorRFESelector

method), 1374
clone() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel

method), 1377
clone() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler

method), 1275
clone() (evalml.pipelines.components.transformers.samplers.Oversampler

method), 1284
clone() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler

method), 1278
clone() (evalml.pipelines.components.transformers.samplers.Undersampler

method), 1287
clone() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler

method), 1281
clone() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler

method), 1290
clone() (evalml.pipelines.components.transformers.scalers.StandardScaler

2136 Index

EvalML Documentation, Release 0.80.0

method), 1293
clone() (evalml.pipelines.components.transformers.SelectByType

method), 1380
clone() (evalml.pipelines.components.transformers.SelectColumns

method), 1382
clone() (evalml.pipelines.components.transformers.SimpleImputer

method), 1384
clone() (evalml.pipelines.components.transformers.StandardScaler

method), 1387
clone() (evalml.pipelines.components.transformers.STLDecomposer

method), 1390
clone() (evalml.pipelines.components.transformers.TargetEncoder

method), 1395
clone() (evalml.pipelines.components.transformers.TargetImputer

method), 1398
clone() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer

method), 1401
clone() (evalml.pipelines.components.transformers.TimeSeriesImputer

method), 1404
clone() (evalml.pipelines.components.transformers.TimeSeriesRegularizer

method), 1407
clone() (evalml.pipelines.components.transformers.Transformer

method), 1410
clone() (evalml.pipelines.components.transformers.transformer.Transformer

method), 1306
clone() (evalml.pipelines.components.transformers.Undersampler

method), 1413
clone() (evalml.pipelines.components.transformers.URLFeaturizer

method), 1415
clone() (evalml.pipelines.components.Undersampler

method), 1631
clone() (evalml.pipelines.components.URLFeaturizer

method), 1633
clone() (evalml.pipelines.components.VARMAXRegressor

method), 1636
clone() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

method), 1639
clone() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

method), 1642
clone() (evalml.pipelines.components.VowpalWabbitRegressor

method), 1645
clone() (evalml.pipelines.components.XGBoostClassifier

method), 1648
clone() (evalml.pipelines.components.XGBoostRegressor

method), 1651
clone() (evalml.pipelines.DecisionTreeClassifier

method), 1782
clone() (evalml.pipelines.DecisionTreeRegressor

method), 1786
clone() (evalml.pipelines.DFSTransformer method),

1789
clone() (evalml.pipelines.DropNaNRowsTransformer

method), 1791
clone() (evalml.pipelines.ElasticNetClassifier method),

1794
clone() (evalml.pipelines.ElasticNetRegressor method),

1797
clone() (evalml.pipelines.Estimator method), 1800
clone() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1804
clone() (evalml.pipelines.ExtraTreesClassifier method),

1807
clone() (evalml.pipelines.ExtraTreesRegressor method),

1811
clone() (evalml.pipelines.FeatureSelector method),

1814
clone() (evalml.pipelines.Imputer method), 1817
clone() (evalml.pipelines.KNeighborsClassifier

method), 1820
clone() (evalml.pipelines.LightGBMClassifier method),

1823
clone() (evalml.pipelines.LightGBMRegressor method),

1827
clone() (evalml.pipelines.LinearRegressor method),

1830
clone() (evalml.pipelines.LogisticRegressionClassifier

method), 1833
clone() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1678
clone() (evalml.pipelines.MulticlassClassificationPipeline

method), 1838
clone() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1684
clone() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1844
clone() (evalml.pipelines.OneHotEncoder method),

1851
clone() (evalml.pipelines.OrdinalEncoder method),

1854
clone() (evalml.pipelines.PerColumnImputer method),

1857
clone() (evalml.pipelines.pipeline_base.PipelineBase

method), 1692
clone() (evalml.pipelines.PipelineBase method), 1860
clone() (evalml.pipelines.ProphetRegressor method),

1866
clone() (evalml.pipelines.RandomForestClassifier

method), 1869
clone() (evalml.pipelines.RandomForestRegressor

method), 1872
clone() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1700
clone() (evalml.pipelines.RegressionPipeline method),

1876
clone() (evalml.pipelines.RFClassifierSelectFromModel

method), 1881
clone() (evalml.pipelines.RFRegressorSelectFromModel

method), 1884

Index 2137

EvalML Documentation, Release 0.80.0

clone() (evalml.pipelines.SimpleImputer method), 1887
clone() (evalml.pipelines.StackedEnsembleBase

method), 1890
clone() (evalml.pipelines.StackedEnsembleClassifier

method), 1894
clone() (evalml.pipelines.StackedEnsembleRegressor

method), 1898
clone() (evalml.pipelines.StandardScaler method),

1900
clone() (evalml.pipelines.SVMClassifier method), 1903
clone() (evalml.pipelines.SVMRegressor method), 1906
clone() (evalml.pipelines.TargetEncoder method), 1909
clone() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1707
clone() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1715
clone() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1723
clone() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1731
clone() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1738
clone() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1914
clone() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1921
clone() (evalml.pipelines.TimeSeriesFeaturizer

method), 1928
clone() (evalml.pipelines.TimeSeriesImputer method),

1930
clone() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1934
clone() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1942
clone() (evalml.pipelines.TimeSeriesRegularizer

method), 1949
clone() (evalml.pipelines.Transformer method), 1952
clone() (evalml.pipelines.VARMAXRegressor method),

1955
clone() (evalml.pipelines.VowpalWabbitBinaryClassifier

method), 1958
clone() (evalml.pipelines.VowpalWabbitMulticlassClassifier

method), 1961
clone() (evalml.pipelines.VowpalWabbitRegressor

method), 1964
clone() (evalml.pipelines.XGBoostClassifier method),

1967
clone() (evalml.pipelines.XGBoostRegressor method),

1970
close() (evalml.automl.engine.cf_engine.CFClient

method), 296
close() (evalml.automl.engine.cf_engine.CFEngine

method), 297
close() (evalml.automl.engine.CFEngine method), 308

close() (evalml.automl.engine.dask_engine.DaskEngine
method), 299

close() (evalml.automl.engine.DaskEngine method),
309

close() (evalml.automl.engine.sequential_engine.SequentialEngine
method), 306

close() (evalml.automl.engine.SequentialEngine
method), 312

close() (evalml.automl.SequentialEngine method), 343
close_engine() (evalml.automl.automl_search.AutoMLSearch

method), 319
close_engine() (evalml.automl.AutoMLSearch

method), 336
close_engine() (evalml.AutoMLSearch method), 2041
ColumnSelector (class in

evalml.pipelines.components.transformers.column_selectors),
1295

ComponentBase (class in evalml.pipelines.components),
1448

ComponentBase (class in
evalml.pipelines.components.component_base),
1418

ComponentBaseMeta (class in
evalml.pipelines.components), 1450

ComponentBaseMeta (class in
evalml.pipelines.components.component_base_meta),
1420

ComponentGraph (class in evalml.pipelines), 1775
ComponentGraph (class in

evalml.pipelines.component_graph), 1669
ComponentNotYetFittedError, 451, 454
compute_order (evalml.pipelines.component_graph.ComponentGraph

property), 1671
compute_order (evalml.pipelines.ComponentGraph

property), 1777
CONDA_TO_PIP_NAME (in module evalml.utils.cli_utils),

2022
confusion_matrix() (in module

evalml.model_understanding), 488
confusion_matrix() (in module

evalml.model_understanding.metrics), 472
contains_all_ts_parameters() (in module

evalml.utils.gen_utils), 2026
contains_pre_existing_features()

(evalml.pipelines.components.DFSTransformer
static method), 1462

contains_pre_existing_features()
(evalml.pipelines.components.transformers.DFSTransformer
static method), 1313

contains_pre_existing_features()
(evalml.pipelines.components.transformers.preprocessing.DFSTransformer
static method), 1230

contains_pre_existing_features()
(evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

2138 Index

EvalML Documentation, Release 0.80.0

static method), 1180
contains_pre_existing_features()

(evalml.pipelines.DFSTransformer static
method), 1789

convert_bool_to_double() (in module
evalml.pipelines.components.utils), 1422

convert_dict_to_action()
(evalml.data_checks.data_check_action.DataCheckAction
static method), 349

convert_dict_to_action()
(evalml.data_checks.DataCheckAction static
method), 405

convert_dict_to_option()
(evalml.data_checks.data_check_action_option.DataCheckActionOption
static method), 351

convert_dict_to_option()
(evalml.data_checks.DataCheckActionOption
static method), 406

convert_to_seconds() (in module evalml.utils), 2033
convert_to_seconds() (in module

evalml.utils.gen_utils), 2026
CostBenefitMatrix (class in evalml.objectives), 619
CostBenefitMatrix (class in

evalml.objectives.cost_benefit_matrix), 503
create_objectives()

(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
static method), 1657

create_objectives()
(evalml.pipelines.BinaryClassificationPipeline
static method), 1758

create_objectives()
(evalml.pipelines.classification_pipeline.ClassificationPipeline
static method), 1665

create_objectives()
(evalml.pipelines.ClassificationPipeline static
method), 1771

create_objectives()
(evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
static method), 1678

create_objectives()
(evalml.pipelines.MulticlassClassificationPipeline
static method), 1838

create_objectives()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
static method), 1684

create_objectives()
(evalml.pipelines.MultiseriesRegressionPipeline
static method), 1844

create_objectives()
(evalml.pipelines.pipeline_base.PipelineBase
static method), 1693

create_objectives() (evalml.pipelines.PipelineBase
static method), 1861

create_objectives()

(evalml.pipelines.regression_pipeline.RegressionPipeline
static method), 1701

create_objectives()
(evalml.pipelines.RegressionPipeline static
method), 1877

create_objectives()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
static method), 1707

create_objectives()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
static method), 1715

create_objectives()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
static method), 1723

create_objectives()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
static method), 1731

create_objectives()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
static method), 1738

create_objectives()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
static method), 1914

create_objectives()
(evalml.pipelines.TimeSeriesClassificationPipeline
static method), 1921

create_objectives()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
static method), 1934

create_objectives()
(evalml.pipelines.TimeSeriesRegressionPipeline
static method), 1942

cross_entropy() (in module
evalml.model_understanding.prediction_explanations.explainers),
462

custom_name (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
property), 1657

custom_name (evalml.pipelines.BinaryClassificationPipeline
property), 1758

custom_name (evalml.pipelines.classification_pipeline.ClassificationPipeline
property), 1665

custom_name (evalml.pipelines.ClassificationPipeline
property), 1771

custom_name (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
property), 1678

custom_name (evalml.pipelines.MulticlassClassificationPipeline
property), 1838

custom_name (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
property), 1684

custom_name (evalml.pipelines.MultiseriesRegressionPipeline
property), 1844

custom_name (evalml.pipelines.pipeline_base.PipelineBase
property), 1693

custom_name (evalml.pipelines.PipelineBase property),

Index 2139

EvalML Documentation, Release 0.80.0

1861
custom_name (evalml.pipelines.regression_pipeline.RegressionPipeline

property), 1701
custom_name (evalml.pipelines.RegressionPipeline

property), 1877
custom_name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

property), 1708
custom_name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

property), 1715
custom_name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1723
custom_name (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

property), 1731
custom_name (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

property), 1738
custom_name (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

property), 1914
custom_name (evalml.pipelines.TimeSeriesClassificationPipeline

property), 1921
custom_name (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1935
custom_name (evalml.pipelines.TimeSeriesRegressionPipeline

property), 1942

D
DaskComputation (class in

evalml.automl.engine.dask_engine), 299
DaskEngine (class in evalml.automl.engine), 309
DaskEngine (class in evalml.automl.engine.dask_engine),

299
DataCheck (class in evalml.data_checks), 404
DataCheck (class in evalml.data_checks.data_check),

348
DataCheckAction (class in evalml.data_checks), 404
DataCheckAction (class in

evalml.data_checks.data_check_action),
349

DataCheckActionCode (class in evalml.data_checks),
405

DataCheckActionCode (class in
evalml.data_checks.data_check_action_code),
350

DataCheckActionOption (class in
evalml.data_checks), 405

DataCheckActionOption (class in
evalml.data_checks.data_check_action_option),
351

DataCheckError (class in evalml.data_checks), 407
DataCheckError (class in

evalml.data_checks.data_check_message),
354

DataCheckInitError, 451, 454
DataCheckMessage (class in evalml.data_checks), 407

DataCheckMessage (class in
evalml.data_checks.data_check_message),
354

DataCheckMessageCode (class in evalml.data_checks),
407

DataCheckMessageCode (class in
evalml.data_checks.data_check_message_code),
355

DataCheckMessageType (class in evalml.data_checks),
409

DataCheckMessageType (class in
evalml.data_checks.data_check_message_type),
357

DataChecks (class in evalml.data_checks), 410
DataChecks (class in evalml.data_checks.data_checks),

358
DataCheckWarning (class in evalml.data_checks), 410
DataCheckWarning (class in

evalml.data_checks.data_check_message),
354

dates_needed_for_prediction()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1684

dates_needed_for_prediction()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1844

dates_needed_for_prediction()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1708

dates_needed_for_prediction()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1715

dates_needed_for_prediction()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1723

dates_needed_for_prediction()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1731

dates_needed_for_prediction()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1738

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1914

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1921

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1935

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1942

dates_needed_for_prediction_range()

2140 Index

EvalML Documentation, Release 0.80.0

(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1684

dates_needed_for_prediction_range()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1844

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1708

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1715

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1723

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1731

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1738

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1914

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1921

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1935

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1942

DateTimeFeaturizer (class in
evalml.pipelines.components), 1451

DateTimeFeaturizer (class in
evalml.pipelines.components.transformers),
1309

DateTimeFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing),
1222

DateTimeFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing.datetime_featurizer),
1162

DateTimeFormatDataCheck (class in
evalml.data_checks), 410

DateTimeFormatDataCheck (class in
evalml.data_checks.datetime_format_data_check),
359

DCAOParameterAllowedValuesType (class in
evalml.data_checks), 417

DCAOParameterAllowedValuesType (class in
evalml.data_checks.data_check_action_option),
352

DCAOParameterType (class in evalml.data_checks), 418

DCAOParameterType (class in
evalml.data_checks.data_check_action_option),
352

debug() (evalml.automl.engine.engine_base.JobLogger
method), 303

decision_function()
(evalml.objectives.AccuracyBinary method),
602

decision_function() (evalml.objectives.AUC
method), 606

decision_function()
(evalml.objectives.BalancedAccuracyBinary
method), 613

decision_function()
(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
method), 500

decision_function()
(evalml.objectives.BinaryClassificationObjective
method), 617

decision_function()
(evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
method), 504

decision_function()
(evalml.objectives.CostBenefitMatrix method),
620

decision_function() (evalml.objectives.F1 method),
624

decision_function()
(evalml.objectives.fraud_cost.FraudCost
method), 507

decision_function() (evalml.objectives.FraudCost
method), 632

decision_function() (evalml.objectives.Gini
method), 636

decision_function()
(evalml.objectives.lead_scoring.LeadScoring
method), 510

decision_function() (evalml.objectives.LeadScoring
method), 639

decision_function()
(evalml.objectives.LogLossBinary method),
641

decision_function() (evalml.objectives.MCCBinary
method), 652

decision_function() (evalml.objectives.Precision
method), 666

decision_function() (evalml.objectives.Recall
method), 676

decision_function()
(evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
method), 521

decision_function()
(evalml.objectives.SensitivityLowAlert
method), 689

Index 2141

EvalML Documentation, Release 0.80.0

decision_function()
(evalml.objectives.standard_metrics.AccuracyBinary
method), 524

decision_function()
(evalml.objectives.standard_metrics.AUC
method), 528

decision_function()
(evalml.objectives.standard_metrics.BalancedAccuracyBinary
method), 536

decision_function()
(evalml.objectives.standard_metrics.F1
method), 541

decision_function()
(evalml.objectives.standard_metrics.Gini
method), 549

decision_function()
(evalml.objectives.standard_metrics.LogLossBinary
method), 551

decision_function()
(evalml.objectives.standard_metrics.MCCBinary
method), 562

decision_function()
(evalml.objectives.standard_metrics.Precision
method), 571

decision_function()
(evalml.objectives.standard_metrics.Recall
method), 581

decision_tree_data_from_estimator() (in module
evalml.model_understanding.visualizations),
481

decision_tree_data_from_pipeline() (in module
evalml.model_understanding.visualizations),
481

DecisionTreeClassifier (class in evalml.pipelines),
1780

DecisionTreeClassifier (class in
evalml.pipelines.components), 1454

DecisionTreeClassifier (class in
evalml.pipelines.components.estimators),
963

DecisionTreeClassifier (class in
evalml.pipelines.components.estimators.classifiers),
775

DecisionTreeClassifier (class in
evalml.pipelines.components.estimators.classifiers.decision_tree_classifier),
723

DecisionTreeRegressor (class in evalml.pipelines),
1784

DecisionTreeRegressor (class in
evalml.pipelines.components), 1457

DecisionTreeRegressor (class in
evalml.pipelines.components.estimators),
967

DecisionTreeRegressor (class in

evalml.pipelines.components.estimators.regressors),
894

DecisionTreeRegressor (class in
evalml.pipelines.components.estimators.regressors.decision_tree_regressor),
827

Decomposer (class in evalml.pipelines.components.transformers.preprocessing),
1225

Decomposer (class in evalml.pipelines.components.transformers.preprocessing.decomposer),
1165

DECOMPOSER_PERIOD_CAP (in module
evalml.pipelines.utils), 1745

default_max_batches
(evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm
property), 280

default_max_batches
(evalml.automl.automl_algorithm.AutoMLAlgorithm
property), 289

default_max_batches
(evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm
property), 284

default_max_batches
(evalml.automl.automl_algorithm.DefaultAlgorithm
property), 292

default_max_batches
(evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm
property), 287

default_max_batches
(evalml.automl.automl_algorithm.IterativeAlgorithm
property), 295

DEFAULT_METRICS (in module
evalml.model_understanding.prediction_explanations.explainers),
462

default_parameters (evalml.pipelines.component_graph.ComponentGraph
property), 1671

default_parameters (evalml.pipelines.ComponentGraph
property), 1777

default_parameters()
(evalml.pipelines.ARIMARegressor method),
1753

default_parameters()
(evalml.pipelines.CatBoostClassifier method),
1763

default_parameters()
(evalml.pipelines.CatBoostRegressor method),
1767

default_parameters()
(evalml.pipelines.components.ARIMARegressor
method), 1433

default_parameters()
(evalml.pipelines.components.BaselineClassifier
method), 1436

default_parameters()
(evalml.pipelines.components.BaselineRegressor
method), 1439

2142 Index

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.CatBoostClassifier
method), 1443

default_parameters()
(evalml.pipelines.components.CatBoostRegressor
method), 1446

default_parameters()
(evalml.pipelines.components.component_base.ComponentBase
method), 1418

default_parameters()
(evalml.pipelines.components.ComponentBase
method), 1449

default_parameters()
(evalml.pipelines.components.DateTimeFeaturizer
method), 1452

default_parameters()
(evalml.pipelines.components.DecisionTreeClassifier
method), 1455

default_parameters()
(evalml.pipelines.components.DecisionTreeRegressor
method), 1459

default_parameters()
(evalml.pipelines.components.DFSTransformer
method), 1463

default_parameters()
(evalml.pipelines.components.DropColumns
method), 1465

default_parameters()
(evalml.pipelines.components.DropNaNRowsTransformer
method), 1467

default_parameters()
(evalml.pipelines.components.DropNullColumns
method), 1470

default_parameters()
(evalml.pipelines.components.DropRowsTransformer
method), 1472

default_parameters()
(evalml.pipelines.components.ElasticNetClassifier
method), 1475

default_parameters()
(evalml.pipelines.components.ElasticNetRegressor
method), 1478

default_parameters()
(evalml.pipelines.components.EmailFeaturizer
method), 1481

default_parameters()
(evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
method), 694

default_parameters()
(evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier
method), 698

default_parameters()
(evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor
method), 702

default_parameters()
(evalml.pipelines.components.ensemble.StackedEnsembleBase
method), 706

default_parameters()
(evalml.pipelines.components.ensemble.StackedEnsembleClassifier
method), 709

default_parameters()
(evalml.pipelines.components.ensemble.StackedEnsembleRegressor
method), 713

default_parameters()
(evalml.pipelines.components.Estimator
method), 1484

default_parameters()
(evalml.pipelines.components.estimators.ARIMARegressor
method), 948

default_parameters()
(evalml.pipelines.components.estimators.BaselineClassifier
method), 951

default_parameters()
(evalml.pipelines.components.estimators.BaselineRegressor
method), 954

default_parameters()
(evalml.pipelines.components.estimators.CatBoostClassifier
method), 958

default_parameters()
(evalml.pipelines.components.estimators.CatBoostRegressor
method), 961

default_parameters()
(evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier
method), 717

default_parameters()
(evalml.pipelines.components.estimators.classifiers.BaselineClassifier
method), 770

default_parameters()
(evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier
method), 721

default_parameters()
(evalml.pipelines.components.estimators.classifiers.CatBoostClassifier
method), 773

default_parameters()
(evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier
method), 725

default_parameters()
(evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier
method), 777

default_parameters()
(evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier
method), 729

default_parameters()
(evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier
method), 781

default_parameters()
(evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier
method), 733

Index 2143

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier
method), 784

default_parameters()
(evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier
method), 737

default_parameters()
(evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier
method), 788

default_parameters()
(evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier
method), 742

default_parameters()
(evalml.pipelines.components.estimators.classifiers.LightGBMClassifier
method), 792

default_parameters()
(evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier
method), 745

default_parameters()
(evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier
method), 795

default_parameters()
(evalml.pipelines.components.estimators.classifiers.RandomForestClassifier
method), 798

default_parameters()
(evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier
method), 749

default_parameters()
(evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier
method), 753

default_parameters()
(evalml.pipelines.components.estimators.classifiers.SVMClassifier
method), 802

default_parameters()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
method), 756

default_parameters()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier
method), 759

default_parameters()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier
method), 763

default_parameters()
(evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier
method), 805

default_parameters()
(evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier
method), 808

default_parameters()
(evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier
method), 767

default_parameters()
(evalml.pipelines.components.estimators.classifiers.XGBoostClassifier
method), 811

default_parameters()
(evalml.pipelines.components.estimators.DecisionTreeClassifier
method), 965

default_parameters()
(evalml.pipelines.components.estimators.DecisionTreeRegressor
method), 969

default_parameters()
(evalml.pipelines.components.estimators.ElasticNetClassifier
method), 972

default_parameters()
(evalml.pipelines.components.estimators.ElasticNetRegressor
method), 975

default_parameters()
(evalml.pipelines.components.estimators.Estimator
method), 979

default_parameters()
(evalml.pipelines.components.estimators.estimator.Estimator
method), 943

default_parameters()
(evalml.pipelines.components.estimators.ExponentialSmoothingRegressor
method), 982

default_parameters()
(evalml.pipelines.components.estimators.ExtraTreesClassifier
method), 986

default_parameters()
(evalml.pipelines.components.estimators.ExtraTreesRegressor
method), 990

default_parameters()
(evalml.pipelines.components.estimators.KNeighborsClassifier
method), 993

default_parameters()
(evalml.pipelines.components.estimators.LightGBMClassifier
method), 997

default_parameters()
(evalml.pipelines.components.estimators.LightGBMRegressor
method), 1000

default_parameters()
(evalml.pipelines.components.estimators.LinearRegressor
method), 1004

default_parameters()
(evalml.pipelines.components.estimators.LogisticRegressionClassifier
method), 1007

default_parameters()
(evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor
method), 1010

default_parameters()
(evalml.pipelines.components.estimators.ProphetRegressor
method), 1014

default_parameters()
(evalml.pipelines.components.estimators.RandomForestClassifier
method), 1017

default_parameters()
(evalml.pipelines.components.estimators.RandomForestRegressor
method), 1020

2144 Index

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor
method), 817

default_parameters()
(evalml.pipelines.components.estimators.regressors.ARIMARegressor
method), 885

default_parameters()
(evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor
method), 820

default_parameters()
(evalml.pipelines.components.estimators.regressors.BaselineRegressor
method), 888

default_parameters()
(evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor
method), 824

default_parameters()
(evalml.pipelines.components.estimators.regressors.CatBoostRegressor
method), 892

default_parameters()
(evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor
method), 828

default_parameters()
(evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor
method), 896

default_parameters()
(evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor
method), 832

default_parameters()
(evalml.pipelines.components.estimators.regressors.ElasticNetRegressor
method), 899

default_parameters()
(evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor
method), 837

default_parameters()
(evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor
method), 841

default_parameters()
(evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor
method), 903

default_parameters()
(evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor
method), 906

default_parameters()
(evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor
method), 844

default_parameters()
(evalml.pipelines.components.estimators.regressors.LightGBMRegressor
method), 910

default_parameters()
(evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor
method), 848

default_parameters()
(evalml.pipelines.components.estimators.regressors.LinearRegressor
method), 913

default_parameters()
(evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor
method), 851

default_parameters()
(evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor
method), 916

default_parameters()
(evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor
method), 857

default_parameters()
(evalml.pipelines.components.estimators.regressors.ProphetRegressor
method), 920

default_parameters()
(evalml.pipelines.components.estimators.regressors.RandomForestRegressor
method), 923

default_parameters()
(evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor
method), 861

default_parameters()
(evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor
method), 864

default_parameters()
(evalml.pipelines.components.estimators.regressors.SVMRegressor
method), 926

default_parameters()
(evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator
method), 868

default_parameters()
(evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator
method), 930

default_parameters()
(evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor
method), 872

default_parameters()
(evalml.pipelines.components.estimators.regressors.VARMAXRegressor
method), 933

default_parameters()
(evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor
method), 876

default_parameters()
(evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor
method), 936

default_parameters()
(evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor
method), 880

default_parameters()
(evalml.pipelines.components.estimators.regressors.XGBoostRegressor
method), 939

default_parameters()
(evalml.pipelines.components.estimators.SVMClassifier
method), 1023

default_parameters()
(evalml.pipelines.components.estimators.SVMRegressor
method), 1026

Index 2145

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator
method), 1030

default_parameters()
(evalml.pipelines.components.estimators.VARMAXRegressor
method), 1033

default_parameters()
(evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier
method), 1036

default_parameters()
(evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier
method), 1039

default_parameters()
(evalml.pipelines.components.estimators.VowpalWabbitRegressor
method), 1042

default_parameters()
(evalml.pipelines.components.estimators.XGBoostClassifier
method), 1046

default_parameters()
(evalml.pipelines.components.estimators.XGBoostRegressor
method), 1049

default_parameters()
(evalml.pipelines.components.ExponentialSmoothingRegressor
method), 1487

default_parameters()
(evalml.pipelines.components.ExtraTreesClassifier
method), 1491

default_parameters()
(evalml.pipelines.components.ExtraTreesRegressor
method), 1495

default_parameters()
(evalml.pipelines.components.FeatureSelector
method), 1497

default_parameters()
(evalml.pipelines.components.Imputer method),
1500

default_parameters()
(evalml.pipelines.components.KNeighborsClassifier
method), 1503

default_parameters()
(evalml.pipelines.components.LabelEncoder
method), 1506

default_parameters()
(evalml.pipelines.components.LightGBMClassifier
method), 1509

default_parameters()
(evalml.pipelines.components.LightGBMRegressor
method), 1513

default_parameters()
(evalml.pipelines.components.LinearDiscriminantAnalysis
method), 1516

default_parameters()
(evalml.pipelines.components.LinearRegressor
method), 1518

default_parameters()
(evalml.pipelines.components.LogisticRegressionClassifier
method), 1522

default_parameters()
(evalml.pipelines.components.LogTransformer
method), 1525

default_parameters()
(evalml.pipelines.components.LSA method),
1527

default_parameters()
(evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor
method), 1530

default_parameters()
(evalml.pipelines.components.NaturalLanguageFeaturizer
method), 1533

default_parameters()
(evalml.pipelines.components.OneHotEncoder
method), 1536

default_parameters()
(evalml.pipelines.components.OrdinalEncoder
method), 1539

default_parameters()
(evalml.pipelines.components.Oversampler
method), 1542

default_parameters()
(evalml.pipelines.components.PCA method),
1545

default_parameters()
(evalml.pipelines.components.PerColumnImputer
method), 1547

default_parameters()
(evalml.pipelines.components.PolynomialDecomposer
method), 1550

default_parameters()
(evalml.pipelines.components.ProphetRegressor
method), 1555

default_parameters()
(evalml.pipelines.components.RandomForestClassifier
method), 1558

default_parameters()
(evalml.pipelines.components.RandomForestRegressor
method), 1561

default_parameters()
(evalml.pipelines.components.ReplaceNullableTypes
method), 1564

default_parameters()
(evalml.pipelines.components.RFClassifierRFESelector
method), 1567

default_parameters()
(evalml.pipelines.components.RFClassifierSelectFromModel
method), 1570

default_parameters()
(evalml.pipelines.components.RFRegressorRFESelector
method), 1573

2146 Index

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.RFRegressorSelectFromModel
method), 1576

default_parameters()
(evalml.pipelines.components.SelectByType
method), 1579

default_parameters()
(evalml.pipelines.components.SelectColumns
method), 1581

default_parameters()
(evalml.pipelines.components.SimpleImputer
method), 1583

default_parameters()
(evalml.pipelines.components.StackedEnsembleBase
method), 1586

default_parameters()
(evalml.pipelines.components.StackedEnsembleClassifier
method), 1590

default_parameters()
(evalml.pipelines.components.StackedEnsembleRegressor
method), 1594

default_parameters()
(evalml.pipelines.components.StandardScaler
method), 1596

default_parameters()
(evalml.pipelines.components.STLDecomposer
method), 1599

default_parameters()
(evalml.pipelines.components.SVMClassifier
method), 1604

default_parameters()
(evalml.pipelines.components.SVMRegressor
method), 1607

default_parameters()
(evalml.pipelines.components.TargetEncoder
method), 1610

default_parameters()
(evalml.pipelines.components.TargetImputer
method), 1613

default_parameters()
(evalml.pipelines.components.TimeSeriesBaselineEstimator
method), 1616

default_parameters()
(evalml.pipelines.components.TimeSeriesFeaturizer
method), 1620

default_parameters()
(evalml.pipelines.components.TimeSeriesImputer
method), 1622

default_parameters()
(evalml.pipelines.components.TimeSeriesRegularizer
method), 1625

default_parameters()
(evalml.pipelines.components.Transformer
method), 1628

default_parameters()
(evalml.pipelines.components.transformers.column_selectors.ColumnSelector
method), 1296

default_parameters()
(evalml.pipelines.components.transformers.column_selectors.DropColumns
method), 1298

default_parameters()
(evalml.pipelines.components.transformers.column_selectors.SelectByType
method), 1301

default_parameters()
(evalml.pipelines.components.transformers.column_selectors.SelectColumns
method), 1303

default_parameters()
(evalml.pipelines.components.transformers.DateTimeFeaturizer
method), 1310

default_parameters()
(evalml.pipelines.components.transformers.DFSTransformer
method), 1313

default_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis
method), 1052

default_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis
method), 1058

default_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.PCA
method), 1060

default_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA
method), 1055

default_parameters()
(evalml.pipelines.components.transformers.DropColumns
method), 1316

default_parameters()
(evalml.pipelines.components.transformers.DropNaNRowsTransformer
method), 1318

default_parameters()
(evalml.pipelines.components.transformers.DropNullColumns
method), 1321

default_parameters()
(evalml.pipelines.components.transformers.DropRowsTransformer
method), 1323

default_parameters()
(evalml.pipelines.components.transformers.EmailFeaturizer
method), 1325

default_parameters()
(evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder
method), 1063

default_parameters()
(evalml.pipelines.components.transformers.encoders.LabelEncoder
method), 1079

default_parameters()
(evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
method), 1067

Index 2147

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.transformers.encoders.OneHotEncoder
method), 1082

default_parameters()
(evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
method), 1072

default_parameters()
(evalml.pipelines.components.transformers.encoders.OrdinalEncoder
method), 1086

default_parameters()
(evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder
method), 1076

default_parameters()
(evalml.pipelines.components.transformers.encoders.TargetEncoder
method), 1088

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector
method), 1092

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.FeatureSelector
method), 1112

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector
method), 1095

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector
method), 1098

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector
method), 1101

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel
method), 1105

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel
method), 1108

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector
method), 1115

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel
method), 1118

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector
method), 1121

default_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel
method), 1124

default_parameters()
(evalml.pipelines.components.transformers.FeatureSelector
method), 1328

default_parameters()
(evalml.pipelines.components.transformers.Imputer
method), 1331

default_parameters()
(evalml.pipelines.components.transformers.imputers.Imputer
method), 1147

default_parameters()
(evalml.pipelines.components.transformers.imputers.imputer.Imputer
method), 1128

default_parameters()
(evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer
method), 1131

default_parameters()
(evalml.pipelines.components.transformers.imputers.KNNImputer
method), 1150

default_parameters()
(evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer
method), 1134

default_parameters()
(evalml.pipelines.components.transformers.imputers.PerColumnImputer
method), 1152

default_parameters()
(evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer
method), 1137

default_parameters()
(evalml.pipelines.components.transformers.imputers.SimpleImputer
method), 1154

default_parameters()
(evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer
method), 1140

default_parameters()
(evalml.pipelines.components.transformers.imputers.TargetImputer
method), 1157

default_parameters()
(evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer
method), 1144

default_parameters()
(evalml.pipelines.components.transformers.imputers.TimeSeriesImputer
method), 1160

default_parameters()
(evalml.pipelines.components.transformers.LabelEncoder
method), 1333

default_parameters()
(evalml.pipelines.components.transformers.LinearDiscriminantAnalysis
method), 1336

default_parameters()
(evalml.pipelines.components.transformers.LogTransformer
method), 1338

default_parameters()
(evalml.pipelines.components.transformers.LSA
method), 1341

default_parameters()
(evalml.pipelines.components.transformers.NaturalLanguageFeaturizer
method), 1343

default_parameters()
(evalml.pipelines.components.transformers.OneHotEncoder
method), 1346

2148 Index

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.transformers.OrdinalEncoder
method), 1350

default_parameters()
(evalml.pipelines.components.transformers.Oversampler
method), 1353

default_parameters()
(evalml.pipelines.components.transformers.PCA
method), 1355

default_parameters()
(evalml.pipelines.components.transformers.PerColumnImputer
method), 1358

default_parameters()
(evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1361

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer
method), 1163

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer
method), 1223

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1226

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1167

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.DFSTransformer
method), 1230

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer
method), 1171

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns
method), 1174

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer
method), 1177

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer
method), 1233

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.DropNullColumns
method), 1235

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer
method), 1238

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer
method), 1240

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer
method), 1180

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer
method), 1183

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.LogTransformer
method), 1243

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.LSA
method), 1245

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.lsa.LSA
method), 1186

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer
method), 1189

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer
method), 1247

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1193

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1251

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes
method), 1198

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes
method), 1255

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1202

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1258

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer
method), 1207

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.TextTransformer
method), 1263

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer
method), 1211

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer
method), 1214

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer
method), 1266

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer
method), 1269

Index 2149

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer
method), 1217

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer
method), 1220

default_parameters()
(evalml.pipelines.components.transformers.preprocessing.URLFeaturizer
method), 1272

default_parameters()
(evalml.pipelines.components.transformers.ReplaceNullableTypes
method), 1366

default_parameters()
(evalml.pipelines.components.transformers.RFClassifierRFESelector
method), 1368

default_parameters()
(evalml.pipelines.components.transformers.RFClassifierSelectFromModel
method), 1371

default_parameters()
(evalml.pipelines.components.transformers.RFRegressorRFESelector
method), 1374

default_parameters()
(evalml.pipelines.components.transformers.RFRegressorSelectFromModel
method), 1377

default_parameters()
(evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler
method), 1275

default_parameters()
(evalml.pipelines.components.transformers.samplers.Oversampler
method), 1284

default_parameters()
(evalml.pipelines.components.transformers.samplers.oversampler.Oversampler
method), 1278

default_parameters()
(evalml.pipelines.components.transformers.samplers.Undersampler
method), 1287

default_parameters()
(evalml.pipelines.components.transformers.samplers.undersampler.Undersampler
method), 1281

default_parameters()
(evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler
method), 1290

default_parameters()
(evalml.pipelines.components.transformers.scalers.StandardScaler
method), 1293

default_parameters()
(evalml.pipelines.components.transformers.SelectByType
method), 1380

default_parameters()
(evalml.pipelines.components.transformers.SelectColumns
method), 1382

default_parameters()
(evalml.pipelines.components.transformers.SimpleImputer
method), 1384

default_parameters()
(evalml.pipelines.components.transformers.StandardScaler
method), 1387

default_parameters()
(evalml.pipelines.components.transformers.STLDecomposer
method), 1390

default_parameters()
(evalml.pipelines.components.transformers.TargetEncoder
method), 1395

default_parameters()
(evalml.pipelines.components.transformers.TargetImputer
method), 1398

default_parameters()
(evalml.pipelines.components.transformers.TimeSeriesFeaturizer
method), 1401

default_parameters()
(evalml.pipelines.components.transformers.TimeSeriesImputer
method), 1404

default_parameters()
(evalml.pipelines.components.transformers.TimeSeriesRegularizer
method), 1407

default_parameters()
(evalml.pipelines.components.transformers.Transformer
method), 1410

default_parameters()
(evalml.pipelines.components.transformers.transformer.Transformer
method), 1306

default_parameters()
(evalml.pipelines.components.transformers.Undersampler
method), 1413

default_parameters()
(evalml.pipelines.components.transformers.URLFeaturizer
method), 1416

default_parameters()
(evalml.pipelines.components.Undersampler
method), 1631

default_parameters()
(evalml.pipelines.components.URLFeaturizer
method), 1633

default_parameters()
(evalml.pipelines.components.VARMAXRegressor
method), 1636

default_parameters()
(evalml.pipelines.components.VowpalWabbitBinaryClassifier
method), 1639

default_parameters()
(evalml.pipelines.components.VowpalWabbitMulticlassClassifier
method), 1642

default_parameters()
(evalml.pipelines.components.VowpalWabbitRegressor
method), 1645

default_parameters()
(evalml.pipelines.components.XGBoostClassifier
method), 1648

2150 Index

EvalML Documentation, Release 0.80.0

default_parameters()
(evalml.pipelines.components.XGBoostRegressor
method), 1651

default_parameters()
(evalml.pipelines.DecisionTreeClassifier
method), 1782

default_parameters()
(evalml.pipelines.DecisionTreeRegressor
method), 1786

default_parameters()
(evalml.pipelines.DFSTransformer method),
1789

default_parameters()
(evalml.pipelines.DropNaNRowsTransformer
method), 1792

default_parameters()
(evalml.pipelines.ElasticNetClassifier method),
1794

default_parameters()
(evalml.pipelines.ElasticNetRegressor method),
1797

default_parameters() (evalml.pipelines.Estimator
method), 1801

default_parameters()
(evalml.pipelines.ExponentialSmoothingRegressor
method), 1804

default_parameters()
(evalml.pipelines.ExtraTreesClassifier method),
1807

default_parameters()
(evalml.pipelines.ExtraTreesRegressor
method), 1811

default_parameters()
(evalml.pipelines.FeatureSelector method),
1814

default_parameters() (evalml.pipelines.Imputer
method), 1817

default_parameters()
(evalml.pipelines.KNeighborsClassifier
method), 1820

default_parameters()
(evalml.pipelines.LightGBMClassifier method),
1823

default_parameters()
(evalml.pipelines.LightGBMRegressor
method), 1827

default_parameters()
(evalml.pipelines.LinearRegressor method),
1830

default_parameters()
(evalml.pipelines.LogisticRegressionClassifier
method), 1833

default_parameters()
(evalml.pipelines.OneHotEncoder method),

1851
default_parameters()

(evalml.pipelines.OrdinalEncoder method),
1854

default_parameters()
(evalml.pipelines.PerColumnImputer method),
1857

default_parameters()
(evalml.pipelines.ProphetRegressor method),
1866

default_parameters()
(evalml.pipelines.RandomForestClassifier
method), 1869

default_parameters()
(evalml.pipelines.RandomForestRegressor
method), 1872

default_parameters()
(evalml.pipelines.RFClassifierSelectFromModel
method), 1881

default_parameters()
(evalml.pipelines.RFRegressorSelectFromModel
method), 1884

default_parameters()
(evalml.pipelines.SimpleImputer method),
1887

default_parameters()
(evalml.pipelines.StackedEnsembleBase
method), 1890

default_parameters()
(evalml.pipelines.StackedEnsembleClassifier
method), 1894

default_parameters()
(evalml.pipelines.StackedEnsembleRegressor
method), 1898

default_parameters()
(evalml.pipelines.StandardScaler method),
1900

default_parameters()
(evalml.pipelines.SVMClassifier method),
1903

default_parameters()
(evalml.pipelines.SVMRegressor method),
1906

default_parameters()
(evalml.pipelines.TargetEncoder method),
1909

default_parameters()
(evalml.pipelines.TimeSeriesFeaturizer
method), 1928

default_parameters()
(evalml.pipelines.TimeSeriesImputer method),
1931

default_parameters()
(evalml.pipelines.TimeSeriesRegularizer

Index 2151

EvalML Documentation, Release 0.80.0

method), 1949
default_parameters() (evalml.pipelines.Transformer

method), 1952
default_parameters()

(evalml.pipelines.VARMAXRegressor method),
1955

default_parameters()
(evalml.pipelines.VowpalWabbitBinaryClassifier
method), 1958

default_parameters()
(evalml.pipelines.VowpalWabbitMulticlassClassifier
method), 1961

default_parameters()
(evalml.pipelines.VowpalWabbitRegressor
method), 1964

default_parameters()
(evalml.pipelines.XGBoostClassifier method),
1967

default_parameters()
(evalml.pipelines.XGBoostRegressor method),
1970

DEFAULT_RECOMMENDATION_OBJECTIVES (in module
evalml.objectives.utils), 595

DefaultAlgorithm (class in
evalml.automl.automl_algorithm), 289

DefaultAlgorithm (class in
evalml.automl.automl_algorithm.default_algorithm),
281

DefaultDataChecks (class in evalml.data_checks), 419
DefaultDataChecks (class in

evalml.data_checks.default_data_checks),
366

deprecate_arg() (in module evalml.utils), 2033
deprecate_arg() (in module evalml.utils.gen_utils),

2026
describe() (evalml.pipelines.ARIMARegressor

method), 1754
describe() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

method), 1657
describe() (evalml.pipelines.BinaryClassificationPipeline

method), 1758
describe() (evalml.pipelines.CatBoostClassifier

method), 1764
describe() (evalml.pipelines.CatBoostRegressor

method), 1767
describe() (evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1665
describe() (evalml.pipelines.ClassificationPipeline

method), 1771
describe() (evalml.pipelines.component_graph.ComponentGraph

method), 1671
describe() (evalml.pipelines.ComponentGraph

method), 1777
describe() (evalml.pipelines.components.ARIMARegressor

method), 1433
describe() (evalml.pipelines.components.BaselineClassifier

method), 1437
describe() (evalml.pipelines.components.BaselineRegressor

method), 1439
describe() (evalml.pipelines.components.CatBoostClassifier

method), 1443
describe() (evalml.pipelines.components.CatBoostRegressor

method), 1446
describe() (evalml.pipelines.components.component_base.ComponentBase

method), 1419
describe() (evalml.pipelines.components.ComponentBase

method), 1449
describe() (evalml.pipelines.components.DateTimeFeaturizer

method), 1452
describe() (evalml.pipelines.components.DecisionTreeClassifier

method), 1455
describe() (evalml.pipelines.components.DecisionTreeRegressor

method), 1459
describe() (evalml.pipelines.components.DFSTransformer

method), 1463
describe() (evalml.pipelines.components.DropColumns

method), 1465
describe() (evalml.pipelines.components.DropNaNRowsTransformer

method), 1467
describe() (evalml.pipelines.components.DropNullColumns

method), 1470
describe() (evalml.pipelines.components.DropRowsTransformer

method), 1472
describe() (evalml.pipelines.components.ElasticNetClassifier

method), 1475
describe() (evalml.pipelines.components.ElasticNetRegressor

method), 1478
describe() (evalml.pipelines.components.EmailFeaturizer

method), 1481
describe() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase

method), 694
describe() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier

method), 698
describe() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor

method), 702
describe() (evalml.pipelines.components.ensemble.StackedEnsembleBase

method), 706
describe() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier

method), 709
describe() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor

method), 713
describe() (evalml.pipelines.components.Estimator

method), 1484
describe() (evalml.pipelines.components.estimators.ARIMARegressor

method), 948
describe() (evalml.pipelines.components.estimators.BaselineClassifier

method), 952
describe() (evalml.pipelines.components.estimators.BaselineRegressor

2152 Index

EvalML Documentation, Release 0.80.0

method), 955
describe() (evalml.pipelines.components.estimators.CatBoostClassifier

method), 958
describe() (evalml.pipelines.components.estimators.CatBoostRegressor

method), 961
describe() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

method), 717
describe() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

method), 770
describe() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

method), 721
describe() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

method), 774
describe() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

method), 725
describe() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

method), 777
describe() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

method), 729
describe() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

method), 781
describe() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

method), 733
describe() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

method), 784
describe() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

method), 738
describe() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

method), 788
describe() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

method), 742
describe() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

method), 792
describe() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

method), 745
describe() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

method), 795
describe() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

method), 798
describe() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

method), 749
describe() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

method), 753
describe() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

method), 802
describe() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

method), 756
describe() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

method), 760
describe() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

method), 763
describe() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier

method), 805
describe() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

method), 808
describe() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

method), 767
describe() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

method), 812
describe() (evalml.pipelines.components.estimators.DecisionTreeClassifier

method), 965
describe() (evalml.pipelines.components.estimators.DecisionTreeRegressor

method), 969
describe() (evalml.pipelines.components.estimators.ElasticNetClassifier

method), 973
describe() (evalml.pipelines.components.estimators.ElasticNetRegressor

method), 976
describe() (evalml.pipelines.components.estimators.Estimator

method), 979
describe() (evalml.pipelines.components.estimators.estimator.Estimator

method), 943
describe() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

method), 982
describe() (evalml.pipelines.components.estimators.ExtraTreesClassifier

method), 986
describe() (evalml.pipelines.components.estimators.ExtraTreesRegressor

method), 990
describe() (evalml.pipelines.components.estimators.KNeighborsClassifier

method), 993
describe() (evalml.pipelines.components.estimators.LightGBMClassifier

method), 997
describe() (evalml.pipelines.components.estimators.LightGBMRegressor

method), 1001
describe() (evalml.pipelines.components.estimators.LinearRegressor

method), 1004
describe() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

method), 1007
describe() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

method), 1010
describe() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1014
describe() (evalml.pipelines.components.estimators.RandomForestClassifier

method), 1017
describe() (evalml.pipelines.components.estimators.RandomForestRegressor

method), 1020
describe() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

method), 817
describe() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

method), 885
describe() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

method), 820
describe() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

method), 888
describe() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

method), 824
describe() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

method), 892
describe() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

Index 2153

EvalML Documentation, Release 0.80.0

method), 828
describe() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

method), 896
describe() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

method), 832
describe() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

method), 899
describe() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

method), 837
describe() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

method), 841
describe() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

method), 903
describe() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

method), 906
describe() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

method), 845
describe() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

method), 910
describe() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

method), 848
describe() (evalml.pipelines.components.estimators.regressors.LinearRegressor

method), 913
describe() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

method), 851
describe() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

method), 916
describe() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 857
describe() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 920
describe() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

method), 923
describe() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

method), 861
describe() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

method), 864
describe() (evalml.pipelines.components.estimators.regressors.SVMRegressor

method), 927
describe() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

method), 868
describe() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

method), 930
describe() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

method), 873
describe() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

method), 933
describe() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

method), 876
describe() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

method), 936
describe() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor

method), 880
describe() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

method), 939
describe() (evalml.pipelines.components.estimators.SVMClassifier

method), 1023
describe() (evalml.pipelines.components.estimators.SVMRegressor

method), 1027
describe() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

method), 1030
describe() (evalml.pipelines.components.estimators.VARMAXRegressor

method), 1033
describe() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

method), 1036
describe() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

method), 1040
describe() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

method), 1042
describe() (evalml.pipelines.components.estimators.XGBoostClassifier

method), 1046
describe() (evalml.pipelines.components.estimators.XGBoostRegressor

method), 1049
describe() (evalml.pipelines.components.ExponentialSmoothingRegressor

method), 1487
describe() (evalml.pipelines.components.ExtraTreesClassifier

method), 1491
describe() (evalml.pipelines.components.ExtraTreesRegressor

method), 1495
describe() (evalml.pipelines.components.FeatureSelector

method), 1497
describe() (evalml.pipelines.components.Imputer

method), 1500
describe() (evalml.pipelines.components.KNeighborsClassifier

method), 1503
describe() (evalml.pipelines.components.LabelEncoder

method), 1506
describe() (evalml.pipelines.components.LightGBMClassifier

method), 1509
describe() (evalml.pipelines.components.LightGBMRegressor

method), 1513
describe() (evalml.pipelines.components.LinearDiscriminantAnalysis

method), 1516
describe() (evalml.pipelines.components.LinearRegressor

method), 1519
describe() (evalml.pipelines.components.LogisticRegressionClassifier

method), 1522
describe() (evalml.pipelines.components.LogTransformer

method), 1525
describe() (evalml.pipelines.components.LSA method),

1528
describe() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

method), 1530
describe() (evalml.pipelines.components.NaturalLanguageFeaturizer

method), 1533
describe() (evalml.pipelines.components.OneHotEncoder

method), 1536
describe() (evalml.pipelines.components.OrdinalEncoder

2154 Index

EvalML Documentation, Release 0.80.0

method), 1540
describe() (evalml.pipelines.components.Oversampler

method), 1542
describe() (evalml.pipelines.components.PCA

method), 1545
describe() (evalml.pipelines.components.PerColumnImputer

method), 1547
describe() (evalml.pipelines.components.PolynomialDecomposer

method), 1550
describe() (evalml.pipelines.components.ProphetRegressor

method), 1555
describe() (evalml.pipelines.components.RandomForestClassifier

method), 1558
describe() (evalml.pipelines.components.RandomForestRegressor

method), 1561
describe() (evalml.pipelines.components.ReplaceNullableTypes

method), 1564
describe() (evalml.pipelines.components.RFClassifierRFESelector

method), 1567
describe() (evalml.pipelines.components.RFClassifierSelectFromModel

method), 1570
describe() (evalml.pipelines.components.RFRegressorRFESelector

method), 1573
describe() (evalml.pipelines.components.RFRegressorSelectFromModel

method), 1576
describe() (evalml.pipelines.components.SelectByType

method), 1579
describe() (evalml.pipelines.components.SelectColumns

method), 1581
describe() (evalml.pipelines.components.SimpleImputer

method), 1583
describe() (evalml.pipelines.components.StackedEnsembleBase

method), 1586
describe() (evalml.pipelines.components.StackedEnsembleClassifier

method), 1590
describe() (evalml.pipelines.components.StackedEnsembleRegressor

method), 1594
describe() (evalml.pipelines.components.StandardScaler

method), 1596
describe() (evalml.pipelines.components.STLDecomposer

method), 1599
describe() (evalml.pipelines.components.SVMClassifier

method), 1604
describe() (evalml.pipelines.components.SVMRegressor

method), 1608
describe() (evalml.pipelines.components.TargetEncoder

method), 1611
describe() (evalml.pipelines.components.TargetImputer

method), 1613
describe() (evalml.pipelines.components.TimeSeriesBaselineEstimator

method), 1616
describe() (evalml.pipelines.components.TimeSeriesFeaturizer

method), 1620
describe() (evalml.pipelines.components.TimeSeriesImputer

method), 1622
describe() (evalml.pipelines.components.TimeSeriesRegularizer

method), 1625
describe() (evalml.pipelines.components.Transformer

method), 1628
describe() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector

method), 1296
describe() (evalml.pipelines.components.transformers.column_selectors.DropColumns

method), 1299
describe() (evalml.pipelines.components.transformers.column_selectors.SelectByType

method), 1301
describe() (evalml.pipelines.components.transformers.column_selectors.SelectColumns

method), 1303
describe() (evalml.pipelines.components.transformers.DateTimeFeaturizer

method), 1310
describe() (evalml.pipelines.components.transformers.DFSTransformer

method), 1313
describe() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis

method), 1052
describe() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis

method), 1058
describe() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA

method), 1060
describe() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA

method), 1055
describe() (evalml.pipelines.components.transformers.DropColumns

method), 1316
describe() (evalml.pipelines.components.transformers.DropNaNRowsTransformer

method), 1318
describe() (evalml.pipelines.components.transformers.DropNullColumns

method), 1321
describe() (evalml.pipelines.components.transformers.DropRowsTransformer

method), 1323
describe() (evalml.pipelines.components.transformers.EmailFeaturizer

method), 1325
describe() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder

method), 1063
describe() (evalml.pipelines.components.transformers.encoders.LabelEncoder

method), 1079
describe() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder

method), 1067
describe() (evalml.pipelines.components.transformers.encoders.OneHotEncoder

method), 1082
describe() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder

method), 1072
describe() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder

method), 1086
describe() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder

method), 1076
describe() (evalml.pipelines.components.transformers.encoders.TargetEncoder

method), 1089
describe() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector

method), 1092
describe() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector

Index 2155

EvalML Documentation, Release 0.80.0

method), 1112
describe() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector

method), 1095
describe() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector

method), 1098
describe() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector

method), 1101
describe() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel

method), 1105
describe() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel

method), 1108
describe() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector

method), 1115
describe() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel

method), 1118
describe() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector

method), 1121
describe() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel

method), 1124
describe() (evalml.pipelines.components.transformers.FeatureSelector

method), 1328
describe() (evalml.pipelines.components.transformers.Imputer

method), 1331
describe() (evalml.pipelines.components.transformers.imputers.Imputer

method), 1147
describe() (evalml.pipelines.components.transformers.imputers.imputer.Imputer

method), 1128
describe() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer

method), 1131
describe() (evalml.pipelines.components.transformers.imputers.KNNImputer

method), 1150
describe() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer

method), 1134
describe() (evalml.pipelines.components.transformers.imputers.PerColumnImputer

method), 1152
describe() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer

method), 1137
describe() (evalml.pipelines.components.transformers.imputers.SimpleImputer

method), 1155
describe() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer

method), 1140
describe() (evalml.pipelines.components.transformers.imputers.TargetImputer

method), 1157
describe() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer

method), 1144
describe() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer

method), 1160
describe() (evalml.pipelines.components.transformers.LabelEncoder

method), 1333
describe() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis

method), 1336
describe() (evalml.pipelines.components.transformers.LogTransformer

method), 1338
describe() (evalml.pipelines.components.transformers.LSA

method), 1341
describe() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer

method), 1343
describe() (evalml.pipelines.components.transformers.OneHotEncoder

method), 1347
describe() (evalml.pipelines.components.transformers.OrdinalEncoder

method), 1350
describe() (evalml.pipelines.components.transformers.Oversampler

method), 1353
describe() (evalml.pipelines.components.transformers.PCA

method), 1355
describe() (evalml.pipelines.components.transformers.PerColumnImputer

method), 1358
describe() (evalml.pipelines.components.transformers.PolynomialDecomposer

method), 1361
describe() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer

method), 1163
describe() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer

method), 1223
describe() (evalml.pipelines.components.transformers.preprocessing.Decomposer

method), 1227
describe() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer

method), 1167
describe() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer

method), 1231
describe() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer

method), 1171
describe() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns

method), 1174
describe() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer

method), 1177
describe() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer

method), 1233
describe() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns

method), 1235
describe() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer

method), 1238
describe() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer

method), 1240
describe() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

method), 1180
describe() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer

method), 1183
describe() (evalml.pipelines.components.transformers.preprocessing.LogTransformer

method), 1243
describe() (evalml.pipelines.components.transformers.preprocessing.LSA

method), 1245
describe() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA

method), 1186
describe() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer

method), 1189
describe() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer

method), 1248
describe() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer

2156 Index

EvalML Documentation, Release 0.80.0

method), 1193
describe() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer

method), 1251
describe() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes

method), 1198
describe() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes

method), 1255
describe() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer

method), 1202
describe() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer

method), 1258
describe() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer

method), 1207
describe() (evalml.pipelines.components.transformers.preprocessing.TextTransformer

method), 1263
describe() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer

method), 1211
describe() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer

method), 1214
describe() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer

method), 1266
describe() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer

method), 1270
describe() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer

method), 1217
describe() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer

method), 1220
describe() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer

method), 1272
describe() (evalml.pipelines.components.transformers.ReplaceNullableTypes

method), 1366
describe() (evalml.pipelines.components.transformers.RFClassifierRFESelector

method), 1368
describe() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel

method), 1371
describe() (evalml.pipelines.components.transformers.RFRegressorRFESelector

method), 1375
describe() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel

method), 1377
describe() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler

method), 1275
describe() (evalml.pipelines.components.transformers.samplers.Oversampler

method), 1285
describe() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler

method), 1278
describe() (evalml.pipelines.components.transformers.samplers.Undersampler

method), 1287
describe() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler

method), 1282
describe() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler

method), 1290
describe() (evalml.pipelines.components.transformers.scalers.StandardScaler

method), 1293
describe() (evalml.pipelines.components.transformers.SelectByType

method), 1380
describe() (evalml.pipelines.components.transformers.SelectColumns

method), 1382
describe() (evalml.pipelines.components.transformers.SimpleImputer

method), 1385
describe() (evalml.pipelines.components.transformers.StandardScaler

method), 1387
describe() (evalml.pipelines.components.transformers.STLDecomposer

method), 1390
describe() (evalml.pipelines.components.transformers.TargetEncoder

method), 1395
describe() (evalml.pipelines.components.transformers.TargetImputer

method), 1398
describe() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer

method), 1401
describe() (evalml.pipelines.components.transformers.TimeSeriesImputer

method), 1404
describe() (evalml.pipelines.components.transformers.TimeSeriesRegularizer

method), 1407
describe() (evalml.pipelines.components.transformers.Transformer

method), 1410
describe() (evalml.pipelines.components.transformers.transformer.Transformer

method), 1306
describe() (evalml.pipelines.components.transformers.Undersampler

method), 1413
describe() (evalml.pipelines.components.transformers.URLFeaturizer

method), 1416
describe() (evalml.pipelines.components.Undersampler

method), 1631
describe() (evalml.pipelines.components.URLFeaturizer

method), 1634
describe() (evalml.pipelines.components.VARMAXRegressor

method), 1636
describe() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

method), 1639
describe() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

method), 1643
describe() (evalml.pipelines.components.VowpalWabbitRegressor

method), 1645
describe() (evalml.pipelines.components.XGBoostClassifier

method), 1649
describe() (evalml.pipelines.components.XGBoostRegressor

method), 1652
describe() (evalml.pipelines.DecisionTreeClassifier

method), 1782
describe() (evalml.pipelines.DecisionTreeRegressor

method), 1786
describe() (evalml.pipelines.DFSTransformer

method), 1789
describe() (evalml.pipelines.DropNaNRowsTransformer

method), 1792
describe() (evalml.pipelines.ElasticNetClassifier

method), 1795
describe() (evalml.pipelines.ElasticNetRegressor

Index 2157

EvalML Documentation, Release 0.80.0

method), 1798
describe() (evalml.pipelines.Estimator method), 1801
describe() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1804
describe() (evalml.pipelines.ExtraTreesClassifier

method), 1808
describe() (evalml.pipelines.ExtraTreesRegressor

method), 1811
describe() (evalml.pipelines.FeatureSelector method),

1814
describe() (evalml.pipelines.Imputer method), 1817
describe() (evalml.pipelines.KNeighborsClassifier

method), 1820
describe() (evalml.pipelines.LightGBMClassifier

method), 1823
describe() (evalml.pipelines.LightGBMRegressor

method), 1827
describe() (evalml.pipelines.LinearRegressor method),

1830
describe() (evalml.pipelines.LogisticRegressionClassifier

method), 1833
describe() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1678
describe() (evalml.pipelines.MulticlassClassificationPipeline

method), 1838
describe() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1685
describe() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1844
describe() (evalml.pipelines.OneHotEncoder method),

1851
describe() (evalml.pipelines.OrdinalEncoder method),

1855
describe() (evalml.pipelines.PerColumnImputer

method), 1857
describe() (evalml.pipelines.pipeline_base.PipelineBase

method), 1693
describe() (evalml.pipelines.PipelineBase method),

1861
describe() (evalml.pipelines.ProphetRegressor

method), 1866
describe() (evalml.pipelines.RandomForestClassifier

method), 1869
describe() (evalml.pipelines.RandomForestRegressor

method), 1872
describe() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1701
describe() (evalml.pipelines.RegressionPipeline

method), 1877
describe() (evalml.pipelines.RFClassifierSelectFromModel

method), 1882
describe() (evalml.pipelines.RFRegressorSelectFromModel

method), 1885
describe() (evalml.pipelines.SimpleImputer method),

1887
describe() (evalml.pipelines.StackedEnsembleBase

method), 1890
describe() (evalml.pipelines.StackedEnsembleClassifier

method), 1894
describe() (evalml.pipelines.StackedEnsembleRegressor

method), 1898
describe() (evalml.pipelines.StandardScaler method),

1900
describe() (evalml.pipelines.SVMClassifier method),

1903
describe() (evalml.pipelines.SVMRegressor method),

1906
describe() (evalml.pipelines.TargetEncoder method),

1909
describe() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1708
describe() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1715
describe() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1723
describe() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1731
describe() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1739
describe() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1914
describe() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1921
describe() (evalml.pipelines.TimeSeriesFeaturizer

method), 1928
describe() (evalml.pipelines.TimeSeriesImputer

method), 1931
describe() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1935
describe() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1943
describe() (evalml.pipelines.TimeSeriesRegularizer

method), 1950
describe() (evalml.pipelines.Transformer method),

1952
describe() (evalml.pipelines.VARMAXRegressor

method), 1955
describe() (evalml.pipelines.VowpalWabbitBinaryClassifier

method), 1958
describe() (evalml.pipelines.VowpalWabbitMulticlassClassifier

method), 1961
describe() (evalml.pipelines.VowpalWabbitRegressor

method), 1964
describe() (evalml.pipelines.XGBoostClassifier

method), 1967
describe() (evalml.pipelines.XGBoostRegressor

method), 1970
describe_pipeline()

2158 Index

EvalML Documentation, Release 0.80.0

(evalml.automl.automl_search.AutoMLSearch
method), 319

describe_pipeline() (evalml.automl.AutoMLSearch
method), 336

describe_pipeline() (evalml.AutoMLSearch
method), 2041

detect_problem_type() (in module
evalml.problem_types), 2004

detect_problem_type() (in module
evalml.problem_types.utils), 2000

determine_periodicity()
(evalml.pipelines.components.PolynomialDecomposer
class method), 1550

determine_periodicity()
(evalml.pipelines.components.STLDecomposer
class method), 1599

determine_periodicity()
(evalml.pipelines.components.transformers.PolynomialDecomposer
class method), 1361

determine_periodicity()
(evalml.pipelines.components.transformers.preprocessing.Decomposer
class method), 1227

determine_periodicity()
(evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
class method), 1167

determine_periodicity()
(evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
class method), 1193

determine_periodicity()
(evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
class method), 1251

determine_periodicity()
(evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
class method), 1202

determine_periodicity()
(evalml.pipelines.components.transformers.preprocessing.STLDecomposer
class method), 1258

determine_periodicity()
(evalml.pipelines.components.transformers.STLDecomposer
class method), 1390

DFSTransformer (class in evalml.pipelines), 1788
DFSTransformer (class in

evalml.pipelines.components), 1461
DFSTransformer (class in

evalml.pipelines.components.transformers),
1312

DFSTransformer (class in
evalml.pipelines.components.transformers.preprocessing),
1229

DFSTransformer (class in
evalml.pipelines.components.transformers.preprocessing.featuretools),
1179

done() (evalml.automl.engine.cf_engine.CFComputation
method), 296

done() (evalml.automl.engine.dask_engine.DaskComputation
method), 299

done() (evalml.automl.engine.engine_base.EngineComputation
method), 302

done() (evalml.automl.engine.EngineComputation
method), 311

done() (evalml.automl.engine.sequential_engine.SequentialComputation
method), 305

downcast_nullable_types() (in module evalml.utils),
2034

downcast_nullable_types() (in module
evalml.utils.woodwork_utils), 2031

DOWNCAST_TYPE_DICT (in module
evalml.utils.nullable_type_utils), 2030

drop_rows_with_nans() (in module evalml.utils), 2034
drop_rows_with_nans() (in module

evalml.utils.gen_utils), 2026
DropColumns (class in evalml.pipelines.components),

1464
DropColumns (class in

evalml.pipelines.components.transformers),
1315

DropColumns (class in
evalml.pipelines.components.transformers.column_selectors),
1298

DropNaNRowsTransformer (class in evalml.pipelines),
1791

DropNaNRowsTransformer (class in
evalml.pipelines.components), 1466

DropNaNRowsTransformer (class in
evalml.pipelines.components.transformers),
1317

DropNaNRowsTransformer (class in
evalml.pipelines.components.transformers.preprocessing),
1232

DropNaNRowsTransformer (class in
evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer),
1170

DropNullColumns (class in
evalml.pipelines.components), 1469

DropNullColumns (class in
evalml.pipelines.components.transformers),
1320

DropNullColumns (class in
evalml.pipelines.components.transformers.preprocessing),
1234

DropNullColumns (class in
evalml.pipelines.components.transformers.preprocessing.drop_null_columns),
1173

DropRowsTransformer (class in
evalml.pipelines.components), 1471

DropRowsTransformer (class in
evalml.pipelines.components.transformers),
1322

Index 2159

EvalML Documentation, Release 0.80.0

DropRowsTransformer (class in
evalml.pipelines.components.transformers.preprocessing),
1237

DropRowsTransformer (class in
evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer),
1176

E
elapsed() (evalml.automl.Progress method), 340
elapsed() (evalml.automl.progress.Progress method),

327
ElasticNetClassifier (class in evalml.pipelines),

1793
ElasticNetClassifier (class in

evalml.pipelines.components), 1474
ElasticNetClassifier (class in

evalml.pipelines.components.estimators),
971

ElasticNetClassifier (class in
evalml.pipelines.components.estimators.classifiers),
779

ElasticNetClassifier (class in
evalml.pipelines.components.estimators.classifiers.elasticnet_classifier),
727

ElasticNetRegressor (class in evalml.pipelines), 1796
ElasticNetRegressor (class in

evalml.pipelines.components), 1477
ElasticNetRegressor (class in

evalml.pipelines.components.estimators),
974

ElasticNetRegressor (class in
evalml.pipelines.components.estimators.regressors),
898

ElasticNetRegressor (class in
evalml.pipelines.components.estimators.regressors.elasticnet_regressor),
831

EmailFeaturizer (class in
evalml.pipelines.components), 1480

EmailFeaturizer (class in
evalml.pipelines.components.transformers),
1324

EmailFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing),
1239

EmailFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing.transform_primitive_components),
1217

EngineBase (class in evalml.automl), 338
EngineBase (class in evalml.automl.engine), 311
EngineBase (class in evalml.automl.engine.engine_base),

302
EngineComputation (class in evalml.automl.engine),

311

EngineComputation (class in
evalml.automl.engine.engine_base), 302

error() (evalml.automl.engine.engine_base.JobLogger
method), 303

Estimator (class in evalml.pipelines), 1799
Estimator (class in evalml.pipelines.components), 1483
Estimator (class in evalml.pipelines.components.estimators),

977
Estimator (class in evalml.pipelines.components.estimators.estimator),

942
estimator_unable_to_handle_nans() (in module

evalml.pipelines.components.utils), 1423
evalml

module, 278
evalml.automl

module, 278
evalml.automl.automl_algorithm

module, 279
evalml.automl.automl_algorithm.automl_algorithm

module, 279
evalml.automl.automl_algorithm.default_algorithm

module, 281
evalml.automl.automl_algorithm.iterative_algorithm

module, 284
evalml.automl.automl_search

module, 314
evalml.automl.callbacks

module, 324
evalml.automl.engine

module, 295
evalml.automl.engine.cf_engine

module, 295
evalml.automl.engine.dask_engine

module, 298
evalml.automl.engine.engine_base

module, 301
evalml.automl.engine.sequential_engine

module, 305
evalml.automl.pipeline_search_plots

module, 325
evalml.automl.progress

module, 326
evalml.automl.utils

module, 328
evalml.data_checks

module, 344
evalml.data_checks.class_imbalance_data_check

module, 345
evalml.data_checks.data_check

module, 348
evalml.data_checks.data_check_action

module, 348
evalml.data_checks.data_check_action_code

module, 349

2160 Index

EvalML Documentation, Release 0.80.0

evalml.data_checks.data_check_action_option
module, 350

evalml.data_checks.data_check_message
module, 353

evalml.data_checks.data_check_message_code
module, 355

evalml.data_checks.data_check_message_type
module, 357

evalml.data_checks.data_checks
module, 358

evalml.data_checks.datetime_format_data_check
module, 358

evalml.data_checks.default_data_checks
module, 366

evalml.data_checks.id_columns_data_check
module, 367

evalml.data_checks.invalid_target_data_check
module, 371

evalml.data_checks.multicollinearity_data_check
module, 375

evalml.data_checks.no_variance_data_check
module, 377

evalml.data_checks.null_data_check
module, 380

evalml.data_checks.outliers_data_check
module, 384

evalml.data_checks.sparsity_data_check
module, 387

evalml.data_checks.target_distribution_data_check
module, 389

evalml.data_checks.target_leakage_data_check
module, 391

evalml.data_checks.ts_parameters_data_check
module, 393

evalml.data_checks.ts_splitting_data_check
module, 395

evalml.data_checks.uniqueness_data_check
module, 397

evalml.data_checks.utils
module, 399

evalml.demos
module, 446

evalml.demos.breast_cancer
module, 447

evalml.demos.churn
module, 447

evalml.demos.diabetes
module, 448

evalml.demos.fraud
module, 448

evalml.demos.weather
module, 449

evalml.demos.wine
module, 449

evalml.exceptions
module, 451

evalml.exceptions.exceptions
module, 451

evalml.model_family
module, 457

evalml.model_family.model_family
module, 457

evalml.model_family.utils
module, 459

evalml.model_understanding
module, 461

evalml.model_understanding.decision_boundary
module, 468

evalml.model_understanding.feature_explanations
module, 469

evalml.model_understanding.force_plots
module, 470

evalml.model_understanding.metrics
module, 472

evalml.model_understanding.partial_dependence_functions
module, 475

evalml.model_understanding.permutation_importance
module, 478

evalml.model_understanding.prediction_explanations
module, 461

evalml.model_understanding.prediction_explanations.explainers
module, 461

evalml.model_understanding.visualizations
module, 480

evalml.objectives
module, 499

evalml.objectives.binary_classification_objective
module, 499

evalml.objectives.cost_benefit_matrix
module, 502

evalml.objectives.fraud_cost
module, 505

evalml.objectives.lead_scoring
module, 508

evalml.objectives.multiclass_classification_objective
module, 511

evalml.objectives.objective_base
module, 514

evalml.objectives.regression_objective
module, 516

evalml.objectives.sensitivity_low_alert
module, 519

evalml.objectives.standard_metrics
module, 522

evalml.objectives.time_series_regression_objective
module, 592

evalml.objectives.utils
module, 595

Index 2161

EvalML Documentation, Release 0.80.0

evalml.pipelines
module, 692

evalml.pipelines.binary_classification_pipeline
module, 1653

evalml.pipelines.binary_classification_pipeline_mixin
module, 1661

evalml.pipelines.classification_pipeline
module, 1662

evalml.pipelines.component_graph
module, 1669

evalml.pipelines.components
module, 692

evalml.pipelines.components.component_base
module, 1417

evalml.pipelines.components.component_base_meta
module, 1420

evalml.pipelines.components.ensemble
module, 693

evalml.pipelines.components.ensemble.stacked_ensemble_base
module, 693

evalml.pipelines.components.ensemble.stacked_ensemble_classifier
module, 696

evalml.pipelines.components.ensemble.stacked_ensemble_regressor
module, 700

evalml.pipelines.components.estimators
module, 715

evalml.pipelines.components.estimators.classifiers
module, 715

evalml.pipelines.components.estimators.classifiers.baseline_classifier
module, 715

evalml.pipelines.components.estimators.classifiers.catboost_classifier
module, 719

evalml.pipelines.components.estimators.classifiers.decision_tree_classifier
module, 723

evalml.pipelines.components.estimators.classifiers.elasticnet_classifier
module, 727

evalml.pipelines.components.estimators.classifiers.et_classifier
module, 731

evalml.pipelines.components.estimators.classifiers.kneighbors_classifier
module, 736

evalml.pipelines.components.estimators.classifiers.lightgbm_classifier
module, 740

evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier
module, 744

evalml.pipelines.components.estimators.classifiers.rf_classifier
module, 748

evalml.pipelines.components.estimators.classifiers.svm_classifier
module, 751

evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers
module, 755

evalml.pipelines.components.estimators.classifiers.xgboost_classifier
module, 765

evalml.pipelines.components.estimators.estimator
module, 941

evalml.pipelines.components.estimators.regressors
module, 814

evalml.pipelines.components.estimators.regressors.arima_regressor
module, 814

evalml.pipelines.components.estimators.regressors.baseline_regressor
module, 819

evalml.pipelines.components.estimators.regressors.catboost_regressor
module, 822

evalml.pipelines.components.estimators.regressors.decision_tree_regressor
module, 826

evalml.pipelines.components.estimators.regressors.elasticnet_regressor
module, 831

evalml.pipelines.components.estimators.regressors.et_regressor
module, 834

evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor
module, 839

evalml.pipelines.components.estimators.regressors.lightgbm_regressor
module, 843

evalml.pipelines.components.estimators.regressors.linear_regressor
module, 847

evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor
module, 850

evalml.pipelines.components.estimators.regressors.prophet_regressor
module, 854

evalml.pipelines.components.estimators.regressors.rf_regressor
module, 859

evalml.pipelines.components.estimators.regressors.svm_regressor
module, 863

evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator
module, 867

evalml.pipelines.components.estimators.regressors.varmax_regressor
module, 870

evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor
module, 874

evalml.pipelines.components.estimators.regressors.xgboost_regressor
module, 878

evalml.pipelines.components.transformers
module, 1051

evalml.pipelines.components.transformers.column_selectors
module, 1295

evalml.pipelines.components.transformers.dimensionality_reduction
module, 1051

evalml.pipelines.components.transformers.dimensionality_reduction.lda
module, 1051

evalml.pipelines.components.transformers.dimensionality_reduction.pca
module, 1054

evalml.pipelines.components.transformers.encoders
module, 1062

evalml.pipelines.components.transformers.encoders.label_encoder
module, 1062

evalml.pipelines.components.transformers.encoders.onehot_encoder
module, 1065

evalml.pipelines.components.transformers.encoders.ordinal_encoder
module, 1070

2162 Index

EvalML Documentation, Release 0.80.0

evalml.pipelines.components.transformers.encoders.target_encoder
module, 1074

evalml.pipelines.components.transformers.feature_selection
module, 1090

evalml.pipelines.components.transformers.feature_selection.feature_selector
module, 1090

evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector
module, 1093

evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector
module, 1103

evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector
module, 1107

evalml.pipelines.components.transformers.imputers
module, 1126

evalml.pipelines.components.transformers.imputers.imputer
module, 1126

evalml.pipelines.components.transformers.imputers.knn_imputer
module, 1130

evalml.pipelines.components.transformers.imputers.per_column_imputer
module, 1133

evalml.pipelines.components.transformers.imputers.simple_imputer
module, 1136

evalml.pipelines.components.transformers.imputers.target_imputer
module, 1139

evalml.pipelines.components.transformers.imputers.time_series_imputer
module, 1142

evalml.pipelines.components.transformers.preprocessing
module, 1162

evalml.pipelines.components.transformers.preprocessing.datetime_featurizer
module, 1162

evalml.pipelines.components.transformers.preprocessing.decomposer
module, 1165

evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer
module, 1170

evalml.pipelines.components.transformers.preprocessing.drop_null_columns
module, 1173

evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer
module, 1176

evalml.pipelines.components.transformers.preprocessing.featuretools
module, 1179

evalml.pipelines.components.transformers.preprocessing.log_transformer
module, 1182

evalml.pipelines.components.transformers.preprocessing.lsa
module, 1185

evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer
module, 1188

evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer
module, 1191

evalml.pipelines.components.transformers.preprocessing.replace_nullable_types
module, 1197

evalml.pipelines.components.transformers.preprocessing.stl_decomposer
module, 1200

evalml.pipelines.components.transformers.preprocessing.text_transformer
module, 1206

evalml.pipelines.components.transformers.preprocessing.time_series_featurizer
module, 1209

evalml.pipelines.components.transformers.preprocessing.time_series_regularizer
module, 1213

evalml.pipelines.components.transformers.preprocessing.transform_primitive_components
module, 1216

evalml.pipelines.components.transformers.samplers
module, 1274

evalml.pipelines.components.transformers.samplers.base_sampler
module, 1274

evalml.pipelines.components.transformers.samplers.oversampler
module, 1277

evalml.pipelines.components.transformers.samplers.undersampler
module, 1280

evalml.pipelines.components.transformers.scalers
module, 1289

evalml.pipelines.components.transformers.scalers.standard_scaler
module, 1289

evalml.pipelines.components.transformers.transformer
module, 1305

evalml.pipelines.components.utils
module, 1421

evalml.pipelines.multiclass_classification_pipeline
module, 1675

evalml.pipelines.multiseries_regression_pipeline
module, 1682

evalml.pipelines.pipeline_base
module, 1690

evalml.pipelines.pipeline_meta
module, 1696

evalml.pipelines.regression_pipeline
module, 1698

evalml.pipelines.time_series_classification_pipelines
module, 1704

evalml.pipelines.time_series_pipeline_base
module, 1728

evalml.pipelines.time_series_regression_pipeline
module, 1735

evalml.pipelines.utils
module, 1744

evalml.preprocessing
module, 1972

evalml.preprocessing.data_splitters
module, 1972

evalml.preprocessing.data_splitters.no_split
module, 1973

evalml.preprocessing.data_splitters.sk_splitters
module, 1974

evalml.preprocessing.data_splitters.time_series_split
module, 1976

evalml.preprocessing.data_splitters.training_validation_split
module, 1979

evalml.preprocessing.utils
module, 1988

Index 2163

EvalML Documentation, Release 0.80.0

evalml.problem_types
module, 1999

evalml.problem_types.problem_types
module, 1999

evalml.problem_types.utils
module, 2000

evalml.tuners
module, 2007

evalml.tuners.grid_search_tuner
module, 2007

evalml.tuners.random_search_tuner
module, 2009

evalml.tuners.skopt_tuner
module, 2011

evalml.tuners.tuner
module, 2013

evalml.tuners.tuner_exceptions
module, 2014

evalml.utils
module, 2021

evalml.utils.base_meta
module, 2021

evalml.utils.cli_utils
module, 2022

evalml.utils.gen_utils
module, 2023

evalml.utils.logger
module, 2029

evalml.utils.nullable_type_utils
module, 2030

evalml.utils.update_checker
module, 2030

evalml.utils.woodwork_utils
module, 2030

evaluate_pipeline() (in module
evalml.automl.engine), 311

evaluate_pipeline() (in module
evalml.automl.engine.engine_base), 302

expected_range (evalml.objectives.binary_classification_objective.BinaryClassificationObjective
property), 501

expected_range (evalml.objectives.BinaryClassificationObjective
property), 618

expected_range (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
property), 512

expected_range (evalml.objectives.MulticlassClassificationObjective
property), 661

expected_range (evalml.objectives.objective_base.ObjectiveBase
property), 515

expected_range (evalml.objectives.ObjectiveBase
property), 663

expected_range (evalml.objectives.regression_objective.RegressionObjective
property), 517

expected_range (evalml.objectives.RegressionObjective
property), 683

expected_range (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
property), 593

explain_predictions() (in module
evalml.model_understanding), 488

explain_predictions() (in module
evalml.model_understanding.prediction_explanations),
465

explain_predictions() (in module
evalml.model_understanding.prediction_explanations.explainers),
462

explain_predictions_best_worst() (in module
evalml.model_understanding), 489

explain_predictions_best_worst() (in module
evalml.model_understanding.prediction_explanations),
466

explain_predictions_best_worst() (in module
evalml.model_understanding.prediction_explanations.explainers),
463

ExplainPredictionsStage (class in
evalml.model_understanding.prediction_explanations.explainers),
464

ExponentialSmoothingRegressor (class in
evalml.pipelines), 1803

ExponentialSmoothingRegressor (class in
evalml.pipelines.components), 1486

ExponentialSmoothingRegressor (class in
evalml.pipelines.components.estimators),
981

ExponentialSmoothingRegressor (class in
evalml.pipelines.components.estimators.regressors),
901

ExponentialSmoothingRegressor (class in
evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor),
839

ExpVariance (class in evalml.objectives), 621
ExpVariance (class in

evalml.objectives.standard_metrics), 538
ExtraTreesClassifier (class in evalml.pipelines),

1806
ExtraTreesClassifier (class in

evalml.pipelines.components), 1489
ExtraTreesClassifier (class in

evalml.pipelines.components.estimators),
984

ExtraTreesClassifier (class in
evalml.pipelines.components.estimators.classifiers),
782

ExtraTreesClassifier (class in
evalml.pipelines.components.estimators.classifiers.et_classifier),
732

ExtraTreesRegressor (class in evalml.pipelines), 1809
ExtraTreesRegressor (class in

evalml.pipelines.components), 1493
ExtraTreesRegressor (class in

2164 Index

EvalML Documentation, Release 0.80.0

evalml.pipelines.components.estimators),
988

ExtraTreesRegressor (class in
evalml.pipelines.components.estimators.regressors),
904

ExtraTreesRegressor (class in
evalml.pipelines.components.estimators.regressors.et_regressor),
834

F
F1 (class in evalml.objectives), 623
F1 (class in evalml.objectives.standard_metrics), 540
F1Macro (class in evalml.objectives), 625
F1Macro (class in evalml.objectives.standard_metrics),

542
F1Micro (class in evalml.objectives), 627
F1Micro (class in evalml.objectives.standard_metrics),

544
F1Weighted (class in evalml.objectives), 629
F1Weighted (class in evalml.objectives.standard_metrics),

546
feature_importance (evalml.pipelines.ARIMARegressor

property), 1754
feature_importance (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

property), 1657
feature_importance (evalml.pipelines.BinaryClassificationPipeline

property), 1758
feature_importance (evalml.pipelines.CatBoostClassifier

property), 1764
feature_importance (evalml.pipelines.CatBoostRegressor

property), 1767
feature_importance (evalml.pipelines.classification_pipeline.ClassificationPipeline

property), 1665
feature_importance (evalml.pipelines.ClassificationPipeline

property), 1771
feature_importance (evalml.pipelines.components.ARIMARegressor

property), 1434
feature_importance (evalml.pipelines.components.BaselineClassifier

property), 1437
feature_importance (evalml.pipelines.components.BaselineRegressor

property), 1440
feature_importance (evalml.pipelines.components.CatBoostClassifier

property), 1443
feature_importance (evalml.pipelines.components.CatBoostRegressor

property), 1447
feature_importance (evalml.pipelines.components.DecisionTreeClassifier

property), 1456
feature_importance (evalml.pipelines.components.DecisionTreeRegressor

property), 1460
feature_importance (evalml.pipelines.components.ElasticNetClassifier

property), 1476
feature_importance (evalml.pipelines.components.ElasticNetRegressor

property), 1479

feature_importance (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
property), 694

feature_importance (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier
property), 699

feature_importance (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor
property), 703

feature_importance (evalml.pipelines.components.ensemble.StackedEnsembleBase
property), 706

feature_importance (evalml.pipelines.components.ensemble.StackedEnsembleClassifier
property), 710

feature_importance (evalml.pipelines.components.ensemble.StackedEnsembleRegressor
property), 713

feature_importance (evalml.pipelines.components.Estimator
property), 1484

feature_importance (evalml.pipelines.components.estimators.ARIMARegressor
property), 949

feature_importance (evalml.pipelines.components.estimators.BaselineClassifier
property), 952

feature_importance (evalml.pipelines.components.estimators.BaselineRegressor
property), 955

feature_importance (evalml.pipelines.components.estimators.CatBoostClassifier
property), 958

feature_importance (evalml.pipelines.components.estimators.CatBoostRegressor
property), 962

feature_importance (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier
property), 717

feature_importance (evalml.pipelines.components.estimators.classifiers.BaselineClassifier
property), 771

feature_importance (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier
property), 721

feature_importance (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier
property), 774

feature_importance (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier
property), 725

feature_importance (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier
property), 777

feature_importance (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier
property), 730

feature_importance (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier
property), 781

feature_importance (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier
property), 734

feature_importance (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier
property), 785

feature_importance (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier
property), 738

feature_importance (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier
property), 788

feature_importance (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier
property), 742

feature_importance (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier
property), 792

feature_importance (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier
property), 746

Index 2165

EvalML Documentation, Release 0.80.0

feature_importance (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier
property), 795

feature_importance (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier
property), 799

feature_importance (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier
property), 749

feature_importance (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier
property), 753

feature_importance (evalml.pipelines.components.estimators.classifiers.SVMClassifier
property), 802

feature_importance (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
property), 757

feature_importance (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier
property), 760

feature_importance (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier
property), 763

feature_importance (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier
property), 805

feature_importance (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier
property), 809

feature_importance (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier
property), 767

feature_importance (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier
property), 812

feature_importance (evalml.pipelines.components.estimators.DecisionTreeClassifier
property), 965

feature_importance (evalml.pipelines.components.estimators.DecisionTreeRegressor
property), 969

feature_importance (evalml.pipelines.components.estimators.ElasticNetClassifier
property), 973

feature_importance (evalml.pipelines.components.estimators.ElasticNetRegressor
property), 976

feature_importance (evalml.pipelines.components.estimators.Estimator
property), 979

feature_importance (evalml.pipelines.components.estimators.estimator.Estimator
property), 943

feature_importance (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor
property), 983

feature_importance (evalml.pipelines.components.estimators.ExtraTreesClassifier
property), 986

feature_importance (evalml.pipelines.components.estimators.ExtraTreesRegressor
property), 990

feature_importance (evalml.pipelines.components.estimators.KNeighborsClassifier
property), 994

feature_importance (evalml.pipelines.components.estimators.LightGBMClassifier
property), 997

feature_importance (evalml.pipelines.components.estimators.LightGBMRegressor
property), 1001

feature_importance (evalml.pipelines.components.estimators.LinearRegressor
property), 1004

feature_importance (evalml.pipelines.components.estimators.LogisticRegressionClassifier
property), 1007

feature_importance (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor
property), 1011

feature_importance (evalml.pipelines.components.estimators.ProphetRegressor
property), 1014

feature_importance (evalml.pipelines.components.estimators.RandomForestClassifier
property), 1017

feature_importance (evalml.pipelines.components.estimators.RandomForestRegressor
property), 1021

feature_importance (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor
property), 817

feature_importance (evalml.pipelines.components.estimators.regressors.ARIMARegressor
property), 886

feature_importance (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor
property), 821

feature_importance (evalml.pipelines.components.estimators.regressors.BaselineRegressor
property), 889

feature_importance (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor
property), 825

feature_importance (evalml.pipelines.components.estimators.regressors.CatBoostRegressor
property), 892

feature_importance (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor
property), 829

feature_importance (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor
property), 896

feature_importance (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor
property), 832

feature_importance (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor
property), 899

feature_importance (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor
property), 837

feature_importance (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor
property), 841

feature_importance (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor
property), 903

feature_importance (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor
property), 907

feature_importance (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor
property), 845

feature_importance (evalml.pipelines.components.estimators.regressors.LightGBMRegressor
property), 910

feature_importance (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor
property), 848

feature_importance (evalml.pipelines.components.estimators.regressors.LinearRegressor
property), 913

feature_importance (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor
property), 852

feature_importance (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor
property), 917

feature_importance (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor
property), 857

feature_importance (evalml.pipelines.components.estimators.regressors.ProphetRegressor
property), 921

feature_importance (evalml.pipelines.components.estimators.regressors.RandomForestRegressor
property), 924

feature_importance (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor
property), 861

2166 Index

EvalML Documentation, Release 0.80.0

feature_importance (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor
property), 865

feature_importance (evalml.pipelines.components.estimators.regressors.SVMRegressor
property), 927

feature_importance (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator
property), 868

feature_importance (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator
property), 930

feature_importance (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor
property), 873

feature_importance (evalml.pipelines.components.estimators.regressors.VARMAXRegressor
property), 933

feature_importance (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor
property), 876

feature_importance (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor
property), 936

feature_importance (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor
property), 881

feature_importance (evalml.pipelines.components.estimators.regressors.XGBoostRegressor
property), 940

feature_importance (evalml.pipelines.components.estimators.SVMClassifier
property), 1024

feature_importance (evalml.pipelines.components.estimators.SVMRegressor
property), 1027

feature_importance (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator
property), 1030

feature_importance (evalml.pipelines.components.estimators.VARMAXRegressor
property), 1033

feature_importance (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier
property), 1037

feature_importance (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier
property), 1040

feature_importance (evalml.pipelines.components.estimators.VowpalWabbitRegressor
property), 1043

feature_importance (evalml.pipelines.components.estimators.XGBoostClassifier
property), 1046

feature_importance (evalml.pipelines.components.estimators.XGBoostRegressor
property), 1049

feature_importance (evalml.pipelines.components.ExponentialSmoothingRegressor
property), 1488

feature_importance (evalml.pipelines.components.ExtraTreesClassifier
property), 1491

feature_importance (evalml.pipelines.components.ExtraTreesRegressor
property), 1495

feature_importance (evalml.pipelines.components.KNeighborsClassifier
property), 1504

feature_importance (evalml.pipelines.components.LightGBMClassifier
property), 1510

feature_importance (evalml.pipelines.components.LightGBMRegressor
property), 1513

feature_importance (evalml.pipelines.components.LinearRegressor
property), 1519

feature_importance (evalml.pipelines.components.LogisticRegressionClassifier
property), 1522

feature_importance (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor
property), 1530

feature_importance (evalml.pipelines.components.ProphetRegressor
property), 1556

feature_importance (evalml.pipelines.components.RandomForestClassifier
property), 1559

feature_importance (evalml.pipelines.components.RandomForestRegressor
property), 1562

feature_importance (evalml.pipelines.components.StackedEnsembleBase
property), 1586

feature_importance (evalml.pipelines.components.StackedEnsembleClassifier
property), 1590

feature_importance (evalml.pipelines.components.StackedEnsembleRegressor
property), 1594

feature_importance (evalml.pipelines.components.SVMClassifier
property), 1605

feature_importance (evalml.pipelines.components.SVMRegressor
property), 1608

feature_importance (evalml.pipelines.components.TimeSeriesBaselineEstimator
property), 1616

feature_importance (evalml.pipelines.components.VARMAXRegressor
property), 1637

feature_importance (evalml.pipelines.components.VowpalWabbitBinaryClassifier
property), 1640

feature_importance (evalml.pipelines.components.VowpalWabbitMulticlassClassifier
property), 1643

feature_importance (evalml.pipelines.components.VowpalWabbitRegressor
property), 1646

feature_importance (evalml.pipelines.components.XGBoostClassifier
property), 1649

feature_importance (evalml.pipelines.components.XGBoostRegressor
property), 1652

feature_importance (evalml.pipelines.DecisionTreeClassifier
property), 1782

feature_importance (evalml.pipelines.DecisionTreeRegressor
property), 1786

feature_importance (evalml.pipelines.ElasticNetClassifier
property), 1795

feature_importance (evalml.pipelines.ElasticNetRegressor
property), 1798

feature_importance (evalml.pipelines.Estimator
property), 1801

feature_importance (evalml.pipelines.ExponentialSmoothingRegressor
property), 1804

feature_importance (evalml.pipelines.ExtraTreesClassifier
property), 1808

feature_importance (evalml.pipelines.ExtraTreesRegressor
property), 1811

feature_importance (evalml.pipelines.KNeighborsClassifier
property), 1820

feature_importance (evalml.pipelines.LightGBMClassifier
property), 1824

feature_importance (evalml.pipelines.LightGBMRegressor
property), 1827

Index 2167

EvalML Documentation, Release 0.80.0

feature_importance (evalml.pipelines.LinearRegressor
property), 1830

feature_importance (evalml.pipelines.LogisticRegressionClassifier
property), 1834

feature_importance (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
property), 1678

feature_importance (evalml.pipelines.MulticlassClassificationPipeline
property), 1838

feature_importance (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
property), 1685

feature_importance (evalml.pipelines.MultiseriesRegressionPipeline
property), 1844

feature_importance (evalml.pipelines.pipeline_base.PipelineBase
property), 1693

feature_importance (evalml.pipelines.PipelineBase
property), 1861

feature_importance (evalml.pipelines.ProphetRegressor
property), 1866

feature_importance (evalml.pipelines.RandomForestClassifier
property), 1869

feature_importance (evalml.pipelines.RandomForestRegressor
property), 1872

feature_importance (evalml.pipelines.regression_pipeline.RegressionPipeline
property), 1701

feature_importance (evalml.pipelines.RegressionPipeline
property), 1877

feature_importance (evalml.pipelines.StackedEnsembleBase
property), 1890

feature_importance (evalml.pipelines.StackedEnsembleClassifier
property), 1894

feature_importance (evalml.pipelines.StackedEnsembleRegressor
property), 1898

feature_importance (evalml.pipelines.SVMClassifier
property), 1903

feature_importance (evalml.pipelines.SVMRegressor
property), 1907

feature_importance (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
property), 1708

feature_importance (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
property), 1716

feature_importance (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
property), 1723

feature_importance (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
property), 1731

feature_importance (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
property), 1739

feature_importance (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
property), 1914

feature_importance (evalml.pipelines.TimeSeriesClassificationPipeline
property), 1921

feature_importance (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
property), 1935

feature_importance (evalml.pipelines.TimeSeriesRegressionPipeline
property), 1943

feature_importance (evalml.pipelines.VARMAXRegressor
property), 1955

feature_importance (evalml.pipelines.VowpalWabbitBinaryClassifier
property), 1958

feature_importance (evalml.pipelines.VowpalWabbitMulticlassClassifier
property), 1961

feature_importance (evalml.pipelines.VowpalWabbitRegressor
property), 1964

feature_importance (evalml.pipelines.XGBoostClassifier
property), 1968

feature_importance (evalml.pipelines.XGBoostRegressor
property), 1971

FeatureSelector (class in evalml.pipelines), 1813
FeatureSelector (class in

evalml.pipelines.components), 1496
FeatureSelector (class in

evalml.pipelines.components.transformers),
1327

FeatureSelector (class in
evalml.pipelines.components.transformers.feature_selection),
1111

FeatureSelector (class in
evalml.pipelines.components.transformers.feature_selection.feature_selector),
1091

find_confusion_matrix_per_thresholds() (in
module evalml.model_understanding), 490

find_confusion_matrix_per_thresholds() (in
module evalml.model_understanding.decision_boundary),
468

fit() (evalml.pipelines.ARIMARegressor method), 1754
fit() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

method), 1657
fit() (evalml.pipelines.BinaryClassificationPipeline

method), 1758
fit() (evalml.pipelines.CatBoostClassifier method),

1764
fit() (evalml.pipelines.CatBoostRegressor method),

1767
fit() (evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1665
fit() (evalml.pipelines.ClassificationPipeline method),

1771
fit() (evalml.pipelines.component_graph.ComponentGraph

method), 1672
fit() (evalml.pipelines.ComponentGraph method), 1778
fit() (evalml.pipelines.components.ARIMARegressor

method), 1434
fit() (evalml.pipelines.components.BaselineClassifier

method), 1437
fit() (evalml.pipelines.components.BaselineRegressor

method), 1440
fit() (evalml.pipelines.components.CatBoostClassifier

method), 1443
fit() (evalml.pipelines.components.CatBoostRegressor

2168 Index

EvalML Documentation, Release 0.80.0

method), 1447
fit() (evalml.pipelines.components.component_base.ComponentBase

method), 1419
fit() (evalml.pipelines.components.ComponentBase

method), 1449
fit() (evalml.pipelines.components.DateTimeFeaturizer

method), 1453
fit() (evalml.pipelines.components.DecisionTreeClassifier

method), 1456
fit() (evalml.pipelines.components.DecisionTreeRegressor

method), 1460
fit() (evalml.pipelines.components.DFSTransformer

method), 1463
fit() (evalml.pipelines.components.DropColumns

method), 1465
fit() (evalml.pipelines.components.DropNaNRowsTransformer

method), 1468
fit() (evalml.pipelines.components.DropNullColumns

method), 1470
fit() (evalml.pipelines.components.DropRowsTransformer

method), 1473
fit() (evalml.pipelines.components.ElasticNetClassifier

method), 1476
fit() (evalml.pipelines.components.ElasticNetRegressor

method), 1479
fit() (evalml.pipelines.components.EmailFeaturizer

method), 1481
fit() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase

method), 694
fit() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier

method), 699
fit() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor

method), 703
fit() (evalml.pipelines.components.ensemble.StackedEnsembleBase

method), 706
fit() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier

method), 710
fit() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor

method), 713
fit() (evalml.pipelines.components.Estimator method),

1484
fit() (evalml.pipelines.components.estimators.ARIMARegressor

method), 949
fit() (evalml.pipelines.components.estimators.BaselineClassifier

method), 952
fit() (evalml.pipelines.components.estimators.BaselineRegressor

method), 955
fit() (evalml.pipelines.components.estimators.CatBoostClassifier

method), 958
fit() (evalml.pipelines.components.estimators.CatBoostRegressor

method), 962
fit() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

method), 718
fit() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

method), 771
fit() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

method), 721
fit() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

method), 774
fit() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

method), 725
fit() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

method), 777
fit() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

method), 730
fit() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

method), 781
fit() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

method), 734
fit() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

method), 785
fit() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

method), 738
fit() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

method), 788
fit() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

method), 742
fit() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

method), 792
fit() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

method), 746
fit() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

method), 795
fit() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

method), 799
fit() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

method), 749
fit() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

method), 753
fit() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

method), 802
fit() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

method), 757
fit() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

method), 760
fit() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

method), 763
fit() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier

method), 805
fit() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

method), 809
fit() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

method), 767
fit() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

method), 812
fit() (evalml.pipelines.components.estimators.DecisionTreeClassifier

method), 965
fit() (evalml.pipelines.components.estimators.DecisionTreeRegressor

Index 2169

EvalML Documentation, Release 0.80.0

method), 969
fit() (evalml.pipelines.components.estimators.ElasticNetClassifier

method), 973
fit() (evalml.pipelines.components.estimators.ElasticNetRegressor

method), 976
fit() (evalml.pipelines.components.estimators.Estimator

method), 979
fit() (evalml.pipelines.components.estimators.estimator.Estimator

method), 943
fit() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

method), 983
fit() (evalml.pipelines.components.estimators.ExtraTreesClassifier

method), 986
fit() (evalml.pipelines.components.estimators.ExtraTreesRegressor

method), 990
fit() (evalml.pipelines.components.estimators.KNeighborsClassifier

method), 994
fit() (evalml.pipelines.components.estimators.LightGBMClassifier

method), 997
fit() (evalml.pipelines.components.estimators.LightGBMRegressor

method), 1001
fit() (evalml.pipelines.components.estimators.LinearRegressor

method), 1004
fit() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

method), 1007
fit() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

method), 1011
fit() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1014
fit() (evalml.pipelines.components.estimators.RandomForestClassifier

method), 1017
fit() (evalml.pipelines.components.estimators.RandomForestRegressor

method), 1021
fit() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

method), 817
fit() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

method), 886
fit() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

method), 821
fit() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

method), 889
fit() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

method), 825
fit() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

method), 892
fit() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

method), 829
fit() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

method), 896
fit() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

method), 832
fit() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

method), 899
fit() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

method), 837
fit() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

method), 841
fit() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

method), 903
fit() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

method), 907
fit() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

method), 845
fit() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

method), 910
fit() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

method), 848
fit() (evalml.pipelines.components.estimators.regressors.LinearRegressor

method), 913
fit() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

method), 852
fit() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

method), 917
fit() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 857
fit() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 921
fit() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

method), 924
fit() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

method), 861
fit() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

method), 865
fit() (evalml.pipelines.components.estimators.regressors.SVMRegressor

method), 927
fit() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

method), 868
fit() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

method), 930
fit() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

method), 873
fit() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

method), 933
fit() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

method), 876
fit() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

method), 936
fit() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor

method), 881
fit() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

method), 940
fit() (evalml.pipelines.components.estimators.SVMClassifier

method), 1024
fit() (evalml.pipelines.components.estimators.SVMRegressor

method), 1027
fit() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

method), 1030
fit() (evalml.pipelines.components.estimators.VARMAXRegressor

2170 Index

EvalML Documentation, Release 0.80.0

method), 1033
fit() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

method), 1037
fit() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

method), 1040
fit() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

method), 1043
fit() (evalml.pipelines.components.estimators.XGBoostClassifier

method), 1046
fit() (evalml.pipelines.components.estimators.XGBoostRegressor

method), 1049
fit() (evalml.pipelines.components.ExponentialSmoothingRegressor

method), 1488
fit() (evalml.pipelines.components.ExtraTreesClassifier

method), 1491
fit() (evalml.pipelines.components.ExtraTreesRegressor

method), 1495
fit() (evalml.pipelines.components.FeatureSelector

method), 1498
fit() (evalml.pipelines.components.Imputer method),

1501
fit() (evalml.pipelines.components.KNeighborsClassifier

method), 1504
fit() (evalml.pipelines.components.LabelEncoder

method), 1506
fit() (evalml.pipelines.components.LightGBMClassifier

method), 1510
fit() (evalml.pipelines.components.LightGBMRegressor

method), 1513
fit() (evalml.pipelines.components.LinearDiscriminantAnalysis

method), 1516
fit() (evalml.pipelines.components.LinearRegressor

method), 1519
fit() (evalml.pipelines.components.LogisticRegressionClassifier

method), 1522
fit() (evalml.pipelines.components.LogTransformer

method), 1525
fit() (evalml.pipelines.components.LSA method), 1528
fit() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

method), 1530
fit() (evalml.pipelines.components.NaturalLanguageFeaturizer

method), 1533
fit() (evalml.pipelines.components.OneHotEncoder

method), 1536
fit() (evalml.pipelines.components.OrdinalEncoder

method), 1540
fit() (evalml.pipelines.components.Oversampler

method), 1543
fit() (evalml.pipelines.components.PCA method), 1545
fit() (evalml.pipelines.components.PerColumnImputer

method), 1547
fit() (evalml.pipelines.components.PolynomialDecomposer

method), 1551
fit() (evalml.pipelines.components.ProphetRegressor

method), 1556
fit() (evalml.pipelines.components.RandomForestClassifier

method), 1559
fit() (evalml.pipelines.components.RandomForestRegressor

method), 1562
fit() (evalml.pipelines.components.ReplaceNullableTypes

method), 1565
fit() (evalml.pipelines.components.RFClassifierRFESelector

method), 1567
fit() (evalml.pipelines.components.RFClassifierSelectFromModel

method), 1570
fit() (evalml.pipelines.components.RFRegressorRFESelector

method), 1573
fit() (evalml.pipelines.components.RFRegressorSelectFromModel

method), 1576
fit() (evalml.pipelines.components.SelectByType

method), 1579
fit() (evalml.pipelines.components.SelectColumns

method), 1581
fit() (evalml.pipelines.components.SimpleImputer

method), 1584
fit() (evalml.pipelines.components.StackedEnsembleBase

method), 1586
fit() (evalml.pipelines.components.StackedEnsembleClassifier

method), 1590
fit() (evalml.pipelines.components.StackedEnsembleRegressor

method), 1594
fit() (evalml.pipelines.components.StandardScaler

method), 1597
fit() (evalml.pipelines.components.STLDecomposer

method), 1600
fit() (evalml.pipelines.components.SVMClassifier

method), 1605
fit() (evalml.pipelines.components.SVMRegressor

method), 1608
fit() (evalml.pipelines.components.TargetEncoder

method), 1611
fit() (evalml.pipelines.components.TargetImputer

method), 1614
fit() (evalml.pipelines.components.TimeSeriesBaselineEstimator

method), 1616
fit() (evalml.pipelines.components.TimeSeriesFeaturizer

method), 1620
fit() (evalml.pipelines.components.TimeSeriesImputer

method), 1623
fit() (evalml.pipelines.components.TimeSeriesRegularizer

method), 1626
fit() (evalml.pipelines.components.Transformer

method), 1628
fit() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector

method), 1296
fit() (evalml.pipelines.components.transformers.column_selectors.DropColumns

method), 1299
fit() (evalml.pipelines.components.transformers.column_selectors.SelectByType

Index 2171

EvalML Documentation, Release 0.80.0

method), 1301
fit() (evalml.pipelines.components.transformers.column_selectors.SelectColumns

method), 1303
fit() (evalml.pipelines.components.transformers.DateTimeFeaturizer

method), 1311
fit() (evalml.pipelines.components.transformers.DFSTransformer

method), 1314
fit() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis

method), 1052
fit() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis

method), 1058
fit() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA

method), 1061
fit() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA

method), 1055
fit() (evalml.pipelines.components.transformers.DropColumns

method), 1316
fit() (evalml.pipelines.components.transformers.DropNaNRowsTransformer

method), 1318
fit() (evalml.pipelines.components.transformers.DropNullColumns

method), 1321
fit() (evalml.pipelines.components.transformers.DropRowsTransformer

method), 1323
fit() (evalml.pipelines.components.transformers.EmailFeaturizer

method), 1326
fit() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder

method), 1064
fit() (evalml.pipelines.components.transformers.encoders.LabelEncoder

method), 1079
fit() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder

method), 1067
fit() (evalml.pipelines.components.transformers.encoders.OneHotEncoder

method), 1083
fit() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder

method), 1072
fit() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder

method), 1086
fit() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder

method), 1076
fit() (evalml.pipelines.components.transformers.encoders.TargetEncoder

method), 1089
fit() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector

method), 1092
fit() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector

method), 1112
fit() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector

method), 1095
fit() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector

method), 1099
fit() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector

method), 1102
fit() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel

method), 1105
fit() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel

method), 1109
fit() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector

method), 1115
fit() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel

method), 1118
fit() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector

method), 1122
fit() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel

method), 1125
fit() (evalml.pipelines.components.transformers.FeatureSelector

method), 1328
fit() (evalml.pipelines.components.transformers.Imputer

method), 1331
fit() (evalml.pipelines.components.transformers.imputers.Imputer

method), 1147
fit() (evalml.pipelines.components.transformers.imputers.imputer.Imputer

method), 1128
fit() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer

method), 1131
fit() (evalml.pipelines.components.transformers.imputers.KNNImputer

method), 1150
fit() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer

method), 1134
fit() (evalml.pipelines.components.transformers.imputers.PerColumnImputer

method), 1152
fit() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer

method), 1137
fit() (evalml.pipelines.components.transformers.imputers.SimpleImputer

method), 1155
fit() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer

method), 1140
fit() (evalml.pipelines.components.transformers.imputers.TargetImputer

method), 1158
fit() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer

method), 1144
fit() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer

method), 1160
fit() (evalml.pipelines.components.transformers.LabelEncoder

method), 1334
fit() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis

method), 1336
fit() (evalml.pipelines.components.transformers.LogTransformer

method), 1339
fit() (evalml.pipelines.components.transformers.LSA

method), 1341
fit() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer

method), 1344
fit() (evalml.pipelines.components.transformers.OneHotEncoder

method), 1347
fit() (evalml.pipelines.components.transformers.OrdinalEncoder

method), 1350
fit() (evalml.pipelines.components.transformers.Oversampler

method), 1353
fit() (evalml.pipelines.components.transformers.PCA

2172 Index

EvalML Documentation, Release 0.80.0

method), 1356
fit() (evalml.pipelines.components.transformers.PerColumnImputer

method), 1358
fit() (evalml.pipelines.components.transformers.PolynomialDecomposer

method), 1362
fit() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer

method), 1164
fit() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer

method), 1224
fit() (evalml.pipelines.components.transformers.preprocessing.Decomposer

method), 1227
fit() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer

method), 1168
fit() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer

method), 1231
fit() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer

method), 1171
fit() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns

method), 1174
fit() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer

method), 1177
fit() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer

method), 1233
fit() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns

method), 1236
fit() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer

method), 1238
fit() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer

method), 1241
fit() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

method), 1181
fit() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer

method), 1183
fit() (evalml.pipelines.components.transformers.preprocessing.LogTransformer

method), 1243
fit() (evalml.pipelines.components.transformers.preprocessing.LSA

method), 1245
fit() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA

method), 1186
fit() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer

method), 1189
fit() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer

method), 1248
fit() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer

method), 1194
fit() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer

method), 1251
fit() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes

method), 1198
fit() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes

method), 1256
fit() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer

method), 1203
fit() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer

method), 1259
fit() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer

method), 1207
fit() (evalml.pipelines.components.transformers.preprocessing.TextTransformer

method), 1263
fit() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer

method), 1211
fit() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer

method), 1215
fit() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer

method), 1267
fit() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer

method), 1270
fit() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer

method), 1218
fit() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer

method), 1220
fit() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer

method), 1272
fit() (evalml.pipelines.components.transformers.ReplaceNullableTypes

method), 1366
fit() (evalml.pipelines.components.transformers.RFClassifierRFESelector

method), 1369
fit() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel

method), 1372
fit() (evalml.pipelines.components.transformers.RFRegressorRFESelector

method), 1375
fit() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel

method), 1378
fit() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler

method), 1275
fit() (evalml.pipelines.components.transformers.samplers.Oversampler

method), 1285
fit() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler

method), 1278
fit() (evalml.pipelines.components.transformers.samplers.Undersampler

method), 1288
fit() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler

method), 1282
fit() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler

method), 1291
fit() (evalml.pipelines.components.transformers.scalers.StandardScaler

method), 1293
fit() (evalml.pipelines.components.transformers.SelectByType

method), 1380
fit() (evalml.pipelines.components.transformers.SelectColumns

method), 1382
fit() (evalml.pipelines.components.transformers.SimpleImputer

method), 1385
fit() (evalml.pipelines.components.transformers.StandardScaler

method), 1387
fit() (evalml.pipelines.components.transformers.STLDecomposer

method), 1391
fit() (evalml.pipelines.components.transformers.TargetEncoder

Index 2173

EvalML Documentation, Release 0.80.0

method), 1396
fit() (evalml.pipelines.components.transformers.TargetImputer

method), 1398
fit() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer

method), 1402
fit() (evalml.pipelines.components.transformers.TimeSeriesImputer

method), 1404
fit() (evalml.pipelines.components.transformers.TimeSeriesRegularizer

method), 1407
fit() (evalml.pipelines.components.transformers.Transformer

method), 1410
fit() (evalml.pipelines.components.transformers.transformer.Transformer

method), 1306
fit() (evalml.pipelines.components.transformers.Undersampler

method), 1414
fit() (evalml.pipelines.components.transformers.URLFeaturizer

method), 1416
fit() (evalml.pipelines.components.Undersampler

method), 1631
fit() (evalml.pipelines.components.URLFeaturizer

method), 1634
fit() (evalml.pipelines.components.utils.WrappedSKClassifier

method), 1426
fit() (evalml.pipelines.components.utils.WrappedSKRegressor

method), 1427
fit() (evalml.pipelines.components.VARMAXRegressor

method), 1637
fit() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

method), 1640
fit() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

method), 1643
fit() (evalml.pipelines.components.VowpalWabbitRegressor

method), 1646
fit() (evalml.pipelines.components.XGBoostClassifier

method), 1649
fit() (evalml.pipelines.components.XGBoostRegressor

method), 1652
fit() (evalml.pipelines.DecisionTreeClassifier method),

1782
fit() (evalml.pipelines.DecisionTreeRegressor method),

1786
fit() (evalml.pipelines.DFSTransformer method), 1790
fit() (evalml.pipelines.DropNaNRowsTransformer

method), 1792
fit() (evalml.pipelines.ElasticNetClassifier method),

1795
fit() (evalml.pipelines.ElasticNetRegressor method),

1798
fit() (evalml.pipelines.Estimator method), 1801
fit() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1804
fit() (evalml.pipelines.ExtraTreesClassifier method),

1808
fit() (evalml.pipelines.ExtraTreesRegressor method),

1811
fit() (evalml.pipelines.FeatureSelector method), 1814
fit() (evalml.pipelines.Imputer method), 1817
fit() (evalml.pipelines.KNeighborsClassifier method),

1820
fit() (evalml.pipelines.LightGBMClassifier method),

1824
fit() (evalml.pipelines.LightGBMRegressor method),

1827
fit() (evalml.pipelines.LinearRegressor method), 1830
fit() (evalml.pipelines.LogisticRegressionClassifier

method), 1834
fit() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1678
fit() (evalml.pipelines.MulticlassClassificationPipeline

method), 1838
fit() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1685
fit() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1844
fit() (evalml.pipelines.OneHotEncoder method), 1852
fit() (evalml.pipelines.OrdinalEncoder method), 1855
fit() (evalml.pipelines.PerColumnImputer method),

1858
fit() (evalml.pipelines.pipeline_base.PipelineBase

method), 1693
fit() (evalml.pipelines.PipelineBase method), 1861
fit() (evalml.pipelines.ProphetRegressor method), 1866
fit() (evalml.pipelines.RandomForestClassifier

method), 1869
fit() (evalml.pipelines.RandomForestRegressor

method), 1872
fit() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1701
fit() (evalml.pipelines.RegressionPipeline method),

1877
fit() (evalml.pipelines.RFClassifierSelectFromModel

method), 1882
fit() (evalml.pipelines.RFRegressorSelectFromModel

method), 1885
fit() (evalml.pipelines.SimpleImputer method), 1888
fit() (evalml.pipelines.StackedEnsembleBase method),

1890
fit() (evalml.pipelines.StackedEnsembleClassifier

method), 1894
fit() (evalml.pipelines.StackedEnsembleRegressor

method), 1898
fit() (evalml.pipelines.StandardScaler method), 1901
fit() (evalml.pipelines.SVMClassifier method), 1903
fit() (evalml.pipelines.SVMRegressor method), 1907
fit() (evalml.pipelines.TargetEncoder method), 1910
fit() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1708
fit() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

2174 Index

EvalML Documentation, Release 0.80.0

method), 1716
fit() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1723
fit() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1731
fit() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1739
fit() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1914
fit() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1922
fit() (evalml.pipelines.TimeSeriesFeaturizer method),

1928
fit() (evalml.pipelines.TimeSeriesImputer method),

1931
fit() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1935
fit() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1943
fit() (evalml.pipelines.TimeSeriesRegularizer method),

1950
fit() (evalml.pipelines.Transformer method), 1952
fit() (evalml.pipelines.VARMAXRegressor method),

1955
fit() (evalml.pipelines.VowpalWabbitBinaryClassifier

method), 1958
fit() (evalml.pipelines.VowpalWabbitMulticlassClassifier

method), 1961
fit() (evalml.pipelines.VowpalWabbitRegressor

method), 1964
fit() (evalml.pipelines.XGBoostClassifier method),

1968
fit() (evalml.pipelines.XGBoostRegressor method),

1971
fit_and_transform_all_but_final()

(evalml.pipelines.component_graph.ComponentGraph
method), 1672

fit_and_transform_all_but_final()
(evalml.pipelines.ComponentGraph method),
1778

fit_resample() (evalml.pipelines.components.transformers.samplers.Undersampler
method), 1288

fit_resample() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler
method), 1282

fit_resample() (evalml.pipelines.components.transformers.Undersampler
method), 1414

fit_resample() (evalml.pipelines.components.Undersampler
method), 1631

fit_transform() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1657

fit_transform() (evalml.pipelines.BinaryClassificationPipeline
method), 1758

fit_transform() (evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1665

fit_transform() (evalml.pipelines.ClassificationPipeline
method), 1771

fit_transform() (evalml.pipelines.component_graph.ComponentGraph
method), 1672

fit_transform() (evalml.pipelines.ComponentGraph
method), 1778

fit_transform() (evalml.pipelines.components.DateTimeFeaturizer
method), 1453

fit_transform() (evalml.pipelines.components.DFSTransformer
method), 1463

fit_transform() (evalml.pipelines.components.DropColumns
method), 1466

fit_transform() (evalml.pipelines.components.DropNaNRowsTransformer
method), 1468

fit_transform() (evalml.pipelines.components.DropNullColumns
method), 1470

fit_transform() (evalml.pipelines.components.DropRowsTransformer
method), 1473

fit_transform() (evalml.pipelines.components.EmailFeaturizer
method), 1481

fit_transform() (evalml.pipelines.components.FeatureSelector
method), 1498

fit_transform() (evalml.pipelines.components.Imputer
method), 1501

fit_transform() (evalml.pipelines.components.LabelEncoder
method), 1506

fit_transform() (evalml.pipelines.components.LinearDiscriminantAnalysis
method), 1516

fit_transform() (evalml.pipelines.components.LogTransformer
method), 1525

fit_transform() (evalml.pipelines.components.LSA
method), 1528

fit_transform() (evalml.pipelines.components.NaturalLanguageFeaturizer
method), 1533

fit_transform() (evalml.pipelines.components.OneHotEncoder
method), 1537

fit_transform() (evalml.pipelines.components.OrdinalEncoder
method), 1540

fit_transform() (evalml.pipelines.components.Oversampler
method), 1543

fit_transform() (evalml.pipelines.components.PCA
method), 1545

fit_transform() (evalml.pipelines.components.PerColumnImputer
method), 1548

fit_transform() (evalml.pipelines.components.PolynomialDecomposer
method), 1551

fit_transform() (evalml.pipelines.components.ReplaceNullableTypes
method), 1565

fit_transform() (evalml.pipelines.components.RFClassifierRFESelector
method), 1568

fit_transform() (evalml.pipelines.components.RFClassifierSelectFromModel
method), 1571

fit_transform() (evalml.pipelines.components.RFRegressorRFESelector
method), 1574

Index 2175

EvalML Documentation, Release 0.80.0

fit_transform() (evalml.pipelines.components.RFRegressorSelectFromModel
method), 1577

fit_transform() (evalml.pipelines.components.SelectByType
method), 1579

fit_transform() (evalml.pipelines.components.SelectColumns
method), 1581

fit_transform() (evalml.pipelines.components.SimpleImputer
method), 1584

fit_transform() (evalml.pipelines.components.StandardScaler
method), 1597

fit_transform() (evalml.pipelines.components.STLDecomposer
method), 1600

fit_transform() (evalml.pipelines.components.TargetEncoder
method), 1611

fit_transform() (evalml.pipelines.components.TargetImputer
method), 1614

fit_transform() (evalml.pipelines.components.TimeSeriesFeaturizer
method), 1620

fit_transform() (evalml.pipelines.components.TimeSeriesImputer
method), 1623

fit_transform() (evalml.pipelines.components.TimeSeriesRegularizer
method), 1626

fit_transform() (evalml.pipelines.components.Transformer
method), 1628

fit_transform() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector
method), 1296

fit_transform() (evalml.pipelines.components.transformers.column_selectors.DropColumns
method), 1299

fit_transform() (evalml.pipelines.components.transformers.column_selectors.SelectByType
method), 1301

fit_transform() (evalml.pipelines.components.transformers.column_selectors.SelectColumns
method), 1304

fit_transform() (evalml.pipelines.components.transformers.DateTimeFeaturizer
method), 1311

fit_transform() (evalml.pipelines.components.transformers.DFSTransformer
method), 1314

fit_transform() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis
method), 1053

fit_transform() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis
method), 1058

fit_transform() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA
method), 1061

fit_transform() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA
method), 1055

fit_transform() (evalml.pipelines.components.transformers.DropColumns
method), 1316

fit_transform() (evalml.pipelines.components.transformers.DropNaNRowsTransformer
method), 1319

fit_transform() (evalml.pipelines.components.transformers.DropNullColumns
method), 1321

fit_transform() (evalml.pipelines.components.transformers.DropRowsTransformer
method), 1323

fit_transform() (evalml.pipelines.components.transformers.EmailFeaturizer
method), 1326

fit_transform() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder
method), 1064

fit_transform() (evalml.pipelines.components.transformers.encoders.LabelEncoder
method), 1079

fit_transform() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
method), 1068

fit_transform() (evalml.pipelines.components.transformers.encoders.OneHotEncoder
method), 1083

fit_transform() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
method), 1072

fit_transform() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder
method), 1086

fit_transform() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder
method), 1076

fit_transform() (evalml.pipelines.components.transformers.encoders.TargetEncoder
method), 1089

fit_transform() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector
method), 1092

fit_transform() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector
method), 1112

fit_transform() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector
method), 1096

fit_transform() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector
method), 1099

fit_transform() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector
method), 1102

fit_transform() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel
method), 1106

fit_transform() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel
method), 1109

fit_transform() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector
method), 1116

fit_transform() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel
method), 1119

fit_transform() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector
method), 1122

fit_transform() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel
method), 1125

fit_transform() (evalml.pipelines.components.transformers.FeatureSelector
method), 1329

fit_transform() (evalml.pipelines.components.transformers.Imputer
method), 1331

fit_transform() (evalml.pipelines.components.transformers.imputers.Imputer
method), 1148

fit_transform() (evalml.pipelines.components.transformers.imputers.imputer.Imputer
method), 1128

fit_transform() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer
method), 1131

fit_transform() (evalml.pipelines.components.transformers.imputers.KNNImputer
method), 1150

fit_transform() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer
method), 1134

fit_transform() (evalml.pipelines.components.transformers.imputers.PerColumnImputer
method), 1152

2176 Index

EvalML Documentation, Release 0.80.0

fit_transform() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer
method), 1137

fit_transform() (evalml.pipelines.components.transformers.imputers.SimpleImputer
method), 1155

fit_transform() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer
method), 1141

fit_transform() (evalml.pipelines.components.transformers.imputers.TargetImputer
method), 1158

fit_transform() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer
method), 1145

fit_transform() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer
method), 1161

fit_transform() (evalml.pipelines.components.transformers.LabelEncoder
method), 1334

fit_transform() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis
method), 1336

fit_transform() (evalml.pipelines.components.transformers.LogTransformer
method), 1339

fit_transform() (evalml.pipelines.components.transformers.LSA
method), 1341

fit_transform() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer
method), 1344

fit_transform() (evalml.pipelines.components.transformers.OneHotEncoder
method), 1347

fit_transform() (evalml.pipelines.components.transformers.OrdinalEncoder
method), 1350

fit_transform() (evalml.pipelines.components.transformers.Oversampler
method), 1353

fit_transform() (evalml.pipelines.components.transformers.PCA
method), 1356

fit_transform() (evalml.pipelines.components.transformers.PerColumnImputer
method), 1358

fit_transform() (evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1362

fit_transform() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer
method), 1164

fit_transform() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer
method), 1224

fit_transform() (evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1227

fit_transform() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1168

fit_transform() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer
method), 1231

fit_transform() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer
method), 1172

fit_transform() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns
method), 1174

fit_transform() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer
method), 1177

fit_transform() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer
method), 1233

fit_transform() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns
method), 1236

fit_transform() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer
method), 1238

fit_transform() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer
method), 1241

fit_transform() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer
method), 1181

fit_transform() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer
method), 1183

fit_transform() (evalml.pipelines.components.transformers.preprocessing.LogTransformer
method), 1243

fit_transform() (evalml.pipelines.components.transformers.preprocessing.LSA
method), 1245

fit_transform() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA
method), 1186

fit_transform() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer
method), 1189

fit_transform() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer
method), 1248

fit_transform() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1194

fit_transform() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1252

fit_transform() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes
method), 1198

fit_transform() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes
method), 1256

fit_transform() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1203

fit_transform() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1259

fit_transform() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer
method), 1208

fit_transform() (evalml.pipelines.components.transformers.preprocessing.TextTransformer
method), 1263

fit_transform() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer
method), 1211

fit_transform() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer
method), 1215

fit_transform() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer
method), 1267

fit_transform() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer
method), 1270

fit_transform() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer
method), 1218

fit_transform() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer
method), 1220

fit_transform() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer
method), 1272

fit_transform() (evalml.pipelines.components.transformers.ReplaceNullableTypes
method), 1366

fit_transform() (evalml.pipelines.components.transformers.RFClassifierRFESelector
method), 1369

fit_transform() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel
method), 1372

Index 2177

EvalML Documentation, Release 0.80.0

fit_transform() (evalml.pipelines.components.transformers.RFRegressorRFESelector
method), 1375

fit_transform() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel
method), 1378

fit_transform() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler
method), 1275

fit_transform() (evalml.pipelines.components.transformers.samplers.Oversampler
method), 1285

fit_transform() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler
method), 1279

fit_transform() (evalml.pipelines.components.transformers.samplers.Undersampler
method), 1288

fit_transform() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler
method), 1282

fit_transform() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler
method), 1291

fit_transform() (evalml.pipelines.components.transformers.scalers.StandardScaler
method), 1293

fit_transform() (evalml.pipelines.components.transformers.SelectByType
method), 1380

fit_transform() (evalml.pipelines.components.transformers.SelectColumns
method), 1383

fit_transform() (evalml.pipelines.components.transformers.SimpleImputer
method), 1385

fit_transform() (evalml.pipelines.components.transformers.StandardScaler
method), 1387

fit_transform() (evalml.pipelines.components.transformers.STLDecomposer
method), 1391

fit_transform() (evalml.pipelines.components.transformers.TargetEncoder
method), 1396

fit_transform() (evalml.pipelines.components.transformers.TargetImputer
method), 1399

fit_transform() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer
method), 1402

fit_transform() (evalml.pipelines.components.transformers.TimeSeriesImputer
method), 1405

fit_transform() (evalml.pipelines.components.transformers.TimeSeriesRegularizer
method), 1408

fit_transform() (evalml.pipelines.components.transformers.Transformer
method), 1410

fit_transform() (evalml.pipelines.components.transformers.transformer.Transformer
method), 1306

fit_transform() (evalml.pipelines.components.transformers.Undersampler
method), 1414

fit_transform() (evalml.pipelines.components.transformers.URLFeaturizer
method), 1416

fit_transform() (evalml.pipelines.components.Undersampler
method), 1632

fit_transform() (evalml.pipelines.components.URLFeaturizer
method), 1634

fit_transform() (evalml.pipelines.DFSTransformer
method), 1790

fit_transform() (evalml.pipelines.DropNaNRowsTransformer
method), 1792

fit_transform() (evalml.pipelines.FeatureSelector
method), 1815

fit_transform() (evalml.pipelines.Imputer method),
1817

fit_transform() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1678

fit_transform() (evalml.pipelines.MulticlassClassificationPipeline
method), 1838

fit_transform() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1685

fit_transform() (evalml.pipelines.MultiseriesRegressionPipeline
method), 1845

fit_transform() (evalml.pipelines.OneHotEncoder
method), 1852

fit_transform() (evalml.pipelines.OrdinalEncoder
method), 1855

fit_transform() (evalml.pipelines.PerColumnImputer
method), 1858

fit_transform() (evalml.pipelines.pipeline_base.PipelineBase
method), 1693

fit_transform() (evalml.pipelines.PipelineBase
method), 1861

fit_transform() (evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1701

fit_transform() (evalml.pipelines.RegressionPipeline
method), 1877

fit_transform() (evalml.pipelines.RFClassifierSelectFromModel
method), 1882

fit_transform() (evalml.pipelines.RFRegressorSelectFromModel
method), 1885

fit_transform() (evalml.pipelines.SimpleImputer
method), 1888

fit_transform() (evalml.pipelines.StandardScaler
method), 1901

fit_transform() (evalml.pipelines.TargetEncoder
method), 1910

fit_transform() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1708

fit_transform() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1716

fit_transform() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1724

fit_transform() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1732

fit_transform() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1739

fit_transform() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1915

fit_transform() (evalml.pipelines.TimeSeriesClassificationPipeline
method), 1922

fit_transform() (evalml.pipelines.TimeSeriesFeaturizer
method), 1928

fit_transform() (evalml.pipelines.TimeSeriesImputer
method), 1931

2178 Index

EvalML Documentation, Release 0.80.0

fit_transform() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1935

fit_transform() (evalml.pipelines.TimeSeriesRegressionPipeline
method), 1943

fit_transform() (evalml.pipelines.TimeSeriesRegularizer
method), 1950

fit_transform() (evalml.pipelines.Transformer
method), 1953

force_plot() (in module
evalml.model_understanding.force_plots),
471

FraudCost (class in evalml.objectives), 630
FraudCost (class in evalml.objectives.fraud_cost), 505
full_rankings (evalml.automl.automl_search.AutoMLSearch

property), 320
full_rankings (evalml.automl.AutoMLSearch prop-

erty), 336
full_rankings (evalml.AutoMLSearch property), 2042

G
generate_component_code() (in module

evalml.pipelines.components.utils), 1423
generate_order() (evalml.pipelines.component_graph.ComponentGraph

class method), 1672
generate_order() (evalml.pipelines.ComponentGraph

class method), 1778
generate_pipeline_code() (in module

evalml.pipelines.utils), 1745
generate_pipeline_example() (in module

evalml.pipelines.utils), 1746
get_action_from_defaults()

(evalml.data_checks.data_check_action_option.DataCheckActionOption
method), 352

get_action_from_defaults()
(evalml.data_checks.DataCheckActionOption
method), 406

get_actions_from_option_defaults() (in module
evalml.pipelines.utils), 1746

get_all_objective_names() (in module
evalml.objectives), 633

get_all_objective_names() (in module
evalml.objectives.utils), 595

get_best_sampler_for_data() (in module
evalml.automl.utils), 329

get_boxplot_data() (evalml.data_checks.outliers_data_check.OutliersDataCheck
static method), 385

get_boxplot_data() (evalml.data_checks.OutliersDataCheck
static method), 435

get_component() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1658

get_component() (evalml.pipelines.BinaryClassificationPipeline
method), 1759

get_component() (evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1666

get_component() (evalml.pipelines.ClassificationPipeline
method), 1772

get_component() (evalml.pipelines.component_graph.ComponentGraph
method), 1672

get_component() (evalml.pipelines.ComponentGraph
method), 1778

get_component() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1679

get_component() (evalml.pipelines.MulticlassClassificationPipeline
method), 1839

get_component() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1685

get_component() (evalml.pipelines.MultiseriesRegressionPipeline
method), 1845

get_component() (evalml.pipelines.pipeline_base.PipelineBase
method), 1693

get_component() (evalml.pipelines.PipelineBase
method), 1861

get_component() (evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1701

get_component() (evalml.pipelines.RegressionPipeline
method), 1877

get_component() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1709

get_component() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1716

get_component() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1724

get_component() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1732

get_component() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1739

get_component() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1915

get_component() (evalml.pipelines.TimeSeriesClassificationPipeline
method), 1922

get_component() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1936

get_component() (evalml.pipelines.TimeSeriesRegressionPipeline
method), 1943

get_component_input_logical_types()
(evalml.pipelines.component_graph.ComponentGraph
method), 1672

get_component_input_logical_types()
(evalml.pipelines.ComponentGraph method),
1778

get_core_objective_names() (in module
evalml.objectives), 633

get_core_objective_names() (in module
evalml.objectives.utils), 595

get_core_objectives() (in module
evalml.objectives), 633

get_core_objectives() (in module
evalml.objectives.utils), 596

Index 2179

EvalML Documentation, Release 0.80.0

get_default_primary_search_objective() (in
module evalml.automl), 339

get_default_primary_search_objective() (in
module evalml.automl.utils), 329

get_default_recommendation_objectives() (in
module evalml.objectives), 634

get_default_recommendation_objectives() (in
module evalml.objectives.utils), 596

get_ensembler_input_pipelines()
(evalml.automl.automl_search.AutoMLSearch
method), 320

get_ensembler_input_pipelines()
(evalml.automl.AutoMLSearch method),
336

get_ensembler_input_pipelines()
(evalml.AutoMLSearch method), 2042

get_estimators() (evalml.pipelines.component_graph.ComponentGraph
method), 1673

get_estimators() (evalml.pipelines.ComponentGraph
method), 1779

get_estimators() (in module
evalml.pipelines.components.utils), 1423

get_evalml_black_config() (in module
evalml.utils.cli_utils), 2022

get_evalml_pip_requirements() (in module
evalml.utils.cli_utils), 2022

get_evalml_requirements_file() (in module
evalml.utils.cli_utils), 2023

get_evalml_root() (in module evalml.utils.cli_utils),
2023

get_feature_names()
(evalml.pipelines.components.DateTimeFeaturizer
method), 1453

get_feature_names()
(evalml.pipelines.components.OneHotEncoder
method), 1537

get_feature_names()
(evalml.pipelines.components.OrdinalEncoder
method), 1540

get_feature_names()
(evalml.pipelines.components.TargetEncoder
method), 1611

get_feature_names()
(evalml.pipelines.components.transformers.DateTimeFeaturizer
method), 1311

get_feature_names()
(evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
method), 1068

get_feature_names()
(evalml.pipelines.components.transformers.encoders.OneHotEncoder
method), 1083

get_feature_names()
(evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
method), 1072

get_feature_names()
(evalml.pipelines.components.transformers.encoders.OrdinalEncoder
method), 1086

get_feature_names()
(evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder
method), 1077

get_feature_names()
(evalml.pipelines.components.transformers.encoders.TargetEncoder
method), 1089

get_feature_names()
(evalml.pipelines.components.transformers.OneHotEncoder
method), 1347

get_feature_names()
(evalml.pipelines.components.transformers.OrdinalEncoder
method), 1351

get_feature_names()
(evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer
method), 1164

get_feature_names()
(evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer
method), 1224

get_feature_names()
(evalml.pipelines.components.transformers.TargetEncoder
method), 1396

get_feature_names()
(evalml.pipelines.OneHotEncoder method),
1852

get_feature_names()
(evalml.pipelines.OrdinalEncoder method),
1855

get_feature_names()
(evalml.pipelines.TargetEncoder method),
1910

get_forecast_period()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1685

get_forecast_period()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1845

get_forecast_period()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1739

get_forecast_period()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1943

get_forecast_predictions()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1686

get_forecast_predictions()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1846

get_forecast_predictions()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1740

2180 Index

EvalML Documentation, Release 0.80.0

get_forecast_predictions()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1944

get_hyperparameter_ranges()
(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1658

get_hyperparameter_ranges()
(evalml.pipelines.BinaryClassificationPipeline
method), 1759

get_hyperparameter_ranges()
(evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1666

get_hyperparameter_ranges()
(evalml.pipelines.ClassificationPipeline
method), 1772

get_hyperparameter_ranges()
(evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1679

get_hyperparameter_ranges()
(evalml.pipelines.MulticlassClassificationPipeline
method), 1839

get_hyperparameter_ranges()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1686

get_hyperparameter_ranges()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1846

get_hyperparameter_ranges()
(evalml.pipelines.pipeline_base.PipelineBase
method), 1693

get_hyperparameter_ranges()
(evalml.pipelines.PipelineBase method),
1861

get_hyperparameter_ranges()
(evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1702

get_hyperparameter_ranges()
(evalml.pipelines.RegressionPipeline method),
1878

get_hyperparameter_ranges()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1709

get_hyperparameter_ranges()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1716

get_hyperparameter_ranges()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1724

get_hyperparameter_ranges()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1732

get_hyperparameter_ranges()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1740

get_hyperparameter_ranges()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1915

get_hyperparameter_ranges()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1922

get_hyperparameter_ranges()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1936

get_hyperparameter_ranges()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1944

get_importable_subclasses() (in module
evalml.utils), 2034

get_importable_subclasses() (in module
evalml.utils.gen_utils), 2027

get_influential_features() (in module
evalml.model_understanding.feature_explanations),
469

get_inputs() (evalml.pipelines.component_graph.ComponentGraph
method), 1673

get_inputs() (evalml.pipelines.ComponentGraph
method), 1779

get_installed_packages() (in module
evalml.utils.cli_utils), 2023

get_last_component()
(evalml.pipelines.component_graph.ComponentGraph
method), 1673

get_last_component()
(evalml.pipelines.ComponentGraph method),
1779

get_linear_coefficients() (in module
evalml.model_understanding), 491

get_linear_coefficients() (in module
evalml.model_understanding.visualizations),
481

get_logger() (in module evalml.utils), 2034
get_logger() (in module evalml.utils.logger), 2029
get_metadata_routing()

(evalml.pipelines.components.utils.WrappedSKClassifier
method), 1426

get_metadata_routing()
(evalml.pipelines.components.utils.WrappedSKRegressor
method), 1427

get_metadata_routing()
(evalml.preprocessing.data_splitters.KFold
method), 1981

get_metadata_routing()
(evalml.preprocessing.data_splitters.no_split.NoSplit
method), 1973

get_metadata_routing()
(evalml.preprocessing.data_splitters.NoSplit
method), 1982

get_metadata_routing()

Index 2181

EvalML Documentation, Release 0.80.0

(evalml.preprocessing.data_splitters.sk_splitters.KFold
method), 1974

get_metadata_routing()
(evalml.preprocessing.data_splitters.sk_splitters.StratifiedKFold
method), 1975

get_metadata_routing()
(evalml.preprocessing.data_splitters.StratifiedKFold
method), 1983

get_metadata_routing()
(evalml.preprocessing.data_splitters.time_series_split.TimeSeriesSplit
method), 1978

get_metadata_routing()
(evalml.preprocessing.data_splitters.TimeSeriesSplit
method), 1985

get_metadata_routing()
(evalml.preprocessing.data_splitters.training_validation_split.TrainingValidationSplit
method), 1980

get_metadata_routing()
(evalml.preprocessing.data_splitters.TrainingValidationSplit
method), 1987

get_metadata_routing()
(evalml.preprocessing.NoSplit method), 1992

get_metadata_routing()
(evalml.preprocessing.TimeSeriesSplit
method), 1996

get_metadata_routing()
(evalml.preprocessing.TrainingValidationSplit
method), 1998

get_n_splits() (evalml.preprocessing.data_splitters.KFold
method), 1981

get_n_splits() (evalml.preprocessing.data_splitters.no_split.NoSplit
static method), 1973

get_n_splits() (evalml.preprocessing.data_splitters.NoSplit
static method), 1983

get_n_splits() (evalml.preprocessing.data_splitters.sk_splitters.KFold
method), 1974

get_n_splits() (evalml.preprocessing.data_splitters.sk_splitters.StratifiedKFold
method), 1975

get_n_splits() (evalml.preprocessing.data_splitters.StratifiedKFold
method), 1983

get_n_splits() (evalml.preprocessing.data_splitters.time_series_split.TimeSeriesSplit
method), 1978

get_n_splits() (evalml.preprocessing.data_splitters.TimeSeriesSplit
method), 1985

get_n_splits() (evalml.preprocessing.data_splitters.training_validation_split.TrainingValidationSplit
static method), 1980

get_n_splits() (evalml.preprocessing.data_splitters.TrainingValidationSplit
static method), 1987

get_n_splits() (evalml.preprocessing.NoSplit static
method), 1992

get_n_splits() (evalml.preprocessing.TimeSeriesSplit
method), 1996

get_n_splits() (evalml.preprocessing.TrainingValidationSplit
static method), 1998

get_names() (evalml.pipelines.components.FeatureSelector
method), 1498

get_names() (evalml.pipelines.components.RFClassifierRFESelector
method), 1568

get_names() (evalml.pipelines.components.RFClassifierSelectFromModel
method), 1571

get_names() (evalml.pipelines.components.RFRegressorRFESelector
method), 1574

get_names() (evalml.pipelines.components.RFRegressorSelectFromModel
method), 1577

get_names() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector
method), 1092

get_names() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector
method), 1112

get_names() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector
method), 1096

get_names() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector
method), 1099

get_names() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector
method), 1102

get_names() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel
method), 1106

get_names() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel
method), 1109

get_names() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector
method), 1116

get_names() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel
method), 1119

get_names() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector
method), 1122

get_names() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel
method), 1125

get_names() (evalml.pipelines.components.transformers.FeatureSelector
method), 1329

get_names() (evalml.pipelines.components.transformers.RFClassifierRFESelector
method), 1369

get_names() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel
method), 1372

get_names() (evalml.pipelines.components.transformers.RFRegressorRFESelector
method), 1375

get_names() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel
method), 1378

get_names() (evalml.pipelines.FeatureSelector
method), 1815

get_names() (evalml.pipelines.RFClassifierSelectFromModel
method), 1882

get_names() (evalml.pipelines.RFRegressorSelectFromModel
method), 1885

get_non_core_objectives() (in module
evalml.objectives), 634

get_non_core_objectives() (in module
evalml.objectives.utils), 596

get_null_column_information()
(evalml.data_checks.null_data_check.NullDataCheck

2182 Index

EvalML Documentation, Release 0.80.0

static method), 381
get_null_column_information()

(evalml.data_checks.NullDataCheck static
method), 431

get_null_row_information()
(evalml.data_checks.null_data_check.NullDataCheck
static method), 381

get_null_row_information()
(evalml.data_checks.NullDataCheck static
method), 431

get_objective() (in module evalml.objectives), 634
get_objective() (in module evalml.objectives.utils),

596
get_optimization_objectives() (in module

evalml.objectives), 634
get_optimization_objectives() (in module

evalml.objectives.utils), 597
get_params() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1015
get_params() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 858
get_params() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 921
get_params() (evalml.pipelines.components.ProphetRegressor

method), 1556
get_params() (evalml.pipelines.components.utils.WrappedSKClassifier

method), 1426
get_params() (evalml.pipelines.components.utils.WrappedSKRegressor

method), 1428
get_params() (evalml.pipelines.ProphetRegressor

method), 1867
get_pipeline() (evalml.automl.automl_search.AutoMLSearch

method), 320
get_pipeline() (evalml.automl.AutoMLSearch

method), 336
get_pipeline() (evalml.AutoMLSearch method), 2042
get_pipelines_from_component_graphs() (in mod-

ule evalml.automl.utils), 329
get_prediction_intervals()

(evalml.pipelines.ARIMARegressor method),
1754

get_prediction_intervals()
(evalml.pipelines.CatBoostClassifier method),
1764

get_prediction_intervals()
(evalml.pipelines.CatBoostRegressor method),
1767

get_prediction_intervals()
(evalml.pipelines.components.ARIMARegressor
method), 1434

get_prediction_intervals()
(evalml.pipelines.components.BaselineClassifier
method), 1437

get_prediction_intervals()

(evalml.pipelines.components.BaselineRegressor
method), 1440

get_prediction_intervals()
(evalml.pipelines.components.CatBoostClassifier
method), 1444

get_prediction_intervals()
(evalml.pipelines.components.CatBoostRegressor
method), 1447

get_prediction_intervals()
(evalml.pipelines.components.DecisionTreeClassifier
method), 1456

get_prediction_intervals()
(evalml.pipelines.components.DecisionTreeRegressor
method), 1460

get_prediction_intervals()
(evalml.pipelines.components.ElasticNetClassifier
method), 1476

get_prediction_intervals()
(evalml.pipelines.components.ElasticNetRegressor
method), 1479

get_prediction_intervals()
(evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
method), 695

get_prediction_intervals()
(evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier
method), 699

get_prediction_intervals()
(evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor
method), 703

get_prediction_intervals()
(evalml.pipelines.components.ensemble.StackedEnsembleBase
method), 706

get_prediction_intervals()
(evalml.pipelines.components.ensemble.StackedEnsembleClassifier
method), 710

get_prediction_intervals()
(evalml.pipelines.components.ensemble.StackedEnsembleRegressor
method), 714

get_prediction_intervals()
(evalml.pipelines.components.Estimator
method), 1484

get_prediction_intervals()
(evalml.pipelines.components.estimators.ARIMARegressor
method), 949

get_prediction_intervals()
(evalml.pipelines.components.estimators.BaselineClassifier
method), 952

get_prediction_intervals()
(evalml.pipelines.components.estimators.BaselineRegressor
method), 955

get_prediction_intervals()
(evalml.pipelines.components.estimators.CatBoostClassifier
method), 959

get_prediction_intervals()

Index 2183

EvalML Documentation, Release 0.80.0

(evalml.pipelines.components.estimators.CatBoostRegressor
method), 962

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier
method), 718

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.BaselineClassifier
method), 771

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier
method), 722

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.CatBoostClassifier
method), 774

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier
method), 726

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier
method), 778

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier
method), 730

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier
method), 781

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier
method), 734

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier
method), 785

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier
method), 738

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier
method), 789

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier
method), 742

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.LightGBMClassifier
method), 792

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier
method), 746

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier
method), 796

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.RandomForestClassifier
method), 799

get_prediction_intervals()

(evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier
method), 750

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier
method), 753

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.SVMClassifier
method), 802

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
method), 757

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier
method), 760

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier
method), 764

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier
method), 806

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier
method), 809

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier
method), 767

get_prediction_intervals()
(evalml.pipelines.components.estimators.classifiers.XGBoostClassifier
method), 812

get_prediction_intervals()
(evalml.pipelines.components.estimators.DecisionTreeClassifier
method), 966

get_prediction_intervals()
(evalml.pipelines.components.estimators.DecisionTreeRegressor
method), 970

get_prediction_intervals()
(evalml.pipelines.components.estimators.ElasticNetClassifier
method), 973

get_prediction_intervals()
(evalml.pipelines.components.estimators.ElasticNetRegressor
method), 976

get_prediction_intervals()
(evalml.pipelines.components.estimators.Estimator
method), 979

get_prediction_intervals()
(evalml.pipelines.components.estimators.estimator.Estimator
method), 944

get_prediction_intervals()
(evalml.pipelines.components.estimators.ExponentialSmoothingRegressor
method), 983

get_prediction_intervals()
(evalml.pipelines.components.estimators.ExtraTreesClassifier
method), 987

get_prediction_intervals()

2184 Index

EvalML Documentation, Release 0.80.0

(evalml.pipelines.components.estimators.ExtraTreesRegressor
method), 990

get_prediction_intervals()
(evalml.pipelines.components.estimators.KNeighborsClassifier
method), 994

get_prediction_intervals()
(evalml.pipelines.components.estimators.LightGBMClassifier
method), 998

get_prediction_intervals()
(evalml.pipelines.components.estimators.LightGBMRegressor
method), 1001

get_prediction_intervals()
(evalml.pipelines.components.estimators.LinearRegressor
method), 1004

get_prediction_intervals()
(evalml.pipelines.components.estimators.LogisticRegressionClassifier
method), 1008

get_prediction_intervals()
(evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor
method), 1011

get_prediction_intervals()
(evalml.pipelines.components.estimators.ProphetRegressor
method), 1015

get_prediction_intervals()
(evalml.pipelines.components.estimators.RandomForestClassifier
method), 1018

get_prediction_intervals()
(evalml.pipelines.components.estimators.RandomForestRegressor
method), 1021

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor
method), 818

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.ARIMARegressor
method), 886

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor
method), 821

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.BaselineRegressor
method), 889

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor
method), 825

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.CatBoostRegressor
method), 892

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor
method), 829

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor
method), 896

get_prediction_intervals()

(evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor
method), 832

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.ElasticNetRegressor
method), 899

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor
method), 837

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor
method), 841

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor
method), 903

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor
method), 907

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor
method), 845

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.LightGBMRegressor
method), 911

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor
method), 848

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.LinearRegressor
method), 914

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor
method), 852

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor
method), 917

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor
method), 858

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.ProphetRegressor
method), 921

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.RandomForestRegressor
method), 924

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor
method), 862

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor
method), 865

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.SVMRegressor
method), 927

get_prediction_intervals()

Index 2185

EvalML Documentation, Release 0.80.0

(evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator
method), 869

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator
method), 930

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor
method), 873

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.VARMAXRegressor
method), 934

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor
method), 876

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor
method), 936

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor
method), 881

get_prediction_intervals()
(evalml.pipelines.components.estimators.regressors.XGBoostRegressor
method), 940

get_prediction_intervals()
(evalml.pipelines.components.estimators.SVMClassifier
method), 1024

get_prediction_intervals()
(evalml.pipelines.components.estimators.SVMRegressor
method), 1027

get_prediction_intervals()
(evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator
method), 1030

get_prediction_intervals()
(evalml.pipelines.components.estimators.VARMAXRegressor
method), 1034

get_prediction_intervals()
(evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier
method), 1037

get_prediction_intervals()
(evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier
method), 1040

get_prediction_intervals()
(evalml.pipelines.components.estimators.VowpalWabbitRegressor
method), 1043

get_prediction_intervals()
(evalml.pipelines.components.estimators.XGBoostClassifier
method), 1046

get_prediction_intervals()
(evalml.pipelines.components.estimators.XGBoostRegressor
method), 1049

get_prediction_intervals()
(evalml.pipelines.components.ExponentialSmoothingRegressor
method), 1488

get_prediction_intervals()

(evalml.pipelines.components.ExtraTreesClassifier
method), 1492

get_prediction_intervals()
(evalml.pipelines.components.ExtraTreesRegressor
method), 1495

get_prediction_intervals()
(evalml.pipelines.components.KNeighborsClassifier
method), 1504

get_prediction_intervals()
(evalml.pipelines.components.LightGBMClassifier
method), 1510

get_prediction_intervals()
(evalml.pipelines.components.LightGBMRegressor
method), 1514

get_prediction_intervals()
(evalml.pipelines.components.LinearRegressor
method), 1519

get_prediction_intervals()
(evalml.pipelines.components.LogisticRegressionClassifier
method), 1523

get_prediction_intervals()
(evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor
method), 1531

get_prediction_intervals()
(evalml.pipelines.components.ProphetRegressor
method), 1556

get_prediction_intervals()
(evalml.pipelines.components.RandomForestClassifier
method), 1559

get_prediction_intervals()
(evalml.pipelines.components.RandomForestRegressor
method), 1562

get_prediction_intervals()
(evalml.pipelines.components.StackedEnsembleBase
method), 1587

get_prediction_intervals()
(evalml.pipelines.components.StackedEnsembleClassifier
method), 1591

get_prediction_intervals()
(evalml.pipelines.components.StackedEnsembleRegressor
method), 1594

get_prediction_intervals()
(evalml.pipelines.components.SVMClassifier
method), 1605

get_prediction_intervals()
(evalml.pipelines.components.SVMRegressor
method), 1608

get_prediction_intervals()
(evalml.pipelines.components.TimeSeriesBaselineEstimator
method), 1617

get_prediction_intervals()
(evalml.pipelines.components.VARMAXRegressor
method), 1637

get_prediction_intervals()

2186 Index

EvalML Documentation, Release 0.80.0

(evalml.pipelines.components.VowpalWabbitBinaryClassifier
method), 1640

get_prediction_intervals()
(evalml.pipelines.components.VowpalWabbitMulticlassClassifier
method), 1643

get_prediction_intervals()
(evalml.pipelines.components.VowpalWabbitRegressor
method), 1646

get_prediction_intervals()
(evalml.pipelines.components.XGBoostClassifier
method), 1649

get_prediction_intervals()
(evalml.pipelines.components.XGBoostRegressor
method), 1652

get_prediction_intervals()
(evalml.pipelines.DecisionTreeClassifier
method), 1783

get_prediction_intervals()
(evalml.pipelines.DecisionTreeRegressor
method), 1787

get_prediction_intervals()
(evalml.pipelines.ElasticNetClassifier method),
1795

get_prediction_intervals()
(evalml.pipelines.ElasticNetRegressor method),
1798

get_prediction_intervals()
(evalml.pipelines.Estimator method), 1801

get_prediction_intervals()
(evalml.pipelines.ExponentialSmoothingRegressor
method), 1805

get_prediction_intervals()
(evalml.pipelines.ExtraTreesClassifier method),
1808

get_prediction_intervals()
(evalml.pipelines.ExtraTreesRegressor
method), 1812

get_prediction_intervals()
(evalml.pipelines.KNeighborsClassifier
method), 1821

get_prediction_intervals()
(evalml.pipelines.LightGBMClassifier method),
1824

get_prediction_intervals()
(evalml.pipelines.LightGBMRegressor
method), 1828

get_prediction_intervals()
(evalml.pipelines.LinearRegressor method),
1830

get_prediction_intervals()
(evalml.pipelines.LogisticRegressionClassifier
method), 1834

get_prediction_intervals()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1686
get_prediction_intervals()

(evalml.pipelines.MultiseriesRegressionPipeline
method), 1846

get_prediction_intervals()
(evalml.pipelines.ProphetRegressor method),
1867

get_prediction_intervals()
(evalml.pipelines.RandomForestClassifier
method), 1870

get_prediction_intervals()
(evalml.pipelines.RandomForestRegressor
method), 1873

get_prediction_intervals()
(evalml.pipelines.StackedEnsembleBase
method), 1891

get_prediction_intervals()
(evalml.pipelines.StackedEnsembleClassifier
method), 1895

get_prediction_intervals()
(evalml.pipelines.StackedEnsembleRegressor
method), 1898

get_prediction_intervals()
(evalml.pipelines.SVMClassifier method),
1904

get_prediction_intervals()
(evalml.pipelines.SVMRegressor method),
1907

get_prediction_intervals()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1740

get_prediction_intervals()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1944

get_prediction_intervals()
(evalml.pipelines.VARMAXRegressor method),
1956

get_prediction_intervals()
(evalml.pipelines.VowpalWabbitBinaryClassifier
method), 1959

get_prediction_intervals()
(evalml.pipelines.VowpalWabbitMulticlassClassifier
method), 1962

get_prediction_intervals()
(evalml.pipelines.VowpalWabbitRegressor
method), 1965

get_prediction_intervals()
(evalml.pipelines.XGBoostClassifier method),
1968

get_prediction_intervals()
(evalml.pipelines.XGBoostRegressor method),
1971

get_prediction_intevals_for_tree_regressors()
(in module evalml.pipelines.components.utils),

Index 2187

EvalML Documentation, Release 0.80.0

1424
get_prediction_vs_actual_data() (in module

evalml.model_understanding), 491
get_prediction_vs_actual_data() (in module

evalml.model_understanding.visualizations),
481

get_prediction_vs_actual_over_time_data() (in
module evalml.model_understanding), 491

get_prediction_vs_actual_over_time_data() (in
module evalml.model_understanding.visualizations),
482

get_random_seed() (in module evalml.utils), 2034
get_random_seed() (in module evalml.utils.gen_utils),

2027
get_random_state() (in module evalml.utils), 2035
get_random_state() (in module

evalml.utils.gen_utils), 2027
get_ranking_objectives() (in module

evalml.objectives), 635
get_ranking_objectives() (in module

evalml.objectives.utils), 597
get_recommendation_score_breakdown()

(evalml.automl.automl_search.AutoMLSearch
method), 320

get_recommendation_score_breakdown()
(evalml.automl.AutoMLSearch method),
336

get_recommendation_score_breakdown()
(evalml.AutoMLSearch method), 2042

get_recommendation_scores()
(evalml.automl.automl_search.AutoMLSearch
method), 320

get_recommendation_scores()
(evalml.automl.AutoMLSearch method),
337

get_recommendation_scores()
(evalml.AutoMLSearch method), 2042

get_result() (evalml.automl.engine.cf_engine.CFComputation
method), 296

get_result() (evalml.automl.engine.dask_engine.DaskComputation
method), 299

get_result() (evalml.automl.engine.engine_base.EngineComputation
method), 302

get_result() (evalml.automl.engine.EngineComputation
method), 311

get_result() (evalml.automl.engine.sequential_engine.SequentialComputation
method), 305

get_starting_parameters()
(evalml.tuners.grid_search_tuner.GridSearchTuner
method), 2008

get_starting_parameters()
(evalml.tuners.GridSearchTuner method),
2016

get_starting_parameters()

(evalml.tuners.random_search_tuner.RandomSearchTuner
method), 2010

get_starting_parameters()
(evalml.tuners.RandomSearchTuner method),
2017

get_starting_parameters()
(evalml.tuners.skopt_tuner.SKOptTuner
method), 2012

get_starting_parameters()
(evalml.tuners.SKOptTuner method), 2019

get_starting_parameters() (evalml.tuners.Tuner
method), 2020

get_starting_parameters()
(evalml.tuners.tuner.Tuner method), 2013

get_sys_info() (in module evalml.utils.cli_utils), 2023
get_threshold_tuning_info() (in module

evalml.automl), 339
get_threshold_tuning_info() (in module

evalml.automl.utils), 329
get_time_index() (in module evalml.utils), 2035
get_time_index() (in module evalml.utils.gen_utils),

2027
get_trend_dataframe()

(evalml.pipelines.components.PolynomialDecomposer
method), 1552

get_trend_dataframe()
(evalml.pipelines.components.STLDecomposer
method), 1601

get_trend_dataframe()
(evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1363

get_trend_dataframe()
(evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1228

get_trend_dataframe()
(evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1168

get_trend_dataframe()
(evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1195

get_trend_dataframe()
(evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1252

get_trend_dataframe()
(evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1204

get_trend_dataframe()
(evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1260

get_trend_dataframe()
(evalml.pipelines.components.transformers.STLDecomposer
method), 1392

get_trend_prediction_intervals()
(evalml.pipelines.components.STLDecomposer

2188 Index

EvalML Documentation, Release 0.80.0

method), 1601
get_trend_prediction_intervals()

(evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1204

get_trend_prediction_intervals()
(evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1260

get_trend_prediction_intervals()
(evalml.pipelines.components.transformers.STLDecomposer
method), 1392

Gini (class in evalml.objectives), 635
Gini (class in evalml.objectives.standard_metrics), 547
graph() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

method), 1658
graph() (evalml.pipelines.BinaryClassificationPipeline

method), 1759
graph() (evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1666
graph() (evalml.pipelines.ClassificationPipeline

method), 1772
graph() (evalml.pipelines.component_graph.ComponentGraph

method), 1673
graph() (evalml.pipelines.ComponentGraph method),

1779
graph() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1679
graph() (evalml.pipelines.MulticlassClassificationPipeline

method), 1839
graph() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1687
graph() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1846
graph() (evalml.pipelines.pipeline_base.PipelineBase

method), 1694
graph() (evalml.pipelines.PipelineBase method), 1862
graph() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1702
graph() (evalml.pipelines.RegressionPipeline method),

1878
graph() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1709
graph() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1716
graph() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1724
graph() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1732
graph() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1741
graph() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1915
graph() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1922
graph() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1936
graph() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1945
graph_binary_objective_vs_threshold() (in mod-

ule evalml.model_understanding), 492
graph_binary_objective_vs_threshold() (in mod-

ule evalml.model_understanding.visualizations),
482

graph_confusion_matrix() (in module
evalml.model_understanding), 492

graph_confusion_matrix() (in module
evalml.model_understanding.metrics), 473

graph_dict() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1658

graph_dict() (evalml.pipelines.BinaryClassificationPipeline
method), 1759

graph_dict() (evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1666

graph_dict() (evalml.pipelines.ClassificationPipeline
method), 1772

graph_dict() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1679

graph_dict() (evalml.pipelines.MulticlassClassificationPipeline
method), 1839

graph_dict() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1687

graph_dict() (evalml.pipelines.MultiseriesRegressionPipeline
method), 1847

graph_dict() (evalml.pipelines.pipeline_base.PipelineBase
method), 1694

graph_dict() (evalml.pipelines.PipelineBase method),
1862

graph_dict() (evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1702

graph_dict() (evalml.pipelines.RegressionPipeline
method), 1878

graph_dict() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1709

graph_dict() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1717

graph_dict() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1724

graph_dict() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1732

graph_dict() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1741

graph_dict() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1915

graph_dict() (evalml.pipelines.TimeSeriesClassificationPipeline
method), 1923

graph_dict() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1936

graph_dict() (evalml.pipelines.TimeSeriesRegressionPipeline
method), 1945

Index 2189

EvalML Documentation, Release 0.80.0

graph_feature_importance()
(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1658

graph_feature_importance()
(evalml.pipelines.BinaryClassificationPipeline
method), 1759

graph_feature_importance()
(evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1666

graph_feature_importance()
(evalml.pipelines.ClassificationPipeline
method), 1772

graph_feature_importance()
(evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1679

graph_feature_importance()
(evalml.pipelines.MulticlassClassificationPipeline
method), 1839

graph_feature_importance()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1687

graph_feature_importance()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1847

graph_feature_importance()
(evalml.pipelines.pipeline_base.PipelineBase
method), 1694

graph_feature_importance()
(evalml.pipelines.PipelineBase method),
1862

graph_feature_importance()
(evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1702

graph_feature_importance()
(evalml.pipelines.RegressionPipeline method),
1878

graph_feature_importance()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1709

graph_feature_importance()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1717

graph_feature_importance()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1725

graph_feature_importance()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1733

graph_feature_importance()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1741

graph_feature_importance()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1915

graph_feature_importance()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1923

graph_feature_importance()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1936

graph_feature_importance()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1945

graph_force_plot() (in module
evalml.model_understanding.force_plots),
471

graph_partial_dependence() (in module
evalml.model_understanding), 492

graph_partial_dependence() (in module
evalml.model_understanding.partial_dependence_functions),
475

graph_permutation_importance() (in module
evalml.model_understanding), 493

graph_permutation_importance() (in module
evalml.model_understanding.permutation_importance),
479

graph_precision_recall_curve() (in module
evalml.model_understanding), 493

graph_precision_recall_curve() (in module
evalml.model_understanding.metrics), 473

graph_prediction_vs_actual() (in module
evalml.model_understanding), 494

graph_prediction_vs_actual() (in module
evalml.model_understanding.visualizations),
483

graph_prediction_vs_actual_over_time() (in
module evalml.model_understanding), 494

graph_prediction_vs_actual_over_time() (in
module evalml.model_understanding.visualizations),
483

graph_roc_curve() (in module
evalml.model_understanding), 494

graph_roc_curve() (in module
evalml.model_understanding.metrics), 473

graph_t_sne() (in module
evalml.model_understanding), 495

graph_t_sne() (in module
evalml.model_understanding.visualizations),
483

greater_is_better (evalml.objectives.binary_classification_objective.BinaryClassificationObjective
property), 501

greater_is_better (evalml.objectives.BinaryClassificationObjective
property), 618

greater_is_better (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
property), 512

greater_is_better (evalml.objectives.MulticlassClassificationObjective
property), 661

greater_is_better (evalml.objectives.objective_base.ObjectiveBase

2190 Index

EvalML Documentation, Release 0.80.0

property), 515
greater_is_better (evalml.objectives.ObjectiveBase

property), 663
greater_is_better (evalml.objectives.regression_objective.RegressionObjective

property), 518
greater_is_better (evalml.objectives.RegressionObjective

property), 683
greater_is_better (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective

property), 593
GridSearchTuner (class in evalml.tuners), 2015
GridSearchTuner (class in

evalml.tuners.grid_search_tuner), 2007

H
handle_component_class() (in module

evalml.pipelines.components.utils), 1424
handle_data_check_action_code() (in module

evalml.data_checks.utils), 399
handle_dcao_parameter_type()

(evalml.data_checks.data_check_action_option.DCAOParameterType
static method), 353

handle_dcao_parameter_type()
(evalml.data_checks.DCAOParameterType
static method), 418

handle_float_categories_for_catboost() (in
module evalml.pipelines.components.utils),
1424

handle_model_family() (in module
evalml.model_family), 459

handle_model_family() (in module
evalml.model_family.utils), 459

handle_problem_types() (in module
evalml.problem_types), 2004

handle_problem_types() (in module
evalml.problem_types.utils), 2001

has_dfs (evalml.pipelines.component_graph.ComponentGraph
property), 1673

has_dfs (evalml.pipelines.ComponentGraph property),
1779

I
IDColumnsDataCheck (class in evalml.data_checks),

420
IDColumnsDataCheck (class in

evalml.data_checks.id_columns_data_check),
368

import_or_raise() (in module evalml.utils), 2035
import_or_raise() (in module evalml.utils.gen_utils),

2027
Imputer (class in evalml.pipelines), 1816
Imputer (class in evalml.pipelines.components), 1499
Imputer (class in evalml.pipelines.components.transformers),

1330

Imputer (class in evalml.pipelines.components.transformers.imputers),
1146

Imputer (class in evalml.pipelines.components.transformers.imputers.imputer),
1127

infer_feature_types() (in module evalml.utils), 2035
infer_feature_types() (in module

evalml.utils.woodwork_utils), 2031
info() (evalml.automl.engine.engine_base.JobLogger

method), 303
instantiate() (evalml.pipelines.component_graph.ComponentGraph

method), 1673
instantiate() (evalml.pipelines.ComponentGraph

method), 1779
InvalidTargetDataCheck (class in

evalml.data_checks), 423
InvalidTargetDataCheck (class in

evalml.data_checks.invalid_target_data_check),
371

inverse_transform()
(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1659

inverse_transform()
(evalml.pipelines.BinaryClassificationPipeline
method), 1760

inverse_transform()
(evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1667

inverse_transform()
(evalml.pipelines.ClassificationPipeline
method), 1773

inverse_transform()
(evalml.pipelines.component_graph.ComponentGraph
method), 1673

inverse_transform()
(evalml.pipelines.ComponentGraph method),
1779

inverse_transform()
(evalml.pipelines.components.LabelEncoder
method), 1507

inverse_transform()
(evalml.pipelines.components.LogTransformer
method), 1526

inverse_transform()
(evalml.pipelines.components.PolynomialDecomposer
method), 1552

inverse_transform()
(evalml.pipelines.components.STLDecomposer
method), 1601

inverse_transform()
(evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder
method), 1064

inverse_transform()
(evalml.pipelines.components.transformers.encoders.LabelEncoder
method), 1080

Index 2191

EvalML Documentation, Release 0.80.0

inverse_transform()
(evalml.pipelines.components.transformers.LabelEncoder
method), 1334

inverse_transform()
(evalml.pipelines.components.transformers.LogTransformer
method), 1339

inverse_transform()
(evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1363

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1228

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1168

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer
method), 1184

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.LogTransformer
method), 1243

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1195

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1252

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1204

inverse_transform()
(evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1260

inverse_transform()
(evalml.pipelines.components.transformers.STLDecomposer
method), 1392

inverse_transform()
(evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1680

inverse_transform()
(evalml.pipelines.MulticlassClassificationPipeline
method), 1840

inverse_transform()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1687

inverse_transform()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1847

inverse_transform()
(evalml.pipelines.pipeline_base.PipelineBase
method), 1694

inverse_transform() (evalml.pipelines.PipelineBase
method), 1862

inverse_transform()

(evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1702

inverse_transform()
(evalml.pipelines.RegressionPipeline method),
1878

inverse_transform()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1710

inverse_transform()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1717

inverse_transform()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1725

inverse_transform()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1733

inverse_transform()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1742

inverse_transform()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1916

inverse_transform()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1923

inverse_transform()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1937

inverse_transform()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1946

is_all_numeric() (in module evalml.utils), 2035
is_all_numeric() (in module evalml.utils.gen_utils),

2028
is_binary() (in module evalml.problem_types), 2004
is_binary() (in module evalml.problem_types.utils),

2001
is_bounded_like_percentage

(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
property), 501

is_bounded_like_percentage
(evalml.objectives.BinaryClassificationObjective
property), 618

is_bounded_like_percentage
(evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
property), 512

is_bounded_like_percentage
(evalml.objectives.MulticlassClassificationObjective
property), 661

is_bounded_like_percentage
(evalml.objectives.objective_base.ObjectiveBase
property), 515

is_bounded_like_percentage

2192 Index

EvalML Documentation, Release 0.80.0

(evalml.objectives.ObjectiveBase property),
663

is_bounded_like_percentage
(evalml.objectives.regression_objective.RegressionObjective
property), 518

is_bounded_like_percentage
(evalml.objectives.RegressionObjective prop-
erty), 683

is_bounded_like_percentage
(evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
property), 593

is_cancelled (evalml.automl.engine.cf_engine.CFComputation
property), 297

is_cancelled (evalml.automl.engine.dask_engine.DaskComputation
property), 299

is_classification() (in module
evalml.problem_types), 2005

is_classification() (in module
evalml.problem_types.utils), 2001

is_closed (evalml.automl.engine.cf_engine.CFClient
property), 296

is_closed (evalml.automl.engine.cf_engine.CFEngine
property), 297

is_closed (evalml.automl.engine.CFEngine property),
308

is_closed (evalml.automl.engine.dask_engine.DaskEngine
property), 299

is_closed (evalml.automl.engine.DaskEngine prop-
erty), 309

is_cv (evalml.preprocessing.data_splitters.KFold prop-
erty), 1982

is_cv (evalml.preprocessing.data_splitters.no_split.NoSplit
property), 1973

is_cv (evalml.preprocessing.data_splitters.NoSplit prop-
erty), 1983

is_cv (evalml.preprocessing.data_splitters.sk_splitters.KFold
property), 1975

is_cv (evalml.preprocessing.data_splitters.sk_splitters.StratifiedKFold
property), 1976

is_cv (evalml.preprocessing.data_splitters.StratifiedKFold
property), 1984

is_cv (evalml.preprocessing.data_splitters.time_series_split.TimeSeriesSplit
property), 1978

is_cv (evalml.preprocessing.data_splitters.TimeSeriesSplit
property), 1986

is_cv (evalml.preprocessing.data_splitters.training_validation_split.TrainingValidationSplit
property), 1980

is_cv (evalml.preprocessing.data_splitters.TrainingValidationSplit
property), 1987

is_cv (evalml.preprocessing.NoSplit property), 1992
is_cv (evalml.preprocessing.TimeSeriesSplit property),

1996
is_cv (evalml.preprocessing.TrainingValidationSplit

property), 1998

is_defined_for_problem_type()
(evalml.objectives.AccuracyBinary class
method), 602

is_defined_for_problem_type()
(evalml.objectives.AccuracyMulticlass class
method), 604

is_defined_for_problem_type()
(evalml.objectives.AUC class method), 606

is_defined_for_problem_type()
(evalml.objectives.AUCMacro class method),
608

is_defined_for_problem_type()
(evalml.objectives.AUCMicro class method),
610

is_defined_for_problem_type()
(evalml.objectives.AUCWeighted class method),
611

is_defined_for_problem_type()
(evalml.objectives.BalancedAccuracyBinary
class method), 613

is_defined_for_problem_type()
(evalml.objectives.BalancedAccuracyMulticlass
class method), 615

is_defined_for_problem_type()
(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
class method), 501

is_defined_for_problem_type()
(evalml.objectives.BinaryClassificationObjective
class method), 618

is_defined_for_problem_type()
(evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
class method), 504

is_defined_for_problem_type()
(evalml.objectives.CostBenefitMatrix class
method), 620

is_defined_for_problem_type()
(evalml.objectives.ExpVariance class method),
622

is_defined_for_problem_type()
(evalml.objectives.F1 class method), 624

is_defined_for_problem_type()
(evalml.objectives.F1Macro class method),
626

is_defined_for_problem_type()
(evalml.objectives.F1Micro class method),
628

is_defined_for_problem_type()
(evalml.objectives.F1Weighted class method),
630

is_defined_for_problem_type()
(evalml.objectives.fraud_cost.FraudCost
class method), 507

is_defined_for_problem_type()
(evalml.objectives.FraudCost class method),

Index 2193

EvalML Documentation, Release 0.80.0

632
is_defined_for_problem_type()

(evalml.objectives.Gini class method), 636
is_defined_for_problem_type()

(evalml.objectives.lead_scoring.LeadScoring
class method), 510

is_defined_for_problem_type()
(evalml.objectives.LeadScoring class method),
639

is_defined_for_problem_type()
(evalml.objectives.LogLossBinary class
method), 641

is_defined_for_problem_type()
(evalml.objectives.LogLossMulticlass class
method), 643

is_defined_for_problem_type()
(evalml.objectives.MAE class method), 645

is_defined_for_problem_type()
(evalml.objectives.MAPE class method),
646

is_defined_for_problem_type()
(evalml.objectives.MASE class method),
648

is_defined_for_problem_type()
(evalml.objectives.MaxError class method),
650

is_defined_for_problem_type()
(evalml.objectives.MCCBinary class method),
652

is_defined_for_problem_type()
(evalml.objectives.MCCMulticlass class
method), 654

is_defined_for_problem_type()
(evalml.objectives.MeanSquaredLogError
class method), 656

is_defined_for_problem_type()
(evalml.objectives.MedianAE class method),
657

is_defined_for_problem_type()
(evalml.objectives.MSE class method), 659

is_defined_for_problem_type()
(evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
class method), 512

is_defined_for_problem_type()
(evalml.objectives.MulticlassClassificationObjective
class method), 661

is_defined_for_problem_type()
(evalml.objectives.objective_base.ObjectiveBase
class method), 515

is_defined_for_problem_type()
(evalml.objectives.ObjectiveBase class
method), 663

is_defined_for_problem_type()
(evalml.objectives.Precision class method),

666
is_defined_for_problem_type()

(evalml.objectives.PrecisionMacro class
method), 668

is_defined_for_problem_type()
(evalml.objectives.PrecisionMicro class
method), 670

is_defined_for_problem_type()
(evalml.objectives.PrecisionWeighted class
method), 672

is_defined_for_problem_type()
(evalml.objectives.R2 class method), 673

is_defined_for_problem_type()
(evalml.objectives.Recall class method),
676

is_defined_for_problem_type()
(evalml.objectives.RecallMacro class method),
677

is_defined_for_problem_type()
(evalml.objectives.RecallMicro class method),
679

is_defined_for_problem_type()
(evalml.objectives.RecallWeighted class
method), 681

is_defined_for_problem_type()
(evalml.objectives.regression_objective.RegressionObjective
class method), 518

is_defined_for_problem_type()
(evalml.objectives.RegressionObjective class
method), 683

is_defined_for_problem_type()
(evalml.objectives.RootMeanSquaredError
class method), 686

is_defined_for_problem_type()
(evalml.objectives.RootMeanSquaredLogError
class method), 687

is_defined_for_problem_type()
(evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
class method), 521

is_defined_for_problem_type()
(evalml.objectives.SensitivityLowAlert class
method), 689

is_defined_for_problem_type()
(evalml.objectives.SMAPE class method),
691

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.AccuracyBinary
class method), 524

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.AccuracyMulticlass
class method), 526

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.AUC
class method), 528

2194 Index

EvalML Documentation, Release 0.80.0

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.AUCMacro
class method), 530

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.AUCMicro
class method), 532

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.AUCWeighted
class method), 534

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.BalancedAccuracyBinary
class method), 536

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.BalancedAccuracyMulticlass
class method), 538

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.ExpVariance
class method), 539

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.F1 class
method), 541

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.F1Macro
class method), 543

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.F1Micro
class method), 545

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.F1Weighted
class method), 547

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.Gini
class method), 549

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.LogLossBinary
class method), 551

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.LogLossMulticlass
class method), 553

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MAE
class method), 555

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MAPE
class method), 556

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MASE
class method), 558

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MaxError
class method), 560

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MCCBinary
class method), 562

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MCCMulticlass
class method), 564

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MeanSquaredLogError
class method), 566

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MedianAE
class method), 567

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.MSE
class method), 569

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.Precision
class method), 571

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.PrecisionMacro
class method), 573

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.PrecisionMicro
class method), 575

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.PrecisionWeighted
class method), 577

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.R2 class
method), 578

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.Recall
class method), 581

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.RecallMacro
class method), 582

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.RecallMicro
class method), 584

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.RecallWeighted
class method), 586

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.RootMeanSquaredError
class method), 588

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.RootMeanSquaredLogError
class method), 589

is_defined_for_problem_type()
(evalml.objectives.standard_metrics.SMAPE
class method), 591

is_defined_for_problem_type()
(evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
class method), 593

is_freq_valid() (evalml.pipelines.components.PolynomialDecomposer
class method), 1552

is_freq_valid() (evalml.pipelines.components.STLDecomposer

Index 2195

EvalML Documentation, Release 0.80.0

class method), 1601
is_freq_valid() (evalml.pipelines.components.transformers.PolynomialDecomposer

class method), 1363
is_freq_valid() (evalml.pipelines.components.transformers.preprocessing.Decomposer

class method), 1228
is_freq_valid() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer

class method), 1168
is_freq_valid() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer

class method), 1195
is_freq_valid() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer

class method), 1253
is_freq_valid() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer

class method), 1204
is_freq_valid() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer

class method), 1260
is_freq_valid() (evalml.pipelines.components.transformers.STLDecomposer

class method), 1392
is_multiclass() (in module evalml.problem_types),

2005
is_multiclass() (in module

evalml.problem_types.utils), 2002
is_multiseries() (in module evalml.problem_types),

2005
is_multiseries() (in module

evalml.problem_types.utils), 2002
is_regression() (in module evalml.problem_types),

2005
is_regression() (in module

evalml.problem_types.utils), 2002
is_search_space_exhausted()

(evalml.tuners.grid_search_tuner.GridSearchTuner
method), 2008

is_search_space_exhausted()
(evalml.tuners.GridSearchTuner method),
2016

is_search_space_exhausted()
(evalml.tuners.random_search_tuner.RandomSearchTuner
method), 2010

is_search_space_exhausted()
(evalml.tuners.RandomSearchTuner method),
2018

is_search_space_exhausted()
(evalml.tuners.skopt_tuner.SKOptTuner
method), 2012

is_search_space_exhausted()
(evalml.tuners.SKOptTuner method), 2019

is_search_space_exhausted() (evalml.tuners.Tuner
method), 2020

is_search_space_exhausted()
(evalml.tuners.tuner.Tuner method), 2014

is_time_series() (in module evalml.problem_types),
2006

is_time_series() (in module
evalml.problem_types.utils), 2002

is_tree_estimator()
(evalml.model_family.model_family.ModelFamily
method), 458

is_tree_estimator()
(evalml.model_family.ModelFamily method),
460

IterativeAlgorithm (class in
evalml.automl.automl_algorithm), 292

IterativeAlgorithm (class in
evalml.automl.automl_algorithm.iterative_algorithm),
284

J
JobLogger (class in evalml.automl.engine.engine_base),

303
jupyter_check() (in module evalml.utils), 2035
jupyter_check() (in module evalml.utils.gen_utils),

2028

K
KFold (class in evalml.preprocessing.data_splitters),

1981
KFold (class in evalml.preprocessing.data_splitters.sk_splitters),

1974
KNeighborsClassifier (class in evalml.pipelines),

1818
KNeighborsClassifier (class in

evalml.pipelines.components), 1502
KNeighborsClassifier (class in

evalml.pipelines.components.estimators),
991

KNeighborsClassifier (class in
evalml.pipelines.components.estimators.classifiers),
786

KNeighborsClassifier (class in
evalml.pipelines.components.estimators.classifiers.kneighbors_classifier),
736

KNNImputer (class in evalml.pipelines.components.transformers.imputers),
1149

KNNImputer (class in evalml.pipelines.components.transformers.imputers.knn_imputer),
1130

L
LabelEncoder (class in evalml.pipelines.components),

1505
LabelEncoder (class in

evalml.pipelines.components.transformers),
1332

LabelEncoder (class in
evalml.pipelines.components.transformers.encoders),
1078

LabelEncoder (class in
evalml.pipelines.components.transformers.encoders.label_encoder),
1062

2196 Index

EvalML Documentation, Release 0.80.0

last_component_input_logical_types
(evalml.pipelines.component_graph.ComponentGraph
property), 1674

last_component_input_logical_types
(evalml.pipelines.ComponentGraph prop-
erty), 1780

LeadScoring (class in evalml.objectives), 637
LeadScoring (class in evalml.objectives.lead_scoring),

508
LightGBMClassifier (class in evalml.pipelines), 1822
LightGBMClassifier (class in

evalml.pipelines.components), 1508
LightGBMClassifier (class in

evalml.pipelines.components.estimators),
995

LightGBMClassifier (class in
evalml.pipelines.components.estimators.classifiers),
790

LightGBMClassifier (class in
evalml.pipelines.components.estimators.classifiers.lightgbm_classifier),
740

LightGBMRegressor (class in evalml.pipelines), 1825
LightGBMRegressor (class in

evalml.pipelines.components), 1511
LightGBMRegressor (class in

evalml.pipelines.components.estimators),
999

LightGBMRegressor (class in
evalml.pipelines.components.estimators.regressors),
908

LightGBMRegressor (class in
evalml.pipelines.components.estimators.regressors.lightgbm_regressor),
843

LinearDiscriminantAnalysis (class in
evalml.pipelines.components), 1515

LinearDiscriminantAnalysis (class in
evalml.pipelines.components.transformers),
1335

LinearDiscriminantAnalysis (class in
evalml.pipelines.components.transformers.dimensionality_reduction),
1057

LinearDiscriminantAnalysis (class in
evalml.pipelines.components.transformers.dimensionality_reduction.lda),
1051

LinearRegressor (class in evalml.pipelines), 1829
LinearRegressor (class in

evalml.pipelines.components), 1517
LinearRegressor (class in

evalml.pipelines.components.estimators),
1002

LinearRegressor (class in
evalml.pipelines.components.estimators.regressors),
912

LinearRegressor (class in

evalml.pipelines.components.estimators.regressors.linear_regressor),
847

load() (evalml.automl.automl_search.AutoMLSearch
static method), 321

load() (evalml.automl.AutoMLSearch static method),
337

load() (evalml.AutoMLSearch static method), 2043
load() (evalml.pipelines.ARIMARegressor static

method), 1754
load() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

static method), 1659
load() (evalml.pipelines.BinaryClassificationPipeline

static method), 1760
load() (evalml.pipelines.CatBoostClassifier static

method), 1764
load() (evalml.pipelines.CatBoostRegressor static

method), 1768
load() (evalml.pipelines.classification_pipeline.ClassificationPipeline

static method), 1667
load() (evalml.pipelines.ClassificationPipeline static

method), 1773
load() (evalml.pipelines.components.ARIMARegressor

static method), 1434
load() (evalml.pipelines.components.BaselineClassifier

static method), 1438
load() (evalml.pipelines.components.BaselineRegressor

static method), 1440
load() (evalml.pipelines.components.CatBoostClassifier

static method), 1444
load() (evalml.pipelines.components.CatBoostRegressor

static method), 1447
load() (evalml.pipelines.components.component_base.ComponentBase

static method), 1419
load() (evalml.pipelines.components.ComponentBase

static method), 1450
load() (evalml.pipelines.components.DateTimeFeaturizer

static method), 1453
load() (evalml.pipelines.components.DecisionTreeClassifier

static method), 1456
load() (evalml.pipelines.components.DecisionTreeRegressor

static method), 1460
load() (evalml.pipelines.components.DFSTransformer

static method), 1463
load() (evalml.pipelines.components.DropColumns

static method), 1466
load() (evalml.pipelines.components.DropNaNRowsTransformer

static method), 1468
load() (evalml.pipelines.components.DropNullColumns

static method), 1471
load() (evalml.pipelines.components.DropRowsTransformer

static method), 1473
load() (evalml.pipelines.components.ElasticNetClassifier

static method), 1476
load() (evalml.pipelines.components.ElasticNetRegressor

Index 2197

EvalML Documentation, Release 0.80.0

static method), 1479
load() (evalml.pipelines.components.EmailFeaturizer

static method), 1482
load() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase

static method), 695
load() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier

static method), 699
load() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor

static method), 703
load() (evalml.pipelines.components.ensemble.StackedEnsembleBase

static method), 707
load() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier

static method), 710
load() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor

static method), 714
load() (evalml.pipelines.components.Estimator static

method), 1485
load() (evalml.pipelines.components.estimators.ARIMARegressor

static method), 949
load() (evalml.pipelines.components.estimators.BaselineClassifier

static method), 953
load() (evalml.pipelines.components.estimators.BaselineRegressor

static method), 956
load() (evalml.pipelines.components.estimators.CatBoostClassifier

static method), 959
load() (evalml.pipelines.components.estimators.CatBoostRegressor

static method), 962
load() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

static method), 718
load() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

static method), 771
load() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

static method), 722
load() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

static method), 774
load() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

static method), 726
load() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

static method), 778
load() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

static method), 730
load() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

static method), 782
load() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

static method), 734
load() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

static method), 785
load() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

static method), 738
load() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

static method), 789
load() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

static method), 743
load() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

static method), 793
load() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

static method), 746
load() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

static method), 796
load() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

static method), 799
load() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

static method), 750
load() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

static method), 754
load() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

static method), 803
load() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

static method), 757
load() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

static method), 760
load() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

static method), 764
load() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier

static method), 806
load() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

static method), 809
load() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

static method), 768
load() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

static method), 812
load() (evalml.pipelines.components.estimators.DecisionTreeClassifier

static method), 966
load() (evalml.pipelines.components.estimators.DecisionTreeRegressor

static method), 970
load() (evalml.pipelines.components.estimators.ElasticNetClassifier

static method), 973
load() (evalml.pipelines.components.estimators.ElasticNetRegressor

static method), 976
load() (evalml.pipelines.components.estimators.Estimator

static method), 980
load() (evalml.pipelines.components.estimators.estimator.Estimator

static method), 944
load() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

static method), 983
load() (evalml.pipelines.components.estimators.ExtraTreesClassifier

static method), 987
load() (evalml.pipelines.components.estimators.ExtraTreesRegressor

static method), 991
load() (evalml.pipelines.components.estimators.KNeighborsClassifier

static method), 994
load() (evalml.pipelines.components.estimators.LightGBMClassifier

static method), 998
load() (evalml.pipelines.components.estimators.LightGBMRegressor

static method), 1002
load() (evalml.pipelines.components.estimators.LinearRegressor

static method), 1005
load() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

2198 Index

EvalML Documentation, Release 0.80.0

static method), 1008
load() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

static method), 1011
load() (evalml.pipelines.components.estimators.ProphetRegressor

static method), 1015
load() (evalml.pipelines.components.estimators.RandomForestClassifier

static method), 1018
load() (evalml.pipelines.components.estimators.RandomForestRegressor

static method), 1021
load() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

static method), 818
load() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

static method), 886
load() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

static method), 821
load() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

static method), 889
load() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

static method), 825
load() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

static method), 893
load() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

static method), 829
load() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

static method), 897
load() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

static method), 833
load() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

static method), 900
load() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

static method), 838
load() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

static method), 842
load() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

static method), 904
load() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

static method), 907
load() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

static method), 846
load() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

static method), 911
load() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

static method), 849
load() (evalml.pipelines.components.estimators.regressors.LinearRegressor

static method), 914
load() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

static method), 852
load() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

static method), 917
load() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

static method), 858
load() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

static method), 921
load() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

static method), 924
load() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

static method), 862
load() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

static method), 865
load() (evalml.pipelines.components.estimators.regressors.SVMRegressor

static method), 927
load() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

static method), 869
load() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

static method), 931
load() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

static method), 873
load() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

static method), 934
load() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

static method), 877
load() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

static method), 937
load() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor

static method), 881
load() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

static method), 940
load() (evalml.pipelines.components.estimators.SVMClassifier

static method), 1024
load() (evalml.pipelines.components.estimators.SVMRegressor

static method), 1027
load() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

static method), 1031
load() (evalml.pipelines.components.estimators.VARMAXRegressor

static method), 1034
load() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

static method), 1037
load() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

static method), 1040
load() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

static method), 1043
load() (evalml.pipelines.components.estimators.XGBoostClassifier

static method), 1047
load() (evalml.pipelines.components.estimators.XGBoostRegressor

static method), 1049
load() (evalml.pipelines.components.ExponentialSmoothingRegressor

static method), 1488
load() (evalml.pipelines.components.ExtraTreesClassifier

static method), 1492
load() (evalml.pipelines.components.ExtraTreesRegressor

static method), 1495
load() (evalml.pipelines.components.FeatureSelector

static method), 1498
load() (evalml.pipelines.components.Imputer static

method), 1501
load() (evalml.pipelines.components.KNeighborsClassifier

static method), 1504
load() (evalml.pipelines.components.LabelEncoder

Index 2199

EvalML Documentation, Release 0.80.0

static method), 1507
load() (evalml.pipelines.components.LightGBMClassifier

static method), 1510
load() (evalml.pipelines.components.LightGBMRegressor

static method), 1514
load() (evalml.pipelines.components.LinearDiscriminantAnalysis

static method), 1517
load() (evalml.pipelines.components.LinearRegressor

static method), 1519
load() (evalml.pipelines.components.LogisticRegressionClassifier

static method), 1523
load() (evalml.pipelines.components.LogTransformer

static method), 1526
load() (evalml.pipelines.components.LSA static

method), 1528
load() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

static method), 1531
load() (evalml.pipelines.components.NaturalLanguageFeaturizer

static method), 1534
load() (evalml.pipelines.components.OneHotEncoder

static method), 1537
load() (evalml.pipelines.components.OrdinalEncoder

static method), 1540
load() (evalml.pipelines.components.Oversampler static

method), 1543
load() (evalml.pipelines.components.PCA static

method), 1545
load() (evalml.pipelines.components.PerColumnImputer

static method), 1548
load() (evalml.pipelines.components.PolynomialDecomposer

static method), 1552
load() (evalml.pipelines.components.ProphetRegressor

static method), 1556
load() (evalml.pipelines.components.RandomForestClassifier

static method), 1559
load() (evalml.pipelines.components.RandomForestRegressor

static method), 1562
load() (evalml.pipelines.components.ReplaceNullableTypes

static method), 1565
load() (evalml.pipelines.components.RFClassifierRFESelector

static method), 1568
load() (evalml.pipelines.components.RFClassifierSelectFromModel

static method), 1571
load() (evalml.pipelines.components.RFRegressorRFESelector

static method), 1574
load() (evalml.pipelines.components.RFRegressorSelectFromModel

static method), 1577
load() (evalml.pipelines.components.SelectByType

static method), 1579
load() (evalml.pipelines.components.SelectColumns

static method), 1582
load() (evalml.pipelines.components.SimpleImputer

static method), 1584
load() (evalml.pipelines.components.StackedEnsembleBase

static method), 1587
load() (evalml.pipelines.components.StackedEnsembleClassifier

static method), 1591
load() (evalml.pipelines.components.StackedEnsembleRegressor

static method), 1595
load() (evalml.pipelines.components.StandardScaler

static method), 1597
load() (evalml.pipelines.components.STLDecomposer

static method), 1602
load() (evalml.pipelines.components.SVMClassifier

static method), 1605
load() (evalml.pipelines.components.SVMRegressor

static method), 1608
load() (evalml.pipelines.components.TargetEncoder

static method), 1611
load() (evalml.pipelines.components.TargetImputer

static method), 1614
load() (evalml.pipelines.components.TimeSeriesBaselineEstimator

static method), 1617
load() (evalml.pipelines.components.TimeSeriesFeaturizer

static method), 1620
load() (evalml.pipelines.components.TimeSeriesImputer

static method), 1623
load() (evalml.pipelines.components.TimeSeriesRegularizer

static method), 1626
load() (evalml.pipelines.components.Transformer static

method), 1629
load() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector

static method), 1297
load() (evalml.pipelines.components.transformers.column_selectors.DropColumns

static method), 1299
load() (evalml.pipelines.components.transformers.column_selectors.SelectByType

static method), 1302
load() (evalml.pipelines.components.transformers.column_selectors.SelectColumns

static method), 1304
load() (evalml.pipelines.components.transformers.DateTimeFeaturizer

static method), 1311
load() (evalml.pipelines.components.transformers.DFSTransformer

static method), 1314
load() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis

static method), 1053
load() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis

static method), 1059
load() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA

static method), 1061
load() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA

static method), 1056
load() (evalml.pipelines.components.transformers.DropColumns

static method), 1317
load() (evalml.pipelines.components.transformers.DropNaNRowsTransformer

static method), 1319
load() (evalml.pipelines.components.transformers.DropNullColumns

static method), 1321
load() (evalml.pipelines.components.transformers.DropRowsTransformer

2200 Index

EvalML Documentation, Release 0.80.0

static method), 1324
load() (evalml.pipelines.components.transformers.EmailFeaturizer

static method), 1326
load() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder

static method), 1064
load() (evalml.pipelines.components.transformers.encoders.LabelEncoder

static method), 1080
load() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder

static method), 1068
load() (evalml.pipelines.components.transformers.encoders.OneHotEncoder

static method), 1083
load() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder

static method), 1073
load() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder

static method), 1087
load() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder

static method), 1077
load() (evalml.pipelines.components.transformers.encoders.TargetEncoder

static method), 1089
load() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector

static method), 1092
load() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector

static method), 1112
load() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector

static method), 1096
load() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector

static method), 1099
load() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector

static method), 1102
load() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel

static method), 1106
load() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel

static method), 1109
load() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector

static method), 1116
load() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel

static method), 1119
load() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector

static method), 1122
load() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel

static method), 1125
load() (evalml.pipelines.components.transformers.FeatureSelector

static method), 1329
load() (evalml.pipelines.components.transformers.Imputer

static method), 1332
load() (evalml.pipelines.components.transformers.imputers.Imputer

static method), 1148
load() (evalml.pipelines.components.transformers.imputers.imputer.Imputer

static method), 1129
load() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer

static method), 1132
load() (evalml.pipelines.components.transformers.imputers.KNNImputer

static method), 1150
load() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer

static method), 1135
load() (evalml.pipelines.components.transformers.imputers.PerColumnImputer

static method), 1153
load() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer

static method), 1138
load() (evalml.pipelines.components.transformers.imputers.SimpleImputer

static method), 1155
load() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer

static method), 1141
load() (evalml.pipelines.components.transformers.imputers.TargetImputer

static method), 1158
load() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer

static method), 1145
load() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer

static method), 1161
load() (evalml.pipelines.components.transformers.LabelEncoder

static method), 1334
load() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis

static method), 1337
load() (evalml.pipelines.components.transformers.LogTransformer

static method), 1339
load() (evalml.pipelines.components.transformers.LSA

static method), 1342
load() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer

static method), 1344
load() (evalml.pipelines.components.transformers.OneHotEncoder

static method), 1347
load() (evalml.pipelines.components.transformers.OrdinalEncoder

static method), 1351
load() (evalml.pipelines.components.transformers.Oversampler

static method), 1354
load() (evalml.pipelines.components.transformers.PCA

static method), 1356
load() (evalml.pipelines.components.transformers.PerColumnImputer

static method), 1359
load() (evalml.pipelines.components.transformers.PolynomialDecomposer

static method), 1363
load() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer

static method), 1164
load() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer

static method), 1224
load() (evalml.pipelines.components.transformers.preprocessing.Decomposer

static method), 1228
load() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer

static method), 1169
load() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer

static method), 1231
load() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer

static method), 1172
load() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns

static method), 1175
load() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer

static method), 1178
load() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer

Index 2201

EvalML Documentation, Release 0.80.0

static method), 1234
load() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns

static method), 1236
load() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer

static method), 1239
load() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer

static method), 1241
load() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

static method), 1181
load() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer

static method), 1184
load() (evalml.pipelines.components.transformers.preprocessing.LogTransformer

static method), 1243
load() (evalml.pipelines.components.transformers.preprocessing.LSA

static method), 1246
load() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA

static method), 1187
load() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer

static method), 1190
load() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer

static method), 1248
load() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer

static method), 1195
load() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer

static method), 1253
load() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes

static method), 1199
load() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes

static method), 1256
load() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer

static method), 1205
load() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer

static method), 1261
load() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer

static method), 1208
load() (evalml.pipelines.components.transformers.preprocessing.TextTransformer

static method), 1264
load() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer

static method), 1212
load() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer

static method), 1215
load() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer

static method), 1267
load() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer

static method), 1270
load() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer

static method), 1218
load() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer

static method), 1221
load() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer

static method), 1273
load() (evalml.pipelines.components.transformers.ReplaceNullableTypes

static method), 1366
load() (evalml.pipelines.components.transformers.RFClassifierRFESelector

static method), 1369
load() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel

static method), 1372
load() (evalml.pipelines.components.transformers.RFRegressorRFESelector

static method), 1375
load() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel

static method), 1378
load() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler

static method), 1276
load() (evalml.pipelines.components.transformers.samplers.Oversampler

static method), 1285
load() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler

static method), 1279
load() (evalml.pipelines.components.transformers.samplers.Undersampler

static method), 1288
load() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler

static method), 1282
load() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler

static method), 1291
load() (evalml.pipelines.components.transformers.scalers.StandardScaler

static method), 1294
load() (evalml.pipelines.components.transformers.SelectByType

static method), 1381
load() (evalml.pipelines.components.transformers.SelectColumns

static method), 1383
load() (evalml.pipelines.components.transformers.SimpleImputer

static method), 1385
load() (evalml.pipelines.components.transformers.StandardScaler

static method), 1388
load() (evalml.pipelines.components.transformers.STLDecomposer

static method), 1393
load() (evalml.pipelines.components.transformers.TargetEncoder

static method), 1396
load() (evalml.pipelines.components.transformers.TargetImputer

static method), 1399
load() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer

static method), 1402
load() (evalml.pipelines.components.transformers.TimeSeriesImputer

static method), 1405
load() (evalml.pipelines.components.transformers.TimeSeriesRegularizer

static method), 1408
load() (evalml.pipelines.components.transformers.Transformer

static method), 1411
load() (evalml.pipelines.components.transformers.transformer.Transformer

static method), 1307
load() (evalml.pipelines.components.transformers.Undersampler

static method), 1414
load() (evalml.pipelines.components.transformers.URLFeaturizer

static method), 1416
load() (evalml.pipelines.components.Undersampler

static method), 1632
load() (evalml.pipelines.components.URLFeaturizer

static method), 1634
load() (evalml.pipelines.components.VARMAXRegressor

2202 Index

EvalML Documentation, Release 0.80.0

static method), 1637
load() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

static method), 1640
load() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

static method), 1643
load() (evalml.pipelines.components.VowpalWabbitRegressor

static method), 1646
load() (evalml.pipelines.components.XGBoostClassifier

static method), 1649
load() (evalml.pipelines.components.XGBoostRegressor

static method), 1652
load() (evalml.pipelines.DecisionTreeClassifier static

method), 1783
load() (evalml.pipelines.DecisionTreeRegressor static

method), 1787
load() (evalml.pipelines.DFSTransformer static

method), 1790
load() (evalml.pipelines.DropNaNRowsTransformer

static method), 1792
load() (evalml.pipelines.ElasticNetClassifier static

method), 1795
load() (evalml.pipelines.ElasticNetRegressor static

method), 1798
load() (evalml.pipelines.Estimator static method), 1802
load() (evalml.pipelines.ExponentialSmoothingRegressor

static method), 1805
load() (evalml.pipelines.ExtraTreesClassifier static

method), 1809
load() (evalml.pipelines.ExtraTreesRegressor static

method), 1812
load() (evalml.pipelines.FeatureSelector static method),

1815
load() (evalml.pipelines.Imputer static method), 1818
load() (evalml.pipelines.KNeighborsClassifier static

method), 1821
load() (evalml.pipelines.LightGBMClassifier static

method), 1824
load() (evalml.pipelines.LightGBMRegressor static

method), 1828
load() (evalml.pipelines.LinearRegressor static

method), 1831
load() (evalml.pipelines.LogisticRegressionClassifier

static method), 1834
load() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

static method), 1680
load() (evalml.pipelines.MulticlassClassificationPipeline

static method), 1840
load() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

static method), 1688
load() (evalml.pipelines.MultiseriesRegressionPipeline

static method), 1847
load() (evalml.pipelines.OneHotEncoder static

method), 1852
load() (evalml.pipelines.OrdinalEncoder static method),

1855
load() (evalml.pipelines.PerColumnImputer static

method), 1858
load() (evalml.pipelines.pipeline_base.PipelineBase

static method), 1694
load() (evalml.pipelines.PipelineBase static method),

1862
load() (evalml.pipelines.ProphetRegressor static

method), 1867
load() (evalml.pipelines.RandomForestClassifier static

method), 1870
load() (evalml.pipelines.RandomForestRegressor static

method), 1873
load() (evalml.pipelines.regression_pipeline.RegressionPipeline

static method), 1702
load() (evalml.pipelines.RegressionPipeline static

method), 1878
load() (evalml.pipelines.RFClassifierSelectFromModel

static method), 1882
load() (evalml.pipelines.RFRegressorSelectFromModel

static method), 1885
load() (evalml.pipelines.SimpleImputer static method),

1888
load() (evalml.pipelines.StackedEnsembleBase static

method), 1891
load() (evalml.pipelines.StackedEnsembleClassifier

static method), 1895
load() (evalml.pipelines.StackedEnsembleRegressor

static method), 1899
load() (evalml.pipelines.StandardScaler static method),

1901
load() (evalml.pipelines.SVMClassifier static method),

1904
load() (evalml.pipelines.SVMRegressor static method),

1907
load() (evalml.pipelines.TargetEncoder static method),

1910
load() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

static method), 1710
load() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

static method), 1717
load() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

static method), 1725
load() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

static method), 1733
load() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

static method), 1742
load() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

static method), 1916
load() (evalml.pipelines.TimeSeriesClassificationPipeline

static method), 1923
load() (evalml.pipelines.TimeSeriesFeaturizer static

method), 1929
load() (evalml.pipelines.TimeSeriesImputer static

Index 2203

EvalML Documentation, Release 0.80.0

method), 1931
load() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

static method), 1937
load() (evalml.pipelines.TimeSeriesRegressionPipeline

static method), 1946
load() (evalml.pipelines.TimeSeriesRegularizer static

method), 1950
load() (evalml.pipelines.Transformer static method),

1953
load() (evalml.pipelines.VARMAXRegressor static

method), 1956
load() (evalml.pipelines.VowpalWabbitBinaryClassifier

static method), 1959
load() (evalml.pipelines.VowpalWabbitMulticlassClassifier

static method), 1962
load() (evalml.pipelines.VowpalWabbitRegressor static

method), 1965
load() (evalml.pipelines.XGBoostClassifier static

method), 1968
load() (evalml.pipelines.XGBoostRegressor static

method), 1971
load_breast_cancer() (in module evalml.demos), 450
load_breast_cancer() (in module

evalml.demos.breast_cancer), 447
load_churn() (in module evalml.demos), 450
load_churn() (in module evalml.demos.churn), 447
load_data() (in module evalml.preprocessing), 1991
load_data() (in module evalml.preprocessing.utils),

1988
load_diabetes() (in module evalml.demos), 450
load_diabetes() (in module evalml.demos.diabetes),

448
load_fraud() (in module evalml.demos), 450
load_fraud() (in module evalml.demos.fraud), 448
load_weather() (in module evalml.demos), 450
load_weather() (in module evalml.demos.weather),

449
load_wine() (in module evalml.demos), 451
load_wine() (in module evalml.demos.wine), 449
log_batch_times() (in module evalml.utils.logger),

2029
log_error_callback() (in module

evalml.automl.callbacks), 325
log_subtitle() (in module evalml.utils), 2036
log_subtitle() (in module evalml.utils.logger), 2030
log_title() (in module evalml.utils), 2036
log_title() (in module evalml.utils.logger), 2030
logger (in module evalml.automl.callbacks), 325
logger (in module evalml.objectives.sensitivity_low_alert),

519
logger (in module evalml.pipelines.component_graph),

1674
logger (in module evalml.pipelines.pipeline_base), 1691
logger (in module evalml.tuners.skopt_tuner), 2011

logger (in module evalml.utils.gen_utils), 2028
LogisticRegressionClassifier (class in

evalml.pipelines), 1832
LogisticRegressionClassifier (class in

evalml.pipelines.components), 1520
LogisticRegressionClassifier (class in

evalml.pipelines.components.estimators),
1005

LogisticRegressionClassifier (class in
evalml.pipelines.components.estimators.classifiers),
793

LogisticRegressionClassifier (class in
evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier),
744

LogLossBinary (class in evalml.objectives), 640
LogLossBinary (class in

evalml.objectives.standard_metrics), 550
LogLossMulticlass (class in evalml.objectives), 642
LogLossMulticlass (class in

evalml.objectives.standard_metrics), 552
LogTransformer (class in

evalml.pipelines.components), 1524
LogTransformer (class in

evalml.pipelines.components.transformers),
1337

LogTransformer (class in
evalml.pipelines.components.transformers.preprocessing),
1242

LogTransformer (class in
evalml.pipelines.components.transformers.preprocessing.log_transformer),
1182

LSA (class in evalml.pipelines.components), 1527
LSA (class in evalml.pipelines.components.transformers),

1340
LSA (class in evalml.pipelines.components.transformers.preprocessing),

1244
LSA (class in evalml.pipelines.components.transformers.preprocessing.lsa),

1185

M
MAE (class in evalml.objectives), 644
MAE (class in evalml.objectives.standard_metrics), 554
make_balancing_dictionary() (in module

evalml.pipelines.components.utils), 1425
make_data_splitter() (in module evalml.automl),

339
make_data_splitter() (in module

evalml.automl.utils), 330
make_pipeline() (in module evalml.pipelines.utils),

1746
make_pipeline_from_actions() (in module

evalml.pipelines.utils), 1747
make_pipeline_from_data_check_output() (in

module evalml.pipelines.utils), 1747

2204 Index

EvalML Documentation, Release 0.80.0

make_timeseries_baseline_pipeline() (in module
evalml.pipelines.utils), 1748

MAPE (class in evalml.objectives), 645
MAPE (class in evalml.objectives.standard_metrics), 555
MASE (class in evalml.objectives), 647
MASE (class in evalml.objectives.standard_metrics), 557
match_indices() (in module

evalml.pipelines.components.utils), 1425
MaxError (class in evalml.objectives), 649
MaxError (class in evalml.objectives.standard_metrics),

559
MCCBinary (class in evalml.objectives), 651
MCCBinary (class in evalml.objectives.standard_metrics),

561
MCCMulticlass (class in evalml.objectives), 653
MCCMulticlass (class in

evalml.objectives.standard_metrics), 563
MeanSquaredLogError (class in evalml.objectives), 655
MeanSquaredLogError (class in

evalml.objectives.standard_metrics), 565
MedianAE (class in evalml.objectives), 656
MedianAE (class in evalml.objectives.standard_metrics),

566
method (in module evalml.utils.update_checker), 2030
MethodPropertyNotFoundError, 451, 454
MissingComponentError, 452, 454
model_family (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

property), 1659
model_family (evalml.pipelines.BinaryClassificationPipeline

property), 1760
model_family (evalml.pipelines.classification_pipeline.ClassificationPipeline

property), 1667
model_family (evalml.pipelines.ClassificationPipeline

property), 1773
model_family (evalml.pipelines.components.Estimator

property), 1485
model_family (evalml.pipelines.components.estimators.Estimator

property), 980
model_family (evalml.pipelines.components.estimators.estimator.Estimator

property), 944
model_family (evalml.pipelines.Estimator property),

1802
model_family (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

property), 1680
model_family (evalml.pipelines.MulticlassClassificationPipeline

property), 1840
model_family (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

property), 1688
model_family (evalml.pipelines.MultiseriesRegressionPipeline

property), 1847
model_family (evalml.pipelines.pipeline_base.PipelineBase

property), 1695
model_family (evalml.pipelines.PipelineBase prop-

erty), 1863

model_family (evalml.pipelines.regression_pipeline.RegressionPipeline
property), 1703

model_family (evalml.pipelines.RegressionPipeline
property), 1879

model_family (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
property), 1710

model_family (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
property), 1717

model_family (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
property), 1725

model_family (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
property), 1733

model_family (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
property), 1742

model_family (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
property), 1916

model_family (evalml.pipelines.TimeSeriesClassificationPipeline
property), 1923

model_family (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
property), 1937

model_family (evalml.pipelines.TimeSeriesRegressionPipeline
property), 1946

ModelFamily (class in evalml.model_family), 460
ModelFamily (class in

evalml.model_family.model_family), 457
modifies_features (evalml.pipelines.components.component_base.ComponentBase

property), 1419
modifies_features (evalml.pipelines.components.ComponentBase

property), 1450
modifies_target (evalml.pipelines.components.component_base.ComponentBase

property), 1419
modifies_target (evalml.pipelines.components.ComponentBase

property), 1450
module

evalml, 278
evalml.automl, 278
evalml.automl.automl_algorithm, 279
evalml.automl.automl_algorithm.automl_algorithm,

279
evalml.automl.automl_algorithm.default_algorithm,

281
evalml.automl.automl_algorithm.iterative_algorithm,

284
evalml.automl.automl_search, 314
evalml.automl.callbacks, 324
evalml.automl.engine, 295
evalml.automl.engine.cf_engine, 295
evalml.automl.engine.dask_engine, 298
evalml.automl.engine.engine_base, 301
evalml.automl.engine.sequential_engine,

305
evalml.automl.pipeline_search_plots, 325
evalml.automl.progress, 326
evalml.automl.utils, 328

Index 2205

EvalML Documentation, Release 0.80.0

evalml.data_checks, 344
evalml.data_checks.class_imbalance_data_check,

345
evalml.data_checks.data_check, 348
evalml.data_checks.data_check_action, 348
evalml.data_checks.data_check_action_code,

349
evalml.data_checks.data_check_action_option,

350
evalml.data_checks.data_check_message,

353
evalml.data_checks.data_check_message_code,

355
evalml.data_checks.data_check_message_type,

357
evalml.data_checks.data_checks, 358
evalml.data_checks.datetime_format_data_check,

358
evalml.data_checks.default_data_checks,

366
evalml.data_checks.id_columns_data_check,

367
evalml.data_checks.invalid_target_data_check,

371
evalml.data_checks.multicollinearity_data_check,

375
evalml.data_checks.no_variance_data_check,

377
evalml.data_checks.null_data_check, 380
evalml.data_checks.outliers_data_check,

384
evalml.data_checks.sparsity_data_check,

387
evalml.data_checks.target_distribution_data_check,

389
evalml.data_checks.target_leakage_data_check,

391
evalml.data_checks.ts_parameters_data_check,

393
evalml.data_checks.ts_splitting_data_check,

395
evalml.data_checks.uniqueness_data_check,

397
evalml.data_checks.utils, 399
evalml.demos, 446
evalml.demos.breast_cancer, 447
evalml.demos.churn, 447
evalml.demos.diabetes, 448
evalml.demos.fraud, 448
evalml.demos.weather, 449
evalml.demos.wine, 449
evalml.exceptions, 451
evalml.exceptions.exceptions, 451
evalml.model_family, 457

evalml.model_family.model_family, 457
evalml.model_family.utils, 459
evalml.model_understanding, 461
evalml.model_understanding.decision_boundary,

468
evalml.model_understanding.feature_explanations,

469
evalml.model_understanding.force_plots,

470
evalml.model_understanding.metrics, 472
evalml.model_understanding.partial_dependence_functions,

475
evalml.model_understanding.permutation_importance,

478
evalml.model_understanding.prediction_explanations,

461
evalml.model_understanding.prediction_explanations.explainers,

461
evalml.model_understanding.visualizations,

480
evalml.objectives, 499
evalml.objectives.binary_classification_objective,

499
evalml.objectives.cost_benefit_matrix,

502
evalml.objectives.fraud_cost, 505
evalml.objectives.lead_scoring, 508
evalml.objectives.multiclass_classification_objective,

511
evalml.objectives.objective_base, 514
evalml.objectives.regression_objective,

516
evalml.objectives.sensitivity_low_alert,

519
evalml.objectives.standard_metrics, 522
evalml.objectives.time_series_regression_objective,

592
evalml.objectives.utils, 595
evalml.pipelines, 692
evalml.pipelines.binary_classification_pipeline,

1653
evalml.pipelines.binary_classification_pipeline_mixin,

1661
evalml.pipelines.classification_pipeline,

1662
evalml.pipelines.component_graph, 1669
evalml.pipelines.components, 692
evalml.pipelines.components.component_base,

1417
evalml.pipelines.components.component_base_meta,

1420
evalml.pipelines.components.ensemble, 693
evalml.pipelines.components.ensemble.stacked_ensemble_base,

693

2206 Index

EvalML Documentation, Release 0.80.0

evalml.pipelines.components.ensemble.stacked_ensemble_classifier,
696

evalml.pipelines.components.ensemble.stacked_ensemble_regressor,
700

evalml.pipelines.components.estimators,
715

evalml.pipelines.components.estimators.classifiers,
715

evalml.pipelines.components.estimators.classifiers.baseline_classifier,
715

evalml.pipelines.components.estimators.classifiers.catboost_classifier,
719

evalml.pipelines.components.estimators.classifiers.decision_tree_classifier,
723

evalml.pipelines.components.estimators.classifiers.elasticnet_classifier,
727

evalml.pipelines.components.estimators.classifiers.et_classifier,
731

evalml.pipelines.components.estimators.classifiers.kneighbors_classifier,
736

evalml.pipelines.components.estimators.classifiers.lightgbm_classifier,
740

evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier,
744

evalml.pipelines.components.estimators.classifiers.rf_classifier,
748

evalml.pipelines.components.estimators.classifiers.svm_classifier,
751

evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers,
755

evalml.pipelines.components.estimators.classifiers.xgboost_classifier,
765

evalml.pipelines.components.estimators.estimator,
941

evalml.pipelines.components.estimators.regressors,
814

evalml.pipelines.components.estimators.regressors.arima_regressor,
814

evalml.pipelines.components.estimators.regressors.baseline_regressor,
819

evalml.pipelines.components.estimators.regressors.catboost_regressor,
822

evalml.pipelines.components.estimators.regressors.decision_tree_regressor,
826

evalml.pipelines.components.estimators.regressors.elasticnet_regressor,
831

evalml.pipelines.components.estimators.regressors.et_regressor,
834

evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor,
839

evalml.pipelines.components.estimators.regressors.lightgbm_regressor,
843

evalml.pipelines.components.estimators.regressors.linear_regressor,
847

evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor,
850

evalml.pipelines.components.estimators.regressors.prophet_regressor,
854

evalml.pipelines.components.estimators.regressors.rf_regressor,
859

evalml.pipelines.components.estimators.regressors.svm_regressor,
863

evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator,
867

evalml.pipelines.components.estimators.regressors.varmax_regressor,
870

evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor,
874

evalml.pipelines.components.estimators.regressors.xgboost_regressor,
878

evalml.pipelines.components.transformers,
1051

evalml.pipelines.components.transformers.column_selectors,
1295

evalml.pipelines.components.transformers.dimensionality_reduction,
1051

evalml.pipelines.components.transformers.dimensionality_reduction.lda,
1051

evalml.pipelines.components.transformers.dimensionality_reduction.pca,
1054

evalml.pipelines.components.transformers.encoders,
1062

evalml.pipelines.components.transformers.encoders.label_encoder,
1062

evalml.pipelines.components.transformers.encoders.onehot_encoder,
1065

evalml.pipelines.components.transformers.encoders.ordinal_encoder,
1070

evalml.pipelines.components.transformers.encoders.target_encoder,
1074

evalml.pipelines.components.transformers.feature_selection,
1090

evalml.pipelines.components.transformers.feature_selection.feature_selector,
1090

evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector,
1093

evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector,
1103

evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector,
1107

evalml.pipelines.components.transformers.imputers,
1126

evalml.pipelines.components.transformers.imputers.imputer,
1126

evalml.pipelines.components.transformers.imputers.knn_imputer,
1130

evalml.pipelines.components.transformers.imputers.per_column_imputer,
1133

Index 2207

EvalML Documentation, Release 0.80.0

evalml.pipelines.components.transformers.imputers.simple_imputer,
1136

evalml.pipelines.components.transformers.imputers.target_imputer,
1139

evalml.pipelines.components.transformers.imputers.time_series_imputer,
1142

evalml.pipelines.components.transformers.preprocessing,
1162

evalml.pipelines.components.transformers.preprocessing.datetime_featurizer,
1162

evalml.pipelines.components.transformers.preprocessing.decomposer,
1165

evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer,
1170

evalml.pipelines.components.transformers.preprocessing.drop_null_columns,
1173

evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer,
1176

evalml.pipelines.components.transformers.preprocessing.featuretools,
1179

evalml.pipelines.components.transformers.preprocessing.log_transformer,
1182

evalml.pipelines.components.transformers.preprocessing.lsa,
1185

evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer,
1188

evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer,
1191

evalml.pipelines.components.transformers.preprocessing.replace_nullable_types,
1197

evalml.pipelines.components.transformers.preprocessing.stl_decomposer,
1200

evalml.pipelines.components.transformers.preprocessing.text_transformer,
1206

evalml.pipelines.components.transformers.preprocessing.time_series_featurizer,
1209

evalml.pipelines.components.transformers.preprocessing.time_series_regularizer,
1213

evalml.pipelines.components.transformers.preprocessing.transform_primitive_components,
1216

evalml.pipelines.components.transformers.samplers,
1274

evalml.pipelines.components.transformers.samplers.base_sampler,
1274

evalml.pipelines.components.transformers.samplers.oversampler,
1277

evalml.pipelines.components.transformers.samplers.undersampler,
1280

evalml.pipelines.components.transformers.scalers,
1289

evalml.pipelines.components.transformers.scalers.standard_scaler,
1289

evalml.pipelines.components.transformers.transformer,
1305

evalml.pipelines.components.utils, 1421
evalml.pipelines.multiclass_classification_pipeline,

1675
evalml.pipelines.multiseries_regression_pipeline,

1682
evalml.pipelines.pipeline_base, 1690
evalml.pipelines.pipeline_meta, 1696
evalml.pipelines.regression_pipeline,

1698
evalml.pipelines.time_series_classification_pipelines,

1704
evalml.pipelines.time_series_pipeline_base,

1728
evalml.pipelines.time_series_regression_pipeline,

1735
evalml.pipelines.utils, 1744
evalml.preprocessing, 1972
evalml.preprocessing.data_splitters, 1972
evalml.preprocessing.data_splitters.no_split,

1973
evalml.preprocessing.data_splitters.sk_splitters,

1974
evalml.preprocessing.data_splitters.time_series_split,

1976
evalml.preprocessing.data_splitters.training_validation_split,

1979
evalml.preprocessing.utils, 1988
evalml.problem_types, 1999
evalml.problem_types.problem_types, 1999
evalml.problem_types.utils, 2000
evalml.tuners, 2007
evalml.tuners.grid_search_tuner, 2007
evalml.tuners.random_search_tuner, 2009
evalml.tuners.skopt_tuner, 2011
evalml.tuners.tuner, 2013
evalml.tuners.tuner_exceptions, 2014
evalml.utils, 2021
evalml.utils.base_meta, 2021
evalml.utils.cli_utils, 2022
evalml.utils.gen_utils, 2023
evalml.utils.logger, 2029
evalml.utils.nullable_type_utils, 2030
evalml.utils.update_checker, 2030
evalml.utils.woodwork_utils, 2030

MSE (class in evalml.objectives), 658
MSE (class in evalml.objectives.standard_metrics), 568
MulticlassClassificationObjective (class in

evalml.objectives), 660
MulticlassClassificationObjective (class in

evalml.objectives.multiclass_classification_objective),
511

MulticlassClassificationPipeline (class in
evalml.pipelines), 1835

MulticlassClassificationPipeline (class in

2208 Index

EvalML Documentation, Release 0.80.0

evalml.pipelines.multiclass_classification_pipeline),
1675

MulticollinearityDataCheck (class in
evalml.data_checks), 427

MulticollinearityDataCheck (class in
evalml.data_checks.multicollinearity_data_check),
376

MultiseriesRegressionPipeline (class in
evalml.pipelines), 1842

MultiseriesRegressionPipeline (class in
evalml.pipelines.multiseries_regression_pipeline),
1682

MultiseriesTimeSeriesBaselineRegressor (class
in evalml.pipelines.components), 1529

MultiseriesTimeSeriesBaselineRegressor (class
in evalml.pipelines.components.estimators),
1009

MultiseriesTimeSeriesBaselineRegressor (class
in evalml.pipelines.components.estimators.regressors),
915

MultiseriesTimeSeriesBaselineRegressor (class
in evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor),
850

N
name (evalml.objectives.binary_classification_objective.BinaryClassificationObjective

property), 501
name (evalml.objectives.BinaryClassificationObjective

property), 618
name (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective

property), 512
name (evalml.objectives.MulticlassClassificationObjective

property), 661
name (evalml.objectives.objective_base.ObjectiveBase

property), 515
name (evalml.objectives.ObjectiveBase property), 663
name (evalml.objectives.regression_objective.RegressionObjective

property), 518
name (evalml.objectives.RegressionObjective property),

683
name (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective

property), 593
name (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

property), 1659
name (evalml.pipelines.BinaryClassificationPipeline

property), 1760
name (evalml.pipelines.classification_pipeline.ClassificationPipeline

property), 1667
name (evalml.pipelines.ClassificationPipeline property),

1773
name (evalml.pipelines.components.component_base.ComponentBase

property), 1419
name (evalml.pipelines.components.ComponentBase

property), 1450

name (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
property), 695

name (evalml.pipelines.components.ensemble.StackedEnsembleBase
property), 707

name (evalml.pipelines.components.Estimator property),
1485

name (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
property), 757

name (evalml.pipelines.components.estimators.Estimator
property), 980

name (evalml.pipelines.components.estimators.estimator.Estimator
property), 944

name (evalml.pipelines.components.FeatureSelector
property), 1498

name (evalml.pipelines.components.StackedEnsembleBase
property), 1587

name (evalml.pipelines.components.Transformer prop-
erty), 1629

name (evalml.pipelines.components.transformers.column_selectors.ColumnSelector
property), 1297

name (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector
property), 1092

name (evalml.pipelines.components.transformers.feature_selection.FeatureSelector
property), 1112

name (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector
property), 1096

name (evalml.pipelines.components.transformers.FeatureSelector
property), 1329

name (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer
property), 1208

name (evalml.pipelines.components.transformers.preprocessing.TextTransformer
property), 1264

name (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler
property), 1276

name (evalml.pipelines.components.transformers.Transformer
property), 1411

name (evalml.pipelines.components.transformers.transformer.Transformer
property), 1307

name (evalml.pipelines.Estimator property), 1802
name (evalml.pipelines.FeatureSelector property), 1815
name (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

property), 1680
name (evalml.pipelines.MulticlassClassificationPipeline

property), 1840
name (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

property), 1688
name (evalml.pipelines.MultiseriesRegressionPipeline

property), 1848
name (evalml.pipelines.pipeline_base.PipelineBase prop-

erty), 1695
name (evalml.pipelines.PipelineBase property), 1863
name (evalml.pipelines.regression_pipeline.RegressionPipeline

property), 1703
name (evalml.pipelines.RegressionPipeline property),

Index 2209

EvalML Documentation, Release 0.80.0

1879
name (evalml.pipelines.StackedEnsembleBase property),

1891
name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

property), 1710
name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

property), 1718
name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1725
name (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

property), 1733
name (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

property), 1742
name (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

property), 1916
name (evalml.pipelines.TimeSeriesClassificationPipeline

property), 1923
name (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1937
name (evalml.pipelines.TimeSeriesRegressionPipeline

property), 1946
name (evalml.pipelines.Transformer property), 1953
name() (evalml.data_checks.class_imbalance_data_check.ClassImbalanceDataCheck

method), 346
name() (evalml.data_checks.ClassImbalanceDataCheck

method), 402
name() (evalml.data_checks.data_check.DataCheck

method), 348
name() (evalml.data_checks.data_check_action_code.DataCheckActionCode

method), 350
name() (evalml.data_checks.data_check_action_option.DCAOParameterAllowedValuesType

method), 352
name() (evalml.data_checks.data_check_action_option.DCAOParameterType

method), 353
name() (evalml.data_checks.data_check_message_code.DataCheckMessageCode

method), 357
name() (evalml.data_checks.data_check_message_type.DataCheckMessageType

method), 357
name() (evalml.data_checks.DataCheck method), 404
name() (evalml.data_checks.DataCheckActionCode

method), 405
name() (evalml.data_checks.DataCheckMessageCode

method), 409
name() (evalml.data_checks.DataCheckMessageType

method), 409
name() (evalml.data_checks.datetime_format_data_check.DateTimeFormatDataCheck

method), 359
name() (evalml.data_checks.DateTimeFormatDataCheck

method), 411
name() (evalml.data_checks.DCAOParameterAllowedValuesType

method), 418
name() (evalml.data_checks.DCAOParameterType

method), 418
name() (evalml.data_checks.id_columns_data_check.IDColumnsDataCheck

method), 368
name() (evalml.data_checks.IDColumnsDataCheck

method), 420
name() (evalml.data_checks.invalid_target_data_check.InvalidTargetDataCheck

method), 372
name() (evalml.data_checks.InvalidTargetDataCheck

method), 424
name() (evalml.data_checks.multicollinearity_data_check.MulticollinearityDataCheck

method), 376
name() (evalml.data_checks.MulticollinearityDataCheck

method), 427
name() (evalml.data_checks.no_variance_data_check.NoVarianceDataCheck

method), 377
name() (evalml.data_checks.NoVarianceDataCheck

method), 428
name() (evalml.data_checks.null_data_check.NullDataCheck

method), 381
name() (evalml.data_checks.NullDataCheck method),

431
name() (evalml.data_checks.outliers_data_check.OutliersDataCheck

method), 385
name() (evalml.data_checks.OutliersDataCheck

method), 435
name() (evalml.data_checks.sparsity_data_check.SparsityDataCheck

method), 387
name() (evalml.data_checks.SparsityDataCheck

method), 437
name() (evalml.data_checks.target_distribution_data_check.TargetDistributionDataCheck

method), 389
name() (evalml.data_checks.target_leakage_data_check.TargetLeakageDataCheck

method), 391
name() (evalml.data_checks.TargetDistributionDataCheck

method), 438
name() (evalml.data_checks.TargetLeakageDataCheck

method), 440
name() (evalml.data_checks.TimeSeriesParametersDataCheck

method), 442
name() (evalml.data_checks.TimeSeriesSplittingDataCheck

method), 443
name() (evalml.data_checks.ts_parameters_data_check.TimeSeriesParametersDataCheck

method), 394
name() (evalml.data_checks.ts_splitting_data_check.TimeSeriesSplittingDataCheck

method), 395
name() (evalml.data_checks.uniqueness_data_check.UniquenessDataCheck

method), 397
name() (evalml.data_checks.UniquenessDataCheck

method), 445
name() (evalml.exceptions.exceptions.PartialDependenceErrorCode

method), 453
name() (evalml.exceptions.exceptions.PipelineErrorCodeEnum

method), 453
name() (evalml.exceptions.exceptions.ValidationErrorCode

method), 454
name() (evalml.exceptions.PartialDependenceErrorCode

2210 Index

EvalML Documentation, Release 0.80.0

method), 456
name() (evalml.exceptions.PipelineErrorCodeEnum

method), 456
name() (evalml.exceptions.ValidationErrorCode

method), 457
name() (evalml.model_family.model_family.ModelFamily

method), 458
name() (evalml.model_family.ModelFamily method), 460
name() (evalml.model_understanding.prediction_explanations.explainers.ExplainPredictionsStage

method), 465
name() (evalml.problem_types.problem_types.ProblemTypes

method), 1999
name() (evalml.problem_types.ProblemTypes method),

2006
NaturalLanguageFeaturizer (class in

evalml.pipelines.components), 1532
NaturalLanguageFeaturizer (class in

evalml.pipelines.components.transformers),
1342

NaturalLanguageFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing),
1246

NaturalLanguageFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer),
1188

needs_fitting() (evalml.pipelines.ARIMARegressor
method), 1754

needs_fitting() (evalml.pipelines.CatBoostClassifier
method), 1765

needs_fitting() (evalml.pipelines.CatBoostRegressor
method), 1768

needs_fitting() (evalml.pipelines.components.ARIMARegressor
method), 1434

needs_fitting() (evalml.pipelines.components.BaselineClassifier
method), 1438

needs_fitting() (evalml.pipelines.components.BaselineRegressor
method), 1441

needs_fitting() (evalml.pipelines.components.CatBoostClassifier
method), 1444

needs_fitting() (evalml.pipelines.components.CatBoostRegressor
method), 1447

needs_fitting() (evalml.pipelines.components.component_base.ComponentBase
method), 1419

needs_fitting() (evalml.pipelines.components.ComponentBase
method), 1450

needs_fitting() (evalml.pipelines.components.DateTimeFeaturizer
method), 1453

needs_fitting() (evalml.pipelines.components.DecisionTreeClassifier
method), 1457

needs_fitting() (evalml.pipelines.components.DecisionTreeRegressor
method), 1460

needs_fitting() (evalml.pipelines.components.DFSTransformer
method), 1463

needs_fitting() (evalml.pipelines.components.DropNaNRowsTransformer

method), 1468
needs_fitting() (evalml.pipelines.components.DropNullColumns

method), 1471
needs_fitting() (evalml.pipelines.components.DropRowsTransformer

method), 1473
needs_fitting() (evalml.pipelines.components.ElasticNetClassifier

method), 1476
needs_fitting() (evalml.pipelines.components.ElasticNetRegressor

method), 1479
needs_fitting() (evalml.pipelines.components.EmailFeaturizer

method), 1482
needs_fitting() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase

method), 695
needs_fitting() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier

method), 699
needs_fitting() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor

method), 703
needs_fitting() (evalml.pipelines.components.ensemble.StackedEnsembleBase

method), 707
needs_fitting() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier

method), 710
needs_fitting() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor

method), 714
needs_fitting() (evalml.pipelines.components.Estimator

method), 1485
needs_fitting() (evalml.pipelines.components.estimators.ARIMARegressor

method), 949
needs_fitting() (evalml.pipelines.components.estimators.BaselineClassifier

method), 953
needs_fitting() (evalml.pipelines.components.estimators.BaselineRegressor

method), 956
needs_fitting() (evalml.pipelines.components.estimators.CatBoostClassifier

method), 959
needs_fitting() (evalml.pipelines.components.estimators.CatBoostRegressor

method), 962
needs_fitting() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

method), 718
needs_fitting() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

method), 771
needs_fitting() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

method), 722
needs_fitting() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

method), 775
needs_fitting() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

method), 726
needs_fitting() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

method), 778
needs_fitting() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

method), 730
needs_fitting() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

method), 782
needs_fitting() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

method), 734
needs_fitting() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

Index 2211

EvalML Documentation, Release 0.80.0

method), 785
needs_fitting() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

method), 739
needs_fitting() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

method), 789
needs_fitting() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

method), 743
needs_fitting() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

method), 793
needs_fitting() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

method), 746
needs_fitting() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

method), 796
needs_fitting() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

method), 799
needs_fitting() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

method), 750
needs_fitting() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

method), 754
needs_fitting() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

method), 803
needs_fitting() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

method), 757
needs_fitting() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

method), 761
needs_fitting() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

method), 764
needs_fitting() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier

method), 806
needs_fitting() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

method), 809
needs_fitting() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

method), 768
needs_fitting() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

method), 813
needs_fitting() (evalml.pipelines.components.estimators.DecisionTreeClassifier

method), 966
needs_fitting() (evalml.pipelines.components.estimators.DecisionTreeRegressor

method), 970
needs_fitting() (evalml.pipelines.components.estimators.ElasticNetClassifier

method), 974
needs_fitting() (evalml.pipelines.components.estimators.ElasticNetRegressor

method), 977
needs_fitting() (evalml.pipelines.components.estimators.Estimator

method), 980
needs_fitting() (evalml.pipelines.components.estimators.estimator.Estimator

method), 944
needs_fitting() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

method), 983
needs_fitting() (evalml.pipelines.components.estimators.ExtraTreesClassifier

method), 987
needs_fitting() (evalml.pipelines.components.estimators.ExtraTreesRegressor

method), 991
needs_fitting() (evalml.pipelines.components.estimators.KNeighborsClassifier

method), 994
needs_fitting() (evalml.pipelines.components.estimators.LightGBMClassifier

method), 998
needs_fitting() (evalml.pipelines.components.estimators.LightGBMRegressor

method), 1002
needs_fitting() (evalml.pipelines.components.estimators.LinearRegressor

method), 1005
needs_fitting() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

method), 1008
needs_fitting() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

method), 1011
needs_fitting() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1015
needs_fitting() (evalml.pipelines.components.estimators.RandomForestClassifier

method), 1018
needs_fitting() (evalml.pipelines.components.estimators.RandomForestRegressor

method), 1021
needs_fitting() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

method), 818
needs_fitting() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

method), 886
needs_fitting() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

method), 822
needs_fitting() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

method), 890
needs_fitting() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

method), 825
needs_fitting() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

method), 893
needs_fitting() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

method), 829
needs_fitting() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

method), 897
needs_fitting() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

method), 833
needs_fitting() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

method), 900
needs_fitting() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

method), 838
needs_fitting() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

method), 842
needs_fitting() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

method), 904
needs_fitting() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

method), 907
needs_fitting() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

method), 846
needs_fitting() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

method), 911
needs_fitting() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

method), 849
needs_fitting() (evalml.pipelines.components.estimators.regressors.LinearRegressor

method), 914
needs_fitting() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

2212 Index

EvalML Documentation, Release 0.80.0

method), 853
needs_fitting() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

method), 917
needs_fitting() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 858
needs_fitting() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 921
needs_fitting() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

method), 924
needs_fitting() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

method), 862
needs_fitting() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

method), 865
needs_fitting() (evalml.pipelines.components.estimators.regressors.SVMRegressor

method), 928
needs_fitting() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

method), 869
needs_fitting() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

method), 931
needs_fitting() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

method), 873
needs_fitting() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

method), 934
needs_fitting() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

method), 877
needs_fitting() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

method), 937
needs_fitting() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor

method), 881
needs_fitting() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

method), 940
needs_fitting() (evalml.pipelines.components.estimators.SVMClassifier

method), 1024
needs_fitting() (evalml.pipelines.components.estimators.SVMRegressor

method), 1028
needs_fitting() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

method), 1031
needs_fitting() (evalml.pipelines.components.estimators.VARMAXRegressor

method), 1034
needs_fitting() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

method), 1037
needs_fitting() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

method), 1040
needs_fitting() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

method), 1043
needs_fitting() (evalml.pipelines.components.estimators.XGBoostClassifier

method), 1047
needs_fitting() (evalml.pipelines.components.estimators.XGBoostRegressor

method), 1050
needs_fitting() (evalml.pipelines.components.ExponentialSmoothingRegressor

method), 1488
needs_fitting() (evalml.pipelines.components.ExtraTreesClassifier

method), 1492
needs_fitting() (evalml.pipelines.components.ExtraTreesRegressor

method), 1496
needs_fitting() (evalml.pipelines.components.FeatureSelector

method), 1498
needs_fitting() (evalml.pipelines.components.Imputer

method), 1501
needs_fitting() (evalml.pipelines.components.KNeighborsClassifier

method), 1504
needs_fitting() (evalml.pipelines.components.LabelEncoder

method), 1507
needs_fitting() (evalml.pipelines.components.LightGBMClassifier

method), 1511
needs_fitting() (evalml.pipelines.components.LightGBMRegressor

method), 1514
needs_fitting() (evalml.pipelines.components.LinearDiscriminantAnalysis

method), 1517
needs_fitting() (evalml.pipelines.components.LinearRegressor

method), 1520
needs_fitting() (evalml.pipelines.components.LogisticRegressionClassifier

method), 1523
needs_fitting() (evalml.pipelines.components.LogTransformer

method), 1526
needs_fitting() (evalml.pipelines.components.LSA

method), 1528
needs_fitting() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

method), 1531
needs_fitting() (evalml.pipelines.components.NaturalLanguageFeaturizer

method), 1534
needs_fitting() (evalml.pipelines.components.OneHotEncoder

method), 1537
needs_fitting() (evalml.pipelines.components.OrdinalEncoder

method), 1540
needs_fitting() (evalml.pipelines.components.Oversampler

method), 1543
needs_fitting() (evalml.pipelines.components.PCA

method), 1545
needs_fitting() (evalml.pipelines.components.PerColumnImputer

method), 1548
needs_fitting() (evalml.pipelines.components.ProphetRegressor

method), 1556
needs_fitting() (evalml.pipelines.components.RandomForestClassifier

method), 1559
needs_fitting() (evalml.pipelines.components.RandomForestRegressor

method), 1562
needs_fitting() (evalml.pipelines.components.ReplaceNullableTypes

method), 1565
needs_fitting() (evalml.pipelines.components.RFClassifierRFESelector

method), 1568
needs_fitting() (evalml.pipelines.components.RFClassifierSelectFromModel

method), 1571
needs_fitting() (evalml.pipelines.components.RFRegressorRFESelector

method), 1574
needs_fitting() (evalml.pipelines.components.RFRegressorSelectFromModel

method), 1577
needs_fitting() (evalml.pipelines.components.SimpleImputer

Index 2213

EvalML Documentation, Release 0.80.0

method), 1584
needs_fitting() (evalml.pipelines.components.StackedEnsembleBase

method), 1587
needs_fitting() (evalml.pipelines.components.StackedEnsembleClassifier

method), 1591
needs_fitting() (evalml.pipelines.components.StackedEnsembleRegressor

method), 1595
needs_fitting() (evalml.pipelines.components.StandardScaler

method), 1597
needs_fitting() (evalml.pipelines.components.SVMClassifier

method), 1605
needs_fitting() (evalml.pipelines.components.SVMRegressor

method), 1609
needs_fitting() (evalml.pipelines.components.TargetEncoder

method), 1611
needs_fitting() (evalml.pipelines.components.TargetImputer

method), 1614
needs_fitting() (evalml.pipelines.components.TimeSeriesBaselineEstimator

method), 1617
needs_fitting() (evalml.pipelines.components.TimeSeriesImputer

method), 1623
needs_fitting() (evalml.pipelines.components.TimeSeriesRegularizer

method), 1626
needs_fitting() (evalml.pipelines.components.Transformer

method), 1629
needs_fitting() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector

method), 1297
needs_fitting() (evalml.pipelines.components.transformers.DateTimeFeaturizer

method), 1311
needs_fitting() (evalml.pipelines.components.transformers.DFSTransformer

method), 1314
needs_fitting() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis

method), 1053
needs_fitting() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis

method), 1059
needs_fitting() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA

method), 1061
needs_fitting() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA

method), 1056
needs_fitting() (evalml.pipelines.components.transformers.DropNaNRowsTransformer

method), 1319
needs_fitting() (evalml.pipelines.components.transformers.DropNullColumns

method), 1321
needs_fitting() (evalml.pipelines.components.transformers.DropRowsTransformer

method), 1324
needs_fitting() (evalml.pipelines.components.transformers.EmailFeaturizer

method), 1326
needs_fitting() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder

method), 1064
needs_fitting() (evalml.pipelines.components.transformers.encoders.LabelEncoder

method), 1080
needs_fitting() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder

method), 1068
needs_fitting() (evalml.pipelines.components.transformers.encoders.OneHotEncoder

method), 1083
needs_fitting() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder

method), 1073
needs_fitting() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder

method), 1087
needs_fitting() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder

method), 1077
needs_fitting() (evalml.pipelines.components.transformers.encoders.TargetEncoder

method), 1089
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector

method), 1093
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector

method), 1112
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector

method), 1096
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector

method), 1099
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector

method), 1102
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel

method), 1106
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel

method), 1109
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector

method), 1116
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel

method), 1119
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector

method), 1122
needs_fitting() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel

method), 1125
needs_fitting() (evalml.pipelines.components.transformers.FeatureSelector

method), 1329
needs_fitting() (evalml.pipelines.components.transformers.Imputer

method), 1332
needs_fitting() (evalml.pipelines.components.transformers.imputers.Imputer

method), 1148
needs_fitting() (evalml.pipelines.components.transformers.imputers.imputer.Imputer

method), 1129
needs_fitting() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer

method), 1132
needs_fitting() (evalml.pipelines.components.transformers.imputers.KNNImputer

method), 1150
needs_fitting() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer

method), 1135
needs_fitting() (evalml.pipelines.components.transformers.imputers.PerColumnImputer

method), 1153
needs_fitting() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer

method), 1138
needs_fitting() (evalml.pipelines.components.transformers.imputers.SimpleImputer

method), 1155
needs_fitting() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer

method), 1141
needs_fitting() (evalml.pipelines.components.transformers.imputers.TargetImputer

2214 Index

EvalML Documentation, Release 0.80.0

method), 1158
needs_fitting() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer

method), 1145
needs_fitting() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer

method), 1161
needs_fitting() (evalml.pipelines.components.transformers.LabelEncoder

method), 1334
needs_fitting() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis

method), 1337
needs_fitting() (evalml.pipelines.components.transformers.LogTransformer

method), 1339
needs_fitting() (evalml.pipelines.components.transformers.LSA

method), 1342
needs_fitting() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer

method), 1344
needs_fitting() (evalml.pipelines.components.transformers.OneHotEncoder

method), 1347
needs_fitting() (evalml.pipelines.components.transformers.OrdinalEncoder

method), 1351
needs_fitting() (evalml.pipelines.components.transformers.Oversampler

method), 1354
needs_fitting() (evalml.pipelines.components.transformers.PCA

method), 1356
needs_fitting() (evalml.pipelines.components.transformers.PerColumnImputer

method), 1359
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer

method), 1164
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer

method), 1224
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer

method), 1231
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer

method), 1172
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns

method), 1175
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer

method), 1178
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer

method), 1234
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns

method), 1236
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer

method), 1239
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer

method), 1241
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

method), 1181
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer

method), 1184
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.LogTransformer

method), 1243
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.LSA

method), 1246
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA

method), 1187
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer

method), 1190
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer

method), 1248
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes

method), 1199
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes

method), 1256
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer

method), 1208
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.TextTransformer

method), 1264
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer

method), 1215
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer

method), 1270
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer

method), 1218
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer

method), 1221
needs_fitting() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer

method), 1273
needs_fitting() (evalml.pipelines.components.transformers.ReplaceNullableTypes

method), 1366
needs_fitting() (evalml.pipelines.components.transformers.RFClassifierRFESelector

method), 1369
needs_fitting() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel

method), 1372
needs_fitting() (evalml.pipelines.components.transformers.RFRegressorRFESelector

method), 1375
needs_fitting() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel

method), 1378
needs_fitting() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler

method), 1276
needs_fitting() (evalml.pipelines.components.transformers.samplers.Oversampler

method), 1285
needs_fitting() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler

method), 1279
needs_fitting() (evalml.pipelines.components.transformers.samplers.Undersampler

method), 1288
needs_fitting() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler

method), 1282
needs_fitting() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler

method), 1291
needs_fitting() (evalml.pipelines.components.transformers.scalers.StandardScaler

method), 1294
needs_fitting() (evalml.pipelines.components.transformers.SimpleImputer

method), 1385
needs_fitting() (evalml.pipelines.components.transformers.StandardScaler

method), 1388
needs_fitting() (evalml.pipelines.components.transformers.TargetEncoder

method), 1396
needs_fitting() (evalml.pipelines.components.transformers.TargetImputer

Index 2215

EvalML Documentation, Release 0.80.0

method), 1399
needs_fitting() (evalml.pipelines.components.transformers.TimeSeriesImputer

method), 1405
needs_fitting() (evalml.pipelines.components.transformers.TimeSeriesRegularizer

method), 1408
needs_fitting() (evalml.pipelines.components.transformers.Transformer

method), 1411
needs_fitting() (evalml.pipelines.components.transformers.transformer.Transformer

method), 1307
needs_fitting() (evalml.pipelines.components.transformers.Undersampler

method), 1414
needs_fitting() (evalml.pipelines.components.transformers.URLFeaturizer

method), 1416
needs_fitting() (evalml.pipelines.components.Undersampler

method), 1632
needs_fitting() (evalml.pipelines.components.URLFeaturizer

method), 1634
needs_fitting() (evalml.pipelines.components.VARMAXRegressor

method), 1637
needs_fitting() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

method), 1640
needs_fitting() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

method), 1644
needs_fitting() (evalml.pipelines.components.VowpalWabbitRegressor

method), 1646
needs_fitting() (evalml.pipelines.components.XGBoostClassifier

method), 1650
needs_fitting() (evalml.pipelines.components.XGBoostRegressor

method), 1652
needs_fitting() (evalml.pipelines.DecisionTreeClassifier

method), 1783
needs_fitting() (evalml.pipelines.DecisionTreeRegressor

method), 1787
needs_fitting() (evalml.pipelines.DFSTransformer

method), 1790
needs_fitting() (evalml.pipelines.DropNaNRowsTransformer

method), 1792
needs_fitting() (evalml.pipelines.ElasticNetClassifier

method), 1796
needs_fitting() (evalml.pipelines.ElasticNetRegressor

method), 1799
needs_fitting() (evalml.pipelines.Estimator method),

1802
needs_fitting() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1805
needs_fitting() (evalml.pipelines.ExtraTreesClassifier

method), 1809
needs_fitting() (evalml.pipelines.ExtraTreesRegressor

method), 1812
needs_fitting() (evalml.pipelines.FeatureSelector

method), 1815
needs_fitting() (evalml.pipelines.Imputer method),

1818
needs_fitting() (evalml.pipelines.KNeighborsClassifier

method), 1821
needs_fitting() (evalml.pipelines.LightGBMClassifier

method), 1825
needs_fitting() (evalml.pipelines.LightGBMRegressor

method), 1828
needs_fitting() (evalml.pipelines.LinearRegressor

method), 1831
needs_fitting() (evalml.pipelines.LogisticRegressionClassifier

method), 1834
needs_fitting() (evalml.pipelines.OneHotEncoder

method), 1852
needs_fitting() (evalml.pipelines.OrdinalEncoder

method), 1856
needs_fitting() (evalml.pipelines.PerColumnImputer

method), 1858
needs_fitting() (evalml.pipelines.ProphetRegressor

method), 1867
needs_fitting() (evalml.pipelines.RandomForestClassifier

method), 1870
needs_fitting() (evalml.pipelines.RandomForestRegressor

method), 1873
needs_fitting() (evalml.pipelines.RFClassifierSelectFromModel

method), 1882
needs_fitting() (evalml.pipelines.RFRegressorSelectFromModel

method), 1885
needs_fitting() (evalml.pipelines.SimpleImputer

method), 1888
needs_fitting() (evalml.pipelines.StackedEnsembleBase

method), 1891
needs_fitting() (evalml.pipelines.StackedEnsembleClassifier

method), 1895
needs_fitting() (evalml.pipelines.StackedEnsembleRegressor

method), 1899
needs_fitting() (evalml.pipelines.StandardScaler

method), 1901
needs_fitting() (evalml.pipelines.SVMClassifier

method), 1904
needs_fitting() (evalml.pipelines.SVMRegressor

method), 1907
needs_fitting() (evalml.pipelines.TargetEncoder

method), 1910
needs_fitting() (evalml.pipelines.TimeSeriesImputer

method), 1931
needs_fitting() (evalml.pipelines.TimeSeriesRegularizer

method), 1950
needs_fitting() (evalml.pipelines.Transformer

method), 1953
needs_fitting() (evalml.pipelines.VARMAXRegressor

method), 1956
needs_fitting() (evalml.pipelines.VowpalWabbitBinaryClassifier

method), 1959
needs_fitting() (evalml.pipelines.VowpalWabbitMulticlassClassifier

method), 1962
needs_fitting() (evalml.pipelines.VowpalWabbitRegressor

2216 Index

EvalML Documentation, Release 0.80.0

method), 1965
needs_fitting() (evalml.pipelines.XGBoostClassifier

method), 1968
needs_fitting() (evalml.pipelines.XGBoostRegressor

method), 1971
new() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

method), 1659
new() (evalml.pipelines.BinaryClassificationPipeline

method), 1760
new() (evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1667
new() (evalml.pipelines.ClassificationPipeline method),

1773
new() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1680
new() (evalml.pipelines.MulticlassClassificationPipeline

method), 1840
new() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1688
new() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1848
new() (evalml.pipelines.pipeline_base.PipelineBase

method), 1695
new() (evalml.pipelines.PipelineBase method), 1863
new() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1703
new() (evalml.pipelines.RegressionPipeline method),

1879
new() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1710
new() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1718
new() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1725
new() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1733
new() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1742
new() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1916
new() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1923
new() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1937
new() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1946
next_batch() (evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm

method), 280
next_batch() (evalml.automl.automl_algorithm.AutoMLAlgorithm

method), 289
next_batch() (evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm

method), 284
next_batch() (evalml.automl.automl_algorithm.DefaultAlgorithm

method), 292

next_batch() (evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm
method), 287

next_batch() (evalml.automl.automl_algorithm.IterativeAlgorithm
method), 295

NoParamsException, 2014, 2016
NoPositiveLabelException, 452, 455
normalize_confusion_matrix() (in module

evalml.model_understanding), 495
normalize_confusion_matrix() (in module

evalml.model_understanding.metrics), 474
normalize_objectives() (in module

evalml.objectives), 662
normalize_objectives() (in module

evalml.objectives.utils), 597
NoSplit (class in evalml.preprocessing), 1992
NoSplit (class in evalml.preprocessing.data_splitters),

1982
NoSplit (class in evalml.preprocessing.data_splitters.no_split),

1973
NoVarianceDataCheck (class in evalml.data_checks),

428
NoVarianceDataCheck (class in

evalml.data_checks.no_variance_data_check),
377

NullDataCheck (class in evalml.data_checks), 430
NullDataCheck (class in

evalml.data_checks.null_data_check), 380
NullsInColumnWarning, 452, 455
num_pipelines_per_batch()

(evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm
method), 280

num_pipelines_per_batch()
(evalml.automl.automl_algorithm.AutoMLAlgorithm
method), 289

num_pipelines_per_batch()
(evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm
method), 284

num_pipelines_per_batch()
(evalml.automl.automl_algorithm.DefaultAlgorithm
method), 292

num_pipelines_per_batch()
(evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm
method), 287

num_pipelines_per_batch()
(evalml.automl.automl_algorithm.IterativeAlgorithm
method), 295

number_of_features() (in module
evalml.preprocessing), 1992

number_of_features() (in module
evalml.preprocessing.utils), 1989

numeric_and_boolean_ww (in module
evalml.utils.woodwork_utils), 2031

Index 2217

EvalML Documentation, Release 0.80.0

O
objective_function()

(evalml.objectives.AccuracyBinary method),
602

objective_function()
(evalml.objectives.AccuracyMulticlass
method), 604

objective_function() (evalml.objectives.AUC
method), 606

objective_function() (evalml.objectives.AUCMacro
method), 608

objective_function() (evalml.objectives.AUCMicro
method), 610

objective_function()
(evalml.objectives.AUCWeighted method),
611

objective_function()
(evalml.objectives.BalancedAccuracyBinary
method), 614

objective_function()
(evalml.objectives.BalancedAccuracyMulticlass
method), 615

objective_function()
(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
class method), 501

objective_function()
(evalml.objectives.BinaryClassificationObjective
class method), 618

objective_function()
(evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
method), 504

objective_function()
(evalml.objectives.CostBenefitMatrix method),
621

objective_function()
(evalml.objectives.ExpVariance method),
622

objective_function() (evalml.objectives.F1 method),
625

objective_function() (evalml.objectives.F1Macro
method), 626

objective_function() (evalml.objectives.F1Micro
method), 628

objective_function() (evalml.objectives.F1Weighted
method), 630

objective_function()
(evalml.objectives.fraud_cost.FraudCost
method), 507

objective_function() (evalml.objectives.FraudCost
method), 632

objective_function() (evalml.objectives.Gini
method), 637

objective_function()
(evalml.objectives.lead_scoring.LeadScoring

method), 510
objective_function()

(evalml.objectives.LeadScoring method),
639

objective_function()
(evalml.objectives.LogLossBinary method),
641

objective_function()
(evalml.objectives.LogLossMulticlass method),
643

objective_function() (evalml.objectives.MAE
method), 645

objective_function() (evalml.objectives.MAPE
method), 646

objective_function() (evalml.objectives.MASE
method), 648

objective_function() (evalml.objectives.MaxError
method), 650

objective_function()
(evalml.objectives.MCCBinary method),
652

objective_function()
(evalml.objectives.MCCMulticlass method),
654

objective_function()
(evalml.objectives.MeanSquaredLogError
method), 656

objective_function() (evalml.objectives.MedianAE
method), 657

objective_function() (evalml.objectives.MSE
method), 659

objective_function()
(evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
class method), 513

objective_function()
(evalml.objectives.MulticlassClassificationObjective
class method), 661

objective_function()
(evalml.objectives.objective_base.ObjectiveBase
class method), 515

objective_function()
(evalml.objectives.ObjectiveBase class
method), 664

objective_function() (evalml.objectives.Precision
method), 667

objective_function()
(evalml.objectives.PrecisionMacro method),
668

objective_function()
(evalml.objectives.PrecisionMicro method),
670

objective_function()
(evalml.objectives.PrecisionWeighted method),
672

2218 Index

EvalML Documentation, Release 0.80.0

objective_function() (evalml.objectives.R2 method),
673

objective_function() (evalml.objectives.Recall
method), 676

objective_function()
(evalml.objectives.RecallMacro method),
677

objective_function()
(evalml.objectives.RecallMicro method),
679

objective_function()
(evalml.objectives.RecallWeighted method),
681

objective_function()
(evalml.objectives.regression_objective.RegressionObjective
class method), 518

objective_function()
(evalml.objectives.RegressionObjective class
method), 684

objective_function()
(evalml.objectives.RootMeanSquaredError
method), 686

objective_function()
(evalml.objectives.RootMeanSquaredLogError
method), 687

objective_function()
(evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
method), 521

objective_function()
(evalml.objectives.SensitivityLowAlert
method), 690

objective_function() (evalml.objectives.SMAPE
method), 691

objective_function()
(evalml.objectives.standard_metrics.AccuracyBinary
method), 525

objective_function()
(evalml.objectives.standard_metrics.AccuracyMulticlass
method), 526

objective_function()
(evalml.objectives.standard_metrics.AUC
method), 529

objective_function()
(evalml.objectives.standard_metrics.AUCMacro
method), 530

objective_function()
(evalml.objectives.standard_metrics.AUCMicro
method), 532

objective_function()
(evalml.objectives.standard_metrics.AUCWeighted
method), 534

objective_function()
(evalml.objectives.standard_metrics.BalancedAccuracyBinary
method), 536

objective_function()
(evalml.objectives.standard_metrics.BalancedAccuracyMulticlass
method), 538

objective_function()
(evalml.objectives.standard_metrics.ExpVariance
method), 539

objective_function()
(evalml.objectives.standard_metrics.F1
method), 542

objective_function()
(evalml.objectives.standard_metrics.F1Macro
method), 543

objective_function()
(evalml.objectives.standard_metrics.F1Micro
method), 545

objective_function()
(evalml.objectives.standard_metrics.F1Weighted
method), 547

objective_function()
(evalml.objectives.standard_metrics.Gini
method), 549

objective_function()
(evalml.objectives.standard_metrics.LogLossBinary
method), 551

objective_function()
(evalml.objectives.standard_metrics.LogLossMulticlass
method), 553

objective_function()
(evalml.objectives.standard_metrics.MAE
method), 555

objective_function()
(evalml.objectives.standard_metrics.MAPE
method), 556

objective_function()
(evalml.objectives.standard_metrics.MASE
method), 558

objective_function()
(evalml.objectives.standard_metrics.MaxError
method), 560

objective_function()
(evalml.objectives.standard_metrics.MCCBinary
method), 562

objective_function()
(evalml.objectives.standard_metrics.MCCMulticlass
method), 564

objective_function()
(evalml.objectives.standard_metrics.MeanSquaredLogError
method), 566

objective_function()
(evalml.objectives.standard_metrics.MedianAE
method), 567

objective_function()
(evalml.objectives.standard_metrics.MSE
method), 569

Index 2219

EvalML Documentation, Release 0.80.0

objective_function()
(evalml.objectives.standard_metrics.Precision
method), 572

objective_function()
(evalml.objectives.standard_metrics.PrecisionMacro
method), 573

objective_function()
(evalml.objectives.standard_metrics.PrecisionMicro
method), 575

objective_function()
(evalml.objectives.standard_metrics.PrecisionWeighted
method), 577

objective_function()
(evalml.objectives.standard_metrics.R2
method), 578

objective_function()
(evalml.objectives.standard_metrics.Recall
method), 581

objective_function()
(evalml.objectives.standard_metrics.RecallMacro
method), 582

objective_function()
(evalml.objectives.standard_metrics.RecallMicro
method), 584

objective_function()
(evalml.objectives.standard_metrics.RecallWeighted
method), 586

objective_function()
(evalml.objectives.standard_metrics.RootMeanSquaredError
method), 588

objective_function()
(evalml.objectives.standard_metrics.RootMeanSquaredLogError
method), 589

objective_function()
(evalml.objectives.standard_metrics.SMAPE
method), 591

objective_function()
(evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
class method), 594

ObjectiveBase (class in evalml.objectives), 662
ObjectiveBase (class in

evalml.objectives.objective_base), 514
ObjectiveCreationError, 452, 455
ObjectiveNotFoundError, 452, 455
OneHotEncoder (class in evalml.pipelines), 1850
OneHotEncoder (class in evalml.pipelines.components),

1534
OneHotEncoder (class in

evalml.pipelines.components.transformers),
1345

OneHotEncoder (class in
evalml.pipelines.components.transformers.encoders),
1081

OneHotEncoder (class in

evalml.pipelines.components.transformers.encoders.onehot_encoder),
1065

OneHotEncoderMeta (class in
evalml.pipelines.components.transformers.encoders.onehot_encoder),
1069

optimize_threshold()
(evalml.objectives.AccuracyBinary method),
602

optimize_threshold() (evalml.objectives.AUC
method), 606

optimize_threshold()
(evalml.objectives.BalancedAccuracyBinary
method), 614

optimize_threshold()
(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
method), 501

optimize_threshold()
(evalml.objectives.BinaryClassificationObjective
method), 618

optimize_threshold()
(evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
method), 504

optimize_threshold()
(evalml.objectives.CostBenefitMatrix method),
621

optimize_threshold() (evalml.objectives.F1 method),
625

optimize_threshold()
(evalml.objectives.fraud_cost.FraudCost
method), 507

optimize_threshold() (evalml.objectives.FraudCost
method), 632

optimize_threshold() (evalml.objectives.Gini
method), 637

optimize_threshold()
(evalml.objectives.lead_scoring.LeadScoring
method), 510

optimize_threshold()
(evalml.objectives.LeadScoring method),
639

optimize_threshold()
(evalml.objectives.LogLossBinary method),
641

optimize_threshold()
(evalml.objectives.MCCBinary method),
652

optimize_threshold() (evalml.objectives.Precision
method), 667

optimize_threshold() (evalml.objectives.Recall
method), 676

optimize_threshold()
(evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
method), 521

optimize_threshold()

2220 Index

EvalML Documentation, Release 0.80.0

(evalml.objectives.SensitivityLowAlert
method), 690

optimize_threshold()
(evalml.objectives.standard_metrics.AccuracyBinary
method), 525

optimize_threshold()
(evalml.objectives.standard_metrics.AUC
method), 529

optimize_threshold()
(evalml.objectives.standard_metrics.BalancedAccuracyBinary
method), 536

optimize_threshold()
(evalml.objectives.standard_metrics.F1
method), 542

optimize_threshold()
(evalml.objectives.standard_metrics.Gini
method), 549

optimize_threshold()
(evalml.objectives.standard_metrics.LogLossBinary
method), 551

optimize_threshold()
(evalml.objectives.standard_metrics.MCCBinary
method), 562

optimize_threshold()
(evalml.objectives.standard_metrics.Precision
method), 572

optimize_threshold()
(evalml.objectives.standard_metrics.Recall
method), 581

optimize_threshold()
(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1659

optimize_threshold()
(evalml.pipelines.binary_classification_pipeline_mixin.BinaryClassificationPipelineMixin
method), 1662

optimize_threshold()
(evalml.pipelines.BinaryClassificationPipeline
method), 1760

optimize_threshold()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1710

optimize_threshold()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1916

OrdinalEncoder (class in evalml.pipelines), 1853
OrdinalEncoder (class in

evalml.pipelines.components), 1538
OrdinalEncoder (class in

evalml.pipelines.components.transformers),
1348

OrdinalEncoder (class in
evalml.pipelines.components.transformers.encoders),
1084

OrdinalEncoder (class in

evalml.pipelines.components.transformers.encoders.ordinal_encoder),
1070

OrdinalEncoderMeta (class in
evalml.pipelines.components.transformers.encoders.ordinal_encoder),
1073

organize_objectives() (in module
evalml.objectives), 665

organize_objectives() (in module
evalml.objectives.utils), 597

OutliersDataCheck (class in evalml.data_checks), 435
OutliersDataCheck (class in

evalml.data_checks.outliers_data_check),
385

Oversampler (class in evalml.pipelines.components),
1541

Oversampler (class in
evalml.pipelines.components.transformers),
1351

Oversampler (class in
evalml.pipelines.components.transformers.samplers),
1283

Oversampler (class in
evalml.pipelines.components.transformers.samplers.oversampler),
1277

P
pad_with_nans() (in module evalml.utils), 2036
pad_with_nans() (in module evalml.utils.gen_utils),

2028
ParameterError, 2014, 2016
ParameterNotUsedWarning, 452, 455
parameters (evalml.pipelines.ARIMARegressor prop-

erty), 1755
parameters (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

property), 1660
parameters (evalml.pipelines.BinaryClassificationPipeline

property), 1761
parameters (evalml.pipelines.CatBoostClassifier prop-

erty), 1765
parameters (evalml.pipelines.CatBoostRegressor prop-

erty), 1768
parameters (evalml.pipelines.classification_pipeline.ClassificationPipeline

property), 1667
parameters (evalml.pipelines.ClassificationPipeline

property), 1773
parameters (evalml.pipelines.components.ARIMARegressor

property), 1434
parameters (evalml.pipelines.components.BaselineClassifier

property), 1438
parameters (evalml.pipelines.components.BaselineRegressor

property), 1441
parameters (evalml.pipelines.components.CatBoostClassifier

property), 1444

Index 2221

EvalML Documentation, Release 0.80.0

parameters (evalml.pipelines.components.CatBoostRegressor
property), 1447

parameters (evalml.pipelines.components.component_base.ComponentBase
property), 1420

parameters (evalml.pipelines.components.ComponentBase
property), 1450

parameters (evalml.pipelines.components.DateTimeFeaturizer
property), 1453

parameters (evalml.pipelines.components.DecisionTreeClassifier
property), 1457

parameters (evalml.pipelines.components.DecisionTreeRegressor
property), 1461

parameters (evalml.pipelines.components.DFSTransformer
property), 1464

parameters (evalml.pipelines.components.DropColumns
property), 1466

parameters (evalml.pipelines.components.DropNaNRowsTransformer
property), 1468

parameters (evalml.pipelines.components.DropNullColumns
property), 1471

parameters (evalml.pipelines.components.DropRowsTransformer
property), 1473

parameters (evalml.pipelines.components.ElasticNetClassifier
property), 1476

parameters (evalml.pipelines.components.ElasticNetRegressor
property), 1480

parameters (evalml.pipelines.components.EmailFeaturizer
property), 1482

parameters (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
property), 695

parameters (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier
property), 699

parameters (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor
property), 703

parameters (evalml.pipelines.components.ensemble.StackedEnsembleBase
property), 707

parameters (evalml.pipelines.components.ensemble.StackedEnsembleClassifier
property), 710

parameters (evalml.pipelines.components.ensemble.StackedEnsembleRegressor
property), 714

parameters (evalml.pipelines.components.Estimator
property), 1485

parameters (evalml.pipelines.components.estimators.ARIMARegressor
property), 949

parameters (evalml.pipelines.components.estimators.BaselineClassifier
property), 953

parameters (evalml.pipelines.components.estimators.BaselineRegressor
property), 956

parameters (evalml.pipelines.components.estimators.CatBoostClassifier
property), 959

parameters (evalml.pipelines.components.estimators.CatBoostRegressor
property), 962

parameters (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier
property), 718

parameters (evalml.pipelines.components.estimators.classifiers.BaselineClassifier
property), 772

parameters (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier
property), 722

parameters (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier
property), 775

parameters (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier
property), 726

parameters (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier
property), 778

parameters (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier
property), 730

parameters (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier
property), 782

parameters (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier
property), 735

parameters (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier
property), 786

parameters (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier
property), 739

parameters (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier
property), 789

parameters (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier
property), 743

parameters (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier
property), 793

parameters (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier
property), 747

parameters (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier
property), 796

parameters (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier
property), 800

parameters (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier
property), 750

parameters (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier
property), 754

parameters (evalml.pipelines.components.estimators.classifiers.SVMClassifier
property), 803

parameters (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
property), 758

parameters (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier
property), 761

parameters (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier
property), 764

parameters (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier
property), 806

parameters (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier
property), 810

parameters (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier
property), 768

parameters (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier
property), 813

parameters (evalml.pipelines.components.estimators.DecisionTreeClassifier
property), 966

2222 Index

EvalML Documentation, Release 0.80.0

parameters (evalml.pipelines.components.estimators.DecisionTreeRegressor
property), 970

parameters (evalml.pipelines.components.estimators.ElasticNetClassifier
property), 974

parameters (evalml.pipelines.components.estimators.ElasticNetRegressor
property), 977

parameters (evalml.pipelines.components.estimators.Estimator
property), 980

parameters (evalml.pipelines.components.estimators.estimator.Estimator
property), 944

parameters (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor
property), 983

parameters (evalml.pipelines.components.estimators.ExtraTreesClassifier
property), 987

parameters (evalml.pipelines.components.estimators.ExtraTreesRegressor
property), 991

parameters (evalml.pipelines.components.estimators.KNeighborsClassifier
property), 995

parameters (evalml.pipelines.components.estimators.LightGBMClassifier
property), 998

parameters (evalml.pipelines.components.estimators.LightGBMRegressor
property), 1002

parameters (evalml.pipelines.components.estimators.LinearRegressor
property), 1005

parameters (evalml.pipelines.components.estimators.LogisticRegressionClassifier
property), 1008

parameters (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor
property), 1012

parameters (evalml.pipelines.components.estimators.ProphetRegressor
property), 1015

parameters (evalml.pipelines.components.estimators.RandomForestClassifier
property), 1018

parameters (evalml.pipelines.components.estimators.RandomForestRegressor
property), 1021

parameters (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor
property), 818

parameters (evalml.pipelines.components.estimators.regressors.ARIMARegressor
property), 886

parameters (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor
property), 822

parameters (evalml.pipelines.components.estimators.regressors.BaselineRegressor
property), 890

parameters (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor
property), 825

parameters (evalml.pipelines.components.estimators.regressors.CatBoostRegressor
property), 893

parameters (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor
property), 830

parameters (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor
property), 897

parameters (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor
property), 833

parameters (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor
property), 900

parameters (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor
property), 838

parameters (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor
property), 842

parameters (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor
property), 904

parameters (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor
property), 907

parameters (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor
property), 846

parameters (evalml.pipelines.components.estimators.regressors.LightGBMRegressor
property), 911

parameters (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor
property), 849

parameters (evalml.pipelines.components.estimators.regressors.LinearRegressor
property), 914

parameters (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor
property), 853

parameters (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor
property), 918

parameters (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor
property), 858

parameters (evalml.pipelines.components.estimators.regressors.ProphetRegressor
property), 921

parameters (evalml.pipelines.components.estimators.regressors.RandomForestRegressor
property), 925

parameters (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor
property), 862

parameters (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor
property), 866

parameters (evalml.pipelines.components.estimators.regressors.SVMRegressor
property), 928

parameters (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator
property), 869

parameters (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator
property), 931

parameters (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor
property), 874

parameters (evalml.pipelines.components.estimators.regressors.VARMAXRegressor
property), 934

parameters (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor
property), 877

parameters (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor
property), 937

parameters (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor
property), 881

parameters (evalml.pipelines.components.estimators.regressors.XGBoostRegressor
property), 940

parameters (evalml.pipelines.components.estimators.SVMClassifier
property), 1025

parameters (evalml.pipelines.components.estimators.SVMRegressor
property), 1028

parameters (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator
property), 1031

Index 2223

EvalML Documentation, Release 0.80.0

parameters (evalml.pipelines.components.estimators.VARMAXRegressor
property), 1034

parameters (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier
property), 1038

parameters (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier
property), 1041

parameters (evalml.pipelines.components.estimators.VowpalWabbitRegressor
property), 1044

parameters (evalml.pipelines.components.estimators.XGBoostClassifier
property), 1047

parameters (evalml.pipelines.components.estimators.XGBoostRegressor
property), 1050

parameters (evalml.pipelines.components.ExponentialSmoothingRegressor
property), 1488

parameters (evalml.pipelines.components.ExtraTreesClassifier
property), 1492

parameters (evalml.pipelines.components.ExtraTreesRegressor
property), 1496

parameters (evalml.pipelines.components.FeatureSelector
property), 1498

parameters (evalml.pipelines.components.Imputer
property), 1501

parameters (evalml.pipelines.components.KNeighborsClassifier
property), 1505

parameters (evalml.pipelines.components.LabelEncoder
property), 1507

parameters (evalml.pipelines.components.LightGBMClassifier
property), 1511

parameters (evalml.pipelines.components.LightGBMRegressor
property), 1514

parameters (evalml.pipelines.components.LinearDiscriminantAnalysis
property), 1517

parameters (evalml.pipelines.components.LinearRegressor
property), 1520

parameters (evalml.pipelines.components.LogisticRegressionClassifier
property), 1523

parameters (evalml.pipelines.components.LogTransformer
property), 1526

parameters (evalml.pipelines.components.LSA prop-
erty), 1528

parameters (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor
property), 1531

parameters (evalml.pipelines.components.NaturalLanguageFeaturizer
property), 1534

parameters (evalml.pipelines.components.OneHotEncoder
property), 1537

parameters (evalml.pipelines.components.OrdinalEncoder
property), 1541

parameters (evalml.pipelines.components.Oversampler
property), 1543

parameters (evalml.pipelines.components.PCA prop-
erty), 1546

parameters (evalml.pipelines.components.PerColumnImputer
property), 1548

parameters (evalml.pipelines.components.PolynomialDecomposer
property), 1553

parameters (evalml.pipelines.components.ProphetRegressor
property), 1556

parameters (evalml.pipelines.components.RandomForestClassifier
property), 1560

parameters (evalml.pipelines.components.RandomForestRegressor
property), 1563

parameters (evalml.pipelines.components.ReplaceNullableTypes
property), 1565

parameters (evalml.pipelines.components.RFClassifierRFESelector
property), 1568

parameters (evalml.pipelines.components.RFClassifierSelectFromModel
property), 1571

parameters (evalml.pipelines.components.RFRegressorRFESelector
property), 1574

parameters (evalml.pipelines.components.RFRegressorSelectFromModel
property), 1577

parameters (evalml.pipelines.components.SelectByType
property), 1579

parameters (evalml.pipelines.components.SelectColumns
property), 1582

parameters (evalml.pipelines.components.SimpleImputer
property), 1584

parameters (evalml.pipelines.components.StackedEnsembleBase
property), 1587

parameters (evalml.pipelines.components.StackedEnsembleClassifier
property), 1591

parameters (evalml.pipelines.components.StackedEnsembleRegressor
property), 1595

parameters (evalml.pipelines.components.StandardScaler
property), 1597

parameters (evalml.pipelines.components.STLDecomposer
property), 1602

parameters (evalml.pipelines.components.SVMClassifier
property), 1606

parameters (evalml.pipelines.components.SVMRegressor
property), 1609

parameters (evalml.pipelines.components.TargetEncoder
property), 1612

parameters (evalml.pipelines.components.TargetImputer
property), 1614

parameters (evalml.pipelines.components.TimeSeriesBaselineEstimator
property), 1617

parameters (evalml.pipelines.components.TimeSeriesFeaturizer
property), 1620

parameters (evalml.pipelines.components.TimeSeriesImputer
property), 1623

parameters (evalml.pipelines.components.TimeSeriesRegularizer
property), 1626

parameters (evalml.pipelines.components.Transformer
property), 1629

parameters (evalml.pipelines.components.transformers.column_selectors.ColumnSelector
property), 1297

2224 Index

EvalML Documentation, Release 0.80.0

parameters (evalml.pipelines.components.transformers.column_selectors.DropColumns
property), 1299

parameters (evalml.pipelines.components.transformers.column_selectors.SelectByType
property), 1302

parameters (evalml.pipelines.components.transformers.column_selectors.SelectColumns
property), 1304

parameters (evalml.pipelines.components.transformers.DateTimeFeaturizer
property), 1311

parameters (evalml.pipelines.components.transformers.DFSTransformer
property), 1314

parameters (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis
property), 1053

parameters (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis
property), 1059

parameters (evalml.pipelines.components.transformers.dimensionality_reduction.PCA
property), 1061

parameters (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA
property), 1056

parameters (evalml.pipelines.components.transformers.DropColumns
property), 1317

parameters (evalml.pipelines.components.transformers.DropNaNRowsTransformer
property), 1319

parameters (evalml.pipelines.components.transformers.DropNullColumns
property), 1321

parameters (evalml.pipelines.components.transformers.DropRowsTransformer
property), 1324

parameters (evalml.pipelines.components.transformers.EmailFeaturizer
property), 1326

parameters (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder
property), 1064

parameters (evalml.pipelines.components.transformers.encoders.LabelEncoder
property), 1080

parameters (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
property), 1068

parameters (evalml.pipelines.components.transformers.encoders.OneHotEncoder
property), 1083

parameters (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
property), 1073

parameters (evalml.pipelines.components.transformers.encoders.OrdinalEncoder
property), 1087

parameters (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder
property), 1077

parameters (evalml.pipelines.components.transformers.encoders.TargetEncoder
property), 1089

parameters (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector
property), 1093

parameters (evalml.pipelines.components.transformers.feature_selection.FeatureSelector
property), 1113

parameters (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector
property), 1096

parameters (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector
property), 1099

parameters (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector
property), 1102

parameters (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel
property), 1106

parameters (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel
property), 1109

parameters (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector
property), 1116

parameters (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel
property), 1119

parameters (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector
property), 1122

parameters (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel
property), 1125

parameters (evalml.pipelines.components.transformers.FeatureSelector
property), 1329

parameters (evalml.pipelines.components.transformers.Imputer
property), 1332

parameters (evalml.pipelines.components.transformers.imputers.Imputer
property), 1148

parameters (evalml.pipelines.components.transformers.imputers.imputer.Imputer
property), 1129

parameters (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer
property), 1132

parameters (evalml.pipelines.components.transformers.imputers.KNNImputer
property), 1150

parameters (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer
property), 1135

parameters (evalml.pipelines.components.transformers.imputers.PerColumnImputer
property), 1153

parameters (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer
property), 1138

parameters (evalml.pipelines.components.transformers.imputers.SimpleImputer
property), 1155

parameters (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer
property), 1141

parameters (evalml.pipelines.components.transformers.imputers.TargetImputer
property), 1158

parameters (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer
property), 1145

parameters (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer
property), 1161

parameters (evalml.pipelines.components.transformers.LabelEncoder
property), 1334

parameters (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis
property), 1337

parameters (evalml.pipelines.components.transformers.LogTransformer
property), 1339

parameters (evalml.pipelines.components.transformers.LSA
property), 1342

parameters (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer
property), 1344

parameters (evalml.pipelines.components.transformers.OneHotEncoder
property), 1348

parameters (evalml.pipelines.components.transformers.OrdinalEncoder
property), 1351

Index 2225

EvalML Documentation, Release 0.80.0

parameters (evalml.pipelines.components.transformers.Oversampler
property), 1354

parameters (evalml.pipelines.components.transformers.PCA
property), 1356

parameters (evalml.pipelines.components.transformers.PerColumnImputer
property), 1359

parameters (evalml.pipelines.components.transformers.PolynomialDecomposer
property), 1364

parameters (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer
property), 1164

parameters (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer
property), 1224

parameters (evalml.pipelines.components.transformers.preprocessing.Decomposer
property), 1228

parameters (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
property), 1169

parameters (evalml.pipelines.components.transformers.preprocessing.DFSTransformer
property), 1231

parameters (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer
property), 1172

parameters (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns
property), 1175

parameters (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer
property), 1178

parameters (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer
property), 1234

parameters (evalml.pipelines.components.transformers.preprocessing.DropNullColumns
property), 1236

parameters (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer
property), 1239

parameters (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer
property), 1241

parameters (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer
property), 1181

parameters (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer
property), 1184

parameters (evalml.pipelines.components.transformers.preprocessing.LogTransformer
property), 1244

parameters (evalml.pipelines.components.transformers.preprocessing.LSA
property), 1246

parameters (evalml.pipelines.components.transformers.preprocessing.lsa.LSA
property), 1187

parameters (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer
property), 1190

parameters (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer
property), 1248

parameters (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
property), 1196

parameters (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
property), 1253

parameters (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes
property), 1199

parameters (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes
property), 1256

parameters (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
property), 1205

parameters (evalml.pipelines.components.transformers.preprocessing.STLDecomposer
property), 1261

parameters (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer
property), 1208

parameters (evalml.pipelines.components.transformers.preprocessing.TextTransformer
property), 1264

parameters (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer
property), 1212

parameters (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer
property), 1215

parameters (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer
property), 1267

parameters (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer
property), 1270

parameters (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer
property), 1218

parameters (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer
property), 1221

parameters (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer
property), 1273

parameters (evalml.pipelines.components.transformers.ReplaceNullableTypes
property), 1366

parameters (evalml.pipelines.components.transformers.RFClassifierRFESelector
property), 1369

parameters (evalml.pipelines.components.transformers.RFClassifierSelectFromModel
property), 1372

parameters (evalml.pipelines.components.transformers.RFRegressorRFESelector
property), 1375

parameters (evalml.pipelines.components.transformers.RFRegressorSelectFromModel
property), 1378

parameters (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler
property), 1276

parameters (evalml.pipelines.components.transformers.samplers.Oversampler
property), 1285

parameters (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler
property), 1279

parameters (evalml.pipelines.components.transformers.samplers.Undersampler
property), 1288

parameters (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler
property), 1282

parameters (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler
property), 1291

parameters (evalml.pipelines.components.transformers.scalers.StandardScaler
property), 1294

parameters (evalml.pipelines.components.transformers.SelectByType
property), 1381

parameters (evalml.pipelines.components.transformers.SelectColumns
property), 1383

parameters (evalml.pipelines.components.transformers.SimpleImputer
property), 1385

parameters (evalml.pipelines.components.transformers.StandardScaler
property), 1388

2226 Index

EvalML Documentation, Release 0.80.0

parameters (evalml.pipelines.components.transformers.STLDecomposer
property), 1393

parameters (evalml.pipelines.components.transformers.TargetEncoder
property), 1396

parameters (evalml.pipelines.components.transformers.TargetImputer
property), 1399

parameters (evalml.pipelines.components.transformers.TimeSeriesFeaturizer
property), 1402

parameters (evalml.pipelines.components.transformers.TimeSeriesImputer
property), 1405

parameters (evalml.pipelines.components.transformers.TimeSeriesRegularizer
property), 1408

parameters (evalml.pipelines.components.transformers.Transformer
property), 1411

parameters (evalml.pipelines.components.transformers.transformer.Transformer
property), 1307

parameters (evalml.pipelines.components.transformers.Undersampler
property), 1414

parameters (evalml.pipelines.components.transformers.URLFeaturizer
property), 1417

parameters (evalml.pipelines.components.Undersampler
property), 1632

parameters (evalml.pipelines.components.URLFeaturizer
property), 1634

parameters (evalml.pipelines.components.VARMAXRegressor
property), 1637

parameters (evalml.pipelines.components.VowpalWabbitBinaryClassifier
property), 1641

parameters (evalml.pipelines.components.VowpalWabbitMulticlassClassifier
property), 1644

parameters (evalml.pipelines.components.VowpalWabbitRegressor
property), 1647

parameters (evalml.pipelines.components.XGBoostClassifier
property), 1650

parameters (evalml.pipelines.components.XGBoostRegressor
property), 1653

parameters (evalml.pipelines.DecisionTreeClassifier
property), 1783

parameters (evalml.pipelines.DecisionTreeRegressor
property), 1787

parameters (evalml.pipelines.DFSTransformer prop-
erty), 1790

parameters (evalml.pipelines.DropNaNRowsTransformer
property), 1792

parameters (evalml.pipelines.ElasticNetClassifier prop-
erty), 1796

parameters (evalml.pipelines.ElasticNetRegressor prop-
erty), 1799

parameters (evalml.pipelines.Estimator property), 1802
parameters (evalml.pipelines.ExponentialSmoothingRegressor

property), 1805
parameters (evalml.pipelines.ExtraTreesClassifier

property), 1809
parameters (evalml.pipelines.ExtraTreesRegressor

property), 1812
parameters (evalml.pipelines.FeatureSelector prop-

erty), 1815
parameters (evalml.pipelines.Imputer property), 1818
parameters (evalml.pipelines.KNeighborsClassifier

property), 1821
parameters (evalml.pipelines.LightGBMClassifier prop-

erty), 1825
parameters (evalml.pipelines.LightGBMRegressor

property), 1828
parameters (evalml.pipelines.LinearRegressor prop-

erty), 1831
parameters (evalml.pipelines.LogisticRegressionClassifier

property), 1835
parameters (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

property), 1680
parameters (evalml.pipelines.MulticlassClassificationPipeline

property), 1840
parameters (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

property), 1688
parameters (evalml.pipelines.MultiseriesRegressionPipeline

property), 1848
parameters (evalml.pipelines.OneHotEncoder prop-

erty), 1852
parameters (evalml.pipelines.OrdinalEncoder prop-

erty), 1856
parameters (evalml.pipelines.PerColumnImputer prop-

erty), 1858
parameters (evalml.pipelines.pipeline_base.PipelineBase

property), 1695
parameters (evalml.pipelines.PipelineBase property),

1863
parameters (evalml.pipelines.ProphetRegressor prop-

erty), 1867
parameters (evalml.pipelines.RandomForestClassifier

property), 1870
parameters (evalml.pipelines.RandomForestRegressor

property), 1873
parameters (evalml.pipelines.regression_pipeline.RegressionPipeline

property), 1703
parameters (evalml.pipelines.RegressionPipeline prop-

erty), 1879
parameters (evalml.pipelines.RFClassifierSelectFromModel

property), 1883
parameters (evalml.pipelines.RFRegressorSelectFromModel

property), 1885
parameters (evalml.pipelines.SimpleImputer property),

1888
parameters (evalml.pipelines.StackedEnsembleBase

property), 1891
parameters (evalml.pipelines.StackedEnsembleClassifier

property), 1895
parameters (evalml.pipelines.StackedEnsembleRegressor

property), 1899

Index 2227

EvalML Documentation, Release 0.80.0

parameters (evalml.pipelines.StandardScaler property),
1901

parameters (evalml.pipelines.SVMClassifier property),
1904

parameters (evalml.pipelines.SVMRegressor property),
1908

parameters (evalml.pipelines.TargetEncoder property),
1910

parameters (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
property), 1711

parameters (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
property), 1718

parameters (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
property), 1726

parameters (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
property), 1733

parameters (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
property), 1742

parameters (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
property), 1917

parameters (evalml.pipelines.TimeSeriesClassificationPipeline
property), 1924

parameters (evalml.pipelines.TimeSeriesFeaturizer
property), 1929

parameters (evalml.pipelines.TimeSeriesImputer prop-
erty), 1932

parameters (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
property), 1937

parameters (evalml.pipelines.TimeSeriesRegressionPipeline
property), 1946

parameters (evalml.pipelines.TimeSeriesRegularizer
property), 1950

parameters (evalml.pipelines.Transformer property),
1953

parameters (evalml.pipelines.VARMAXRegressor prop-
erty), 1956

parameters (evalml.pipelines.VowpalWabbitBinaryClassifier
property), 1959

parameters (evalml.pipelines.VowpalWabbitMulticlassClassifier
property), 1962

parameters (evalml.pipelines.VowpalWabbitRegressor
property), 1965

parameters (evalml.pipelines.XGBoostClassifier prop-
erty), 1969

parameters (evalml.pipelines.XGBoostRegressor prop-
erty), 1971

partial_dependence() (in module
evalml.model_understanding), 496

partial_dependence() (in module
evalml.model_understanding.partial_dependence_functions),
476

PartialDependenceError, 452, 455
PartialDependenceErrorCode (class in

evalml.exceptions), 455

PartialDependenceErrorCode (class in
evalml.exceptions.exceptions), 452

PCA (class in evalml.pipelines.components), 1544
PCA (class in evalml.pipelines.components.transformers),

1354
PCA (class in evalml.pipelines.components.transformers.dimensionality_reduction),

1059
PCA (class in evalml.pipelines.components.transformers.dimensionality_reduction.pca),

1054
PerColumnImputer (class in evalml.pipelines), 1856
PerColumnImputer (class in

evalml.pipelines.components), 1546
PerColumnImputer (class in

evalml.pipelines.components.transformers),
1357

PerColumnImputer (class in
evalml.pipelines.components.transformers.imputers),
1151

PerColumnImputer (class in
evalml.pipelines.components.transformers.imputers.per_column_imputer),
1133

perfect_score (evalml.objectives.binary_classification_objective.BinaryClassificationObjective
property), 501

perfect_score (evalml.objectives.BinaryClassificationObjective
property), 618

perfect_score (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
property), 513

perfect_score (evalml.objectives.MulticlassClassificationObjective
property), 661

perfect_score (evalml.objectives.objective_base.ObjectiveBase
property), 515

perfect_score (evalml.objectives.ObjectiveBase prop-
erty), 664

perfect_score (evalml.objectives.regression_objective.RegressionObjective
property), 518

perfect_score (evalml.objectives.RegressionObjective
property), 684

perfect_score (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
property), 594

pipeline_number (evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm
property), 281

pipeline_number (evalml.automl.automl_algorithm.AutoMLAlgorithm
property), 289

pipeline_number (evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm
property), 284

pipeline_number (evalml.automl.automl_algorithm.DefaultAlgorithm
property), 292

pipeline_number (evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm
property), 287

pipeline_number (evalml.automl.automl_algorithm.IterativeAlgorithm
property), 295

PipelineBase (class in evalml.pipelines), 1859
PipelineBase (class in evalml.pipelines.pipeline_base),

1691

2228 Index

EvalML Documentation, Release 0.80.0

PipelineBaseMeta (class in
evalml.pipelines.pipeline_meta), 1697

PipelineError, 453, 456
PipelineErrorCodeEnum (class in evalml.exceptions),

456
PipelineErrorCodeEnum (class in

evalml.exceptions.exceptions), 453
PipelineNotFoundError, 453, 456
PipelineNotYetFittedError, 453, 456
PipelineScoreError, 453, 456
PipelineSearchPlots (class in

evalml.automl.pipeline_search_plots), 326
plot (evalml.automl.automl_search.AutoMLSearch

property), 321
plot (evalml.automl.AutoMLSearch property), 337
plot (evalml.AutoMLSearch property), 2043
plot_decomposition()

(evalml.pipelines.components.PolynomialDecomposer
method), 1553

plot_decomposition()
(evalml.pipelines.components.STLDecomposer
method), 1602

plot_decomposition()
(evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1364

plot_decomposition()
(evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1228

plot_decomposition()
(evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1169

plot_decomposition()
(evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1196

plot_decomposition()
(evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1253

plot_decomposition()
(evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1205

plot_decomposition()
(evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1261

plot_decomposition()
(evalml.pipelines.components.transformers.STLDecomposer
method), 1393

PolynomialDecomposer (class in
evalml.pipelines.components), 1549

PolynomialDecomposer (class in
evalml.pipelines.components.transformers),
1359

PolynomialDecomposer (class in
evalml.pipelines.components.transformers.preprocessing),
1249

PolynomialDecomposer (class in
evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer),
1191

positive_only() (evalml.objectives.AccuracyBinary
method), 602

positive_only() (evalml.objectives.AccuracyMulticlass
method), 604

positive_only() (evalml.objectives.AUC method), 606
positive_only() (evalml.objectives.AUCMacro

method), 608
positive_only() (evalml.objectives.AUCMicro

method), 610
positive_only() (evalml.objectives.AUCWeighted

method), 611
positive_only() (evalml.objectives.BalancedAccuracyBinary

method), 614
positive_only() (evalml.objectives.BalancedAccuracyMulticlass

method), 615
positive_only() (evalml.objectives.binary_classification_objective.BinaryClassificationObjective

method), 502
positive_only() (evalml.objectives.BinaryClassificationObjective

method), 619
positive_only() (evalml.objectives.cost_benefit_matrix.CostBenefitMatrix

method), 505
positive_only() (evalml.objectives.CostBenefitMatrix

method), 621
positive_only() (evalml.objectives.ExpVariance

method), 623
positive_only() (evalml.objectives.F1 method), 625
positive_only() (evalml.objectives.F1Macro method),

626
positive_only() (evalml.objectives.F1Micro method),

628
positive_only() (evalml.objectives.F1Weighted

method), 630
positive_only() (evalml.objectives.fraud_cost.FraudCost

method), 507
positive_only() (evalml.objectives.FraudCost

method), 632
positive_only() (evalml.objectives.Gini method), 637
positive_only() (evalml.objectives.lead_scoring.LeadScoring

method), 510
positive_only() (evalml.objectives.LeadScoring

method), 639
positive_only() (evalml.objectives.LogLossBinary

method), 641
positive_only() (evalml.objectives.LogLossMulticlass

method), 643
positive_only() (evalml.objectives.MAE method), 645
positive_only() (evalml.objectives.MAPE method),

647
positive_only() (evalml.objectives.MASE method),

648
positive_only() (evalml.objectives.MaxError

Index 2229

EvalML Documentation, Release 0.80.0

method), 650
positive_only() (evalml.objectives.MCCBinary

method), 652
positive_only() (evalml.objectives.MCCMulticlass

method), 654
positive_only() (evalml.objectives.MeanSquaredLogError

method), 656
positive_only() (evalml.objectives.MedianAE

method), 658
positive_only() (evalml.objectives.MSE method), 659
positive_only() (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective

method), 513
positive_only() (evalml.objectives.MulticlassClassificationObjective

method), 661
positive_only() (evalml.objectives.objective_base.ObjectiveBase

method), 515
positive_only() (evalml.objectives.ObjectiveBase

method), 664
positive_only() (evalml.objectives.Precision

method), 667
positive_only() (evalml.objectives.PrecisionMacro

method), 668
positive_only() (evalml.objectives.PrecisionMicro

method), 670
positive_only() (evalml.objectives.PrecisionWeighted

method), 672
positive_only() (evalml.objectives.R2 method), 674
positive_only() (evalml.objectives.Recall method),

676
positive_only() (evalml.objectives.RecallMacro

method), 678
positive_only() (evalml.objectives.RecallMicro

method), 679
positive_only() (evalml.objectives.RecallWeighted

method), 681
positive_only() (evalml.objectives.regression_objective.RegressionObjective

method), 518
positive_only() (evalml.objectives.RegressionObjective

method), 684
positive_only() (evalml.objectives.RootMeanSquaredError

method), 686
positive_only() (evalml.objectives.RootMeanSquaredLogError

method), 688
positive_only() (evalml.objectives.sensitivity_low_alert.SensitivityLowAlert

method), 521
positive_only() (evalml.objectives.SensitivityLowAlert

method), 690
positive_only() (evalml.objectives.SMAPE method),

692
positive_only() (evalml.objectives.standard_metrics.AccuracyBinary

method), 525
positive_only() (evalml.objectives.standard_metrics.AccuracyMulticlass

method), 526
positive_only() (evalml.objectives.standard_metrics.AUC

method), 529
positive_only() (evalml.objectives.standard_metrics.AUCMacro

method), 530
positive_only() (evalml.objectives.standard_metrics.AUCMicro

method), 532
positive_only() (evalml.objectives.standard_metrics.AUCWeighted

method), 534
positive_only() (evalml.objectives.standard_metrics.BalancedAccuracyBinary

method), 536
positive_only() (evalml.objectives.standard_metrics.BalancedAccuracyMulticlass

method), 538
positive_only() (evalml.objectives.standard_metrics.ExpVariance

method), 539
positive_only() (evalml.objectives.standard_metrics.F1

method), 542
positive_only() (evalml.objectives.standard_metrics.F1Macro

method), 543
positive_only() (evalml.objectives.standard_metrics.F1Micro

method), 545
positive_only() (evalml.objectives.standard_metrics.F1Weighted

method), 547
positive_only() (evalml.objectives.standard_metrics.Gini

method), 549
positive_only() (evalml.objectives.standard_metrics.LogLossBinary

method), 551
positive_only() (evalml.objectives.standard_metrics.LogLossMulticlass

method), 553
positive_only() (evalml.objectives.standard_metrics.MAE

method), 555
positive_only() (evalml.objectives.standard_metrics.MAPE

method), 557
positive_only() (evalml.objectives.standard_metrics.MASE

method), 558
positive_only() (evalml.objectives.standard_metrics.MaxError

method), 560
positive_only() (evalml.objectives.standard_metrics.MCCBinary

method), 562
positive_only() (evalml.objectives.standard_metrics.MCCMulticlass

method), 564
positive_only() (evalml.objectives.standard_metrics.MeanSquaredLogError

method), 566
positive_only() (evalml.objectives.standard_metrics.MedianAE

method), 568
positive_only() (evalml.objectives.standard_metrics.MSE

method), 569
positive_only() (evalml.objectives.standard_metrics.Precision

method), 572
positive_only() (evalml.objectives.standard_metrics.PrecisionMacro

method), 573
positive_only() (evalml.objectives.standard_metrics.PrecisionMicro

method), 575
positive_only() (evalml.objectives.standard_metrics.PrecisionWeighted

method), 577
positive_only() (evalml.objectives.standard_metrics.R2

2230 Index

EvalML Documentation, Release 0.80.0

method), 579
positive_only() (evalml.objectives.standard_metrics.Recall

method), 581
positive_only() (evalml.objectives.standard_metrics.RecallMacro

method), 583
positive_only() (evalml.objectives.standard_metrics.RecallMicro

method), 584
positive_only() (evalml.objectives.standard_metrics.RecallWeighted

method), 586
positive_only() (evalml.objectives.standard_metrics.RootMeanSquaredError

method), 588
positive_only() (evalml.objectives.standard_metrics.RootMeanSquaredLogError

method), 590
positive_only() (evalml.objectives.standard_metrics.SMAPE

method), 591
positive_only() (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective

method), 594
Precision (class in evalml.objectives), 665
Precision (class in evalml.objectives.standard_metrics),

570
precision_recall_curve() (in module

evalml.model_understanding), 497
precision_recall_curve() (in module

evalml.model_understanding.metrics), 474
PrecisionMacro (class in evalml.objectives), 667
PrecisionMacro (class in

evalml.objectives.standard_metrics), 572
PrecisionMicro (class in evalml.objectives), 669
PrecisionMicro (class in

evalml.objectives.standard_metrics), 574
PrecisionWeighted (class in evalml.objectives), 671
PrecisionWeighted (class in

evalml.objectives.standard_metrics), 576
predict() (evalml.pipelines.ARIMARegressor method),

1755
predict() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

method), 1660
predict() (evalml.pipelines.BinaryClassificationPipeline

method), 1761
predict() (evalml.pipelines.CatBoostClassifier

method), 1765
predict() (evalml.pipelines.CatBoostRegressor

method), 1768
predict() (evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1667
predict() (evalml.pipelines.ClassificationPipeline

method), 1773
predict() (evalml.pipelines.component_graph.ComponentGraph

method), 1674
predict() (evalml.pipelines.ComponentGraph method),

1780
predict() (evalml.pipelines.components.ARIMARegressor

method), 1434
predict() (evalml.pipelines.components.BaselineClassifier

method), 1438
predict() (evalml.pipelines.components.BaselineRegressor

method), 1441
predict() (evalml.pipelines.components.CatBoostClassifier

method), 1444
predict() (evalml.pipelines.components.CatBoostRegressor

method), 1448
predict() (evalml.pipelines.components.DecisionTreeClassifier

method), 1457
predict() (evalml.pipelines.components.DecisionTreeRegressor

method), 1461
predict() (evalml.pipelines.components.ElasticNetClassifier

method), 1477
predict() (evalml.pipelines.components.ElasticNetRegressor

method), 1480
predict() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase

method), 695
predict() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier

method), 700
predict() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor

method), 704
predict() (evalml.pipelines.components.ensemble.StackedEnsembleBase

method), 707
predict() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier

method), 711
predict() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor

method), 714
predict() (evalml.pipelines.components.Estimator

method), 1485
predict() (evalml.pipelines.components.estimators.ARIMARegressor

method), 949
predict() (evalml.pipelines.components.estimators.BaselineClassifier

method), 953
predict() (evalml.pipelines.components.estimators.BaselineRegressor

method), 956
predict() (evalml.pipelines.components.estimators.CatBoostClassifier

method), 959
predict() (evalml.pipelines.components.estimators.CatBoostRegressor

method), 963
predict() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

method), 719
predict() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

method), 772
predict() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

method), 722
predict() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

method), 775
predict() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

method), 726
predict() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

method), 778
predict() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

method), 731
predict() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

Index 2231

EvalML Documentation, Release 0.80.0

method), 782
predict() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

method), 735
predict() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

method), 786
predict() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

method), 739
predict() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

method), 789
predict() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

method), 743
predict() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

method), 793
predict() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

method), 747
predict() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

method), 796
predict() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

method), 800
predict() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

method), 750
predict() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

method), 754
predict() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

method), 803
predict() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

method), 758
predict() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

method), 761
predict() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

method), 764
predict() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier

method), 806
predict() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

method), 810
predict() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

method), 768
predict() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

method), 813
predict() (evalml.pipelines.components.estimators.DecisionTreeClassifier

method), 966
predict() (evalml.pipelines.components.estimators.DecisionTreeRegressor

method), 970
predict() (evalml.pipelines.components.estimators.ElasticNetClassifier

method), 974
predict() (evalml.pipelines.components.estimators.ElasticNetRegressor

method), 977
predict() (evalml.pipelines.components.estimators.Estimator

method), 980
predict() (evalml.pipelines.components.estimators.estimator.Estimator

method), 944
predict() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

method), 984
predict() (evalml.pipelines.components.estimators.ExtraTreesClassifier

method), 987
predict() (evalml.pipelines.components.estimators.ExtraTreesRegressor

method), 991
predict() (evalml.pipelines.components.estimators.KNeighborsClassifier

method), 995
predict() (evalml.pipelines.components.estimators.LightGBMClassifier

method), 998
predict() (evalml.pipelines.components.estimators.LightGBMRegressor

method), 1002
predict() (evalml.pipelines.components.estimators.LinearRegressor

method), 1005
predict() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

method), 1008
predict() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

method), 1012
predict() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1015
predict() (evalml.pipelines.components.estimators.RandomForestClassifier

method), 1018
predict() (evalml.pipelines.components.estimators.RandomForestRegressor

method), 1022
predict() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

method), 818
predict() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

method), 886
predict() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

method), 822
predict() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

method), 890
predict() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

method), 826
predict() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

method), 893
predict() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

method), 830
predict() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

method), 897
predict() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

method), 833
predict() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

method), 900
predict() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

method), 838
predict() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

method), 842
predict() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

method), 904
predict() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

method), 908
predict() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

method), 846
predict() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

method), 911
predict() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

2232 Index

EvalML Documentation, Release 0.80.0

method), 849
predict() (evalml.pipelines.components.estimators.regressors.LinearRegressor

method), 914
predict() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

method), 853
predict() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

method), 918
predict() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 858
predict() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 922
predict() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

method), 925
predict() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

method), 862
predict() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

method), 866
predict() (evalml.pipelines.components.estimators.regressors.SVMRegressor

method), 928
predict() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

method), 869
predict() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

method), 931
predict() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

method), 874
predict() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

method), 934
predict() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

method), 877
predict() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

method), 937
predict() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor

method), 881
predict() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

method), 940
predict() (evalml.pipelines.components.estimators.SVMClassifier

method), 1025
predict() (evalml.pipelines.components.estimators.SVMRegressor

method), 1028
predict() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

method), 1031
predict() (evalml.pipelines.components.estimators.VARMAXRegressor

method), 1034
predict() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

method), 1038
predict() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

method), 1041
predict() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

method), 1044
predict() (evalml.pipelines.components.estimators.XGBoostClassifier

method), 1047
predict() (evalml.pipelines.components.estimators.XGBoostRegressor

method), 1050
predict() (evalml.pipelines.components.ExponentialSmoothingRegressor

method), 1489
predict() (evalml.pipelines.components.ExtraTreesClassifier

method), 1492
predict() (evalml.pipelines.components.ExtraTreesRegressor

method), 1496
predict() (evalml.pipelines.components.KNeighborsClassifier

method), 1505
predict() (evalml.pipelines.components.LightGBMClassifier

method), 1511
predict() (evalml.pipelines.components.LightGBMRegressor

method), 1514
predict() (evalml.pipelines.components.LinearRegressor

method), 1520
predict() (evalml.pipelines.components.LogisticRegressionClassifier

method), 1523
predict() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

method), 1531
predict() (evalml.pipelines.components.ProphetRegressor

method), 1557
predict() (evalml.pipelines.components.RandomForestClassifier

method), 1560
predict() (evalml.pipelines.components.RandomForestRegressor

method), 1563
predict() (evalml.pipelines.components.StackedEnsembleBase

method), 1587
predict() (evalml.pipelines.components.StackedEnsembleClassifier

method), 1591
predict() (evalml.pipelines.components.StackedEnsembleRegressor

method), 1595
predict() (evalml.pipelines.components.SVMClassifier

method), 1606
predict() (evalml.pipelines.components.SVMRegressor

method), 1609
predict() (evalml.pipelines.components.TimeSeriesBaselineEstimator

method), 1617
predict() (evalml.pipelines.components.utils.WrappedSKClassifier

method), 1426
predict() (evalml.pipelines.components.utils.WrappedSKRegressor

method), 1428
predict() (evalml.pipelines.components.VARMAXRegressor

method), 1637
predict() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

method), 1641
predict() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

method), 1644
predict() (evalml.pipelines.components.VowpalWabbitRegressor

method), 1647
predict() (evalml.pipelines.components.XGBoostClassifier

method), 1650
predict() (evalml.pipelines.components.XGBoostRegressor

method), 1653
predict() (evalml.pipelines.DecisionTreeClassifier

method), 1783
predict() (evalml.pipelines.DecisionTreeRegressor

Index 2233

EvalML Documentation, Release 0.80.0

method), 1787
predict() (evalml.pipelines.ElasticNetClassifier

method), 1796
predict() (evalml.pipelines.ElasticNetRegressor

method), 1799
predict() (evalml.pipelines.Estimator method), 1802
predict() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1805
predict() (evalml.pipelines.ExtraTreesClassifier

method), 1809
predict() (evalml.pipelines.ExtraTreesRegressor

method), 1812
predict() (evalml.pipelines.KNeighborsClassifier

method), 1821
predict() (evalml.pipelines.LightGBMClassifier

method), 1825
predict() (evalml.pipelines.LightGBMRegressor

method), 1828
predict() (evalml.pipelines.LinearRegressor method),

1831
predict() (evalml.pipelines.LogisticRegressionClassifier

method), 1835
predict() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1680
predict() (evalml.pipelines.MulticlassClassificationPipeline

method), 1840
predict() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1688
predict() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1848
predict() (evalml.pipelines.pipeline_base.PipelineBase

method), 1695
predict() (evalml.pipelines.PipelineBase method),

1863
predict() (evalml.pipelines.ProphetRegressor method),

1867
predict() (evalml.pipelines.RandomForestClassifier

method), 1870
predict() (evalml.pipelines.RandomForestRegressor

method), 1873
predict() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1703
predict() (evalml.pipelines.RegressionPipeline

method), 1879
predict() (evalml.pipelines.StackedEnsembleBase

method), 1891
predict() (evalml.pipelines.StackedEnsembleClassifier

method), 1895
predict() (evalml.pipelines.StackedEnsembleRegressor

method), 1899
predict() (evalml.pipelines.SVMClassifier method),

1904
predict() (evalml.pipelines.SVMRegressor method),

1908

predict() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1711

predict() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1718

predict() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1726

predict() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1733

predict() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1742

predict() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1917

predict() (evalml.pipelines.TimeSeriesClassificationPipeline
method), 1924

predict() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1937

predict() (evalml.pipelines.TimeSeriesRegressionPipeline
method), 1946

predict() (evalml.pipelines.VARMAXRegressor
method), 1956

predict() (evalml.pipelines.VowpalWabbitBinaryClassifier
method), 1959

predict() (evalml.pipelines.VowpalWabbitMulticlassClassifier
method), 1962

predict() (evalml.pipelines.VowpalWabbitRegressor
method), 1965

predict() (evalml.pipelines.XGBoostClassifier
method), 1969

predict() (evalml.pipelines.XGBoostRegressor
method), 1971

predict_in_sample()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1688

predict_in_sample()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1848

predict_in_sample()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1711

predict_in_sample()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1718

predict_in_sample()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1726

predict_in_sample()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1734

predict_in_sample()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1743

predict_in_sample()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1917

2234 Index

EvalML Documentation, Release 0.80.0

predict_in_sample()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1924

predict_in_sample()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1938

predict_in_sample()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1947

predict_proba() (evalml.pipelines.ARIMARegressor
method), 1755

predict_proba() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1660

predict_proba() (evalml.pipelines.BinaryClassificationPipeline
method), 1761

predict_proba() (evalml.pipelines.CatBoostClassifier
method), 1765

predict_proba() (evalml.pipelines.CatBoostRegressor
method), 1768

predict_proba() (evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1668

predict_proba() (evalml.pipelines.ClassificationPipeline
method), 1774

predict_proba() (evalml.pipelines.components.ARIMARegressor
method), 1435

predict_proba() (evalml.pipelines.components.BaselineClassifier
method), 1438

predict_proba() (evalml.pipelines.components.BaselineRegressor
method), 1441

predict_proba() (evalml.pipelines.components.CatBoostClassifier
method), 1444

predict_proba() (evalml.pipelines.components.CatBoostRegressor
method), 1448

predict_proba() (evalml.pipelines.components.DecisionTreeClassifier
method), 1457

predict_proba() (evalml.pipelines.components.DecisionTreeRegressor
method), 1461

predict_proba() (evalml.pipelines.components.ElasticNetClassifier
method), 1477

predict_proba() (evalml.pipelines.components.ElasticNetRegressor
method), 1480

predict_proba() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
method), 696

predict_proba() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier
method), 700

predict_proba() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor
method), 704

predict_proba() (evalml.pipelines.components.ensemble.StackedEnsembleBase
method), 707

predict_proba() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier
method), 711

predict_proba() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor
method), 714

predict_proba() (evalml.pipelines.components.Estimator

method), 1485
predict_proba() (evalml.pipelines.components.estimators.ARIMARegressor

method), 950
predict_proba() (evalml.pipelines.components.estimators.BaselineClassifier

method), 953
predict_proba() (evalml.pipelines.components.estimators.BaselineRegressor

method), 956
predict_proba() (evalml.pipelines.components.estimators.CatBoostClassifier

method), 959
predict_proba() (evalml.pipelines.components.estimators.CatBoostRegressor

method), 963
predict_proba() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

method), 719
predict_proba() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

method), 772
predict_proba() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

method), 722
predict_proba() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

method), 775
predict_proba() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

method), 727
predict_proba() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

method), 779
predict_proba() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

method), 731
predict_proba() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

method), 782
predict_proba() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

method), 735
predict_proba() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

method), 786
predict_proba() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

method), 739
predict_proba() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

method), 789
predict_proba() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

method), 743
predict_proba() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

method), 793
predict_proba() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

method), 747
predict_proba() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

method), 796
predict_proba() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

method), 800
predict_proba() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

method), 751
predict_proba() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

method), 754
predict_proba() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

method), 803
predict_proba() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

method), 758
predict_proba() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

Index 2235

EvalML Documentation, Release 0.80.0

method), 761
predict_proba() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

method), 764
predict_proba() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier

method), 806
predict_proba() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

method), 810
predict_proba() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

method), 768
predict_proba() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

method), 813
predict_proba() (evalml.pipelines.components.estimators.DecisionTreeClassifier

method), 967
predict_proba() (evalml.pipelines.components.estimators.DecisionTreeRegressor

method), 971
predict_proba() (evalml.pipelines.components.estimators.ElasticNetClassifier

method), 974
predict_proba() (evalml.pipelines.components.estimators.ElasticNetRegressor

method), 977
predict_proba() (evalml.pipelines.components.estimators.Estimator

method), 980
predict_proba() (evalml.pipelines.components.estimators.estimator.Estimator

method), 945
predict_proba() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

method), 984
predict_proba() (evalml.pipelines.components.estimators.ExtraTreesClassifier

method), 988
predict_proba() (evalml.pipelines.components.estimators.ExtraTreesRegressor

method), 991
predict_proba() (evalml.pipelines.components.estimators.KNeighborsClassifier

method), 995
predict_proba() (evalml.pipelines.components.estimators.LightGBMClassifier

method), 999
predict_proba() (evalml.pipelines.components.estimators.LightGBMRegressor

method), 1002
predict_proba() (evalml.pipelines.components.estimators.LinearRegressor

method), 1005
predict_proba() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

method), 1008
predict_proba() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

method), 1012
predict_proba() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1015
predict_proba() (evalml.pipelines.components.estimators.RandomForestClassifier

method), 1019
predict_proba() (evalml.pipelines.components.estimators.RandomForestRegressor

method), 1022
predict_proba() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

method), 818
predict_proba() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

method), 887
predict_proba() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

method), 822
predict_proba() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

method), 890
predict_proba() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

method), 826
predict_proba() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

method), 893
predict_proba() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

method), 830
predict_proba() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

method), 897
predict_proba() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

method), 833
predict_proba() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

method), 900
predict_proba() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

method), 838
predict_proba() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

method), 842
predict_proba() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

method), 904
predict_proba() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

method), 908
predict_proba() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

method), 846
predict_proba() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

method), 911
predict_proba() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

method), 849
predict_proba() (evalml.pipelines.components.estimators.regressors.LinearRegressor

method), 914
predict_proba() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

method), 853
predict_proba() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

method), 918
predict_proba() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 858
predict_proba() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 922
predict_proba() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

method), 925
predict_proba() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

method), 862
predict_proba() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

method), 866
predict_proba() (evalml.pipelines.components.estimators.regressors.SVMRegressor

method), 928
predict_proba() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

method), 870
predict_proba() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

method), 931
predict_proba() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

method), 874
predict_proba() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

method), 934
predict_proba() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

2236 Index

EvalML Documentation, Release 0.80.0

method), 877
predict_proba() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

method), 937
predict_proba() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor

method), 882
predict_proba() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

method), 941
predict_proba() (evalml.pipelines.components.estimators.SVMClassifier

method), 1025
predict_proba() (evalml.pipelines.components.estimators.SVMRegressor

method), 1028
predict_proba() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

method), 1031
predict_proba() (evalml.pipelines.components.estimators.VARMAXRegressor

method), 1034
predict_proba() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

method), 1038
predict_proba() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

method), 1041
predict_proba() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

method), 1044
predict_proba() (evalml.pipelines.components.estimators.XGBoostClassifier

method), 1047
predict_proba() (evalml.pipelines.components.estimators.XGBoostRegressor

method), 1050
predict_proba() (evalml.pipelines.components.ExponentialSmoothingRegressor

method), 1489
predict_proba() (evalml.pipelines.components.ExtraTreesClassifier

method), 1493
predict_proba() (evalml.pipelines.components.ExtraTreesRegressor

method), 1496
predict_proba() (evalml.pipelines.components.KNeighborsClassifier

method), 1505
predict_proba() (evalml.pipelines.components.LightGBMClassifier

method), 1511
predict_proba() (evalml.pipelines.components.LightGBMRegressor

method), 1514
predict_proba() (evalml.pipelines.components.LinearRegressor

method), 1520
predict_proba() (evalml.pipelines.components.LogisticRegressionClassifier

method), 1523
predict_proba() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

method), 1532
predict_proba() (evalml.pipelines.components.ProphetRegressor

method), 1557
predict_proba() (evalml.pipelines.components.RandomForestClassifier

method), 1560
predict_proba() (evalml.pipelines.components.RandomForestRegressor

method), 1563
predict_proba() (evalml.pipelines.components.StackedEnsembleBase

method), 1588
predict_proba() (evalml.pipelines.components.StackedEnsembleClassifier

method), 1591
predict_proba() (evalml.pipelines.components.StackedEnsembleRegressor

method), 1595
predict_proba() (evalml.pipelines.components.SVMClassifier

method), 1606
predict_proba() (evalml.pipelines.components.SVMRegressor

method), 1609
predict_proba() (evalml.pipelines.components.TimeSeriesBaselineEstimator

method), 1618
predict_proba() (evalml.pipelines.components.utils.WrappedSKClassifier

method), 1426
predict_proba() (evalml.pipelines.components.VARMAXRegressor

method), 1638
predict_proba() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

method), 1641
predict_proba() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

method), 1644
predict_proba() (evalml.pipelines.components.VowpalWabbitRegressor

method), 1647
predict_proba() (evalml.pipelines.components.XGBoostClassifier

method), 1650
predict_proba() (evalml.pipelines.components.XGBoostRegressor

method), 1653
predict_proba() (evalml.pipelines.DecisionTreeClassifier

method), 1784
predict_proba() (evalml.pipelines.DecisionTreeRegressor

method), 1788
predict_proba() (evalml.pipelines.ElasticNetClassifier

method), 1796
predict_proba() (evalml.pipelines.ElasticNetRegressor

method), 1799
predict_proba() (evalml.pipelines.Estimator method),

1802
predict_proba() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1805
predict_proba() (evalml.pipelines.ExtraTreesClassifier

method), 1809
predict_proba() (evalml.pipelines.ExtraTreesRegressor

method), 1812
predict_proba() (evalml.pipelines.KNeighborsClassifier

method), 1821
predict_proba() (evalml.pipelines.LightGBMClassifier

method), 1825
predict_proba() (evalml.pipelines.LightGBMRegressor

method), 1828
predict_proba() (evalml.pipelines.LinearRegressor

method), 1831
predict_proba() (evalml.pipelines.LogisticRegressionClassifier

method), 1835
predict_proba() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1681
predict_proba() (evalml.pipelines.MulticlassClassificationPipeline

method), 1841
predict_proba() (evalml.pipelines.ProphetRegressor

method), 1867
predict_proba() (evalml.pipelines.RandomForestClassifier

Index 2237

EvalML Documentation, Release 0.80.0

method), 1871
predict_proba() (evalml.pipelines.RandomForestRegressor

method), 1873
predict_proba() (evalml.pipelines.StackedEnsembleBase

method), 1892
predict_proba() (evalml.pipelines.StackedEnsembleClassifier

method), 1895
predict_proba() (evalml.pipelines.StackedEnsembleRegressor

method), 1899
predict_proba() (evalml.pipelines.SVMClassifier

method), 1904
predict_proba() (evalml.pipelines.SVMRegressor

method), 1908
predict_proba() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1711
predict_proba() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1719
predict_proba() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1726
predict_proba() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1917
predict_proba() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1924
predict_proba() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1938
predict_proba() (evalml.pipelines.VARMAXRegressor

method), 1956
predict_proba() (evalml.pipelines.VowpalWabbitBinaryClassifier

method), 1959
predict_proba() (evalml.pipelines.VowpalWabbitMulticlassClassifier

method), 1962
predict_proba() (evalml.pipelines.VowpalWabbitRegressor

method), 1965
predict_proba() (evalml.pipelines.XGBoostClassifier

method), 1969
predict_proba() (evalml.pipelines.XGBoostRegressor

method), 1972
predict_proba_in_sample()

(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1712

predict_proba_in_sample()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1719

predict_proba_in_sample()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1727

predict_proba_in_sample()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1918

predict_proba_in_sample()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1925

predict_proba_in_sample()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1938
print_deps() (in module evalml.utils.cli_utils), 2023
print_info() (in module evalml.utils.cli_utils), 2023
print_sys_info() (in module evalml.utils.cli_utils),

2023
ProblemTypes (class in evalml.problem_types), 2006
ProblemTypes (class in

evalml.problem_types.problem_types), 1999
Progress (class in evalml.automl), 340
Progress (class in evalml.automl.progress), 327
ProphetRegressor (class in evalml.pipelines), 1864
ProphetRegressor (class in

evalml.pipelines.components), 1554
ProphetRegressor (class in

evalml.pipelines.components.estimators),
1012

ProphetRegressor (class in
evalml.pipelines.components.estimators.regressors),
918

ProphetRegressor (class in
evalml.pipelines.components.estimators.regressors.prophet_regressor),
854

propose() (evalml.tuners.grid_search_tuner.GridSearchTuner
method), 2008

propose() (evalml.tuners.GridSearchTuner method),
2016

propose() (evalml.tuners.random_search_tuner.RandomSearchTuner
method), 2010

propose() (evalml.tuners.RandomSearchTuner method),
2018

propose() (evalml.tuners.skopt_tuner.SKOptTuner
method), 2012

propose() (evalml.tuners.SKOptTuner method), 2019
propose() (evalml.tuners.Tuner method), 2020
propose() (evalml.tuners.tuner.Tuner method), 2014

R
R2 (class in evalml.objectives), 672
R2 (class in evalml.objectives.standard_metrics), 577
raise_error_callback() (in module

evalml.automl.callbacks), 325
RandomForestClassifier (class in evalml.pipelines),

1868
RandomForestClassifier (class in

evalml.pipelines.components), 1557
RandomForestClassifier (class in

evalml.pipelines.components.estimators),
1016

RandomForestClassifier (class in
evalml.pipelines.components.estimators.classifiers),
797

RandomForestClassifier (class in
evalml.pipelines.components.estimators.classifiers.rf_classifier),
748

2238 Index

EvalML Documentation, Release 0.80.0

RandomForestRegressor (class in evalml.pipelines),
1871

RandomForestRegressor (class in
evalml.pipelines.components), 1560

RandomForestRegressor (class in
evalml.pipelines.components.estimators),
1019

RandomForestRegressor (class in
evalml.pipelines.components.estimators.regressors),
922

RandomForestRegressor (class in
evalml.pipelines.components.estimators.regressors.rf_regressor),
859

RandomSearchTuner (class in evalml.tuners), 2016
RandomSearchTuner (class in

evalml.tuners.random_search_tuner), 2009
ranking_only_objectives() (in module

evalml.objectives), 674
ranking_only_objectives() (in module

evalml.objectives.utils), 598
rankings (evalml.automl.automl_search.AutoMLSearch

property), 321
rankings (evalml.automl.AutoMLSearch property), 337
rankings (evalml.AutoMLSearch property), 2043
readable_explanation() (in module

evalml.model_understanding.feature_explanations),
470

Recall (class in evalml.objectives), 674
Recall (class in evalml.objectives.standard_metrics),

579
RecallMacro (class in evalml.objectives), 676
RecallMacro (class in

evalml.objectives.standard_metrics), 581
RecallMicro (class in evalml.objectives), 678
RecallMicro (class in

evalml.objectives.standard_metrics), 583
RecallWeighted (class in evalml.objectives), 680
RecallWeighted (class in

evalml.objectives.standard_metrics), 585
recommendation_score() (in module

evalml.objectives), 682
recommendation_score() (in module

evalml.objectives.utils), 598
RecursiveFeatureEliminationSelector (class in

evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector),
1094

register() (evalml.pipelines.components.component_base_meta.ComponentBaseMeta
method), 1421

register() (evalml.pipelines.components.ComponentBaseMeta
method), 1451

register() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoderMeta
method), 1069

register() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoderMeta
method), 1074

register() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta
method), 1142

register() (evalml.pipelines.pipeline_meta.PipelineBaseMeta
method), 1697

register() (evalml.utils.base_meta.BaseMeta method),
2021

RegressionObjective (class in evalml.objectives), 682
RegressionObjective (class in

evalml.objectives.regression_objective), 517
RegressionPipeline (class in evalml.pipelines), 1874
RegressionPipeline (class in

evalml.pipelines.regression_pipeline), 1698
ReplaceNullableTypes (class in

evalml.pipelines.components), 1563
ReplaceNullableTypes (class in

evalml.pipelines.components.transformers),
1365

ReplaceNullableTypes (class in
evalml.pipelines.components.transformers.preprocessing),
1254

ReplaceNullableTypes (class in
evalml.pipelines.components.transformers.preprocessing.replace_nullable_types),
1197

resplit_training_data() (in module evalml.automl),
341

resplit_training_data() (in module
evalml.automl.utils), 330

results (evalml.automl.automl_search.AutoMLSearch
property), 321

results (evalml.automl.AutoMLSearch property), 337
results (evalml.AutoMLSearch property), 2043
return_progress() (evalml.automl.Progress method),

340
return_progress() (evalml.automl.progress.Progress

method), 327
RFClassifierRFESelector (class in

evalml.pipelines.components), 1566
RFClassifierRFESelector (class in

evalml.pipelines.components.transformers),
1367

RFClassifierRFESelector (class in
evalml.pipelines.components.transformers.feature_selection),
1113

RFClassifierRFESelector (class in
evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector),
1097

RFClassifierSelectFromModel (class in
evalml.pipelines), 1880

RFClassifierSelectFromModel (class in
evalml.pipelines.components), 1569

RFClassifierSelectFromModel (class in
evalml.pipelines.components.transformers),
1370

RFClassifierSelectFromModel (class in

Index 2239

EvalML Documentation, Release 0.80.0

evalml.pipelines.components.transformers.feature_selection),
1117

RFClassifierSelectFromModel (class in
evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector),
1103

RFRegressorRFESelector (class in
evalml.pipelines.components), 1572

RFRegressorRFESelector (class in
evalml.pipelines.components.transformers),
1373

RFRegressorRFESelector (class in
evalml.pipelines.components.transformers.feature_selection),
1120

RFRegressorRFESelector (class in
evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector),
1100

RFRegressorSelectFromModel (class in
evalml.pipelines), 1883

RFRegressorSelectFromModel (class in
evalml.pipelines.components), 1575

RFRegressorSelectFromModel (class in
evalml.pipelines.components.transformers),
1376

RFRegressorSelectFromModel (class in
evalml.pipelines.components.transformers.feature_selection),
1123

RFRegressorSelectFromModel (class in
evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector),
1107

roc_curve() (in module evalml.model_understanding),
498

roc_curve() (in module
evalml.model_understanding.metrics), 474

RootMeanSquaredError (class in evalml.objectives),
685

RootMeanSquaredError (class in
evalml.objectives.standard_metrics), 587

RootMeanSquaredLogError (class in
evalml.objectives), 686

RootMeanSquaredLogError (class in
evalml.objectives.standard_metrics), 588

rows_of_interest() (in module
evalml.pipelines.utils), 1748

S
safe_repr() (in module evalml.utils), 2036
safe_repr() (in module evalml.utils.gen_utils), 2028
save() (evalml.automl.automl_search.AutoMLSearch

method), 321
save() (evalml.automl.AutoMLSearch method), 337
save() (evalml.AutoMLSearch method), 2043
save() (evalml.pipelines.ARIMARegressor method),

1755

save() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1660

save() (evalml.pipelines.BinaryClassificationPipeline
method), 1761

save() (evalml.pipelines.CatBoostClassifier method),
1765

save() (evalml.pipelines.CatBoostRegressor method),
1768

save() (evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1668

save() (evalml.pipelines.ClassificationPipeline method),
1774

save() (evalml.pipelines.components.ARIMARegressor
method), 1435

save() (evalml.pipelines.components.BaselineClassifier
method), 1438

save() (evalml.pipelines.components.BaselineRegressor
method), 1441

save() (evalml.pipelines.components.CatBoostClassifier
method), 1445

save() (evalml.pipelines.components.CatBoostRegressor
method), 1448

save() (evalml.pipelines.components.component_base.ComponentBase
method), 1420

save() (evalml.pipelines.components.ComponentBase
method), 1450

save() (evalml.pipelines.components.DateTimeFeaturizer
method), 1453

save() (evalml.pipelines.components.DecisionTreeClassifier
method), 1457

save() (evalml.pipelines.components.DecisionTreeRegressor
method), 1461

save() (evalml.pipelines.components.DFSTransformer
method), 1464

save() (evalml.pipelines.components.DropColumns
method), 1466

save() (evalml.pipelines.components.DropNaNRowsTransformer
method), 1468

save() (evalml.pipelines.components.DropNullColumns
method), 1471

save() (evalml.pipelines.components.DropRowsTransformer
method), 1473

save() (evalml.pipelines.components.ElasticNetClassifier
method), 1477

save() (evalml.pipelines.components.ElasticNetRegressor
method), 1480

save() (evalml.pipelines.components.EmailFeaturizer
method), 1482

save() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
method), 696

save() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier
method), 700

save() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor
method), 704

2240 Index

EvalML Documentation, Release 0.80.0

save() (evalml.pipelines.components.ensemble.StackedEnsembleBase
method), 707

save() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier
method), 711

save() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor
method), 715

save() (evalml.pipelines.components.Estimator
method), 1485

save() (evalml.pipelines.components.estimators.ARIMARegressor
method), 950

save() (evalml.pipelines.components.estimators.BaselineClassifier
method), 953

save() (evalml.pipelines.components.estimators.BaselineRegressor
method), 956

save() (evalml.pipelines.components.estimators.CatBoostClassifier
method), 960

save() (evalml.pipelines.components.estimators.CatBoostRegressor
method), 963

save() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier
method), 719

save() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier
method), 772

save() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier
method), 723

save() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier
method), 775

save() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier
method), 727

save() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier
method), 779

save() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier
method), 731

save() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier
method), 782

save() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier
method), 735

save() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier
method), 786

save() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier
method), 739

save() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier
method), 790

save() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier
method), 743

save() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier
method), 793

save() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier
method), 747

save() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier
method), 797

save() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier
method), 800

save() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier
method), 751

save() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier
method), 754

save() (evalml.pipelines.components.estimators.classifiers.SVMClassifier
method), 803

save() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
method), 758

save() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier
method), 761

save() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier
method), 765

save() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier
method), 807

save() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier
method), 810

save() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier
method), 768

save() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier
method), 813

save() (evalml.pipelines.components.estimators.DecisionTreeClassifier
method), 967

save() (evalml.pipelines.components.estimators.DecisionTreeRegressor
method), 971

save() (evalml.pipelines.components.estimators.ElasticNetClassifier
method), 974

save() (evalml.pipelines.components.estimators.ElasticNetRegressor
method), 977

save() (evalml.pipelines.components.estimators.Estimator
method), 980

save() (evalml.pipelines.components.estimators.estimator.Estimator
method), 945

save() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor
method), 984

save() (evalml.pipelines.components.estimators.ExtraTreesClassifier
method), 988

save() (evalml.pipelines.components.estimators.ExtraTreesRegressor
method), 991

save() (evalml.pipelines.components.estimators.KNeighborsClassifier
method), 995

save() (evalml.pipelines.components.estimators.LightGBMClassifier
method), 999

save() (evalml.pipelines.components.estimators.LightGBMRegressor
method), 1002

save() (evalml.pipelines.components.estimators.LinearRegressor
method), 1005

save() (evalml.pipelines.components.estimators.LogisticRegressionClassifier
method), 1009

save() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor
method), 1012

save() (evalml.pipelines.components.estimators.ProphetRegressor
method), 1016

save() (evalml.pipelines.components.estimators.RandomForestClassifier
method), 1019

save() (evalml.pipelines.components.estimators.RandomForestRegressor
method), 1022

Index 2241

EvalML Documentation, Release 0.80.0

save() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor
method), 819

save() (evalml.pipelines.components.estimators.regressors.ARIMARegressor
method), 887

save() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor
method), 822

save() (evalml.pipelines.components.estimators.regressors.BaselineRegressor
method), 890

save() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor
method), 826

save() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor
method), 894

save() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor
method), 830

save() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor
method), 897

save() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor
method), 834

save() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor
method), 901

save() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor
method), 838

save() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor
method), 842

save() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor
method), 904

save() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor
method), 908

save() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor
method), 846

save() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor
method), 912

save() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor
method), 850

save() (evalml.pipelines.components.estimators.regressors.LinearRegressor
method), 915

save() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor
method), 853

save() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor
method), 918

save() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor
method), 859

save() (evalml.pipelines.components.estimators.regressors.ProphetRegressor
method), 922

save() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor
method), 925

save() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor
method), 863

save() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor
method), 866

save() (evalml.pipelines.components.estimators.regressors.SVMRegressor
method), 928

save() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator
method), 870

save() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator
method), 931

save() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor
method), 874

save() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor
method), 935

save() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor
method), 878

save() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor
method), 938

save() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor
method), 882

save() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor
method), 941

save() (evalml.pipelines.components.estimators.SVMClassifier
method), 1025

save() (evalml.pipelines.components.estimators.SVMRegressor
method), 1028

save() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator
method), 1031

save() (evalml.pipelines.components.estimators.VARMAXRegressor
method), 1035

save() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier
method), 1038

save() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier
method), 1041

save() (evalml.pipelines.components.estimators.VowpalWabbitRegressor
method), 1044

save() (evalml.pipelines.components.estimators.XGBoostClassifier
method), 1047

save() (evalml.pipelines.components.estimators.XGBoostRegressor
method), 1050

save() (evalml.pipelines.components.ExponentialSmoothingRegressor
method), 1489

save() (evalml.pipelines.components.ExtraTreesClassifier
method), 1493

save() (evalml.pipelines.components.ExtraTreesRegressor
method), 1496

save() (evalml.pipelines.components.FeatureSelector
method), 1498

save() (evalml.pipelines.components.Imputer method),
1501

save() (evalml.pipelines.components.KNeighborsClassifier
method), 1505

save() (evalml.pipelines.components.LabelEncoder
method), 1507

save() (evalml.pipelines.components.LightGBMClassifier
method), 1511

save() (evalml.pipelines.components.LightGBMRegressor
method), 1515

save() (evalml.pipelines.components.LinearDiscriminantAnalysis
method), 1517

save() (evalml.pipelines.components.LinearRegressor
method), 1520

2242 Index

EvalML Documentation, Release 0.80.0

save() (evalml.pipelines.components.LogisticRegressionClassifier
method), 1524

save() (evalml.pipelines.components.LogTransformer
method), 1526

save() (evalml.pipelines.components.LSA method),
1528

save() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor
method), 1532

save() (evalml.pipelines.components.NaturalLanguageFeaturizer
method), 1534

save() (evalml.pipelines.components.OneHotEncoder
method), 1537

save() (evalml.pipelines.components.OrdinalEncoder
method), 1541

save() (evalml.pipelines.components.Oversampler
method), 1543

save() (evalml.pipelines.components.PCA method),
1546

save() (evalml.pipelines.components.PerColumnImputer
method), 1548

save() (evalml.pipelines.components.PolynomialDecomposer
method), 1553

save() (evalml.pipelines.components.ProphetRegressor
method), 1557

save() (evalml.pipelines.components.RandomForestClassifier
method), 1560

save() (evalml.pipelines.components.RandomForestRegressor
method), 1563

save() (evalml.pipelines.components.ReplaceNullableTypes
method), 1565

save() (evalml.pipelines.components.RFClassifierRFESelector
method), 1568

save() (evalml.pipelines.components.RFClassifierSelectFromModel
method), 1571

save() (evalml.pipelines.components.RFRegressorRFESelector
method), 1574

save() (evalml.pipelines.components.RFRegressorSelectFromModel
method), 1577

save() (evalml.pipelines.components.SelectByType
method), 1579

save() (evalml.pipelines.components.SelectColumns
method), 1582

save() (evalml.pipelines.components.SimpleImputer
method), 1584

save() (evalml.pipelines.components.StackedEnsembleBase
method), 1588

save() (evalml.pipelines.components.StackedEnsembleClassifier
method), 1592

save() (evalml.pipelines.components.StackedEnsembleRegressor
method), 1595

save() (evalml.pipelines.components.StandardScaler
method), 1597

save() (evalml.pipelines.components.STLDecomposer
method), 1602

save() (evalml.pipelines.components.SVMClassifier
method), 1606

save() (evalml.pipelines.components.SVMRegressor
method), 1609

save() (evalml.pipelines.components.TargetEncoder
method), 1612

save() (evalml.pipelines.components.TargetImputer
method), 1614

save() (evalml.pipelines.components.TimeSeriesBaselineEstimator
method), 1618

save() (evalml.pipelines.components.TimeSeriesFeaturizer
method), 1620

save() (evalml.pipelines.components.TimeSeriesImputer
method), 1623

save() (evalml.pipelines.components.TimeSeriesRegularizer
method), 1626

save() (evalml.pipelines.components.Transformer
method), 1629

save() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector
method), 1297

save() (evalml.pipelines.components.transformers.column_selectors.DropColumns
method), 1299

save() (evalml.pipelines.components.transformers.column_selectors.SelectByType
method), 1302

save() (evalml.pipelines.components.transformers.column_selectors.SelectColumns
method), 1304

save() (evalml.pipelines.components.transformers.DateTimeFeaturizer
method), 1312

save() (evalml.pipelines.components.transformers.DFSTransformer
method), 1314

save() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis
method), 1053

save() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis
method), 1059

save() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA
method), 1061

save() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA
method), 1056

save() (evalml.pipelines.components.transformers.DropColumns
method), 1317

save() (evalml.pipelines.components.transformers.DropNaNRowsTransformer
method), 1319

save() (evalml.pipelines.components.transformers.DropNullColumns
method), 1322

save() (evalml.pipelines.components.transformers.DropRowsTransformer
method), 1324

save() (evalml.pipelines.components.transformers.EmailFeaturizer
method), 1326

save() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder
method), 1064

save() (evalml.pipelines.components.transformers.encoders.LabelEncoder
method), 1080

save() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
method), 1068

Index 2243

EvalML Documentation, Release 0.80.0

save() (evalml.pipelines.components.transformers.encoders.OneHotEncoder
method), 1083

save() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
method), 1073

save() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder
method), 1087

save() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder
method), 1077

save() (evalml.pipelines.components.transformers.encoders.TargetEncoder
method), 1089

save() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector
method), 1093

save() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector
method), 1113

save() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector
method), 1096

save() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector
method), 1099

save() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector
method), 1102

save() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel
method), 1106

save() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel
method), 1109

save() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector
method), 1116

save() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel
method), 1119

save() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector
method), 1122

save() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel
method), 1125

save() (evalml.pipelines.components.transformers.FeatureSelector
method), 1329

save() (evalml.pipelines.components.transformers.Imputer
method), 1332

save() (evalml.pipelines.components.transformers.imputers.Imputer
method), 1148

save() (evalml.pipelines.components.transformers.imputers.imputer.Imputer
method), 1129

save() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer
method), 1132

save() (evalml.pipelines.components.transformers.imputers.KNNImputer
method), 1151

save() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer
method), 1135

save() (evalml.pipelines.components.transformers.imputers.PerColumnImputer
method), 1153

save() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer
method), 1138

save() (evalml.pipelines.components.transformers.imputers.SimpleImputer
method), 1156

save() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer
method), 1141

save() (evalml.pipelines.components.transformers.imputers.TargetImputer
method), 1158

save() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer
method), 1145

save() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer
method), 1161

save() (evalml.pipelines.components.transformers.LabelEncoder
method), 1334

save() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis
method), 1337

save() (evalml.pipelines.components.transformers.LogTransformer
method), 1339

save() (evalml.pipelines.components.transformers.LSA
method), 1342

save() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer
method), 1344

save() (evalml.pipelines.components.transformers.OneHotEncoder
method), 1348

save() (evalml.pipelines.components.transformers.OrdinalEncoder
method), 1351

save() (evalml.pipelines.components.transformers.Oversampler
method), 1354

save() (evalml.pipelines.components.transformers.PCA
method), 1356

save() (evalml.pipelines.components.transformers.PerColumnImputer
method), 1359

save() (evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1364

save() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer
method), 1164

save() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer
method), 1225

save() (evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1228

save() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1169

save() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer
method), 1232

save() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer
method), 1172

save() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns
method), 1175

save() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer
method), 1178

save() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer
method), 1234

save() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns
method), 1236

save() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer
method), 1239

save() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer
method), 1241

save() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer
method), 1181

2244 Index

EvalML Documentation, Release 0.80.0

save() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer
method), 1184

save() (evalml.pipelines.components.transformers.preprocessing.LogTransformer
method), 1244

save() (evalml.pipelines.components.transformers.preprocessing.LSA
method), 1246

save() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA
method), 1187

save() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer
method), 1190

save() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer
method), 1248

save() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1196

save() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1253

save() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes
method), 1199

save() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes
method), 1256

save() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1205

save() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1261

save() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer
method), 1208

save() (evalml.pipelines.components.transformers.preprocessing.TextTransformer
method), 1264

save() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer
method), 1212

save() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer
method), 1216

save() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer
method), 1267

save() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer
method), 1271

save() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer
method), 1218

save() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer
method), 1221

save() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer
method), 1273

save() (evalml.pipelines.components.transformers.ReplaceNullableTypes
method), 1366

save() (evalml.pipelines.components.transformers.RFClassifierRFESelector
method), 1369

save() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel
method), 1372

save() (evalml.pipelines.components.transformers.RFRegressorRFESelector
method), 1375

save() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel
method), 1378

save() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler
method), 1276

save() (evalml.pipelines.components.transformers.samplers.Oversampler
method), 1285

save() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler
method), 1279

save() (evalml.pipelines.components.transformers.samplers.Undersampler
method), 1289

save() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler
method), 1283

save() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler
method), 1291

save() (evalml.pipelines.components.transformers.scalers.StandardScaler
method), 1294

save() (evalml.pipelines.components.transformers.SelectByType
method), 1381

save() (evalml.pipelines.components.transformers.SelectColumns
method), 1383

save() (evalml.pipelines.components.transformers.SimpleImputer
method), 1386

save() (evalml.pipelines.components.transformers.StandardScaler
method), 1388

save() (evalml.pipelines.components.transformers.STLDecomposer
method), 1393

save() (evalml.pipelines.components.transformers.TargetEncoder
method), 1396

save() (evalml.pipelines.components.transformers.TargetImputer
method), 1399

save() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer
method), 1402

save() (evalml.pipelines.components.transformers.TimeSeriesImputer
method), 1405

save() (evalml.pipelines.components.transformers.TimeSeriesRegularizer
method), 1408

save() (evalml.pipelines.components.transformers.Transformer
method), 1411

save() (evalml.pipelines.components.transformers.transformer.Transformer
method), 1307

save() (evalml.pipelines.components.transformers.Undersampler
method), 1414

save() (evalml.pipelines.components.transformers.URLFeaturizer
method), 1417

save() (evalml.pipelines.components.Undersampler
method), 1632

save() (evalml.pipelines.components.URLFeaturizer
method), 1634

save() (evalml.pipelines.components.VARMAXRegressor
method), 1638

save() (evalml.pipelines.components.VowpalWabbitBinaryClassifier
method), 1641

save() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier
method), 1644

save() (evalml.pipelines.components.VowpalWabbitRegressor
method), 1647

save() (evalml.pipelines.components.XGBoostClassifier
method), 1650

Index 2245

EvalML Documentation, Release 0.80.0

save() (evalml.pipelines.components.XGBoostRegressor
method), 1653

save() (evalml.pipelines.DecisionTreeClassifier
method), 1784

save() (evalml.pipelines.DecisionTreeRegressor
method), 1788

save() (evalml.pipelines.DFSTransformer method),
1790

save() (evalml.pipelines.DropNaNRowsTransformer
method), 1793

save() (evalml.pipelines.ElasticNetClassifier method),
1796

save() (evalml.pipelines.ElasticNetRegressor method),
1799

save() (evalml.pipelines.Estimator method), 1802
save() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1806
save() (evalml.pipelines.ExtraTreesClassifier method),

1809
save() (evalml.pipelines.ExtraTreesRegressor method),

1813
save() (evalml.pipelines.FeatureSelector method), 1815
save() (evalml.pipelines.Imputer method), 1818
save() (evalml.pipelines.KNeighborsClassifier method),

1822
save() (evalml.pipelines.LightGBMClassifier method),

1825
save() (evalml.pipelines.LightGBMRegressor method),

1829
save() (evalml.pipelines.LinearRegressor method), 1832
save() (evalml.pipelines.LogisticRegressionClassifier

method), 1835
save() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1681
save() (evalml.pipelines.MulticlassClassificationPipeline

method), 1841
save() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1689
save() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1849
save() (evalml.pipelines.OneHotEncoder method), 1852
save() (evalml.pipelines.OrdinalEncoder method), 1856
save() (evalml.pipelines.PerColumnImputer method),

1858
save() (evalml.pipelines.pipeline_base.PipelineBase

method), 1695
save() (evalml.pipelines.PipelineBase method), 1863
save() (evalml.pipelines.ProphetRegressor method),

1868
save() (evalml.pipelines.RandomForestClassifier

method), 1871
save() (evalml.pipelines.RandomForestRegressor

method), 1874
save() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1703
save() (evalml.pipelines.RegressionPipeline method),

1879
save() (evalml.pipelines.RFClassifierSelectFromModel

method), 1883
save() (evalml.pipelines.RFRegressorSelectFromModel

method), 1886
save() (evalml.pipelines.SimpleImputer method), 1888
save() (evalml.pipelines.StackedEnsembleBase

method), 1892
save() (evalml.pipelines.StackedEnsembleClassifier

method), 1896
save() (evalml.pipelines.StackedEnsembleRegressor

method), 1899
save() (evalml.pipelines.StandardScaler method), 1901
save() (evalml.pipelines.SVMClassifier method), 1905
save() (evalml.pipelines.SVMRegressor method), 1908
save() (evalml.pipelines.TargetEncoder method), 1910
save() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1712
save() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1719
save() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1727
save() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1734
save() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1743
save() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1918
save() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1925
save() (evalml.pipelines.TimeSeriesFeaturizer method),

1929
save() (evalml.pipelines.TimeSeriesImputer method),

1932
save() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1939
save() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1947
save() (evalml.pipelines.TimeSeriesRegularizer

method), 1951
save() (evalml.pipelines.Transformer method), 1953
save() (evalml.pipelines.VARMAXRegressor method),

1957
save() (evalml.pipelines.VowpalWabbitBinaryClassifier

method), 1960
save() (evalml.pipelines.VowpalWabbitMulticlassClassifier

method), 1963
save() (evalml.pipelines.VowpalWabbitRegressor

method), 1966
save() (evalml.pipelines.XGBoostClassifier method),

1969
save() (evalml.pipelines.XGBoostRegressor method),

2246 Index

EvalML Documentation, Release 0.80.0

1972
save_plot() (in module evalml.utils), 2036
save_plot() (in module evalml.utils.gen_utils), 2028
scikit_learn_wrapped_estimator() (in module

evalml.pipelines.components.utils), 1425
score() (evalml.objectives.AccuracyBinary method),

602
score() (evalml.objectives.AccuracyMulticlass method),

604
score() (evalml.objectives.AUC method), 606
score() (evalml.objectives.AUCMacro method), 608
score() (evalml.objectives.AUCMicro method), 610
score() (evalml.objectives.AUCWeighted method), 611
score() (evalml.objectives.BalancedAccuracyBinary

method), 614
score() (evalml.objectives.BalancedAccuracyMulticlass

method), 615
score() (evalml.objectives.binary_classification_objective.BinaryClassificationObjective

method), 502
score() (evalml.objectives.BinaryClassificationObjective

method), 619
score() (evalml.objectives.cost_benefit_matrix.CostBenefitMatrix

method), 505
score() (evalml.objectives.CostBenefitMatrix method),

621
score() (evalml.objectives.ExpVariance method), 623
score() (evalml.objectives.F1 method), 625
score() (evalml.objectives.F1Macro method), 626
score() (evalml.objectives.F1Micro method), 628
score() (evalml.objectives.F1Weighted method), 630
score() (evalml.objectives.fraud_cost.FraudCost

method), 508
score() (evalml.objectives.FraudCost method), 633
score() (evalml.objectives.Gini method), 637
score() (evalml.objectives.lead_scoring.LeadScoring

method), 510
score() (evalml.objectives.LeadScoring method), 639
score() (evalml.objectives.LogLossBinary method), 641
score() (evalml.objectives.LogLossMulticlass method),

643
score() (evalml.objectives.MAE method), 645
score() (evalml.objectives.MAPE method), 647
score() (evalml.objectives.MASE method), 648
score() (evalml.objectives.MaxError method), 650
score() (evalml.objectives.MCCBinary method), 652
score() (evalml.objectives.MCCMulticlass method),

654
score() (evalml.objectives.MeanSquaredLogError

method), 656
score() (evalml.objectives.MedianAE method), 658
score() (evalml.objectives.MSE method), 659
score() (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective

method), 513
score() (evalml.objectives.MulticlassClassificationObjective

method), 661
score() (evalml.objectives.objective_base.ObjectiveBase

method), 515
score() (evalml.objectives.ObjectiveBase method), 664
score() (evalml.objectives.Precision method), 667
score() (evalml.objectives.PrecisionMacro method),

668
score() (evalml.objectives.PrecisionMicro method), 670
score() (evalml.objectives.PrecisionWeighted method),

672
score() (evalml.objectives.R2 method), 674
score() (evalml.objectives.Recall method), 676
score() (evalml.objectives.RecallMacro method), 678
score() (evalml.objectives.RecallMicro method), 679
score() (evalml.objectives.RecallWeighted method), 681
score() (evalml.objectives.regression_objective.RegressionObjective

method), 518
score() (evalml.objectives.RegressionObjective

method), 684
score() (evalml.objectives.RootMeanSquaredError

method), 686
score() (evalml.objectives.RootMeanSquaredLogError

method), 688
score() (evalml.objectives.sensitivity_low_alert.SensitivityLowAlert

method), 521
score() (evalml.objectives.SensitivityLowAlert method),

690
score() (evalml.objectives.SMAPE method), 692
score() (evalml.objectives.standard_metrics.AccuracyBinary

method), 525
score() (evalml.objectives.standard_metrics.AccuracyMulticlass

method), 526
score() (evalml.objectives.standard_metrics.AUC

method), 529
score() (evalml.objectives.standard_metrics.AUCMacro

method), 530
score() (evalml.objectives.standard_metrics.AUCMicro

method), 532
score() (evalml.objectives.standard_metrics.AUCWeighted

method), 534
score() (evalml.objectives.standard_metrics.BalancedAccuracyBinary

method), 536
score() (evalml.objectives.standard_metrics.BalancedAccuracyMulticlass

method), 538
score() (evalml.objectives.standard_metrics.ExpVariance

method), 539
score() (evalml.objectives.standard_metrics.F1

method), 542
score() (evalml.objectives.standard_metrics.F1Macro

method), 543
score() (evalml.objectives.standard_metrics.F1Micro

method), 545
score() (evalml.objectives.standard_metrics.F1Weighted

method), 547

Index 2247

EvalML Documentation, Release 0.80.0

score() (evalml.objectives.standard_metrics.Gini
method), 549

score() (evalml.objectives.standard_metrics.LogLossBinary
method), 551

score() (evalml.objectives.standard_metrics.LogLossMulticlass
method), 553

score() (evalml.objectives.standard_metrics.MAE
method), 555

score() (evalml.objectives.standard_metrics.MAPE
method), 557

score() (evalml.objectives.standard_metrics.MASE
method), 558

score() (evalml.objectives.standard_metrics.MaxError
method), 560

score() (evalml.objectives.standard_metrics.MCCBinary
method), 562

score() (evalml.objectives.standard_metrics.MCCMulticlass
method), 564

score() (evalml.objectives.standard_metrics.MeanSquaredLogError
method), 566

score() (evalml.objectives.standard_metrics.MedianAE
method), 568

score() (evalml.objectives.standard_metrics.MSE
method), 569

score() (evalml.objectives.standard_metrics.Precision
method), 572

score() (evalml.objectives.standard_metrics.PrecisionMacro
method), 573

score() (evalml.objectives.standard_metrics.PrecisionMicro
method), 575

score() (evalml.objectives.standard_metrics.PrecisionWeighted
method), 577

score() (evalml.objectives.standard_metrics.R2
method), 579

score() (evalml.objectives.standard_metrics.Recall
method), 581

score() (evalml.objectives.standard_metrics.RecallMacro
method), 583

score() (evalml.objectives.standard_metrics.RecallMicro
method), 584

score() (evalml.objectives.standard_metrics.RecallWeighted
method), 586

score() (evalml.objectives.standard_metrics.RootMeanSquaredError
method), 588

score() (evalml.objectives.standard_metrics.RootMeanSquaredLogError
method), 590

score() (evalml.objectives.standard_metrics.SMAPE
method), 591

score() (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
method), 594

score() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1660

score() (evalml.pipelines.BinaryClassificationPipeline
method), 1761

score() (evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1668

score() (evalml.pipelines.ClassificationPipeline
method), 1774

score() (evalml.pipelines.components.utils.WrappedSKClassifier
method), 1426

score() (evalml.pipelines.components.utils.WrappedSKRegressor
method), 1428

score() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1681

score() (evalml.pipelines.MulticlassClassificationPipeline
method), 1841

score() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1689

score() (evalml.pipelines.MultiseriesRegressionPipeline
method), 1849

score() (evalml.pipelines.pipeline_base.PipelineBase
method), 1695

score() (evalml.pipelines.PipelineBase method), 1863
score() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1703
score() (evalml.pipelines.RegressionPipeline method),

1879
score() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1712
score() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1719
score() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1727
score() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1734
score() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1743
score() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1918
score() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1925
score() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1939
score() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1947
score_needs_proba (evalml.objectives.binary_classification_objective.BinaryClassificationObjective

property), 502
score_needs_proba (evalml.objectives.BinaryClassificationObjective

property), 619
score_needs_proba (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective

property), 513
score_needs_proba (evalml.objectives.MulticlassClassificationObjective

property), 662
score_needs_proba (evalml.objectives.objective_base.ObjectiveBase

property), 516
score_needs_proba (evalml.objectives.ObjectiveBase

property), 664
score_needs_proba (evalml.objectives.regression_objective.RegressionObjective

2248 Index

EvalML Documentation, Release 0.80.0

property), 518
score_needs_proba (evalml.objectives.RegressionObjective

property), 684
score_needs_proba (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective

property), 594
score_pipeline() (in module

evalml.automl.engine.engine_base), 303
score_pipelines() (evalml.automl.automl_search.AutoMLSearch

method), 321
score_pipelines() (evalml.automl.AutoMLSearch

method), 338
score_pipelines() (evalml.AutoMLSearch method),

2043
search() (evalml.automl.automl_search.AutoMLSearch

method), 322
search() (evalml.automl.AutoMLSearch method), 338
search() (evalml.AutoMLSearch method), 2044
search() (in module evalml), 2044
search() (in module evalml.automl), 341
search() (in module evalml.automl.automl_search), 322
search_iteration_plot()

(evalml.automl.pipeline_search_plots.PipelineSearchPlots
method), 326

search_iterative() (in module evalml), 2045
search_iterative() (in module evalml.automl), 342
search_iterative() (in module

evalml.automl.automl_search), 323
SearchIterationPlot (class in

evalml.automl.pipeline_search_plots), 326
SEED_BOUNDS (in module evalml.utils), 2036
SEED_BOUNDS (in module evalml.utils.gen_utils), 2029
SelectByType (class in evalml.pipelines.components),

1578
SelectByType (class in

evalml.pipelines.components.transformers),
1379

SelectByType (class in
evalml.pipelines.components.transformers.column_selectors),
1300

SelectColumns (class in evalml.pipelines.components),
1580

SelectColumns (class in
evalml.pipelines.components.transformers),
1381

SelectColumns (class in
evalml.pipelines.components.transformers.column_selectors),
1302

send_data_to_cluster()
(evalml.automl.engine.dask_engine.DaskEngine
method), 299

send_data_to_cluster()
(evalml.automl.engine.DaskEngine method),
309

SensitivityLowAlert (class in evalml.objectives), 688

SensitivityLowAlert (class in
evalml.objectives.sensitivity_low_alert), 519

SequentialComputation (class in
evalml.automl.engine.sequential_engine),
305

SequentialEngine (class in evalml.automl), 343
SequentialEngine (class in evalml.automl.engine), 312
SequentialEngine (class in

evalml.automl.engine.sequential_engine),
306

set_fit() (evalml.pipelines.components.component_base_meta.ComponentBaseMeta
class method), 1421

set_fit() (evalml.pipelines.components.ComponentBaseMeta
class method), 1451

set_fit() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoderMeta
class method), 1069

set_fit() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoderMeta
class method), 1074

set_fit() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta
class method), 1142

set_fit() (evalml.pipelines.pipeline_meta.PipelineBaseMeta
class method), 1697

set_fit() (evalml.utils.base_meta.BaseMeta class
method), 2021

set_params() (evalml.pipelines.components.utils.WrappedSKClassifier
method), 1427

set_params() (evalml.pipelines.components.utils.WrappedSKRegressor
method), 1428

set_period() (evalml.pipelines.components.PolynomialDecomposer
method), 1553

set_period() (evalml.pipelines.components.STLDecomposer
method), 1602

set_period() (evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1364

set_period() (evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1228

set_period() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1169

set_period() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1196

set_period() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1253

set_period() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1205

set_period() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1261

set_period() (evalml.pipelines.components.transformers.STLDecomposer
method), 1393

setup_job_log() (evalml.automl.engine.cf_engine.CFEngine
static method), 297

setup_job_log() (evalml.automl.engine.CFEngine
static method), 308

setup_job_log() (evalml.automl.engine.dask_engine.DaskEngine
static method), 300

Index 2249

EvalML Documentation, Release 0.80.0

setup_job_log() (evalml.automl.engine.DaskEngine
static method), 309

setup_job_log() (evalml.automl.engine.engine_base.EngineBase
static method), 302

setup_job_log() (evalml.automl.engine.EngineBase
static method), 311

setup_job_log() (evalml.automl.engine.sequential_engine.SequentialEngine
static method), 306

setup_job_log() (evalml.automl.engine.SequentialEngine
static method), 312

setup_job_log() (evalml.automl.EngineBase static
method), 339

setup_job_log() (evalml.automl.SequentialEngine
static method), 343

should_continue() (evalml.automl.Progress method),
340

should_continue() (evalml.automl.progress.Progress
method), 327

silent_error_callback() (in module
evalml.automl.callbacks), 325

SimpleImputer (class in evalml.pipelines), 1886
SimpleImputer (class in evalml.pipelines.components),

1582
SimpleImputer (class in

evalml.pipelines.components.transformers),
1383

SimpleImputer (class in
evalml.pipelines.components.transformers.imputers),
1153

SimpleImputer (class in
evalml.pipelines.components.transformers.imputers.simple_imputer),
1136

SKOptTuner (class in evalml.tuners), 2018
SKOptTuner (class in evalml.tuners.skopt_tuner), 2011
SMAPE (class in evalml.objectives), 690
SMAPE (class in evalml.objectives.standard_metrics), 590
sparsity_score() (evalml.data_checks.sparsity_data_check.SparsityDataCheck

static method), 387
sparsity_score() (evalml.data_checks.SparsityDataCheck

static method), 437
SparsityDataCheck (class in evalml.data_checks), 436
SparsityDataCheck (class in

evalml.data_checks.sparsity_data_check),
387

split() (evalml.preprocessing.data_splitters.KFold
method), 1982

split() (evalml.preprocessing.data_splitters.no_split.NoSplit
method), 1973

split() (evalml.preprocessing.data_splitters.NoSplit
method), 1983

split() (evalml.preprocessing.data_splitters.sk_splitters.KFold
method), 1975

split() (evalml.preprocessing.data_splitters.sk_splitters.StratifiedKFold
method), 1976

split() (evalml.preprocessing.data_splitters.StratifiedKFold
method), 1984

split() (evalml.preprocessing.data_splitters.time_series_split.TimeSeriesSplit
method), 1978

split() (evalml.preprocessing.data_splitters.TimeSeriesSplit
method), 1986

split() (evalml.preprocessing.data_splitters.training_validation_split.TrainingValidationSplit
method), 1981

split() (evalml.preprocessing.data_splitters.TrainingValidationSplit
method), 1988

split() (evalml.preprocessing.NoSplit method), 1992
split() (evalml.preprocessing.TimeSeriesSplit method),

1996
split() (evalml.preprocessing.TrainingValidationSplit

method), 1998
split_data() (in module evalml.preprocessing), 1993
split_data() (in module evalml.preprocessing.utils),

1989
split_multiseries_data() (in module

evalml.preprocessing), 1994
split_multiseries_data() (in module

evalml.preprocessing.utils), 1990
stack_data() (in module evalml.pipelines.utils), 1749
stack_X() (in module evalml.pipelines.utils), 1749
StackedEnsembleBase (class in evalml.pipelines), 1889
StackedEnsembleBase (class in

evalml.pipelines.components), 1585
StackedEnsembleBase (class in

evalml.pipelines.components.ensemble),
705

StackedEnsembleBase (class in
evalml.pipelines.components.ensemble.stacked_ensemble_base),
693

StackedEnsembleClassifier (class in
evalml.pipelines), 1892

StackedEnsembleClassifier (class in
evalml.pipelines.components), 1588

StackedEnsembleClassifier (class in
evalml.pipelines.components.ensemble),
708

StackedEnsembleClassifier (class in
evalml.pipelines.components.ensemble.stacked_ensemble_classifier),
696

StackedEnsembleRegressor (class in
evalml.pipelines), 1896

StackedEnsembleRegressor (class in
evalml.pipelines.components), 1592

StackedEnsembleRegressor (class in
evalml.pipelines.components.ensemble),
711

StackedEnsembleRegressor (class in
evalml.pipelines.components.ensemble.stacked_ensemble_regressor),
701

standardize_format() (in module

2250 Index

EvalML Documentation, Release 0.80.0

evalml.utils.cli_utils), 2023
StandardScaler (class in evalml.pipelines), 1899
StandardScaler (class in

evalml.pipelines.components), 1595
StandardScaler (class in

evalml.pipelines.components.transformers),
1386

StandardScaler (class in
evalml.pipelines.components.transformers.scalers),
1292

StandardScaler (class in
evalml.pipelines.components.transformers.scalers.standard_scaler),
1290

start_timing() (evalml.automl.Progress method), 341
start_timing() (evalml.automl.progress.Progress

method), 328
STLDecomposer (class in evalml.pipelines.components),

1598
STLDecomposer (class in

evalml.pipelines.components.transformers),
1388

STLDecomposer (class in
evalml.pipelines.components.transformers.preprocessing),
1257

STLDecomposer (class in
evalml.pipelines.components.transformers.preprocessing.stl_decomposer),
1200

StratifiedKFold (class in
evalml.preprocessing.data_splitters), 1983

StratifiedKFold (class in
evalml.preprocessing.data_splitters.sk_splitters),
1975

submit() (evalml.automl.engine.cf_engine.CFClient
method), 296

submit_evaluation_job()
(evalml.automl.engine.cf_engine.CFEngine
method), 297

submit_evaluation_job()
(evalml.automl.engine.CFEngine method),
308

submit_evaluation_job()
(evalml.automl.engine.dask_engine.DaskEngine
method), 300

submit_evaluation_job()
(evalml.automl.engine.DaskEngine method),
310

submit_evaluation_job()
(evalml.automl.engine.engine_base.EngineBase
method), 302

submit_evaluation_job()
(evalml.automl.engine.EngineBase method),
311

submit_evaluation_job()
(evalml.automl.engine.sequential_engine.SequentialEngine

method), 306
submit_evaluation_job()

(evalml.automl.engine.SequentialEngine
method), 312

submit_evaluation_job()
(evalml.automl.EngineBase method), 339

submit_evaluation_job()
(evalml.automl.SequentialEngine method),
343

submit_scoring_job()
(evalml.automl.engine.cf_engine.CFEngine
method), 297

submit_scoring_job()
(evalml.automl.engine.CFEngine method),
308

submit_scoring_job()
(evalml.automl.engine.dask_engine.DaskEngine
method), 300

submit_scoring_job()
(evalml.automl.engine.DaskEngine method),
310

submit_scoring_job()
(evalml.automl.engine.engine_base.EngineBase
method), 302

submit_scoring_job()
(evalml.automl.engine.EngineBase method),
311

submit_scoring_job()
(evalml.automl.engine.sequential_engine.SequentialEngine
method), 306

submit_scoring_job()
(evalml.automl.engine.SequentialEngine
method), 312

submit_scoring_job() (evalml.automl.EngineBase
method), 339

submit_scoring_job()
(evalml.automl.SequentialEngine method),
343

submit_training_job()
(evalml.automl.engine.cf_engine.CFEngine
method), 298

submit_training_job()
(evalml.automl.engine.CFEngine method),
309

submit_training_job()
(evalml.automl.engine.dask_engine.DaskEngine
method), 300

submit_training_job()
(evalml.automl.engine.DaskEngine method),
310

submit_training_job()
(evalml.automl.engine.engine_base.EngineBase
method), 302

submit_training_job()

Index 2251

EvalML Documentation, Release 0.80.0

(evalml.automl.engine.EngineBase method),
311

submit_training_job()
(evalml.automl.engine.sequential_engine.SequentialEngine
method), 306

submit_training_job()
(evalml.automl.engine.SequentialEngine
method), 313

submit_training_job() (evalml.automl.EngineBase
method), 339

submit_training_job()
(evalml.automl.SequentialEngine method),
344

summary (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
property), 1661

summary (evalml.pipelines.BinaryClassificationPipeline
property), 1762

summary (evalml.pipelines.classification_pipeline.ClassificationPipeline
property), 1668

summary (evalml.pipelines.ClassificationPipeline prop-
erty), 1774

summary (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
property), 1681

summary (evalml.pipelines.MulticlassClassificationPipeline
property), 1841

summary (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
property), 1689

summary (evalml.pipelines.MultiseriesRegressionPipeline
property), 1849

summary (evalml.pipelines.pipeline_base.PipelineBase
property), 1696

summary (evalml.pipelines.PipelineBase property), 1864
summary (evalml.pipelines.regression_pipeline.RegressionPipeline

property), 1704
summary (evalml.pipelines.RegressionPipeline property),

1880
summary (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

property), 1712
summary (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

property), 1720
summary (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1727
summary (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

property), 1735
summary (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

property), 1744
summary (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

property), 1918
summary (evalml.pipelines.TimeSeriesClassificationPipeline

property), 1925
summary (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1939
summary (evalml.pipelines.TimeSeriesRegressionPipeline

property), 1947

supported_problem_types
(evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
property), 696

supported_problem_types
(evalml.pipelines.components.ensemble.StackedEnsembleBase
property), 707

supported_problem_types
(evalml.pipelines.components.Estimator
property), 1486

supported_problem_types
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
property), 758

supported_problem_types
(evalml.pipelines.components.estimators.Estimator
property), 981

supported_problem_types
(evalml.pipelines.components.estimators.estimator.Estimator
property), 945

supported_problem_types
(evalml.pipelines.components.StackedEnsembleBase
property), 1588

supported_problem_types
(evalml.pipelines.Estimator property), 1803

supported_problem_types
(evalml.pipelines.StackedEnsembleBase prop-
erty), 1892

SVMClassifier (class in evalml.pipelines), 1902
SVMClassifier (class in evalml.pipelines.components),

1603
SVMClassifier (class in

evalml.pipelines.components.estimators),
1022

SVMClassifier (class in
evalml.pipelines.components.estimators.classifiers),
800

SVMClassifier (class in
evalml.pipelines.components.estimators.classifiers.svm_classifier),
751

SVMRegressor (class in evalml.pipelines), 1905
SVMRegressor (class in evalml.pipelines.components),

1606
SVMRegressor (class in

evalml.pipelines.components.estimators),
1025

SVMRegressor (class in
evalml.pipelines.components.estimators.regressors),
925

SVMRegressor (class in
evalml.pipelines.components.estimators.regressors.svm_regressor),
863

T
t_sne() (in module evalml.model_understanding), 498

2252 Index

EvalML Documentation, Release 0.80.0

t_sne() (in module evalml.model_understanding.visualizations),
484

target_distribution() (in module
evalml.preprocessing), 1994

target_distribution() (in module
evalml.preprocessing.utils), 1990

TargetDistributionDataCheck (class in
evalml.data_checks), 438

TargetDistributionDataCheck (class in
evalml.data_checks.target_distribution_data_check),
389

TargetEncoder (class in evalml.pipelines), 1908
TargetEncoder (class in evalml.pipelines.components),

1609
TargetEncoder (class in

evalml.pipelines.components.transformers),
1394

TargetEncoder (class in
evalml.pipelines.components.transformers.encoders),
1087

TargetEncoder (class in
evalml.pipelines.components.transformers.encoders.target_encoder),
1075

TargetImputer (class in evalml.pipelines.components),
1612

TargetImputer (class in
evalml.pipelines.components.transformers),
1397

TargetImputer (class in
evalml.pipelines.components.transformers.imputers),
1156

TargetImputer (class in
evalml.pipelines.components.transformers.imputers.target_imputer),
1139

TargetImputerMeta (class in
evalml.pipelines.components.transformers.imputers.target_imputer),
1141

TargetLeakageDataCheck (class in
evalml.data_checks), 440

TargetLeakageDataCheck (class in
evalml.data_checks.target_leakage_data_check),
391

TextTransformer (class in
evalml.pipelines.components.transformers.preprocessing),
1262

TextTransformer (class in
evalml.pipelines.components.transformers.preprocessing.text_transformer),
1206

threshold (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
property), 1661

threshold (evalml.pipelines.binary_classification_pipeline_mixin.BinaryClassificationPipelineMixin
property), 1662

threshold (evalml.pipelines.BinaryClassificationPipeline
property), 1762

threshold (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
property), 1712

threshold (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
property), 1918

time_elapsed() (in module evalml.utils.logger), 2030
TimeSeriesBaselineEstimator (class in

evalml.pipelines.components), 1615
TimeSeriesBaselineEstimator (class in

evalml.pipelines.components.estimators),
1028

TimeSeriesBaselineEstimator (class in
evalml.pipelines.components.estimators.regressors),
928

TimeSeriesBaselineEstimator (class in
evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator),
867

TimeSeriesBinaryClassificationPipeline (class
in evalml.pipelines), 1911

TimeSeriesBinaryClassificationPipeline (class
in evalml.pipelines.time_series_classification_pipelines),
1705

TimeSeriesClassificationPipeline (class in
evalml.pipelines), 1919

TimeSeriesClassificationPipeline (class in
evalml.pipelines.time_series_classification_pipelines),
1713

TimeSeriesFeaturizer (class in evalml.pipelines),
1926

TimeSeriesFeaturizer (class in
evalml.pipelines.components), 1618

TimeSeriesFeaturizer (class in
evalml.pipelines.components.transformers),
1399

TimeSeriesFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing),
1265

TimeSeriesFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing.time_series_featurizer),
1209

TimeSeriesImputer (class in evalml.pipelines), 1929
TimeSeriesImputer (class in

evalml.pipelines.components), 1621
TimeSeriesImputer (class in

evalml.pipelines.components.transformers),
1403

TimeSeriesImputer (class in
evalml.pipelines.components.transformers.imputers),
1159

TimeSeriesImputer (class in
evalml.pipelines.components.transformers.imputers.time_series_imputer),
1143

TimeSeriesMulticlassClassificationPipeline
(class in evalml.pipelines), 1932

TimeSeriesMulticlassClassificationPipeline

Index 2253

EvalML Documentation, Release 0.80.0

(class in evalml.pipelines.time_series_classification_pipelines),
1720

TimeSeriesParametersDataCheck (class in
evalml.data_checks), 442

TimeSeriesParametersDataCheck (class in
evalml.data_checks.ts_parameters_data_check),
393

TimeSeriesPipelineBase (class in
evalml.pipelines.time_series_pipeline_base),
1728

TimeSeriesRegressionObjective (class in
evalml.objectives.time_series_regression_objective),
592

TimeSeriesRegressionPipeline (class in
evalml.pipelines), 1940

TimeSeriesRegressionPipeline (class in
evalml.pipelines.time_series_regression_pipeline),
1736

TimeSeriesRegularizer (class in evalml.pipelines),
1948

TimeSeriesRegularizer (class in
evalml.pipelines.components), 1624

TimeSeriesRegularizer (class in
evalml.pipelines.components.transformers),
1406

TimeSeriesRegularizer (class in
evalml.pipelines.components.transformers.preprocessing),
1268

TimeSeriesRegularizer (class in
evalml.pipelines.components.transformers.preprocessing.time_series_regularizer),
1213

TimeSeriesSplit (class in evalml.preprocessing), 1995
TimeSeriesSplit (class in

evalml.preprocessing.data_splitters), 1984
TimeSeriesSplit (class in

evalml.preprocessing.data_splitters.time_series_split),
1977

TimeSeriesSplittingDataCheck (class in
evalml.data_checks), 443

TimeSeriesSplittingDataCheck (class in
evalml.data_checks.ts_splitting_data_check),
395

to_dict() (evalml.data_checks.data_check_action.DataCheckAction
method), 349

to_dict() (evalml.data_checks.data_check_action_option.DataCheckActionOption
method), 352

to_dict() (evalml.data_checks.data_check_message.DataCheckError
method), 354

to_dict() (evalml.data_checks.data_check_message.DataCheckMessage
method), 354

to_dict() (evalml.data_checks.data_check_message.DataCheckWarning
method), 355

to_dict() (evalml.data_checks.DataCheckAction
method), 405

to_dict() (evalml.data_checks.DataCheckActionOption
method), 407

to_dict() (evalml.data_checks.DataCheckError
method), 407

to_dict() (evalml.data_checks.DataCheckMessage
method), 407

to_dict() (evalml.data_checks.DataCheckWarning
method), 410

train_and_score_pipeline() (in module
evalml.automl.engine), 313

train_and_score_pipeline() (in module
evalml.automl.engine.engine_base), 304

train_pipeline() (in module evalml.automl.engine),
314

train_pipeline() (in module
evalml.automl.engine.engine_base), 304

train_pipelines() (evalml.automl.automl_search.AutoMLSearch
method), 322

train_pipelines() (evalml.automl.AutoMLSearch
method), 338

train_pipelines() (evalml.AutoMLSearch method),
2044

training_only (evalml.pipelines.components.component_base.ComponentBase
property), 1420

training_only (evalml.pipelines.components.ComponentBase
property), 1450

TrainingValidationSplit (class in
evalml.preprocessing), 1997

TrainingValidationSplit (class in
evalml.preprocessing.data_splitters), 1986

TrainingValidationSplit (class in
evalml.preprocessing.data_splitters.training_validation_split),
1979

transform() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1661

transform() (evalml.pipelines.BinaryClassificationPipeline
method), 1762

transform() (evalml.pipelines.classification_pipeline.ClassificationPipeline
method), 1668

transform() (evalml.pipelines.ClassificationPipeline
method), 1774

transform() (evalml.pipelines.component_graph.ComponentGraph
method), 1674

transform() (evalml.pipelines.ComponentGraph
method), 1780

transform() (evalml.pipelines.components.DateTimeFeaturizer
method), 1454

transform() (evalml.pipelines.components.DFSTransformer
method), 1464

transform() (evalml.pipelines.components.DropColumns
method), 1466

transform() (evalml.pipelines.components.DropNaNRowsTransformer
method), 1468

transform() (evalml.pipelines.components.DropNullColumns

2254 Index

EvalML Documentation, Release 0.80.0

method), 1471
transform() (evalml.pipelines.components.DropRowsTransformer

method), 1473
transform() (evalml.pipelines.components.EmailFeaturizer

method), 1482
transform() (evalml.pipelines.components.FeatureSelector

method), 1499
transform() (evalml.pipelines.components.Imputer

method), 1501
transform() (evalml.pipelines.components.LabelEncoder

method), 1507
transform() (evalml.pipelines.components.LinearDiscriminantAnalysis

method), 1517
transform() (evalml.pipelines.components.LogTransformer

method), 1526
transform() (evalml.pipelines.components.LSA

method), 1529
transform() (evalml.pipelines.components.NaturalLanguageFeaturizer

method), 1534
transform() (evalml.pipelines.components.OneHotEncoder

method), 1538
transform() (evalml.pipelines.components.OrdinalEncoder

method), 1541
transform() (evalml.pipelines.components.Oversampler

method), 1543
transform() (evalml.pipelines.components.PCA

method), 1546
transform() (evalml.pipelines.components.PerColumnImputer

method), 1548
transform() (evalml.pipelines.components.PolynomialDecomposer

method), 1553
transform() (evalml.pipelines.components.ReplaceNullableTypes

method), 1565
transform() (evalml.pipelines.components.RFClassifierRFESelector

method), 1568
transform() (evalml.pipelines.components.RFClassifierSelectFromModel

method), 1571
transform() (evalml.pipelines.components.RFRegressorRFESelector

method), 1574
transform() (evalml.pipelines.components.RFRegressorSelectFromModel

method), 1577
transform() (evalml.pipelines.components.SelectByType

method), 1580
transform() (evalml.pipelines.components.SelectColumns

method), 1582
transform() (evalml.pipelines.components.SimpleImputer

method), 1584
transform() (evalml.pipelines.components.StandardScaler

method), 1597
transform() (evalml.pipelines.components.STLDecomposer

method), 1602
transform() (evalml.pipelines.components.TargetEncoder

method), 1612
transform() (evalml.pipelines.components.TargetImputer

method), 1614
transform() (evalml.pipelines.components.TimeSeriesFeaturizer

method), 1621
transform() (evalml.pipelines.components.TimeSeriesImputer

method), 1623
transform() (evalml.pipelines.components.TimeSeriesRegularizer

method), 1627
transform() (evalml.pipelines.components.Transformer

method), 1629
transform() (evalml.pipelines.components.transformers.column_selectors.ColumnSelector

method), 1297
transform() (evalml.pipelines.components.transformers.column_selectors.DropColumns

method), 1299
transform() (evalml.pipelines.components.transformers.column_selectors.SelectByType

method), 1302
transform() (evalml.pipelines.components.transformers.column_selectors.SelectColumns

method), 1304
transform() (evalml.pipelines.components.transformers.DateTimeFeaturizer

method), 1312
transform() (evalml.pipelines.components.transformers.DFSTransformer

method), 1314
transform() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis

method), 1053
transform() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis

method), 1059
transform() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA

method), 1062
transform() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA

method), 1056
transform() (evalml.pipelines.components.transformers.DropColumns

method), 1317
transform() (evalml.pipelines.components.transformers.DropNaNRowsTransformer

method), 1319
transform() (evalml.pipelines.components.transformers.DropNullColumns

method), 1322
transform() (evalml.pipelines.components.transformers.DropRowsTransformer

method), 1324
transform() (evalml.pipelines.components.transformers.EmailFeaturizer

method), 1326
transform() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder

method), 1065
transform() (evalml.pipelines.components.transformers.encoders.LabelEncoder

method), 1080
transform() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder

method), 1069
transform() (evalml.pipelines.components.transformers.encoders.OneHotEncoder

method), 1084
transform() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder

method), 1073
transform() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder

method), 1087
transform() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder

method), 1077
transform() (evalml.pipelines.components.transformers.encoders.TargetEncoder

Index 2255

EvalML Documentation, Release 0.80.0

method), 1090
transform() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector

method), 1093
transform() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector

method), 1113
transform() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector

method), 1096
transform() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector

method), 1099
transform() (evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector

method), 1103
transform() (evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel

method), 1106
transform() (evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel

method), 1110
transform() (evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector

method), 1116
transform() (evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel

method), 1119
transform() (evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector

method), 1122
transform() (evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel

method), 1126
transform() (evalml.pipelines.components.transformers.FeatureSelector

method), 1329
transform() (evalml.pipelines.components.transformers.Imputer

method), 1332
transform() (evalml.pipelines.components.transformers.imputers.Imputer

method), 1148
transform() (evalml.pipelines.components.transformers.imputers.imputer.Imputer

method), 1129
transform() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer

method), 1132
transform() (evalml.pipelines.components.transformers.imputers.KNNImputer

method), 1151
transform() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer

method), 1135
transform() (evalml.pipelines.components.transformers.imputers.PerColumnImputer

method), 1153
transform() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer

method), 1138
transform() (evalml.pipelines.components.transformers.imputers.SimpleImputer

method), 1156
transform() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer

method), 1141
transform() (evalml.pipelines.components.transformers.imputers.TargetImputer

method), 1158
transform() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer

method), 1145
transform() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer

method), 1161
transform() (evalml.pipelines.components.transformers.LabelEncoder

method), 1335
transform() (evalml.pipelines.components.transformers.LinearDiscriminantAnalysis

method), 1337
transform() (evalml.pipelines.components.transformers.LogTransformer

method), 1339
transform() (evalml.pipelines.components.transformers.LSA

method), 1342
transform() (evalml.pipelines.components.transformers.NaturalLanguageFeaturizer

method), 1345
transform() (evalml.pipelines.components.transformers.OneHotEncoder

method), 1348
transform() (evalml.pipelines.components.transformers.OrdinalEncoder

method), 1351
transform() (evalml.pipelines.components.transformers.Oversampler

method), 1354
transform() (evalml.pipelines.components.transformers.PCA

method), 1356
transform() (evalml.pipelines.components.transformers.PerColumnImputer

method), 1359
transform() (evalml.pipelines.components.transformers.PolynomialDecomposer

method), 1364
transform() (evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer

method), 1165
transform() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer

method), 1225
transform() (evalml.pipelines.components.transformers.preprocessing.Decomposer

method), 1229
transform() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer

method), 1169
transform() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer

method), 1232
transform() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer

method), 1172
transform() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns

method), 1175
transform() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer

method), 1178
transform() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer

method), 1234
transform() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns

method), 1236
transform() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer

method), 1239
transform() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer

method), 1241
transform() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

method), 1181
transform() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer

method), 1184
transform() (evalml.pipelines.components.transformers.preprocessing.LogTransformer

method), 1244
transform() (evalml.pipelines.components.transformers.preprocessing.LSA

method), 1246
transform() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA

method), 1187
transform() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer

2256 Index

EvalML Documentation, Release 0.80.0

method), 1190
transform() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer

method), 1249
transform() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer

method), 1196
transform() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer

method), 1254
transform() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes

method), 1199
transform() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes

method), 1256
transform() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer

method), 1205
transform() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer

method), 1261
transform() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer

method), 1208
transform() (evalml.pipelines.components.transformers.preprocessing.TextTransformer

method), 1264
transform() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer

method), 1212
transform() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer

method), 1216
transform() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer

method), 1267
transform() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer

method), 1271
transform() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer

method), 1219
transform() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer

method), 1221
transform() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer

method), 1273
transform() (evalml.pipelines.components.transformers.ReplaceNullableTypes

method), 1367
transform() (evalml.pipelines.components.transformers.RFClassifierRFESelector

method), 1370
transform() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel

method), 1373
transform() (evalml.pipelines.components.transformers.RFRegressorRFESelector

method), 1376
transform() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel

method), 1379
transform() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler

method), 1276
transform() (evalml.pipelines.components.transformers.samplers.Oversampler

method), 1286
transform() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler

method), 1279
transform() (evalml.pipelines.components.transformers.samplers.Undersampler

method), 1289
transform() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler

method), 1283
transform() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler

method), 1291
transform() (evalml.pipelines.components.transformers.scalers.StandardScaler

method), 1294
transform() (evalml.pipelines.components.transformers.SelectByType

method), 1381
transform() (evalml.pipelines.components.transformers.SelectColumns

method), 1383
transform() (evalml.pipelines.components.transformers.SimpleImputer

method), 1386
transform() (evalml.pipelines.components.transformers.StandardScaler

method), 1388
transform() (evalml.pipelines.components.transformers.STLDecomposer

method), 1393
transform() (evalml.pipelines.components.transformers.TargetEncoder

method), 1396
transform() (evalml.pipelines.components.transformers.TargetImputer

method), 1399
transform() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer

method), 1402
transform() (evalml.pipelines.components.transformers.TimeSeriesImputer

method), 1405
transform() (evalml.pipelines.components.transformers.TimeSeriesRegularizer

method), 1408
transform() (evalml.pipelines.components.transformers.Transformer

method), 1411
transform() (evalml.pipelines.components.transformers.transformer.Transformer

method), 1307
transform() (evalml.pipelines.components.transformers.Undersampler

method), 1414
transform() (evalml.pipelines.components.transformers.URLFeaturizer

method), 1417
transform() (evalml.pipelines.components.Undersampler

method), 1632
transform() (evalml.pipelines.components.URLFeaturizer

method), 1635
transform() (evalml.pipelines.DFSTransformer

method), 1790
transform() (evalml.pipelines.DropNaNRowsTransformer

method), 1793
transform() (evalml.pipelines.FeatureSelector

method), 1815
transform() (evalml.pipelines.Imputer method), 1818
transform() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1681
transform() (evalml.pipelines.MulticlassClassificationPipeline

method), 1841
transform() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1689
transform() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1849
transform() (evalml.pipelines.OneHotEncoder

method), 1853
transform() (evalml.pipelines.OrdinalEncoder

method), 1856

Index 2257

EvalML Documentation, Release 0.80.0

transform() (evalml.pipelines.PerColumnImputer
method), 1858

transform() (evalml.pipelines.pipeline_base.PipelineBase
method), 1696

transform() (evalml.pipelines.PipelineBase method),
1864

transform() (evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1704

transform() (evalml.pipelines.RegressionPipeline
method), 1880

transform() (evalml.pipelines.RFClassifierSelectFromModel
method), 1883

transform() (evalml.pipelines.RFRegressorSelectFromModel
method), 1886

transform() (evalml.pipelines.SimpleImputer method),
1888

transform() (evalml.pipelines.StandardScaler method),
1901

transform() (evalml.pipelines.TargetEncoder method),
1911

transform() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1712

transform() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1720

transform() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1727

transform() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1735

transform() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1744

transform() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1918

transform() (evalml.pipelines.TimeSeriesClassificationPipeline
method), 1926

transform() (evalml.pipelines.TimeSeriesFeaturizer
method), 1929

transform() (evalml.pipelines.TimeSeriesImputer
method), 1932

transform() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1939

transform() (evalml.pipelines.TimeSeriesRegressionPipeline
method), 1947

transform() (evalml.pipelines.TimeSeriesRegularizer
method), 1951

transform() (evalml.pipelines.Transformer method),
1953

transform_all_but_final()
(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
method), 1661

transform_all_but_final()
(evalml.pipelines.BinaryClassificationPipeline
method), 1762

transform_all_but_final()
(evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1669
transform_all_but_final()

(evalml.pipelines.ClassificationPipeline
method), 1775

transform_all_but_final()
(evalml.pipelines.component_graph.ComponentGraph
method), 1674

transform_all_but_final()
(evalml.pipelines.ComponentGraph method),
1780

transform_all_but_final()
(evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
method), 1682

transform_all_but_final()
(evalml.pipelines.MulticlassClassificationPipeline
method), 1842

transform_all_but_final()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1690

transform_all_but_final()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1849

transform_all_but_final()
(evalml.pipelines.pipeline_base.PipelineBase
method), 1696

transform_all_but_final()
(evalml.pipelines.PipelineBase method),
1864

transform_all_but_final()
(evalml.pipelines.regression_pipeline.RegressionPipeline
method), 1704

transform_all_but_final()
(evalml.pipelines.RegressionPipeline method),
1880

transform_all_but_final()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1713

transform_all_but_final()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1720

transform_all_but_final()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1728

transform_all_but_final()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1735

transform_all_but_final()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1744

transform_all_but_final()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1919

transform_all_but_final()
(evalml.pipelines.TimeSeriesClassificationPipeline

2258 Index

EvalML Documentation, Release 0.80.0

method), 1926
transform_all_but_final()

(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1939

transform_all_but_final()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1948

Transformer (class in evalml.pipelines), 1951
Transformer (class in evalml.pipelines.components),

1627
Transformer (class in

evalml.pipelines.components.transformers),
1409

Transformer (class in
evalml.pipelines.components.transformers.transformer),
1305

tune_binary_threshold() (in module evalml.automl),
344

tune_binary_threshold() (in module
evalml.automl.utils), 330

Tuner (class in evalml.tuners), 2019
Tuner (class in evalml.tuners.tuner), 2013

U
Undersampler (class in evalml.pipelines.components),

1630
Undersampler (class in

evalml.pipelines.components.transformers),
1412

Undersampler (class in
evalml.pipelines.components.transformers.samplers),
1286

Undersampler (class in
evalml.pipelines.components.transformers.samplers.undersampler),
1280

uniqueness_score() (evalml.data_checks.uniqueness_data_check.UniquenessDataCheck
static method), 397

uniqueness_score() (evalml.data_checks.UniquenessDataCheck
static method), 445

UniquenessDataCheck (class in evalml.data_checks),
444

UniquenessDataCheck (class in
evalml.data_checks.uniqueness_data_check),
397

unstack_multiseries() (in module
evalml.pipelines.utils), 1750

update() (evalml.automl.pipeline_search_plots.SearchIterationPlot
method), 326

update_parameters()
(evalml.pipelines.ARIMARegressor method),
1755

update_parameters()
(evalml.pipelines.CatBoostClassifier method),
1765

update_parameters()
(evalml.pipelines.CatBoostRegressor method),
1768

update_parameters()
(evalml.pipelines.components.ARIMARegressor
method), 1435

update_parameters()
(evalml.pipelines.components.BaselineClassifier
method), 1438

update_parameters()
(evalml.pipelines.components.BaselineRegressor
method), 1441

update_parameters()
(evalml.pipelines.components.CatBoostClassifier
method), 1445

update_parameters()
(evalml.pipelines.components.CatBoostRegressor
method), 1448

update_parameters()
(evalml.pipelines.components.component_base.ComponentBase
method), 1420

update_parameters()
(evalml.pipelines.components.ComponentBase
method), 1450

update_parameters()
(evalml.pipelines.components.DateTimeFeaturizer
method), 1454

update_parameters()
(evalml.pipelines.components.DecisionTreeClassifier
method), 1457

update_parameters()
(evalml.pipelines.components.DecisionTreeRegressor
method), 1461

update_parameters()
(evalml.pipelines.components.DFSTransformer
method), 1464

update_parameters()
(evalml.pipelines.components.DropColumns
method), 1466

update_parameters()
(evalml.pipelines.components.DropNaNRowsTransformer
method), 1469

update_parameters()
(evalml.pipelines.components.DropNullColumns
method), 1471

update_parameters()
(evalml.pipelines.components.DropRowsTransformer
method), 1474

update_parameters()
(evalml.pipelines.components.ElasticNetClassifier
method), 1477

update_parameters()
(evalml.pipelines.components.ElasticNetRegressor
method), 1480

Index 2259

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.EmailFeaturizer
method), 1482

update_parameters()
(evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase
method), 696

update_parameters()
(evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier
method), 700

update_parameters()
(evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor
method), 704

update_parameters()
(evalml.pipelines.components.ensemble.StackedEnsembleBase
method), 707

update_parameters()
(evalml.pipelines.components.ensemble.StackedEnsembleClassifier
method), 711

update_parameters()
(evalml.pipelines.components.ensemble.StackedEnsembleRegressor
method), 715

update_parameters()
(evalml.pipelines.components.Estimator
method), 1486

update_parameters()
(evalml.pipelines.components.estimators.ARIMARegressor
method), 950

update_parameters()
(evalml.pipelines.components.estimators.BaselineClassifier
method), 953

update_parameters()
(evalml.pipelines.components.estimators.BaselineRegressor
method), 956

update_parameters()
(evalml.pipelines.components.estimators.CatBoostClassifier
method), 960

update_parameters()
(evalml.pipelines.components.estimators.CatBoostRegressor
method), 963

update_parameters()
(evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier
method), 719

update_parameters()
(evalml.pipelines.components.estimators.classifiers.BaselineClassifier
method), 772

update_parameters()
(evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier
method), 723

update_parameters()
(evalml.pipelines.components.estimators.classifiers.CatBoostClassifier
method), 775

update_parameters()
(evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier
method), 727

update_parameters()
(evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier
method), 779

update_parameters()
(evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier
method), 731

update_parameters()
(evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier
method), 782

update_parameters()
(evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier
method), 735

update_parameters()
(evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier
method), 786

update_parameters()
(evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier
method), 739

update_parameters()
(evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier
method), 790

update_parameters()
(evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier
method), 743

update_parameters()
(evalml.pipelines.components.estimators.classifiers.LightGBMClassifier
method), 793

update_parameters()
(evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier
method), 747

update_parameters()
(evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier
method), 797

update_parameters()
(evalml.pipelines.components.estimators.classifiers.RandomForestClassifier
method), 800

update_parameters()
(evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier
method), 751

update_parameters()
(evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier
method), 754

update_parameters()
(evalml.pipelines.components.estimators.classifiers.SVMClassifier
method), 803

update_parameters()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier
method), 758

update_parameters()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier
method), 761

update_parameters()
(evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier
method), 765

2260 Index

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier
method), 807

update_parameters()
(evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier
method), 810

update_parameters()
(evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier
method), 768

update_parameters()
(evalml.pipelines.components.estimators.classifiers.XGBoostClassifier
method), 813

update_parameters()
(evalml.pipelines.components.estimators.DecisionTreeClassifier
method), 967

update_parameters()
(evalml.pipelines.components.estimators.DecisionTreeRegressor
method), 971

update_parameters()
(evalml.pipelines.components.estimators.ElasticNetClassifier
method), 974

update_parameters()
(evalml.pipelines.components.estimators.ElasticNetRegressor
method), 977

update_parameters()
(evalml.pipelines.components.estimators.Estimator
method), 981

update_parameters()
(evalml.pipelines.components.estimators.estimator.Estimator
method), 945

update_parameters()
(evalml.pipelines.components.estimators.ExponentialSmoothingRegressor
method), 984

update_parameters()
(evalml.pipelines.components.estimators.ExtraTreesClassifier
method), 988

update_parameters()
(evalml.pipelines.components.estimators.ExtraTreesRegressor
method), 991

update_parameters()
(evalml.pipelines.components.estimators.KNeighborsClassifier
method), 995

update_parameters()
(evalml.pipelines.components.estimators.LightGBMClassifier
method), 999

update_parameters()
(evalml.pipelines.components.estimators.LightGBMRegressor
method), 1002

update_parameters()
(evalml.pipelines.components.estimators.LinearRegressor
method), 1005

update_parameters()
(evalml.pipelines.components.estimators.LogisticRegressionClassifier
method), 1009

update_parameters()
(evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor
method), 1012

update_parameters()
(evalml.pipelines.components.estimators.ProphetRegressor
method), 1016

update_parameters()
(evalml.pipelines.components.estimators.RandomForestClassifier
method), 1019

update_parameters()
(evalml.pipelines.components.estimators.RandomForestRegressor
method), 1022

update_parameters()
(evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor
method), 819

update_parameters()
(evalml.pipelines.components.estimators.regressors.ARIMARegressor
method), 887

update_parameters()
(evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor
method), 822

update_parameters()
(evalml.pipelines.components.estimators.regressors.BaselineRegressor
method), 890

update_parameters()
(evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor
method), 826

update_parameters()
(evalml.pipelines.components.estimators.regressors.CatBoostRegressor
method), 894

update_parameters()
(evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor
method), 830

update_parameters()
(evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor
method), 897

update_parameters()
(evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor
method), 834

update_parameters()
(evalml.pipelines.components.estimators.regressors.ElasticNetRegressor
method), 901

update_parameters()
(evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor
method), 838

update_parameters()
(evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor
method), 842

update_parameters()
(evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor
method), 904

update_parameters()
(evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor
method), 908

Index 2261

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor
method), 846

update_parameters()
(evalml.pipelines.components.estimators.regressors.LightGBMRegressor
method), 912

update_parameters()
(evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor
method), 850

update_parameters()
(evalml.pipelines.components.estimators.regressors.LinearRegressor
method), 915

update_parameters()
(evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor
method), 853

update_parameters()
(evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor
method), 918

update_parameters()
(evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor
method), 859

update_parameters()
(evalml.pipelines.components.estimators.regressors.ProphetRegressor
method), 922

update_parameters()
(evalml.pipelines.components.estimators.regressors.RandomForestRegressor
method), 925

update_parameters()
(evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor
method), 863

update_parameters()
(evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor
method), 866

update_parameters()
(evalml.pipelines.components.estimators.regressors.SVMRegressor
method), 928

update_parameters()
(evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator
method), 870

update_parameters()
(evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator
method), 931

update_parameters()
(evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor
method), 874

update_parameters()
(evalml.pipelines.components.estimators.regressors.VARMAXRegressor
method), 935

update_parameters()
(evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor
method), 878

update_parameters()
(evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor
method), 938

update_parameters()
(evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor
method), 882

update_parameters()
(evalml.pipelines.components.estimators.regressors.XGBoostRegressor
method), 941

update_parameters()
(evalml.pipelines.components.estimators.SVMClassifier
method), 1025

update_parameters()
(evalml.pipelines.components.estimators.SVMRegressor
method), 1028

update_parameters()
(evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator
method), 1031

update_parameters()
(evalml.pipelines.components.estimators.VARMAXRegressor
method), 1035

update_parameters()
(evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier
method), 1038

update_parameters()
(evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier
method), 1041

update_parameters()
(evalml.pipelines.components.estimators.VowpalWabbitRegressor
method), 1044

update_parameters()
(evalml.pipelines.components.estimators.XGBoostClassifier
method), 1047

update_parameters()
(evalml.pipelines.components.estimators.XGBoostRegressor
method), 1050

update_parameters()
(evalml.pipelines.components.ExponentialSmoothingRegressor
method), 1489

update_parameters()
(evalml.pipelines.components.ExtraTreesClassifier
method), 1493

update_parameters()
(evalml.pipelines.components.ExtraTreesRegressor
method), 1496

update_parameters()
(evalml.pipelines.components.FeatureSelector
method), 1499

update_parameters()
(evalml.pipelines.components.Imputer method),
1502

update_parameters()
(evalml.pipelines.components.KNeighborsClassifier
method), 1505

update_parameters()
(evalml.pipelines.components.LabelEncoder
method), 1507

2262 Index

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.LightGBMClassifier
method), 1511

update_parameters()
(evalml.pipelines.components.LightGBMRegressor
method), 1515

update_parameters()
(evalml.pipelines.components.LinearDiscriminantAnalysis
method), 1517

update_parameters()
(evalml.pipelines.components.LinearRegressor
method), 1520

update_parameters()
(evalml.pipelines.components.LogisticRegressionClassifier
method), 1524

update_parameters()
(evalml.pipelines.components.LogTransformer
method), 1526

update_parameters()
(evalml.pipelines.components.LSA method),
1529

update_parameters()
(evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor
method), 1532

update_parameters()
(evalml.pipelines.components.NaturalLanguageFeaturizer
method), 1534

update_parameters()
(evalml.pipelines.components.OneHotEncoder
method), 1538

update_parameters()
(evalml.pipelines.components.OrdinalEncoder
method), 1541

update_parameters()
(evalml.pipelines.components.Oversampler
method), 1544

update_parameters()
(evalml.pipelines.components.PCA method),
1546

update_parameters()
(evalml.pipelines.components.PerColumnImputer
method), 1549

update_parameters()
(evalml.pipelines.components.PolynomialDecomposer
method), 1554

update_parameters()
(evalml.pipelines.components.ProphetRegressor
method), 1557

update_parameters()
(evalml.pipelines.components.RandomForestClassifier
method), 1560

update_parameters()
(evalml.pipelines.components.RandomForestRegressor
method), 1563

update_parameters()
(evalml.pipelines.components.ReplaceNullableTypes
method), 1565

update_parameters()
(evalml.pipelines.components.RFClassifierRFESelector
method), 1568

update_parameters()
(evalml.pipelines.components.RFClassifierSelectFromModel
method), 1571

update_parameters()
(evalml.pipelines.components.RFRegressorRFESelector
method), 1574

update_parameters()
(evalml.pipelines.components.RFRegressorSelectFromModel
method), 1577

update_parameters()
(evalml.pipelines.components.SelectByType
method), 1580

update_parameters()
(evalml.pipelines.components.SelectColumns
method), 1582

update_parameters()
(evalml.pipelines.components.SimpleImputer
method), 1585

update_parameters()
(evalml.pipelines.components.StackedEnsembleBase
method), 1588

update_parameters()
(evalml.pipelines.components.StackedEnsembleClassifier
method), 1592

update_parameters()
(evalml.pipelines.components.StackedEnsembleRegressor
method), 1595

update_parameters()
(evalml.pipelines.components.StandardScaler
method), 1598

update_parameters()
(evalml.pipelines.components.STLDecomposer
method), 1603

update_parameters()
(evalml.pipelines.components.SVMClassifier
method), 1606

update_parameters()
(evalml.pipelines.components.SVMRegressor
method), 1609

update_parameters()
(evalml.pipelines.components.TargetEncoder
method), 1612

update_parameters()
(evalml.pipelines.components.TargetImputer
method), 1615

update_parameters()
(evalml.pipelines.components.TimeSeriesBaselineEstimator
method), 1618

Index 2263

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.TimeSeriesFeaturizer
method), 1621

update_parameters()
(evalml.pipelines.components.TimeSeriesImputer
method), 1624

update_parameters()
(evalml.pipelines.components.TimeSeriesRegularizer
method), 1627

update_parameters()
(evalml.pipelines.components.Transformer
method), 1629

update_parameters()
(evalml.pipelines.components.transformers.column_selectors.ColumnSelector
method), 1297

update_parameters()
(evalml.pipelines.components.transformers.column_selectors.DropColumns
method), 1300

update_parameters()
(evalml.pipelines.components.transformers.column_selectors.SelectByType
method), 1302

update_parameters()
(evalml.pipelines.components.transformers.column_selectors.SelectColumns
method), 1304

update_parameters()
(evalml.pipelines.components.transformers.DateTimeFeaturizer
method), 1312

update_parameters()
(evalml.pipelines.components.transformers.DFSTransformer
method), 1315

update_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis
method), 1054

update_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis
method), 1059

update_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.PCA
method), 1062

update_parameters()
(evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA
method), 1056

update_parameters()
(evalml.pipelines.components.transformers.DropColumns
method), 1317

update_parameters()
(evalml.pipelines.components.transformers.DropNaNRowsTransformer
method), 1319

update_parameters()
(evalml.pipelines.components.transformers.DropNullColumns
method), 1322

update_parameters()
(evalml.pipelines.components.transformers.DropRowsTransformer
method), 1324

update_parameters()
(evalml.pipelines.components.transformers.EmailFeaturizer
method), 1327

update_parameters()
(evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder
method), 1065

update_parameters()
(evalml.pipelines.components.transformers.encoders.LabelEncoder
method), 1080

update_parameters()
(evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
method), 1069

update_parameters()
(evalml.pipelines.components.transformers.encoders.OneHotEncoder
method), 1084

update_parameters()
(evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
method), 1073

update_parameters()
(evalml.pipelines.components.transformers.encoders.OrdinalEncoder
method), 1087

update_parameters()
(evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder
method), 1077

update_parameters()
(evalml.pipelines.components.transformers.encoders.TargetEncoder
method), 1090

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector
method), 1093

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.FeatureSelector
method), 1113

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector
method), 1097

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector
method), 1100

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector
method), 1103

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel
method), 1106

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel
method), 1110

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector
method), 1116

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel
method), 1119

2264 Index

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector
method), 1123

update_parameters()
(evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel
method), 1126

update_parameters()
(evalml.pipelines.components.transformers.FeatureSelector
method), 1330

update_parameters()
(evalml.pipelines.components.transformers.Imputer
method), 1332

update_parameters()
(evalml.pipelines.components.transformers.imputers.Imputer
method), 1149

update_parameters()
(evalml.pipelines.components.transformers.imputers.imputer.Imputer
method), 1129

update_parameters()
(evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer
method), 1132

update_parameters()
(evalml.pipelines.components.transformers.imputers.KNNImputer
method), 1151

update_parameters()
(evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer
method), 1135

update_parameters()
(evalml.pipelines.components.transformers.imputers.PerColumnImputer
method), 1153

update_parameters()
(evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer
method), 1138

update_parameters()
(evalml.pipelines.components.transformers.imputers.SimpleImputer
method), 1156

update_parameters()
(evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer
method), 1141

update_parameters()
(evalml.pipelines.components.transformers.imputers.TargetImputer
method), 1159

update_parameters()
(evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer
method), 1145

update_parameters()
(evalml.pipelines.components.transformers.imputers.TimeSeriesImputer
method), 1161

update_parameters()
(evalml.pipelines.components.transformers.LabelEncoder
method), 1335

update_parameters()
(evalml.pipelines.components.transformers.LinearDiscriminantAnalysis
method), 1337

update_parameters()
(evalml.pipelines.components.transformers.LogTransformer
method), 1340

update_parameters()
(evalml.pipelines.components.transformers.LSA
method), 1342

update_parameters()
(evalml.pipelines.components.transformers.NaturalLanguageFeaturizer
method), 1345

update_parameters()
(evalml.pipelines.components.transformers.OneHotEncoder
method), 1348

update_parameters()
(evalml.pipelines.components.transformers.OrdinalEncoder
method), 1351

update_parameters()
(evalml.pipelines.components.transformers.Oversampler
method), 1354

update_parameters()
(evalml.pipelines.components.transformers.PCA
method), 1357

update_parameters()
(evalml.pipelines.components.transformers.PerColumnImputer
method), 1359

update_parameters()
(evalml.pipelines.components.transformers.PolynomialDecomposer
method), 1365

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer
method), 1165

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer
method), 1225

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.Decomposer
method), 1229

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer
method), 1170

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.DFSTransformer
method), 1232

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer
method), 1172

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns
method), 1175

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer
method), 1178

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer
method), 1234

Index 2265

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.DropNullColumns
method), 1237

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer
method), 1239

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer
method), 1242

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer
method), 1182

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer
method), 1184

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.LogTransformer
method), 1244

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.LSA
method), 1246

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.lsa.LSA
method), 1187

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer
method), 1190

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer
method), 1249

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer
method), 1197

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer
method), 1254

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes
method), 1199

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes
method), 1256

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer
method), 1206

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.STLDecomposer
method), 1262

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer
method), 1209

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.TextTransformer
method), 1264

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer
method), 1212

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer
method), 1216

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer
method), 1268

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer
method), 1271

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer
method), 1219

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer
method), 1221

update_parameters()
(evalml.pipelines.components.transformers.preprocessing.URLFeaturizer
method), 1273

update_parameters()
(evalml.pipelines.components.transformers.ReplaceNullableTypes
method), 1367

update_parameters()
(evalml.pipelines.components.transformers.RFClassifierRFESelector
method), 1370

update_parameters()
(evalml.pipelines.components.transformers.RFClassifierSelectFromModel
method), 1373

update_parameters()
(evalml.pipelines.components.transformers.RFRegressorRFESelector
method), 1376

update_parameters()
(evalml.pipelines.components.transformers.RFRegressorSelectFromModel
method), 1379

update_parameters()
(evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler
method), 1276

update_parameters()
(evalml.pipelines.components.transformers.samplers.Oversampler
method), 1286

update_parameters()
(evalml.pipelines.components.transformers.samplers.oversampler.Oversampler
method), 1279

update_parameters()
(evalml.pipelines.components.transformers.samplers.Undersampler
method), 1289

update_parameters()
(evalml.pipelines.components.transformers.samplers.undersampler.Undersampler
method), 1283

update_parameters()
(evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler
method), 1292

2266 Index

EvalML Documentation, Release 0.80.0

update_parameters()
(evalml.pipelines.components.transformers.scalers.StandardScaler
method), 1294

update_parameters()
(evalml.pipelines.components.transformers.SelectByType
method), 1381

update_parameters()
(evalml.pipelines.components.transformers.SelectColumns
method), 1383

update_parameters()
(evalml.pipelines.components.transformers.SimpleImputer
method), 1386

update_parameters()
(evalml.pipelines.components.transformers.StandardScaler
method), 1388

update_parameters()
(evalml.pipelines.components.transformers.STLDecomposer
method), 1394

update_parameters()
(evalml.pipelines.components.transformers.TargetEncoder
method), 1397

update_parameters()
(evalml.pipelines.components.transformers.TargetImputer
method), 1399

update_parameters()
(evalml.pipelines.components.transformers.TimeSeriesFeaturizer
method), 1403

update_parameters()
(evalml.pipelines.components.transformers.TimeSeriesImputer
method), 1405

update_parameters()
(evalml.pipelines.components.transformers.TimeSeriesRegularizer
method), 1408

update_parameters()
(evalml.pipelines.components.transformers.Transformer
method), 1411

update_parameters()
(evalml.pipelines.components.transformers.transformer.Transformer
method), 1307

update_parameters()
(evalml.pipelines.components.transformers.Undersampler
method), 1415

update_parameters()
(evalml.pipelines.components.transformers.URLFeaturizer
method), 1417

update_parameters()
(evalml.pipelines.components.Undersampler
method), 1632

update_parameters()
(evalml.pipelines.components.URLFeaturizer
method), 1635

update_parameters()
(evalml.pipelines.components.VARMAXRegressor
method), 1638

update_parameters()
(evalml.pipelines.components.VowpalWabbitBinaryClassifier
method), 1641

update_parameters()
(evalml.pipelines.components.VowpalWabbitMulticlassClassifier
method), 1644

update_parameters()
(evalml.pipelines.components.VowpalWabbitRegressor
method), 1647

update_parameters()
(evalml.pipelines.components.XGBoostClassifier
method), 1650

update_parameters()
(evalml.pipelines.components.XGBoostRegressor
method), 1653

update_parameters()
(evalml.pipelines.DecisionTreeClassifier
method), 1784

update_parameters()
(evalml.pipelines.DecisionTreeRegressor
method), 1788

update_parameters()
(evalml.pipelines.DFSTransformer method),
1791

update_parameters()
(evalml.pipelines.DropNaNRowsTransformer
method), 1793

update_parameters()
(evalml.pipelines.ElasticNetClassifier method),
1796

update_parameters()
(evalml.pipelines.ElasticNetRegressor method),
1799

update_parameters() (evalml.pipelines.Estimator
method), 1803

update_parameters()
(evalml.pipelines.ExponentialSmoothingRegressor
method), 1806

update_parameters()
(evalml.pipelines.ExtraTreesClassifier method),
1809

update_parameters()
(evalml.pipelines.ExtraTreesRegressor
method), 1813

update_parameters()
(evalml.pipelines.FeatureSelector method),
1816

update_parameters() (evalml.pipelines.Imputer
method), 1818

update_parameters()
(evalml.pipelines.KNeighborsClassifier
method), 1822

update_parameters()
(evalml.pipelines.LightGBMClassifier method),

Index 2267

EvalML Documentation, Release 0.80.0

1825
update_parameters()

(evalml.pipelines.LightGBMRegressor
method), 1829

update_parameters()
(evalml.pipelines.LinearRegressor method),
1832

update_parameters()
(evalml.pipelines.LogisticRegressionClassifier
method), 1835

update_parameters()
(evalml.pipelines.OneHotEncoder method),
1853

update_parameters()
(evalml.pipelines.OrdinalEncoder method),
1856

update_parameters()
(evalml.pipelines.PerColumnImputer method),
1859

update_parameters()
(evalml.pipelines.ProphetRegressor method),
1868

update_parameters()
(evalml.pipelines.RandomForestClassifier
method), 1871

update_parameters()
(evalml.pipelines.RandomForestRegressor
method), 1874

update_parameters()
(evalml.pipelines.RFClassifierSelectFromModel
method), 1883

update_parameters()
(evalml.pipelines.RFRegressorSelectFromModel
method), 1886

update_parameters()
(evalml.pipelines.SimpleImputer method),
1889

update_parameters()
(evalml.pipelines.StackedEnsembleBase
method), 1892

update_parameters()
(evalml.pipelines.StackedEnsembleClassifier
method), 1896

update_parameters()
(evalml.pipelines.StackedEnsembleRegressor
method), 1899

update_parameters()
(evalml.pipelines.StandardScaler method),
1902

update_parameters()
(evalml.pipelines.SVMClassifier method),
1905

update_parameters()
(evalml.pipelines.SVMRegressor method),

1908
update_parameters()

(evalml.pipelines.TargetEncoder method),
1911

update_parameters()
(evalml.pipelines.TimeSeriesFeaturizer
method), 1929

update_parameters()
(evalml.pipelines.TimeSeriesImputer method),
1932

update_parameters()
(evalml.pipelines.TimeSeriesRegularizer
method), 1951

update_parameters() (evalml.pipelines.Transformer
method), 1954

update_parameters()
(evalml.pipelines.VARMAXRegressor method),
1957

update_parameters()
(evalml.pipelines.VowpalWabbitBinaryClassifier
method), 1960

update_parameters()
(evalml.pipelines.VowpalWabbitMulticlassClassifier
method), 1963

update_parameters()
(evalml.pipelines.VowpalWabbitRegressor
method), 1966

update_parameters()
(evalml.pipelines.XGBoostClassifier method),
1969

update_parameters()
(evalml.pipelines.XGBoostRegressor method),
1972

URLFeaturizer (class in evalml.pipelines.components),
1633

URLFeaturizer (class in
evalml.pipelines.components.transformers),
1415

URLFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing),
1271

URLFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing.transform_primitive_components),
1219

V
validate() (evalml.data_checks.class_imbalance_data_check.ClassImbalanceDataCheck

method), 346
validate() (evalml.data_checks.ClassImbalanceDataCheck

method), 402
validate() (evalml.data_checks.data_check.DataCheck

method), 348
validate() (evalml.data_checks.data_checks.DataChecks

method), 358

2268 Index

EvalML Documentation, Release 0.80.0

validate() (evalml.data_checks.DataCheck method),
404

validate() (evalml.data_checks.DataChecks method),
410

validate() (evalml.data_checks.datetime_format_data_check.DateTimeFormatDataCheck
method), 359

validate() (evalml.data_checks.DateTimeFormatDataCheck
method), 411

validate() (evalml.data_checks.default_data_checks.DefaultDataChecks
method), 367

validate() (evalml.data_checks.DefaultDataChecks
method), 419

validate() (evalml.data_checks.id_columns_data_check.IDColumnsDataCheck
method), 368

validate() (evalml.data_checks.IDColumnsDataCheck
method), 420

validate() (evalml.data_checks.invalid_target_data_check.InvalidTargetDataCheck
method), 372

validate() (evalml.data_checks.InvalidTargetDataCheck
method), 424

validate() (evalml.data_checks.multicollinearity_data_check.MulticollinearityDataCheck
method), 376

validate() (evalml.data_checks.MulticollinearityDataCheck
method), 427

validate() (evalml.data_checks.no_variance_data_check.NoVarianceDataCheck
method), 377

validate() (evalml.data_checks.NoVarianceDataCheck
method), 428

validate() (evalml.data_checks.null_data_check.NullDataCheck
method), 381

validate() (evalml.data_checks.NullDataCheck
method), 431

validate() (evalml.data_checks.outliers_data_check.OutliersDataCheck
method), 385

validate() (evalml.data_checks.OutliersDataCheck
method), 436

validate() (evalml.data_checks.sparsity_data_check.SparsityDataCheck
method), 388

validate() (evalml.data_checks.SparsityDataCheck
method), 437

validate() (evalml.data_checks.target_distribution_data_check.TargetDistributionDataCheck
method), 389

validate() (evalml.data_checks.target_leakage_data_check.TargetLeakageDataCheck
method), 391

validate() (evalml.data_checks.TargetDistributionDataCheck
method), 438

validate() (evalml.data_checks.TargetLeakageDataCheck
method), 440

validate() (evalml.data_checks.TimeSeriesParametersDataCheck
method), 442

validate() (evalml.data_checks.TimeSeriesSplittingDataCheck
method), 443

validate() (evalml.data_checks.ts_parameters_data_check.TimeSeriesParametersDataCheck
method), 394

validate() (evalml.data_checks.ts_splitting_data_check.TimeSeriesSplittingDataCheck
method), 395

validate() (evalml.data_checks.uniqueness_data_check.UniquenessDataCheck
method), 398

validate() (evalml.data_checks.UniquenessDataCheck
method), 445

validate_holdout_datasets() (in module
evalml.utils.gen_utils), 2029

validate_inputs() (evalml.objectives.AccuracyBinary
method), 603

validate_inputs() (evalml.objectives.AccuracyMulticlass
method), 604

validate_inputs() (evalml.objectives.AUC method),
607

validate_inputs() (evalml.objectives.AUCMacro
method), 608

validate_inputs() (evalml.objectives.AUCMicro
method), 610

validate_inputs() (evalml.objectives.AUCWeighted
method), 612

validate_inputs() (evalml.objectives.BalancedAccuracyBinary
method), 614

validate_inputs() (evalml.objectives.BalancedAccuracyMulticlass
method), 616

validate_inputs() (evalml.objectives.binary_classification_objective.BinaryClassificationObjective
method), 502

validate_inputs() (evalml.objectives.BinaryClassificationObjective
method), 619

validate_inputs() (evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
method), 505

validate_inputs() (evalml.objectives.CostBenefitMatrix
method), 621

validate_inputs() (evalml.objectives.ExpVariance
method), 623

validate_inputs() (evalml.objectives.F1 method),
625

validate_inputs() (evalml.objectives.F1Macro
method), 627

validate_inputs() (evalml.objectives.F1Micro
method), 628

validate_inputs() (evalml.objectives.F1Weighted
method), 630

validate_inputs() (evalml.objectives.fraud_cost.FraudCost
method), 508

validate_inputs() (evalml.objectives.FraudCost
method), 633

validate_inputs() (evalml.objectives.Gini method),
637

validate_inputs() (evalml.objectives.lead_scoring.LeadScoring
method), 511

validate_inputs() (evalml.objectives.LeadScoring
method), 640

validate_inputs() (evalml.objectives.LogLossBinary
method), 642

Index 2269

EvalML Documentation, Release 0.80.0

validate_inputs() (evalml.objectives.LogLossMulticlass
method), 643

validate_inputs() (evalml.objectives.MAE method),
645

validate_inputs() (evalml.objectives.MAPE method),
647

validate_inputs() (evalml.objectives.MASE method),
649

validate_inputs() (evalml.objectives.MaxError
method), 650

validate_inputs() (evalml.objectives.MCCBinary
method), 653

validate_inputs() (evalml.objectives.MCCMulticlass
method), 654

validate_inputs() (evalml.objectives.MeanSquaredLogError
method), 656

validate_inputs() (evalml.objectives.MedianAE
method), 658

validate_inputs() (evalml.objectives.MSE method),
660

validate_inputs() (evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective
method), 513

validate_inputs() (evalml.objectives.MulticlassClassificationObjective
method), 662

validate_inputs() (evalml.objectives.objective_base.ObjectiveBase
method), 516

validate_inputs() (evalml.objectives.ObjectiveBase
method), 664

validate_inputs() (evalml.objectives.Precision
method), 667

validate_inputs() (evalml.objectives.PrecisionMacro
method), 669

validate_inputs() (evalml.objectives.PrecisionMicro
method), 670

validate_inputs() (evalml.objectives.PrecisionWeighted
method), 672

validate_inputs() (evalml.objectives.R2 method),
674

validate_inputs() (evalml.objectives.Recall method),
676

validate_inputs() (evalml.objectives.RecallMacro
method), 678

validate_inputs() (evalml.objectives.RecallMicro
method), 680

validate_inputs() (evalml.objectives.RecallWeighted
method), 681

validate_inputs() (evalml.objectives.regression_objective.RegressionObjective
method), 519

validate_inputs() (evalml.objectives.RegressionObjective
method), 684

validate_inputs() (evalml.objectives.RootMeanSquaredError
method), 686

validate_inputs() (evalml.objectives.RootMeanSquaredLogError
method), 688

validate_inputs() (evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
method), 522

validate_inputs() (evalml.objectives.SensitivityLowAlert
method), 690

validate_inputs() (evalml.objectives.SMAPE
method), 692

validate_inputs() (evalml.objectives.standard_metrics.AccuracyBinary
method), 525

validate_inputs() (evalml.objectives.standard_metrics.AccuracyMulticlass
method), 527

validate_inputs() (evalml.objectives.standard_metrics.AUC
method), 529

validate_inputs() (evalml.objectives.standard_metrics.AUCMacro
method), 531

validate_inputs() (evalml.objectives.standard_metrics.AUCMicro
method), 532

validate_inputs() (evalml.objectives.standard_metrics.AUCWeighted
method), 534

validate_inputs() (evalml.objectives.standard_metrics.BalancedAccuracyBinary
method), 537

validate_inputs() (evalml.objectives.standard_metrics.BalancedAccuracyMulticlass
method), 538

validate_inputs() (evalml.objectives.standard_metrics.ExpVariance
method), 540

validate_inputs() (evalml.objectives.standard_metrics.F1
method), 542

validate_inputs() (evalml.objectives.standard_metrics.F1Macro
method), 544

validate_inputs() (evalml.objectives.standard_metrics.F1Micro
method), 545

validate_inputs() (evalml.objectives.standard_metrics.F1Weighted
method), 547

validate_inputs() (evalml.objectives.standard_metrics.Gini
method), 550

validate_inputs() (evalml.objectives.standard_metrics.LogLossBinary
method), 552

validate_inputs() (evalml.objectives.standard_metrics.LogLossMulticlass
method), 553

validate_inputs() (evalml.objectives.standard_metrics.MAE
method), 555

validate_inputs() (evalml.objectives.standard_metrics.MAPE
method), 557

validate_inputs() (evalml.objectives.standard_metrics.MASE
method), 559

validate_inputs() (evalml.objectives.standard_metrics.MaxError
method), 560

validate_inputs() (evalml.objectives.standard_metrics.MCCBinary
method), 563

validate_inputs() (evalml.objectives.standard_metrics.MCCMulticlass
method), 564

validate_inputs() (evalml.objectives.standard_metrics.MeanSquaredLogError
method), 566

validate_inputs() (evalml.objectives.standard_metrics.MedianAE
method), 568

2270 Index

EvalML Documentation, Release 0.80.0

validate_inputs() (evalml.objectives.standard_metrics.MSE
method), 570

validate_inputs() (evalml.objectives.standard_metrics.Precision
method), 572

validate_inputs() (evalml.objectives.standard_metrics.PrecisionMacro
method), 574

validate_inputs() (evalml.objectives.standard_metrics.PrecisionMicro
method), 575

validate_inputs() (evalml.objectives.standard_metrics.PrecisionWeighted
method), 577

validate_inputs() (evalml.objectives.standard_metrics.R2
method), 579

validate_inputs() (evalml.objectives.standard_metrics.Recall
method), 581

validate_inputs() (evalml.objectives.standard_metrics.RecallMacro
method), 583

validate_inputs() (evalml.objectives.standard_metrics.RecallMicro
method), 585

validate_inputs() (evalml.objectives.standard_metrics.RecallWeighted
method), 586

validate_inputs() (evalml.objectives.standard_metrics.RootMeanSquaredError
method), 588

validate_inputs() (evalml.objectives.standard_metrics.RootMeanSquaredLogError
method), 590

validate_inputs() (evalml.objectives.standard_metrics.SMAPE
method), 592

validate_inputs() (evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective
method), 594

ValidationErrorCode (class in evalml.exceptions), 456
ValidationErrorCode (class in

evalml.exceptions.exceptions), 453
value() (evalml.data_checks.data_check_action_code.DataCheckActionCode

method), 350
value() (evalml.data_checks.data_check_action_option.DCAOParameterAllowedValuesType

method), 352
value() (evalml.data_checks.data_check_action_option.DCAOParameterType

method), 353
value() (evalml.data_checks.data_check_message_code.DataCheckMessageCode

method), 357
value() (evalml.data_checks.data_check_message_type.DataCheckMessageType

method), 357
value() (evalml.data_checks.DataCheckActionCode

method), 405
value() (evalml.data_checks.DataCheckMessageCode

method), 409
value() (evalml.data_checks.DataCheckMessageType

method), 410
value() (evalml.data_checks.DCAOParameterAllowedValuesType

method), 418
value() (evalml.data_checks.DCAOParameterType

method), 419
value() (evalml.exceptions.exceptions.PartialDependenceErrorCode

method), 453
value() (evalml.exceptions.exceptions.PipelineErrorCodeEnum

method), 453
value() (evalml.exceptions.exceptions.ValidationErrorCode

method), 454
value() (evalml.exceptions.PartialDependenceErrorCode

method), 456
value() (evalml.exceptions.PipelineErrorCodeEnum

method), 456
value() (evalml.exceptions.ValidationErrorCode

method), 457
value() (evalml.model_family.model_family.ModelFamily

method), 458
value() (evalml.model_family.ModelFamily method),

460
value() (evalml.model_understanding.prediction_explanations.explainers.ExplainPredictionsStage

method), 465
value() (evalml.problem_types.problem_types.ProblemTypes

method), 2000
value() (evalml.problem_types.ProblemTypes method),

2006
VARMAXRegressor (class in evalml.pipelines), 1954
VARMAXRegressor (class in

evalml.pipelines.components), 1635
VARMAXRegressor (class in

evalml.pipelines.components.estimators),
1032

VARMAXRegressor (class in
evalml.pipelines.components.estimators.regressors),
932

VARMAXRegressor (class in
evalml.pipelines.components.estimators.regressors.varmax_regressor),
871

visualize_decision_tree() (in module
evalml.model_understanding.visualizations),
484

VowpalWabbitBaseClassifier (class in
evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers),
755

VowpalWabbitBinaryClassifier (class in
evalml.pipelines), 1957

VowpalWabbitBinaryClassifier (class in
evalml.pipelines.components), 1638

VowpalWabbitBinaryClassifier (class in
evalml.pipelines.components.estimators),
1035

VowpalWabbitBinaryClassifier (class in
evalml.pipelines.components.estimators.classifiers),
803

VowpalWabbitBinaryClassifier (class in
evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers),
758

VowpalWabbitMulticlassClassifier (class in
evalml.pipelines), 1960

VowpalWabbitMulticlassClassifier (class in
evalml.pipelines.components), 1641

Index 2271

EvalML Documentation, Release 0.80.0

VowpalWabbitMulticlassClassifier (class in
evalml.pipelines.components.estimators), 1038

VowpalWabbitMulticlassClassifier (class in
evalml.pipelines.components.estimators.classifiers),
807

VowpalWabbitMulticlassClassifier (class in
evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers),
761

VowpalWabbitRegressor (class in evalml.pipelines),
1963

VowpalWabbitRegressor (class in
evalml.pipelines.components), 1644

VowpalWabbitRegressor (class in
evalml.pipelines.components.estimators),
1041

VowpalWabbitRegressor (class in
evalml.pipelines.components.estimators.regressors),
935

VowpalWabbitRegressor (class in
evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor),
875

W
warning() (evalml.automl.engine.engine_base.JobLogger

method), 303
warning_not_unique_enough (in module

evalml.data_checks.uniqueness_data_check),
399

warning_too_unique (in module
evalml.data_checks.sparsity_data_check),
389

warning_too_unique (in module
evalml.data_checks.uniqueness_data_check),
399

WrappedSKClassifier (class in
evalml.pipelines.components.utils), 1425

WrappedSKRegressor (class in
evalml.pipelines.components.utils), 1427

write_to_logger() (evalml.automl.engine.engine_base.JobLogger
method), 303

X
XGBoostClassifier (class in evalml.pipelines), 1966
XGBoostClassifier (class in

evalml.pipelines.components), 1647
XGBoostClassifier (class in

evalml.pipelines.components.estimators),
1044

XGBoostClassifier (class in
evalml.pipelines.components.estimators.classifiers),
810

XGBoostClassifier (class in
evalml.pipelines.components.estimators.classifiers.xgboost_classifier),
765

XGBoostRegressor (class in evalml.pipelines), 1969
XGBoostRegressor (class in

evalml.pipelines.components), 1650
XGBoostRegressor (class in

evalml.pipelines.components.estimators),
1047

XGBoostRegressor (class in
evalml.pipelines.components.estimators.regressors),
938

XGBoostRegressor (class in
evalml.pipelines.components.estimators.regressors.xgboost_regressor),
878

2272 Index

	Install
	EvalML with core dependencies only
	Add-ons
	Time Series support with Facebook’s Prophet
	Windows Additional Requirements & Troubleshooting
	Mac Additional Requirements & Troubleshooting
	Installing EvalML on an M1 Mac

	Start
	Tutorials
	Building a Fraud Prediction Model with EvalML
	Configure “Cost of Fraud”
	Search for best pipeline
	View rankings and select pipelines
	Describe pipelines

	Evaluate on holdout data
	Why optimize for a problem-specific objective?

	Building a Lead Scoring Model with EvalML
	Configure LeadScoring
	Dataset
	Search for the best pipeline
	View rankings and select pipeline
	Describe pipeline

	Evaluate on hold out
	Why optimize for a problem-specific objective?

	Using the Cost-Benefit Matrix Objective
	Confusion Matrix
	Cost-Benefit Matrix
	Customer Churn Example
	Data
	AutoML Search with Log Loss
	AutoML Search with Cost-Benefit Matrix

	Using Text Data with EvalML
	Dataset
	Search for best pipeline
	View rankings and select pipeline
	Describe pipeline

	Evaluate on holdout
	What does the Natural Language Featurizer do?
	The features, more directly

	Why encode text this way?

	User Guide
	Automated Machine Learning (AutoML) Search
	Background
	Machine Learning
	AutoML and Search

	AutoML in EvalML
	Data Checks
	Holdout Set for Pipeline Ranking
	Detecting Problem Type
	Objective parameter
	Using custom pipelines
	Stopping the search early
	Callback functions
	Start Iteration Callback
	Add Result Callback
	Error Callback

	View Rankings
	Recommendation Score

	Describe Pipeline
	Get Pipeline
	Get best pipeline

	Training and Scoring Multiple Pipelines using AutoMLSearch
	Saving AutoMLSearch and pipelines from AutoMLSearch
	Limiting the AutoML Search Space
	Imbalanced Data
	Adding ensemble methods to AutoML
	Stacking

	AutoML Algorithms
	IterativeAlgorithm
	DefaultAlgorithm

	Pipeline differences
	Access raw results
	Parallel AutoML
	Quick Start
	Parallelism with Concurrent Futures
	Parallelism with Dask

	Pipelines
	Defining a Pipeline Instance
	Pipeline Usage
	Custom Name
	Pipeline Parameters
	Pipeline Description
	Component Graph
	Pipeline Estimator
	Input Feature Names
	Binary Classification Pipeline Thresholds
	Grabbing rows near the decision boundary
	Saving and Loading Pipelines
	Generate Code

	Component Graphs
	Defining a Component Graph
	Components in the Component Graph
	Component Graph Computation Order
	Visualizing Component Graphs
	Component graph methods

	Components
	Transformers
	Estimators
	Defining Custom Components
	Custom Transformers
	Required fields
	Required methods

	Custom Estimators
	Required fields
	Required methods

	Components Wrapping Third-Party Objects
	Hyperparameter Ranges for AutoML

	Generate Component Code
	Expectations for Custom Classification Components

	Objectives
	Overview
	Optimization vs Ranking Objectives

	Optimization Objectives
	Ranking Objectives
	Binary Classification Objectives and Thresholds

	Custom Objectives
	Defining a Custom Objective Function
	Example: Fraud Detection

	Model Understanding
	Explaining Feature Influence
	Feature Importance
	Permutation Importance
	Human Readable Importance

	Metrics for Model Understanding
	Confusion Matrix
	Precision-Recall Curve
	ROC Curve

	Visualizations
	Binary Objective Score vs. Threshold Graph
	Predicted Vs Actual Values Graph for Regression Problems
	Tree Visualization
	Confusion Matrix and Thresholds for Binary Classification Pipelines
	Visualize high dimensional data in lower space

	Partial Dependence Plots
	Explaining Predictions
	Explaining Best and Worst Predictions
	Changing Output Formats
	Single prediction as a dictionary
	Single prediction as a dataframe
	Best and worst predictions as a dictionary
	Best and worst predictions as a dataframe

	Force Plots

	Data Checks
	Missing Data
	Abnormal Data
	Zero Variance
	Class Imbalance
	Target Leakage
	Invalid Target Data
	ID Columns
	Multicollinearity
	Uniqueness
	Sparsity
	Outliers
	Target Distribution
	Datetime Format
	Time Series Parameters
	Time Series Splitting

	Data Check Messages
	Writing Your Own Data Check
	Defining Collections of Data Checks
	Default Data Checks

	Writing Your Own Collection of Data Checks

	Understanding Data Check Actions
	Adding noise and unclean data
	Addressing warnings and errors
	Only addressing DataCheck errors

	Utilities
	Configuring Logging
	System Information

	AutoMLSearch for time series problems
	But first, what is a time series?
	What does AutoMLSearch for time series do?
	Loading the data
	Visualizing the training set

	Fixing the data
	Time Series Regularizer
	Time Series Imputer

	Trending and Seasonality Decomposition
	Polynomial Decomposer
	STLDecomposer

	Running AutoMLSearch
	Visualization of forecast horizon and gap

	Understanding what happened under the hood
	Data Splitting
	Baseline Pipeline
	Feature Engineering
	Feature engineering components for time series

	Evaluate best pipeline on test data
	Visualize the predictions over time
	Predicting on unseen data
	predict_in_sample
	predict

	Validating the holdout data
	predict – Test set size matches forecast horizon
	predict – Test set size is less than forecast horizon
	predict – Test set size index starts at 0

	Prediction Intervals
	Getting Prediction Intervals

	Forecasting Future Data
	Forecasting into the future
	Known-in-advance features

	FAQ
	Q: What is the difference between EvalML and other AutoML libraries?
	Q: How does EvalML handle missing values?
	Q: How does EvalML handle categorical encoding?
	Q: How does EvalML handle feature selection?
	Q: How is feature importance calculated?
	Q: How does hyperparameter tuning work?
	Q: Can I create my own objective metric?
	Q: How does EvalML avoid overfitting?
	Q: Can I create my own pipeline for EvalML?
	Q: Does EvalML work with X algorithm?

	API Reference
	Demo Datasets
	Preprocessing
	Preprocessing Utils
	Data Splitters

	Exceptions
	Warnings
	Error Codes

	AutoML
	AutoML Search Interface
	AutoML Utils
	AutoML Algorithm Classes
	AutoML Callbacks
	AutoML Engines

	Pipelines
	Pipeline Base Classes
	Pipeline Utils

	Component Graphs
	Components
	Component Base Classes
	Component Utils
	Transformers
	Estimators
	Classifiers
	Regressors

	Model Understanding
	Metrics
	Visualization Methods
	Prediction Explanations

	Objectives
	Objective Base Classes
	Domain-Specific Objectives
	Classification Objectives
	Regression Objectives
	Objective Utils

	Problem Types
	Model Family
	Tuners
	Data Checks
	Data Check Classes
	Data Check Messages
	Data Check Message Types
	Data Check Message Codes
	Data Check Actions

	Utils
	General Utils
	Evalml
	Subpackages
	Automl
	Subpackages
	automl_algorithm
	Submodules
	automl_algorithm
	Module Contents
	Classes Summary
	Exceptions Summary
	Contents
	default_algorithm
	Module Contents
	Classes Summary
	Contents
	iterative_algorithm
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Exceptions Summary
	Contents
	engine
	Submodules
	cf_engine
	Module Contents
	Classes Summary
	Contents
	dask_engine
	Module Contents
	Classes Summary
	Contents
	engine_base
	Module Contents
	Classes Summary
	Functions
	Contents
	sequential_engine
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Functions
	Contents
	Submodules
	automl_search
	Module Contents
	Classes Summary
	Functions
	Contents
	callbacks
	Module Contents
	Functions
	Attributes Summary
	Contents
	pipeline_search_plots
	Module Contents
	Classes Summary
	Contents
	progress
	Module Contents
	Classes Summary
	Contents
	utils
	Module Contents
	Functions
	Attributes Summary
	Contents
	Package Contents
	Classes Summary
	Functions
	Contents
	Data Checks
	Submodules
	class_imbalance_data_check
	Module Contents
	Classes Summary
	Contents
	data_check
	Module Contents
	Classes Summary
	Contents
	data_check_action
	Module Contents
	Classes Summary
	Contents
	data_check_action_code
	Module Contents
	Classes Summary
	Contents
	data_check_action_option
	Module Contents
	Classes Summary
	Contents
	data_check_message
	Module Contents
	Classes Summary
	Contents
	data_check_message_code
	Module Contents
	Classes Summary
	Contents
	data_check_message_type
	Module Contents
	Classes Summary
	Contents
	data_checks
	Module Contents
	Classes Summary
	Contents
	datetime_format_data_check
	Module Contents
	Classes Summary
	Contents
	default_data_checks
	Module Contents
	Classes Summary
	Contents
	id_columns_data_check
	Module Contents
	Classes Summary
	Contents
	invalid_target_data_check
	Module Contents
	Classes Summary
	Contents
	multicollinearity_data_check
	Module Contents
	Classes Summary
	Contents
	no_variance_data_check
	Module Contents
	Classes Summary
	Contents
	null_data_check
	Module Contents
	Classes Summary
	Contents
	outliers_data_check
	Module Contents
	Classes Summary
	Contents
	sparsity_data_check
	Module Contents
	Classes Summary
	Attributes Summary
	Contents
	target_distribution_data_check
	Module Contents
	Classes Summary
	Contents
	target_leakage_data_check
	Module Contents
	Classes Summary
	Contents
	ts_parameters_data_check
	Module Contents
	Classes Summary
	Contents
	ts_splitting_data_check
	Module Contents
	Classes Summary
	Contents
	uniqueness_data_check
	Module Contents
	Classes Summary
	Attributes Summary
	Contents
	utils
	Module Contents
	Functions
	Contents
	Package Contents
	Classes Summary
	Contents
	Demos
	Submodules
	breast_cancer
	Module Contents
	Functions
	Contents
	churn
	Module Contents
	Functions
	Contents
	diabetes
	Module Contents
	Functions
	Contents
	fraud
	Module Contents
	Functions
	Contents
	weather
	Module Contents
	Functions
	Contents
	wine
	Module Contents
	Functions
	Contents
	Package Contents
	Functions
	Contents
	Exceptions
	Submodules
	exceptions
	Module Contents
	Classes Summary
	Exceptions Summary
	Contents
	Package Contents
	Classes Summary
	Exceptions Summary
	Contents
	Model Family
	Submodules
	model_family
	Module Contents
	Classes Summary
	Contents
	utils
	Module Contents
	Functions
	Contents
	Package Contents
	Classes Summary
	Functions
	Contents
	Model Understanding
	Subpackages
	prediction_explanations
	Submodules
	explainers
	Module Contents
	Classes Summary
	Functions
	Attributes Summary
	Contents
	Package Contents
	Functions
	Contents
	Submodules
	decision_boundary
	Module Contents
	Functions
	Contents
	feature_explanations
	Module Contents
	Functions
	Contents
	force_plots
	Module Contents
	Functions
	Contents
	metrics
	Module Contents
	Functions
	Contents
	partial_dependence_functions
	Module Contents
	Functions
	Contents
	permutation_importance
	Module Contents
	Functions
	Contents
	visualizations
	Module Contents
	Functions
	Contents
	Package Contents
	Functions
	Contents
	Objectives
	Submodules
	binary_classification_objective
	Module Contents
	Classes Summary
	Contents
	cost_benefit_matrix
	Module Contents
	Classes Summary
	Contents
	fraud_cost
	Module Contents
	Classes Summary
	Contents
	lead_scoring
	Module Contents
	Classes Summary
	Contents
	multiclass_classification_objective
	Module Contents
	Classes Summary
	Contents
	objective_base
	Module Contents
	Classes Summary
	Contents
	regression_objective
	Module Contents
	Classes Summary
	Contents
	sensitivity_low_alert
	Module Contents
	Classes Summary
	Attributes Summary
	Contents
	standard_metrics
	Module Contents
	Classes Summary
	Contents
	time_series_regression_objective
	Module Contents
	Classes Summary
	Contents
	utils
	Module Contents
	Functions
	Attributes Summary
	Contents
	Package Contents
	Classes Summary
	Functions
	Contents
	Pipelines
	Subpackages
	components
	Subpackages
	ensemble
	Submodules
	stacked_ensemble_base
	Module Contents
	Classes Summary
	Contents
	stacked_ensemble_classifier
	Module Contents
	Classes Summary
	Contents
	stacked_ensemble_regressor
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	estimators
	Subpackages
	classifiers
	Submodules
	baseline_classifier
	Module Contents
	Classes Summary
	Contents
	catboost_classifier
	Module Contents
	Classes Summary
	Contents
	decision_tree_classifier
	Module Contents
	Classes Summary
	Contents
	elasticnet_classifier
	Module Contents
	Classes Summary
	Contents
	et_classifier
	Module Contents
	Classes Summary
	Contents
	kneighbors_classifier
	Module Contents
	Classes Summary
	Contents
	lightgbm_classifier
	Module Contents
	Classes Summary
	Contents
	logistic_regression_classifier
	Module Contents
	Classes Summary
	Contents
	rf_classifier
	Module Contents
	Classes Summary
	Contents
	svm_classifier
	Module Contents
	Classes Summary
	Contents
	vowpal_wabbit_classifiers
	Module Contents
	Classes Summary
	Contents
	xgboost_classifier
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	regressors
	Submodules
	arima_regressor
	Module Contents
	Classes Summary
	Contents
	baseline_regressor
	Module Contents
	Classes Summary
	Contents
	catboost_regressor
	Module Contents
	Classes Summary
	Contents
	decision_tree_regressor
	Module Contents
	Classes Summary
	Contents
	elasticnet_regressor
	Module Contents
	Classes Summary
	Contents
	et_regressor
	Module Contents
	Classes Summary
	Contents
	exponential_smoothing_regressor
	Module Contents
	Classes Summary
	Contents
	lightgbm_regressor
	Module Contents
	Classes Summary
	Contents
	linear_regressor
	Module Contents
	Classes Summary
	Contents
	multiseries_time_series_baseline_regressor
	Module Contents
	Classes Summary
	Contents
	prophet_regressor
	Module Contents
	Classes Summary
	Contents
	rf_regressor
	Module Contents
	Classes Summary
	Contents
	svm_regressor
	Module Contents
	Classes Summary
	Contents
	time_series_baseline_estimator
	Module Contents
	Classes Summary
	Contents
	varmax_regressor
	Module Contents
	Classes Summary
	Contents
	vowpal_wabbit_regressor
	Module Contents
	Classes Summary
	Contents
	xgboost_regressor
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	Submodules
	estimator
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	transformers
	Subpackages
	dimensionality_reduction
	Submodules
	lda
	Module Contents
	Classes Summary
	Contents
	pca
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	encoders
	Submodules
	label_encoder
	Module Contents
	Classes Summary
	Contents
	onehot_encoder
	Module Contents
	Classes Summary
	Contents
	ordinal_encoder
	Module Contents
	Classes Summary
	Contents
	target_encoder
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	feature_selection
	Submodules
	feature_selector
	Module Contents
	Classes Summary
	Contents
	recursive_feature_elimination_selector
	Module Contents
	Classes Summary
	Contents
	rf_classifier_feature_selector
	Module Contents
	Classes Summary
	Contents
	rf_regressor_feature_selector
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	imputers
	Submodules
	imputer
	Module Contents
	Classes Summary
	Contents
	knn_imputer
	Module Contents
	Classes Summary
	Contents
	per_column_imputer
	Module Contents
	Classes Summary
	Contents
	simple_imputer
	Module Contents
	Classes Summary
	Contents
	target_imputer
	Module Contents
	Classes Summary
	Contents
	time_series_imputer
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	preprocessing
	Submodules
	datetime_featurizer
	Module Contents
	Classes Summary
	Contents
	decomposer
	Module Contents
	Classes Summary
	Contents
	drop_nan_rows_transformer
	Module Contents
	Classes Summary
	Contents
	drop_null_columns
	Module Contents
	Classes Summary
	Contents
	drop_rows_transformer
	Module Contents
	Classes Summary
	Contents
	featuretools
	Module Contents
	Classes Summary
	Contents
	log_transformer
	Module Contents
	Classes Summary
	Contents
	lsa
	Module Contents
	Classes Summary
	Contents
	natural_language_featurizer
	Module Contents
	Classes Summary
	Contents
	polynomial_decomposer
	Module Contents
	Classes Summary
	Contents
	replace_nullable_types
	Module Contents
	Classes Summary
	Contents
	stl_decomposer
	Module Contents
	Classes Summary
	Contents
	text_transformer
	Module Contents
	Classes Summary
	Contents
	time_series_featurizer
	Module Contents
	Classes Summary
	Contents
	time_series_regularizer
	Module Contents
	Classes Summary
	Contents
	transform_primitive_components
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	samplers
	Submodules
	base_sampler
	Module Contents
	Classes Summary
	Contents
	oversampler
	Module Contents
	Classes Summary
	Contents
	undersampler
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	scalers
	Submodules
	standard_scaler
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	Submodules
	column_selectors
	Module Contents
	Classes Summary
	Contents
	transformer
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	Submodules
	component_base
	Module Contents
	Classes Summary
	Contents
	component_base_meta
	Module Contents
	Classes Summary
	Contents
	utils
	Module Contents
	Classes Summary
	Functions
	Contents
	Package Contents
	Classes Summary
	Contents
	Submodules
	binary_classification_pipeline
	Module Contents
	Classes Summary
	Contents
	binary_classification_pipeline_mixin
	Module Contents
	Classes Summary
	Contents
	classification_pipeline
	Module Contents
	Classes Summary
	Contents
	component_graph
	Module Contents
	Classes Summary
	Attributes Summary
	Contents
	multiclass_classification_pipeline
	Module Contents
	Classes Summary
	Contents
	multiseries_regression_pipeline
	Module Contents
	Classes Summary
	Contents
	pipeline_base
	Module Contents
	Classes Summary
	Attributes Summary
	Contents
	pipeline_meta
	Module Contents
	Classes Summary
	Contents
	regression_pipeline
	Module Contents
	Classes Summary
	Contents
	time_series_classification_pipelines
	Module Contents
	Classes Summary
	Contents
	time_series_pipeline_base
	Module Contents
	Classes Summary
	Contents
	time_series_regression_pipeline
	Module Contents
	Classes Summary
	Contents
	utils
	Module Contents
	Functions
	Attributes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	Preprocessing
	Subpackages
	data_splitters
	Submodules
	no_split
	Module Contents
	Classes Summary
	Contents
	sk_splitters
	Module Contents
	Classes Summary
	Contents
	time_series_split
	Module Contents
	Classes Summary
	Contents
	training_validation_split
	Module Contents
	Classes Summary
	Contents
	Package Contents
	Classes Summary
	Contents
	Submodules
	utils
	Module Contents
	Functions
	Contents
	Package Contents
	Classes Summary
	Functions
	Contents
	Problem Types
	Submodules
	problem_types
	Module Contents
	Classes Summary
	Contents
	utils
	Module Contents
	Functions
	Contents
	Package Contents
	Classes Summary
	Functions
	Contents
	Tuners
	Submodules
	grid_search_tuner
	Module Contents
	Classes Summary
	Contents
	random_search_tuner
	Module Contents
	Classes Summary
	Contents
	skopt_tuner
	Module Contents
	Classes Summary
	Attributes Summary
	Contents
	tuner
	Module Contents
	Classes Summary
	Contents
	tuner_exceptions
	Module Contents
	Contents
	Package Contents
	Classes Summary
	Exceptions Summary
	Contents
	Utils
	Submodules
	base_meta
	Module Contents
	Classes Summary
	Contents
	cli_utils
	Module Contents
	Functions
	Attributes Summary
	Contents
	gen_utils
	Module Contents
	Classes Summary
	Functions
	Attributes Summary
	Contents
	logger
	Module Contents
	Functions
	Contents
	nullable_type_utils
	Module Contents
	Contents
	update_checker
	Module Contents
	Contents
	woodwork_utils
	Module Contents
	Functions
	Attributes Summary
	Contents
	Package Contents
	Classes Summary
	Functions
	Attributes Summary
	Contents

	Package Contents
	Classes Summary
	Functions
	Contents

	Release Notes
	Python Module Index
	Index

