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EvalML is an AutoML library that builds, optimizes, and evaluates machine learning pipelines using domain-specific
objective functions.

Combined with Featuretools and Compose, EvalML can be used to create end-to-end supervised machine learning
solutions.

CONTENTS 1
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CHAPTER
ONE

INSTALL

EvalML is available for Python 3.8 and 3.9. It can be installed from pypi, conda-forge, or from source.

To install EvalML on your platform, run one of the following commands:

$ pip install evalml
$ conda install -c conda-forge evalml

# See the EvalML with core dependencies only section
$ pip install evalml --no-dependencies
$ pip install -r core-requirements.txt

# See the EvalML with core dependencies only section
$ conda install -c conda-forge evalml-core

1.1 EvalML with core dependencies only

EvalML includes several optional dependencies. The xgboost and catboost packages support pipelines built around
those modeling libraries. The plotly and ipywidgets packages support plotting functionality in automl searches.
These dependencies are recommended, and are included with EvalML by default but are not required in order to install
and use EvalML.

EvalML’s core dependencies are listed in core-requirements. txt in the source code, while the default collection
of requirements is specified in pyproject.toml’s dependencies.

To install EvaIML with only the core-required dependencies with pypi, first download the EvalML source from pypi or
github to access the requirements files before running the following command.

$ pip install evalml --no-dependencies
$ pip install -r core-requirements.txt

$ conda install -c conda-forge evalml-core



https://pypi.org/project/evalml/
https://anaconda.org/conda-forge/evalml
https://github.com/alteryx/evalml
https://pypi.org/project/evalml/#files
https://github.com/alteryx/evalml
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1.2 Add-ons

EvalML allows users to install add-ons individually or all at once:
¢ Update Checker: Receive automatic notifications of new EvalML releases

e Time Series: Use EvalML with Facebook’s Prophet library for time series support.

$ pip install evalml[complete]
$ pip install evalml[prophet]
$ pip install evalml[updater]

$ conda install -c conda-forge alteryx-open-src-update-checker

1.3 Time Series support with Facebook’s Prophet
To support the Prophet time series estimator, be sure to install it as an extra requirement. Please note that this may
take a few minutes.

pip install evalml[prophet]

Another option for installing Prophet with CmdStan as a backend is to use make installdeps-prophet.

1.4 Windows Additional Requirements & Troubleshooting

If you are using pip to install EvalML on Windows, it is recommended you first install the following packages using
conda:

* numba (needed for shap and prediction explanations). Install with conda install -c conda-forge numba

e graphviz if you’re using EvalML’s plotting utilities. Install with conda install -c conda-forge
python-graphviz

The XGBoost library may not be pip-installable in some Windows environments. If you are encountering installation
issues, please try installing XGBoost from Github before installing EvalML or install evalml with conda.

1.5 Mac Additional Requirements & Troubleshooting

In order to run on Mac, LightGBM requires the OpenlMP library to be installed, which can be done with HomeBrew by
running:

brew install libomp

Additionally, graphviz can be installed by running:

brew install graphviz

4 Chapter 1. Install
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1.5.1 Installing EvalML on an M1 Mac

Not all of EvalML’s dependencies support Apple’s new M1 chip. For this reason, pip or conda installing EvalML will
fail. The core set of EvalML dependencies can be installed in the M1 chip, so we recommend you install EvalML with
core dependencies.

Alternatively, there is experimental support for M1 chips with the Rosetta terminal. After setting up a Rosetta terminal,
you should be able to pip or conda install EvalML.

For Docker fans, an included Dockerfile.arm can be built and run to provide an environment for testing. Details are
included within.

1.5. Mac Additional Requirements & Troubleshooting 5
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CHAPTER
TWO

START

In this guide, we’ll show how you can use EvalML to automatically find the best pipeline for predicting whether or not a
credit card transaction is fradulent. Along the way, we’ll highlight EvalML’s built-in tools and features for understanding
and interacting with the search process.

import evalml
from evalml import AutoMLSearch
from evalml.utils import infer_feature_types

First, we load in the features and outcomes we want to use to train our model.

X, y = evalml.demos.load_fraud(n_rows=250)

Number of Features

Boolean 1
Categorical 6
Numeric 5

Number of training examples: 250

Targets
False 88.40%
True 11.60%

Name: count, dtype: object

First, we will clean the data. Since EvaIML accepts a pandas input, it can run type inference on this data directly. Since
we’d like to change the types inferred by EvalML, we can use the infer_feature_types utility method. Here’s what
we’re going to do with the following dataset:

¢ Reformat the expiration_date column so it reflects a more familiar date format.
e Cast the 1at and 1ng columns from float to str.

* Use infer_feature_types to specify what types certain columns should be. For example, to avoid having the
provider column be inferred as natural language text, we have specified it as a categorical column instead.

The infer_feature_types utility method takes a pandas or numpy input and converts it to a pandas dataframe with
a Woodwork accessor, providing us with flexibility to cast the data as necessary.

X.ww["expiration_date"] = X["expiration_date"].apply(
lambda x: "20{}-01-{}".format(x.split("/")[1], x.split("/")[01)

)

X = infer_feature_types(
x1
feature_types={

(continues on next page)
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(continued from previous page)

"store_id": "categorical",

"expiration_date": "datetime",

"lat": "categorical",

"lng": "categorical",

"provider": "categorical",

3
)
X.ww
Physical Type Logical Type Semantic Tag(s)

Column
card_id int64 Integer ['numeric']
store_id int64 Integer ["'numeric']
datetime datetime64[ns] Datetime []
amount int64 Integer ["numeric']
currency string Unknown [1
customer_present bool Boolean []
expiration_date datetime64[ns] Datetime []
provider category Categorical ['category']
lat float64 Double ['numeric']
Ing float64 Double ['numeric']
region category Categorical ['category']
country category Categorical ['category']

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2
)

Note: To provide data to EvalML, it is recommended that you initialize a woodwork accessor so that you control how
EvalML will treat each feature, such as as a numeric feature, a categorical feature, a text feature or other type of feature.
Consult the the Woodwork project for help on how to do this. Here, split_data() returns dataframes with woodwork
accessors.

EvalML has many options to configure the pipeline search. At the minimum, we need to define an objective function.
For simplicity, we will use the F1 score in this example. However, the real power of EvalML is in using domain-specific
objective functions or building your own.

Below EvalML utilizes Bayesian optimization (EvalML’s default optimizer) to search and find the best pipeline defined
by the given objective.

EvalML provides a number of parameters to control the search process. max_batches is one of the parameters which
controls the stopping criterion for the AutoML search. It indicates the maximum number of rounds of AutoML to
evaluate, where each round may train and score a variable number of pipelines. In this example, max_batches is set
to 1.

** Graphing methods, like AutoMLSearch, on Jupyter Notebook and Jupyter Lab require ipywidgets to be installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,

(continues on next page)
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(continued from previous page)
problem_type="binary",
objective="f1",
max_batches=2,
verbose=True,

)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type

When we call search(), the search for the best pipeline will begin. There is no need to wrangle with missing data
or categorical variables as EvalML includes various preprocessing steps (like imputation, one-hot encoding, feature
selection) to ensure you're getting the best results. As long as your data is in a single table, EvaIML can handle it. If
not, you can reduce your data to a single table by utilizing Featuretools and its Entity Sets.

You can find more information on pipeline components and how to integrate your own custom pipelines into EvalML
here.

automl . search(interactive_plot=False)

* Beginning pipeline search *

B R R R R R R R T

Optimizing for F1.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean F1l: 0.000

R R R R R R R R R R R R R R R R R R TR

* Evaluating Batch Number 1 *

E R R R L R R R R R o o

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:
Starting cross validation
Finished cross validation - mean F1l: 0.663

B R R R R R R R R R R Tk kT

* Evaluating Batch Number 2 *

Fedehn KR S R ARk LR A AR R R R AR L

[LightGBM] [Info] Number of positive: 23, number of negative: 94

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000061 seconds.

You can set " force_col_wise=true' to remove the overhead.

[LightGBM] [Info] Total Bins 217

(continues on next page)
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(continued from previous page)

[LightGBM] [Info] Number of data points in the train set: 117, number of used features:.
—11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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[LightGBM] [Info] Number of positive: 23, number of negative: 94

(continued from previous page)

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000050 seconds.

You can set " force_col_wise=true’

to remove the overhead.

[LightGBM] [Info] Total Bins 215
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:.
—11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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You can set " force_col_wise=true’

[Warning]
[Warning]
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[Warning]

[Info] Number of positive: 23, number of negative: 94
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[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

[LightGBM] [Info] Total Bins 208
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:.
~11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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(continues on next page)
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(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—Oversampler:

Starting cross validation

Finished cross validation - mean F1: 0.589
Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label,
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler:

Starting cross validation

Finished cross validation - mean Fl: 0.376
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +.
—Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +.
—.One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation

Finished cross validation - mean F1: 0.395
XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder..
<+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler:

Starting cross validation

Finished cross validation - mean Fl: 0.690
Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +.
—.Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard.
—Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +.
—Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation

Finished cross validation - mean F1l: 0.231

Search finished after 24.64 seconds

Best pipeline: XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer..
-+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select.
—Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot.
—Encoder + Oversampler

Best pipeline F1l: 0.689744

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html
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{1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
- Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
—': 4.420398950576782,

'Total time of batch': 4.553422451019287},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—.Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—0versampler': 3.093733310699463,

'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns,.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler': 3.7492175102233887,

'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label,
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +.
—.Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +.
—.One Hot Encoder + Standard Scaler + Oversampler': 3.8640635013580322,

'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—Oversampler': 2.882181406021118,

'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer..
—.+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard.
—.Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +.
—Imputer + One Hot Encoder + Standard Scaler + Oversampler': 4.927713394165039,

'Total time of batch': 19.325172424316406}}

If you would like to suppress stdout output, set verbose=False. This is also the default behavior for AutoMLSearch
if verbose is not specified.

Also, if you would like to see the interactive plot update dynamically over time as the search progresses, either remove
the parameter or set interactive_plot=True. This is the default setting for search() if interactive_plot is
not specified (it is set to False here due to documentation workaround).

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="f1",
max_batches=2,
verbose=False,

)

automl.search()

[LightGBM] [Info] Number of positive: 23, number of negative: 94

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000050 seconds.

You can set " force_col_wise=true’ to remove the overhead.

[LightGBM] [Info] Total Bins 217

[LightGBM] [Info] Number of data points in the train set: 117, number of used features:.
11

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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(continued from previous page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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You can set " force_col_wise=true’
[LightGBM] [Info] Total Bins 215
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[Info] Number of positive: 23, number of negative: 94
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[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

[LightGBM] [Info] Number of data points in the train set: 117, number of used features:.

—11

(continues on next page)
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(continued from previous page)

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

(continues on next page)

21



EvalML Documentation, Release 0.80.0

You can set " force_col_wise=true’

to remove the overhead.

(continued from previous page)

[LightGBM] [Info] Total Bins 208
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:.
11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

{1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model

—': 4.402799606323242,

'Total time of batch': 4.530266761779785},
2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_

—Oversampler': 2.86154842376709,

'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler': 3.878255605697632,

'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +.
—.Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +.
--One Hot Encoder + Standard Scaler + Oversampler': 3.7158679962158203,

'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler': 2.855485677719116,

'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer..
—+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard.
—Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +.
—Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.5774405002593994,

1 17.690229415893555}}

'Total time of batch'

We also provide a standalone search method which does all of the above in a single line, and returns the AutoMLSearch
instance and data check results. If there were data check errors, AutoML will not be run and no AutoMLSearch instance

will be returned.

After the search is finished we can view all of the pipelines searched, ranked by score. Internally, EvalML performs cross
validation to score the pipelines. If it notices a high variance across cross validation folds, it will warn you. EvalML
also provides additional data checks to analyze your data to assist you in producing the best performing pipeline.

automl . rankings

id pipeline_name search_order \
0 5 XGBoost Classifier w/ Label Encoder + Select C... 5
1 1 Random Forest Classifier w/ Label Encoder + Dr... 1
2 2 LightGBM Classifier w/ Label Encoder + Select ... 2
3 4 Elastic Net Classifier w/ Label Encoder + Sele... 4
4 3 Extra Trees Classifier w/ Label Encoder + Sele... 3
5 6 Logistic Regression Classifier w/ Label Encode... 6
6 0 Mode Baseline Binary Classification Pipeline 0

ranking score mean_cv_score standard_deviation_cv_score \
0 0.689744 0.689744 0.165041
1 0.663337 0.663337 0.263244
2 0.588889 0.588889 0.083887
3 0.395153 0.395153 0.183837
4 0.376068 0.376068 0.074019

(continues on next page)
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(continued from previous page)

5 0.231260 0.231260 0.035912
0.000000 0.000000 0.000000

[e)]

percent_better_than_baseline high_variance_cv \

0 68.974359 False

1 66.333666 False

2 58.888889 False

3 39.515251 False

4 37.606838 False

5 23.125997 False

6 0.000000 False
parameters

® {'Label Encoder': {'positive_label': None}, 'N...

1 {'Label Encoder': {'positive_label': None}, 'D...

2 {'Label Encoder': {'positive_label': None}, 'N...

3 {'Label Encoder': {'positive_label': None}, 'N...

4 {'Label Encoder': {'positive_label': None}, 'N...

5 {'Label Encoder': {'positive_label': None}, 'N...

6 {'Label Encoder': {'positive_label': None}, 'B...

If we are interested in see more details about the pipeline, we can view a summary description using the id from the
rankings table:

automl .describe_pipeline(3)

FRRBNRNIRRNNNNN NN NSNS S dededededededededededededededededededededddhh NN NN NN NNNNNNNNNNNNN NN NN NS S dededededededededededededededededededed

* Extra Trees (Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns,,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler *

T X L T R T T R T T T R e R R T e X

Problem Type: binary
Model Family: Extra Trees

Pipeline Steps

1. Label Encoder
* positive_label : None
2. Select Columns By Type Transformer
* column_types : ['category', 'EmailAddress', 'URL']
* exclude : True
3. Label Encoder
* positive_label : None
4. Drop Columns Transformer
* columns : ['currency']
5. DateTime Featurizer
* features_to_extract : ['year', 'month', 'day_of_week', 'hour']
* encode_as_categories : False
* time_index : None
6. Imputer
(continues on next page)
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(continued from previous page)

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None
7. Select Columns Transformer
* columns : ['card_id', 'store_id', 'amount', 'customer_present', 'lat', 'lng',
—'datetime_month', 'datetime_day_of week', 'datetime_hour', 'expiration_date_year',
- 'expiration_date_day_of_week']
8. Select Columns Transformer
* columns : ['provider', 'region', 'country']
9. Label Encoder
* positive_label : None
10. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None
11. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error
12. Oversampler
* sampling_ratio : 0.25
* k_neighbors_default : 5
* n_jobs : -1
* sampling_ratio_dict : None
* categorical_features : [3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
- 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
* k_neighbors : 5
13. Extra Trees Classifier
* n_estimators : 100
* max_features : sqrt
* max_depth : 6
* min_samples_split : 2
* min_weight_fraction_leaf : 0.0
* n_jobs : -1

Training

Training for binary problems.

Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
—.standard_metrics.F1l object at 0x7efdf31a6040>

Total training time (including CV): 3.9 seconds

Cross Validation

(continues on next page)
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F1 MCC Binary Log Loss Binary Gini AUC Precision Balanced Accuracy.
—Binary Accuracy Binary # Training # Validation

0 0.462 0.421 0.342 0.394 0.697 0.600 o
— 0.671 0.896 133 67
1 0.333 0.296 0.341 0.352 0.676 0.500 o
— 0.608 0.881 133 67
2 0.333 0.273 0.355 0.361 0.680 0.400 o
— 0.617 0.879 134 66
mean 0.376 0.330 0.346 0.369 0.684 0.500 o
- 0.632 0.885 - -
std 0.074 0.080 0.008 0.022 0.011 0.100 o
- 0.034 0.009 - -
coef of var 0.197 0.241 0.023 0.060 0.016 0.200 o
— 0.053 0.010 - -

We can also view the pipeline parameters directly:

pipeline = automl.get_pipeline(3)
print(pipeline.parameters)

{'Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Select Columns By Type..
—Transformer': {'column_types': ['category', 'EmailAddress', 'URL'], 'exclude': True},

— 'Numeric Pipeline - Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Drop.
—.Columns Transformer': {'columns': ['currency']}, 'Numeric Pipeline - DateTime.
—Featurizer': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_
—.as_categories': False, 'time_index': None}, 'Numeric Pipeline - Imputer': {

<, 'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean’,

— 'boolean_impute_strategy': 'most_frequent', 'categorical_fill value': None, 'numeric_
—.fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select Columns.
~Transformer': {'columns': ['card_id', 'store_id', 'amount', 'customer_present',6 'lat',
—'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour', 'expiration_date_year

"', 'expiration_date_day_of_week']}, 'Categorical Pipeline - Select Columns Transformer
~": {'columns': ['provider', 'region', 'country']}, 'Categorical Pipeline - Label.
—Encoder': {'positive_label': None}, 'Categorical Pipeline - Imputer': {'categorical_
—.impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_
—strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
— 'boolean_fill_value': None}, 'Categorical Pipeline - One Hot Encoder': {'top_n': 10,

- 'features_to_encode': None, 'categories': None, 'drop': 'if binary', 'handle_unknown':
—'ignore', 'handle_missing': 'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_
—neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features
~': [3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,.
31, 32, 33, 34, 35, 36, 37, 38, 39, 40], 'k_neighbors': 5}, 'Extra Trees Classifier': {
—'n_estimators': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_split': 2,

— 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}

We can now select the best pipeline and score it on our holdout data:

pipeline = automl.best_pipeline
pipeline.score(X_holdout, y_holdout, ["f1"])

OrderedDict([('F1', 0.8)]1)

We can also visualize the structure of the components contained by the pipeline:
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[12]: pipeline.graph()
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CHAPTER
THREE

TUTORIALS

Below are examples of how to apply EvalML to a variety of problems:

3.1 Building a Fraud Prediction Model with EvalML

In this demo, we will build an optimized fraud prediction model using EvalML. To optimize the pipeline, we will set
up an objective function to minimize the percentage of total transaction value lost to fraud. At the end of this demo,
we also show you how introducing the right objective during the training results in a much better than using a generic
machine learning metric like AUC.

import evalml
from evalml import AutoMLSearch
from evalml.objectives import FraudCost

3.1.1 Configure “Cost of Fraud”
To optimize the pipelines toward the specific business needs of this model, we can set our own assumptions for the cost
of fraud. These parameters are

* retry_percentage - what percentage of customers will retry a transaction if it is declined?

» interchange_fee - how much of each successful transaction do you collect?

e fraud_payout_percentage - the percentage of fraud will you be unable to collect

e amount_col - the column in the data the represents the transaction amount

Using these parameters, EvalML determines attempt to build a pipeline that will minimize the financial loss due to
fraud.

fraud_objective = FraudCost(
retry_percentage=0.5,
interchange_fee=0.02,
fraud_payout_percentage=0.75,
amount_col="amount",
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3.1.2 Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as the
holdout set.

X, y = evalml.demos.load_fraud(n_rows=5000)

Number of Features

Boolean 1
Categorical 6
Numeric 5

Number of training examples: 5000

Targets
False 86.20%
True 13.80%

Name: count, dtype: object

EvalML natively supports one-hot encoding. Here we keep 1 out of the 6 categorical columns to decrease computation
time.

cols_to_drop = ["datetime", "expiration_date", "country", "region", "provider"]
for col in cols_to_drop:
X.ww.pop(col)

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)
X.ww

Physical Type Logical Type Semantic Tag(s)
Column
card_id int64 Integer ['numeric']
store_id int64 Integer ["'numeric']
amount int64 Integer ["'numeric']
currency category Categorical ['category']
customer_present bool Boolean [1
lat float64 Double [ 'numeric']
Ing float64 Double ["'numeric']

Because the fraud labels are binary, we will use AutoMLSearch(X_train=X_train, y_train=y_train,
problem_type="binary'). When we call .search(), the search for the best pipeline will begin.

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=fraud_objective,
additional_objectives=["auc", "f1", "precision"],
allowed_model_families=["random_forest", "linear_model"],
max_batches=1,
optimize_thresholds=True,
verbose=True,

(continues on next page)
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automl.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

Fededehdedefedededefededefddedehddedhddefdddn

Optimizing for Fraud Cost.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Fraud Cost: 0.790

B O R R R R R R R R R R R R R R R TR

* Evaluating Batch Number 1 *

Fededehededefedededefededefdededehddedddefdddn

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF.
—.Classifier Select From Model:

Starting cross validation

Finished cross validation - mean Fraud Cost: 0.009

Search finished after 5.79 seconds

Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler + RF Classifier Select From Model

Best pipeline Fraud Cost: 0.008649

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

{1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +_
—0Oversampler + RF Classifier Select From Model': 4.613372325897217,
'Total time of batch': 4.743490219116211}}
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View rankings and select pipelines

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the fraud

detection objective we defined.

automl.rankings

id pipeline_name search_order \

0 1 Random Forest Classifier w/ Label Encoder + Im... 1

1 0 Mode Baseline Binary Classification Pipeline 0
ranking_score mean_cv_score standard_deviation_cv_score \

0 0.008649 0.008649 0.000789

1 0.789648 0.789648 0.001136
percent_better_than_baseline high_variance_cv \

0 78.099995 False

1 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

best_pipeline = automl.best_pipeline

Describe pipelines

We can get more details about any pipeline created during the search process, including how it performed on other
objective functions, by calling the describe_pipeline method and passing the id of the pipeline of interest.

automl .describe_pipeline(automl.rankings.iloc[1]["id"])

TRRRNNRRNNNNNNN NN N NS S ddededededededededededededededededededededededededdd

* Mode Baseline Binary Classification Pipeline *

Fededeededefdedefdedefddefddfdededddededededdededdddededededdedededddedddn

Problem Type: binary
Model Family: Baseline

Pipeline Steps

1. Label Encoder

* positive_label : None
2. Baseline Classifier

* strategy : mode

Training

Training for binary problems.

Objective to optimize binary classification pipeline thresholds for:

—fraud_cost.FraudCost object at 0x7£31744450a0>

<evalml.objectives.

(continues on next page)
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Total training time (including CV): 0.9 seconds

Cross Validation

Fraud Cost  AUC F1 Precision # Training # Validation
0 0.791 0.500 0.000 0.000 2,666 1,334
1 0.789 0.500 0.000 0.000 2,667 1,333
2 0.789 0.500 0.000 0.000 2,667 1,333
mean 0.790 0.500 0.000 0.000 - -
std 0.001 0.000 0.000 0.000 - -
coef of var 0.001 0.000 inf inf - -

3.1.3 Evaluate on holdout data

Finally, since the best pipeline is already trained, we evaluate it on the holdout data.

Now, we can score the pipeline on the holdout data using both our fraud cost objective and the AUC (Area under the
ROC Curve) objective.

best_pipeline.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.008257252890414273)])

3.1.4 Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the fraud cost objective to see how
the best pipelines compare.

automl_auc = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="auc",

additional_objectives=["f1", "precision"],
max_batches=1,
allowed_model_families=["random_forest", "linear_model"],

optimize_thresholds=True,
verbose=True,

)

automl_auc.search(interactive_plot=False)
AutoMLSearch will use mean CV score to rank pipelines.

B e R R R R R R R kR R

* Beginning pipeline search *

B O R R R R R R R R R R R R R R R R R R

Optimizing for AUC.

(continues on next page)
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Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean AUC: 0.500

B e R R R R R R R R R R R R R R R R R TR

* Evaluating Batch Number 1 *

Yo e

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF.
—.Classifier Select From Model:

Starting cross validation

Finished cross validation - mean AUC: 0.852

Search finished after 4.76 seconds

Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler + RF Classifier Select From Model

Best pipeline AUC: 0.852091

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

{1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +.
—.Oversampler + RF Classifier Select From Model': 4.090299367904663,
'Total time of batch': 4.220022916793823}}

Like before, we can look at the rankings of all of the pipelines searched and pick the best pipeline.

automl_auc.rankings

id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 0 Mode Baseline Binary Classification Pipeline 0
ranking_score mean_cv_score standard_deviation_cv_score \
0 0.852091 0.852091 0.004235
1 0.500000 0.500000 0.000000
percent_better_than_baseline high_variance_cv \
0 35.20905 False
1 0.00000 False
parameters

® {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...
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best_pipeline_auc = automl_auc.best_pipeline

# get the fraud score on holdout data
best_pipeline_auc.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.025729330840169453)1)

# fraud score on fraud optimized again
best_pipeline.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.008257252890414273)])

When we optimize for AUC, we can see that the AUC score from this pipeline performs better compared to the AUC
score from the pipeline optimized for fraud cost; however, the losses due to fraud are a much larger percentage of the
total transaction amount when optimized for AUC and much smaller when optimized for fraud cost. As a result, we
lose a noticable percentage of the total transaction amount by not optimizing for fraud cost specifically.

Optimizing for AUC does not take into account the user-specified retry_percentage, interchange_fee,
fraud_payout_percentage values, which could explain the decrease in fraud performance. Thus, the best pipelines
may produce the highest AUC but may not actually reduce the amount loss due to your specific type fraud.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

3.2 Building a Lead Scoring Model with EvalML

In this demo, we will build an optimized lead scoring model using EvalML. To optimize the pipeline, we will set
up an objective function to maximize the revenue generated with true positives while taking into account the cost of
false positives. At the end of this demo, we also show you how introducing the right objective during the training is
significantly better than using a generic machine learning metric like AUC.

import evalml
from evalml import AutoMLSearch
from evalml.objectives import LeadScoring

3.2.1 Configure LeadScoring
To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for how
much value is gained through true positives and the cost associated with false positives. These parameters are

* true_positive - dollar amount to be gained with a successful lead

e false_positive - dollar amount to be lost with an unsuccessful lead

Using these parameters, EvalML builds a pileline that will maximize the amount of revenue per lead generated.

lead_scoring_objective = LeadScoring(true_positives=100, false_positives=-5)
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3.2.2 Dataset

We will be utilizing a dataset detailing a customer’s job, country, state, zip, online action, the dollar amount of that
action and whether they were a successful lead.

from urllib.request import urlopen
import pandas as pd
import woodwork as ww

customers_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/customers.csv"

)

interactions_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/interactions.csv"

)

leads_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/previous_leads.csv'

)

customers = pd.read_csv(customers_data)
interactions = pd.read_csv(interactions_data)
leads = pd.read_csv(leads_data)

X = customers.merge(interactions, on="customer_id") .merge(leads, on="customer_id")
y = X["label"]
X X.drop(

[

"customer_id",
"date_registered",
"birthday",
"phone",
"email",
"owner",
"company",
"id",
"time_x",
"session",
"referrer",
"time_y",
"label",
"country",
1,
axis=1,
)
display(X.head())

job state zip action amount

Engineer, mining NY 60091.0 page_view NaN
Psychologist, forensic cA NaN purchase 135.23
Psychologist, forensic CcA NaN page_view NaN
Air cabin crew NaN 60091.0 download NaN

Air cabin crew NaN 60091.0 page_view NaN

HwNn R

We will convert our data into Woodwork data structures. Doing so enables us to have more control over the types
passed to and inferred by AutoML.
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X.ww.init(semantic_tags={"job": "category"}, logical_types={"job": "Categorical"})
y = ww.init_series(y)

X.ww

Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ["numeric']
action category Categorical ['category']
amount float64 Double ['numeric']

3.2.3 Search for the best pipeline
In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

EvalML natively supports one-hot encoding and imputation so the above NaN and categorical values will be taken care
of.

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)
X.ww

Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ["numeric']
action category Categorical ['category']
amount float64 Double ["numeric']

Because the lead scoring labels are binary, we will use set the problem type to “binary”. When we call .search(),
the search for the best pipeline will begin.

automl = AutolMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=lead_scoring_objective,
additional_objectives=["auc"],
allowed_model_families=["extra_trees", "linear_model"],
max_batches=2,
verbose=True,

)

automl.search(interactive_plot=False)
AutoMLSearch will use mean CV score to rank pipelines.
Feddhddedef N de Nl h N hdedhdd N hhddhht

* Beginning pipeline search *

(continues on next page)
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Optimizing for Lead Scoring.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Lead Scoring: 0.000

B R R R R R R R o

* Evaluating Batch Number 1 *

B R R R R R R R R R R R R R R R

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF.
—Classifier Select From Model:

Starting cross validation

Finished cross validation - mean Lead Scoring: 1.360

R O R R R R R R R R R R R R R R R TR

* Evaluating Batch Number 2 *

B R R R R R R R R k1

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label.
—Encoder + Imputer + One Hot Encoder + Oversampler:

Starting cross validation

Finished cross validation - mean Lead Scoring: 1.213
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label,
—Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns.
—Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +.
—0Oversampler:

Starting cross validation

Finished cross validation - mean Lead Scoring: 1.235
Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +.
—Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select.
—Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +.
—Oversampler:

Starting cross validation

Finished cross validation - mean Lead Scoring: 1.214

Search finished after 17.87 seconds

Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +.
—.Oversampler + RF Classifier Select From Model

Best pipeline Lead Scoring: 1.360457
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Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

{1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +._
—.Oversampler + RF Classifier Select From Model': 4.496005296707153,

'Total time of batch': 4.62613844871521},

2: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer +.
—Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer +.
—Label Encoder + Imputer + One Hot Encoder + Oversampler': 3.541353464126587,

'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns,.
—Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler
—': 3.5064241886138916,

'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer..
-+ Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select.
—.Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +.
—Oversampler': 4.952641487121582,

'Total time of batch': 12.488134145736694}}

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the lead
scoring objective we defined.

automl.rankings

id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 3 Elastic Net Classifier w/ Label Encoder + Sele... 3
2 4 Logistic Regression Classifier w/ Label Encode... 4
3 2 Extra Trees Classifier w/ Label Encoder + Sele... 2
4 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \

0 1.360457 1.360457 0.590666
1 1.234589 1.234589 0.430687
2 1.214160 1.214160 0.395051
3 1.213167 1.213167 0.709773
4 0.000000 0.000000 0.000000
percent_better_than_baseline high_variance_cv \
0 inf False
1 inf False
2 inf False
3 inf False
4 0.0 False
parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'N...
3 {'Label Encoder': {'positive_label': None}, 'N...

(continues on next page)
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4 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline, including how it performed on other objective functions by calling .
describe_pipeline() and specifying the id of the pipeline.

automl.describe_pipeline(automl.rankings.iloc[0®]["id"])

B R R R R R O R RS

* Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler +_
—RF Classifier Select From Model *

Fededehdedefedededefededefddedehddefdddefddedhdedehddefdddefddedhdedefddedehddefddedhdedefddedehddedddedehdedefddedehddedddedehddefdddehddedddedehddnd

Problem Type: binary
Model Family: Random Forest

Pipeline Steps

1. Label Encoder

* positive_label : None
2. Imputer

* categorical_impute_strategy : most_frequent

* numeric_impute_strategy : mean

* boolean_impute_strategy : most_frequent

* categorical_fill_value : None

* numeric_fill_value : None

* boolean_fill_value : None
3. One Hot Encoder

* top_n : 10

* features_to_encode : None

* categories : None

* drop : if_binary

* handle_unknown : ignore

* handle_missing : error
4. Oversampler

* sampling_ratio : 0.25

* k_neighbors_default : 5

* n_jobs : -1

* sampling _ratio_dict : None

* categorical_features : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,.
-17, 18, 19, 20]

* k_neighbors : 5
5. RF Classifier Select From Model

* number_features : None

* n_estimators : 10

* max_depth : None

(continues on next page)
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* percent_features : 0.5
* threshold : median
* n_jobs : -1
6. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training

Training for binary problems.

Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
—lead_scoring.LeadScoring object at 0x7fc85b076e20>

Total training time (including CV): 4.5 seconds

Cross Validation

Lead Scoring AUC # Training # Validation

0 2.032 0.700 3,099 1,550
1 0.923 0.593 3,099 1,550
2 1.127 0.643 3,100 1,549
mean 1.360 0.646 - -
std 0.591 0.053 - -
coef of var 0.434 0.083 - -

3.2.4 Evaluate on hold out

Finally, since the best pipeline was trained on all of the training data, we evaluate it on the holdout dataset.

best_pipeline_score = best_pipeline.score(
X_holdout, y_holdout, objectives=["auc", lead_scoring objective]
)

best_pipeline_score

OrderedDict([('AUC', 0.6425506195225144),
('Lead Scoring', 1.5219260533104042)1]1)

3.2.5 Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the lead scoring objective to see
how the best pipelines compare.

automl_auc = evalml.AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="auc",
additional_objectives=[lead_scoring_objective],
allowed_model_families=["extra_trees", "linear_model"],

(continues on next page)

3.2. Building a Lead Scoring Model with EvalML 41



EvalML Documentation, Release 0.80.0

(continued from previous page)

max_batches=2,
verbose=True,

automl_auc.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

B R R R R R R L R R R kT

* Beginning pipeline search *

R O R R R R R R R R R R R R R R R R R TR

Optimizing for AUC.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean AUC: 0.500

B e R R R R R R R ko R T

* Evaluating Batch Number 1 *

B R R R R R R R R R R R R R R R R R

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF.
—Classifier Select From Model:

Starting cross validation

Finished cross validation - mean AUC: 0.646

* Evaluating Batch Number 2 *

B e R R R R R R R R R R T

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label.
—Encoder + Imputer + One Hot Encoder + Oversampler:

Starting cross validation

Finished cross validation - mean AUC: 0.653
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns.
—Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +.
—Oversampler:

Starting cross validation

Finished cross validation - mean AUC: 0.645
Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +.
—Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select.
—Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +.
—0Oversampler:

(continues on next page)
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Starting cross validation
Finished cross validation - mean AUC: 0.647

Search finished after 20.02 seconds

Best pipeline: Extra Trees Classifier w/ Label Encoder + Select Columns By Type.
—Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns.,
—Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler

Best pipeline AUC: 0.653133

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

{1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +.
—.Oversampler + RF Classifier Select From Model': 5.412939071655273,

'Total time of batch': 5.542449712753296},

2: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer +.
—Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer +.
—.Label Encoder + Imputer + One Hot Encoder + Oversampler': 4.82740044593811,

'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns.
—Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler
—': 4.414789915084839,

'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer..
-+ Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select.
—.Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +.
—0Oversampler': 4.230565309524536,

'Total time of batch': 13.954521894454956}}

automl_auc.rankings

id pipeline_name search_order \
0 2 Extra Trees Classifier w/ Label Encoder + Sele... 2
1 4 Logistic Regression Classifier w/ Label Encode... 4
2 1 Random Forest Classifier w/ Label Encoder + Im... 1
3 3 Elastic Net Classifier w/ Label Encoder + Sele... 3
4 0 Mode Baseline Binary Classification Pipeline 0
ranking_score mean_cv_score standard_deviation_cv_score \
0 0.653133 0.653133 0.058096
1 0.646823 0.646823 0.043723
2 0.645598 0.645598 0.053493
3 0.645471 0.645471 0.042740
4 0.500000 0.500000 0.000000
percent_better_than_baseline high_variance_cv \
0 15.313288 False
1 14.682289 False
2 14.559799 False
3 14.547088 False
4 0.000000 False
parameters

(continues on next page)
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{'Label Encoder': {'positive_label': None}, 'N...
{'Label Encoder': {'positive_label': None}, 'N...
{'Label Encoder': {'positive_label': None}, 'I...
{'Label Encoder': {'positive_label': None}, 'N...
{'Label Encoder': {'positive_label': None}, 'B...

DA W~

Like before, we can look at the rankings and pick the best pipeline.

best_pipeline_auc = automl_auc.best_pipeline

# get the AUC and lead scoring score on holdout data
best_pipeline_auc_score = best_pipeline_auc.score(
X_holdout, y_holdout, objectives=["auc", lead_scoring objective]

)

best_pipeline_auc_score

OrderedDict([('AUC', 0.6407071622846781),
('Lead Scoring', 0.21066208082545143)])

assert best_pipeline_score["Lead Scoring"] >= best_pipeline_auc_score["Lead Scoring"]
assert best_pipeline_auc_score["Lead Scoring"] >= 0

When we optimize for AUC, we can see that the AUC score from this pipeline is similar to the AUC score from the
pipeline optimized for lead scoring. However, the revenue per lead is much smaller per lead when optimized for AUC
and was much larger when optimized for lead scoring. As a result, we would have a huge gain on the amount of revenue
if we optimized for lead scoring.

This happens because optimizing for AUC does not take into account the user-specified true_positive (dollar amount
to be gained with a successful lead) and false_positive (dollar amount to be lost with an unsuccessful lead) values.
Thus, the best pipelines may produce the highest AUC but may not actually generate the most revenue through lead
scoring.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

3.3 Using the Cost-Benefit Matrix Objective

The Cost-Benefit Matrix (CostBenefitMatrix) objective is an objective that assigns costs to each of the quadrants
of a confusion matrix to quantify the cost of being correct or incorrect.

3.3.1 Confusion Matrix

Confusion matrices are tables that summarize the number of correct and incorrectly-classified predictions, broken down
by each class. They allow us to quickly understand the performance of a classification model and where the model gets
“confused” when it is making predictions. For the binary classification problem, there are four possible combinations
of prediction and actual target values possible:

* true positives (correct positive assignments)
* true negatives (correct negative assignments)
* false positives (incorrect positive assignments)

« false negatives (incorrect negative assignments)
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An example of how to calculate a confusion matrix can be found /ere.

3.3.2 Cost-Benefit Matrix

Although the confusion matrix is an incredibly useful visual for understanding our model, each prediction that is
correctly or incorrectly classified is treated equally. For example, for detecting breast cancer, the confusion matrix does
not take into consideration that it could be much more costly to incorrectly classify a malignant tumor as benign than
it is to incorrectly classify a benign tumor as malignant. This is where the cost-benefit matrix shines: it uses the cost
of each of the four possible outcomes to weigh each outcome differently. By scoring using the cost-benefit matrix, we
can measure the score of the model by a concrete unit that is more closely related to the goal of the model. In the below
example, we will show how the cost-benefit matrix objective can be used, and how it can give us better real-world
impact when compared to using other standard machine learning objectives.

3.3.3 Customer Churn Example
Data

In this example, we will be using a customer churn data set taken from Kaggle.

This dataset includes records of over 7000 customers, and includes customer account information, demographic infor-
mation, services they signed up for, and whether or not the customer “churned” or left within the last month.

The target we want to predict is whether the customer churned (“Yes”) or did not churn (“No”). In the dataset, approxi-
mately 73.5% of customers did not churn, and 26.5% did. We will refer to the customers who churned as the “positive”
class and the customers who did not churn as the “negative” class.

from evalml.demos.churn import load_churn
from evalml.preprocessing import split_data

X, y = load_churn()
X.ww.set_types(

{"PaymentMethod": "Categorical"”, "Contract": "Categorical"}
) # Update data types Woodwork did not correctly infer
X_train, X_holdout, y_train, y_holdout = split_data(

X, y, problem_type="binary", test_size=0.3, random_seed=0

)

Number of Features
Categorical 16
Numeric 3

Number of training examples: 7043
Targets

No 73.46%

Yes 26.54%

Name: count, dtype: object

In this example, let’s say that correctly identifying customers who will churn (true positive case) will give us a net
profit of \$400, because it allows us to intervene, incentivize the customer to stay, and sign a new contract. Incorrectly
classifying customers who were not going to churn as customers who will churn (false positive case) will cost \$100
to represent the marketing and effort used to try to retain the user. Not identifying customers who will churn (false
negative case) will cost us \$200 to represent the lost in revenue from losing a customer. Finally, correctly identifying
customers who will not churn (true negative case) will not cost us anything ($0), as nothing needs to be done for that
customer.

3.3. Using the Cost-Benefit Matrix Objective 45


https://www.kaggle.com/blastchar/telco-customer-churn?select=WA_Fn-UseC_-Telco-Customer-Churn.csv

[2]:

[3]:

EvalML Documentation, Release 0.80.0

We can represent these values in our CostBenefitMatrix objective, where a negative value represents a cost and a
positive value represents a profit—note that this means that the greater the score, the more profit we will make.

from evalml.objectives import CostBenefitMatrix

cost_benefit_matrix = CostBenefitMatrix(
true_positive=400, true_negative=0, false_positive=-100, false_negative=-200

AutoML Search with Log Loss

First, let us run AutoML search to train pipelines using the default objective for binary classification (log loss).

from evalml import AutoMLSearch

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="1log loss binary",
max_iterations=5,
verbose=True,

)

automl.search(interactive_plot=False)

11 _pipeline = automl.best_pipeline
11 _pipeline.score(X_holdout, y_holdout, ["log loss binary"])

AutoMLSearch will use mean CV score to rank pipelines.

B R R R R R R R R R R R R R R R R TR

* Beginning pipeline search *

e dededededededededede R R R R R TR R

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 5 pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 9.563

B O R R R R R R R R R R R R R R R R R TR

* Evaluating Batch Number 1 *

Yo e

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + RF Classifier.
—»Select From Model:
Starting cross validation

(continues on next page)
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Finished cross validation - mean Log Loss Binary: 0.424

* Evaluating Batch Number 2 *

B R R R R R R L R R R R kT

[LightGBM]
[LightGBM]
~.0.000224

You can set " force_row_wise=true’

[Info] Number of positive: 697, number of negative: 1931

[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM]
[LightGBM]
.30

[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
.0.000217

You can set " force_row_wise=true’

[Info] Total Bins 637
[Info] Number of data points in the train set: 2628, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.265221 -> initscore=-1.019008

[Info] Start training from score -1.019008

[Info] Number of positive: 697, number of negative: 1932

[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM]
[LightGBM]
.30

[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
.0.000212

You can set " force_row_wise=true’

[Info] Total Bins 637
[Info] Number of data points in the train set: 2629, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526

[Info] Start training from score -1.019526

[Info] Number of positive: 697, number of negative: 1932

[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM]
[LightGBM]
.30

[LightGBM]
[LightGBM]

[Info] Total Bins 637
[Info] Number of data points in the train set: 2629, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[Info] Start training from score -1.019526

LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label.
—Encoder + Imputer + One Hot Encoder:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.472
Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label.
—Encoder + Imputer + One Hot Encoder:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.431
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns..
—Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.424

(continues on next page)
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Search finished after 14.47 seconds

Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +.
—RF Classifier Select From Model

Best pipeline Log Loss Binary: 0.423684

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

OrderedDict([('Log Loss Binary', 0.4180258787635931)])

When we train our pipelines using log loss as our primary objective, we try to find pipelines that minimize log loss.
However, our ultimate goal in training models is to find a model that gives us the most profit, so let’s score our pipeline
on the cost benefit matrix (using the costs outlined above) to determine the profit we would earn from the predictions
made by this model:

11_pipeline_score = 11_pipeline.score(X_holdout, y_holdout, [cost_benefit_matrix])
print(1ll_pipeline_score)

OrderedDict([('Cost Benefit Matrix', 31.187884524372926)])

# Calculate total profit across all customers using pipeline optimized for Log Loss
total_profit_11 = 11_pipeline_score["Cost Benefit Matrix"] * len(X)
print(total_profit_11)

219656.27070515853

AutoML Search with Cost-Benefit Matrix

Let’s try rerunning our AutoML search, but this time using the cost-benefit matrix as our primary objective to optimize.

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=cost_benefit_matrix,
max_iterations=5,
verbose=True,

)

automl . search(interactive_plot=False)

cbm_pipeline = automl.best_pipeline

AutoMLSearch will use mean CV score to rank pipelines.

B R R R kR R R R R R R kT

* Beginning pipeline search *

B O R R R R R R R R R R R R R R R TR

Optimizing for Cost Benefit Matrix.
Greater score is better.

Using SequentialEngine to train and score pipelines.

(continues on next page)
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Searching up to 5 pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:
Starting cross validation

Finished cross validation - mean Cost Benefit Matrix:

Fedddhhhhhhn

-53.063

EE o e L U O A R R LR L

* Evaluating Batch Number 1 *

B e R R R R R R R R R R R R kT

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + RF Classifier.,
—.Select From Model:
Starting cross validation

Finished cross validation - mean Cost Benefit Matrix:

R R LR LR R

56.796

KR S O A R R R L A A R R R AR A

* Evaluating Batch Number 2 *

[LightGBM]
[LightGBM]
.0.000216

You can set " force_row_wise=true’

Fededehdedefedededefedededddedehddedhddefdddn

[Info] Number of positive: 697, number of negative: 1931

[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM]
[LightGBM]
.30

[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
.0.000212

You can set " force_row_wise=true’

[Info] Total Bins 637
[Info] Number of data points in the train set: 2628, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.265221 -> initscore=-1.019008

[Info] Start training from score -1.019008

[Info] Number of positive: 697, number of negative: 1932

[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true .

[LightGBM]
[LightGBM]
.30

[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
.0.000214

You can set " force_row_wise=true’

[Info] Total Bins 637
[Info] Number of data points in the train set: 2629, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526

[Info] Start training from score -1.019526

[Info] Number of positive: 697, number of negative: 1932

[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’ .

[LightGBM]
[LightGBM]
.30

[LightGBM]
[LightGBM]

[Info] Total Bins 637
[Info] Number of data points in the train set: 2629, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[Info] Start training from score -1.019526

LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Select Columns Transformer + Select Columns Transformesnttudsab@dxtpage)
—Encoder + Imputer + One Hot Encoder:
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Starting cross validation

Finished cross validation - mean Cost Benefit Matrix: 52.942
Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label..
—Encoder + Imputer + One Hot Encoder:

Starting cross validation

Finished cross validation - mean Cost Benefit Matrix: 57.892
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns..
—Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler:

Starting cross validation

Finished cross validation - mean Cost Benefit Matrix: 58.743

Search finished after 19.52 seconds

Best pipeline: Elastic Net Classifier w/ Label Encoder + Select Columns By Type.
—.Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer +.
—Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard.
—Scaler

Best pipeline Cost Benefit Matrix: 58.743007

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Now, if we calculate the cost-benefit matrix score on our best pipeline, we see that with this pipeline optimized for
our cost-benefit matrix objective, we are able to generate more profit per customer. Across our 7043 customers, we
generate much more profit using this best pipeline! Custom objectives like CostBenefitMatrix are just one example
of how using EvalML can help find pipelines that can perform better on real-world problems, rather than on arbitrary
standard statistical metrics.

cbm_pipeline_score = cbm_pipeline.score(X_holdout, y_holdout, [cost_benefit_matrix])
print(cbm_pipeline_score)

OrderedDict([('Cost Benefit Matrix', 62.091812588736396)1)

# Calculate total profit across all customers using pipeline optimized for.
—CostBenefitMatrix

total_profit_cbm = cbm_pipeline_score["Cost Benefit Matrix"] * len(X)

print (total_profit_cbm)

437312.63606247044

# Calculate difference in profit made using both pipelines
profit_diff = total_profit_cbm - total_profit_11
print (profit_diff)

217656.3653573119

Finally, we can graph the confusion matrices for both pipelines to better understand why the pipeline trained using
the cost-benefit matrix is able to correctly classify more samples than the pipeline trained with log loss: we were able
to correctly predict more cases where the customer would have churned (true positive), allowing us to intervene and
prevent those customers from leaving.
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[10]: from evalml.model_understanding.metrics import graph_confusion_matrix

# pipeline trained with log loss
y_pred = 11_pipeline.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[11]: # pipeline trained with cost-benefit matrix
y_pred = cbm_pipeline.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

3.4 Using Text Data with EvalML

In this demo, we will show you how to use EvalML to build models which use text data.

[1]: import evalml
from evalml import AutoMLSearch

3.4.1 Dataset

We will be utilizing a dataset of SMS text messages, some of which are categorized as spam, and others which are not
(“ham”). This dataset is originally from Kaggle, but modified to produce a slightly more even distribution of spam to
ham.

[2]: from urllib.request import urlopen
import pandas as pd

input_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/spam_text_messages_modified.csv"

)
data = pd.read_csv(input_data)[:750]

X
y

data.drop(["Category"], axis=1)
data["Category"]

display(X.head())

Message
Free entry in 2 a wkly comp to win FA Cup fina...
FreeMsg Hey there darling it's been 3 week's n...
WINNER!! As a valued network customer you have...
Had your mobile 11 months or more? U R entitle...
SIX chances to win CASH! From 100 to 20,000 po...

S wNn R
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The ham vs spam distribution of the data is 3:1, so any machine learning model must get above 75% accuracy in order
to perform better than a trivial baseline model which simply classifies everything as ham.

y.value_counts(normalize=True)

Category
spam 0.593333
ham 0.406667

Name: proportion, dtype: float64

In order to properly utilize Woodwork’s ‘Natural Language’ typing, we need to pass this argument in during initializa-
tion. Otherwise, this will be treated as an ‘Unknown’ type and dropped in the search.

X.ww.init(logical_types={"Message": "NaturallLanguage"})

3.4.2 Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0
)

EvalML uses Woodwork to automatically detect which columns are text columns, so you can run search normally, as
you would if there was no text data. We can print out the logical type of the Message column and assert that it is indeed
inferred as a natural language column.

X_train.ww

Physical Type Logical Type Semantic Tag(s)
Column
Message string Naturallanguage [1

Because the spam/ham labels are binary, we will use AutoMLSearch(X_train=X_train, y_train=y_train,
problem_type="binary'). When we call . search(), the search for the best pipeline will begin.

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
max_batches=1,
optimize_thresholds=True,
verbose=True,

)

automl.search(interactive_plot=False)
AutoMLSearch will use mean CV score to rank pipelines.

Fededehdedefedededefdedefddedehddedddefdddn

* Beginning pipeline search *

B R R R R R R R R R R R

(continues on next page)
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(continued from previous page)
Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 14.658

R R R R R R R R R R R R R R R R R TR

* Evaluating Batch Number 1 *

B R R R R R R R e R R R

Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF.
—.Classifier Select From Model:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.249

Search finished after 7.75 seconds

Best pipeline: Random Forest Classifier w/ Label Encoder + Natural Language Featurizer +.
—Imputer + RF Classifier Select From Model

Best pipeline Log Loss Binary: 0.248763

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

{1: {'Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer.
—+ RF Classifier Select From Model': 6.920387506484985,
'Total time of batch': 7.049400806427002}}

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched.

automl.rankings

id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Na... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.248763 0.248763 0.056686
1 14.657752 14.657752 0.104049

percent_better_than_baseline high_variance_cv \
0 98.302858 False
1 0.000000 False

(continues on next page)
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parameters
'Label Encoder': {'positive_label': None}, 'I...

0 {
1 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline, including how it performed on other objective functions.

automl .describe_pipeline(automl.rankings.iloc[0]["id"])

FRRBNNRNNNNNNN NN NN NN A A dddedededededededededededededededededededededd AN NN NN NN NN NNNNNNNNNNNN NN NN NN N A ddddededededededededededededededededede

* Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF,_
HCIassifier Select From Model *

TRAANNNNNNN NN NN NS SR ddddddededededededededededededededededededededededdhhhhhhhh NN N RN RN R hhfddddddedededededededededededededededededededede

Problem Type: binary
Model Family: Random Forest

Pipeline Steps

1. Label Encoder
* positive_label : None

2. Natural Language Featurizer
3. Imputer

* categorical_impute_strategy : most_frequent

* numeric_impute_strategy : mean

* boolean_impute_strategy : most_frequent

* categorical_£fill _value : None

* numeric_fill _value : None

* boolean_fill_value : None
4. RF C1a551f1er Select From Model

* number_features : None

* n_estimators : 10

* max_depth : None

* percent_features : 0.5

* threshold : median

* n_jobs : -1
5. Random Forest Classifier

* n_estimators : 100

* max_depth : 6

* n_jobs : -1

Training

Training for binary problems.
Total training time (including CV): 6.9 seconds

(continues on next page)
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Cross Validation

Log Loss Binary MCC Binary Gini  AUC Precision F1 Balanced Accuracy.
—Binary Accuracy Binary # Training # Validation
0 0.251 0.793 0.917 0.958 0.930 0.868 o
— 0.886 0.900 400 200
1 0.191 0.844 0.964 0.982 0.934 0.904 o
— 0.917 0.925 400 200
2 0.304 0.782 0.900 0.950 0.886 0.870 o
- 0.889 0.895 400 200
mean 0.249 0.806 0.927 0.963 0.917 0.881 o
— 0.897 0.907 - -
std 0.057 0.033 0.033 0.017 0.027 0.020 o
— 0.017 0.016 - -
coef of var 0.228 0.041 0.036 0.017 0.029 0.023 o
— 0.019 0.018 - -

best_pipeline.graph()

Notice above that there is a Natural Language Featurizer as the first step in the pipeline. AutoMLSearch uses
the woodwork accessor to recognize that 'Message' is a text column, and converts this text into numerical values that
can be handled by the estimator.

3.4.3 Evaluate on holdout

Now, we can score the pipeline on the holdout data using the ranking objectives for binary classification problems.

scores = best_pipeline.score(
X_holdout, y_holdout, objectives=evalml.objectives.get_ranking _objectives("binary")

)

print(f'Accuracy Binary: {scores["Accuracy Binary"]}')

Accuracy Binary: 0.9333333333333333

As you can see, this model performs relatively well on this dataset, even on unseen data.

3.4.4 What does the Natural Language Featurizer do?

Machine learning models cannot handle non-numeric data. Any text must be broken down into numeric features that
provide useful information about that text. The Natural Natural Language Featurizer first normalizes your text by
removing any punctuation and other non-alphanumeric characters and converting any capital letters to lowercase. From
there, it passes the text into featuretools’ nlp_primitives dfs search, resulting in several informative features that replace
the original column in your dataset: Diversity Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic
Analysis), Number of Characters, and Number of Words.

Diversity Score is the ratio of unique words to total words.
Mean Characters per Word is the average number of letters in each word.

Polarity Score is a prediction of how “polarized” the text is, on a scale from -1 (extremely negative) to 1 (extremely
positive).
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Latent Semantic Analysis is an abstract representation of how important each word is with respect to the entire text,
reduced down into two values per text. While the other text features are each a single column, this feature adds two
columns to your data, LSA(column_name) [0] and LSA(column_name) [1].

Number of Characters is the number of characters in the text.
Number of Words is the number of words in the text.

Let’s see what this looks like with our spam/ham example.

[13]: best_pipeline.input_feature_names

[13]: {'Label Encoder': ['Message'],

'Natural Language Featurizer': ['Message'],
'Imputer': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD (Message) ',

'NUM_CHARACTERS (Message) ',

'NUM_WORDS (Message) ',

'POLARITY_SCORE(Message)',

'LSA(Message) [0] "',

'LSA(Message) [1]'],
'RF Classifier Select From Model': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD (Message) ',

'NUM_CHARACTERS (Message) ',

'NUM_WORDS (Message) ',

'POLARITY_SCORE(Message)',

'LSA(Message) [0] ',

'LSA(Message)[1]1'],

'Random Forest Classifier': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD (Message) ',

'NUM_CHARACTERS (Message) ',

'LSA(Message) [0] ']}

Here, the Natural Language Featurizer takes in a single “Message” column, but then the next component in the pipeline,
the Imputer, receives five columns of input. These five columns are the result of featurizing the text-type “Message”
column. Most importantly, these featurized columns are what ends up passed in to the estimator.

If the dataset had any non-text columns, those would be left alone by this process. If the dataset had more than one text
column, each would be broken into these five feature columns independently.

The features, more directly

Rather than just checking the new column names, let’s examine the output of this component directly. We can see this
by running the component on its own.

[14]: natural_language_featurizer = evalml.pipelines.components.NaturalLanguageFeaturizer()
X_featurized = natural_language_featurizer.fit_transform(X_train)

Now we can compare the input data to the output from the Natural Language Featurizer:

[15]: X_train.head()

[15]: Message
296 Sunshine Hols. To claim ur med holiday send a ...
652 Yup 4 not comin :-(

526 Hello hun how ru? Its here by the way. Im good...

(continues on next page)
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(continued from previous page)

571 I tagged MY friends that you seemed to count a...
472 What happened to our yo date?

X_featurized.head(Q)

DIVERSITY_SCORE(Message) MEAN_CHARACTERS_PER_WORD (Message) \

296 1.0 4.344828

652 1.0 3.000000

526 1.0 3.363636

571 0.8 4.083333

472 1.0 3.833333
NUM_CHARACTERS (Message) NUM_WORDS (Message) POLARITY_SCORE(Message) \

296 154.0 29.0 0.003

652 16.0 4.0 0.000

526 143.0 33.0 0.162

571 60.0 12.0 0.681

472 28.0 6.0 0.000
LSA(Message) [0] LSA(Message)[1]

296 0.150556 -0.072443

652 0.017340 -0.005411

526 0.169954 0.022670

571 0.144713 0.036799

472 0.109373 -0.042754

These numeric values now represent important information about the original text that the estimator at the end of the
pipeline can successfully use to make predictions.

3.4.5 Why encode text this way?

To demonstrate the importance of text-specific modeling, let’s train a model with the same dataset, without letting
AutoMLSearch detect the text column. We can change this by explicitly setting the data type of the 'Message'
column in Woodwork to Categorical using the utility method infer_feature_types

from evalml.utils import infer_feature_types

X = infer_feature_types(X, {'Message": "Categorical"})

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

automl_no_text = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
max_batches=1,
optimize_thresholds=True,
verbose=True,

)

automl_no_text.search(interactive_plot=False)
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AutoMLSearch will use mean CV score to rank pipelines.

* Beginning pipeline search *

E R R R R R R R R R Rk

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 14.658

B O R R R R R R R R R R R R R R R TR

* Evaluating Batch Number 1 *

B R R R R R R R R R

Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF.
—.Classifier Select From Model:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.249

Search finished after 6.02 seconds

Best pipeline: Random Forest Classifier w/ Label Encoder + Natural Language Featurizer +.
—Imputer + RF Classifier Select From Model

Best pipeline Log Loss Binary: 0.248763

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

{1: {'Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer.
—+ RF Classifier Select From Model': 5.368223667144775,
'Total time of batch': 5.497136116027832}}

Like before, we can look at the rankings and pick the best pipeline.

automl_no_text.rankings

id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Na... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking score mean_cv_score standard_deviation_cv_score \

0 0.248763 0.248763 0.056686

1 14.657752 14.657752 0.104049
percent_better_than_baseline high_variance_cv \

0 98.302858 False

(continues on next page)
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(continued from previous page)

1 0.000000 False
parameters

0 {'Label Encoder': {'positive_label': None}, 'I...

1 {'Label Encoder': {'positive_label': None}, 'B...

best_pipeline_no_text = automl_no_text.best_pipeline

Here, changing the data type of the text column removed the Natural Language Featurizer from the pipeline.

best_pipeline_no_text.graph()

automl_no_text.describe_pipeline(automl_no_text.rankings.iloc[0]["id"])

R e o R e e e R R R R R R R R R R R R R R R R R R R R TR TR T ko o o o i o S ok e o S S S D S S A A A

* Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF._
—Classifier Select From Model *

P R R R T R R e L T PR R R R T P R e R PR R R L R R P R R I PR R R P R L PR PR T R TR T

Problem Type: binary
Model Family: Random Forest

Pipeline Steps

1. Label Encoder
* positive_label : None
2. Natural Language Featurizer
3. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None
4. RF Classifier Select From Model
* number_features : None
* n_estimators : 10
* max_depth : None
* percent_features : 0.5
* threshold : median
* n_jobs : -1
5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training

Training for binary problems.
Total training time (including CV): 5.3 seconds

(continues on next page)
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Cross Validation

Log Loss Binary MCC Binary Gini  AUC Precision F1 Balanced Accuracy.
—Binary Accuracy Binary # Training # Validation
0 0.251 0.793 0.917 0.958 0.930 0.868 o
— 0.886 0.900 400 200
1 0.191 0.844 0.964 0.982 0.934 0.904 o
— 0.917 0.925 400 200
2 0.304 0.782 0.900 0.950 0.886 0.870 o
- 0.889 0.895 400 200
mean 0.249 0.806 0.927 0.963 0.917 0.881 o
— 0.897 0.907 - -
std 0.057 0.033 0.033 0.017 0.027 0.020 o
— 0.017 0.016 - -
coef of var 0.228 0.041 0.036 0.017 0.029 0.023 o
— 0.019 0.018 - -

# get standard performance metrics on holdout data
scores = best_pipeline_no_text.score(

X_holdout, y_holdout, objectives=evalml.objectives.get_ranking_objectives("binary")
)

print (f'Accuracy Binary: {scores["Accuracy Binary"]}')

Accuracy Binary: 0.9333333333333333

Without the Natural Language Featurizer, the 'Message' column was treated as a categorical column, and
therefore the conversion of this text to numerical features happened in the One Hot Encoder. The best pipeline
encoded the top 10 most frequent “categories” of these texts, meaning 10 text messages were one-hot encoded and
all the others were dropped. Clearly, this removed almost all of the information from the dataset, as we can see the
best_pipeline_no_text performs very similarly to randomly guessing “ham” in every case.
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CHAPTER
FOUR

USER GUIDE

These guides include in-depth descriptions and explanations of EvalML’s features.

4.1 Automated Machine Learning (AutoML) Search

4.1.1 Background
Machine Learning

Machine learning (ML) is the process of constructing a mathematical model of a system based on a sample dataset
collected from that system.

One of the main goals of training an ML model is to teach the model to separate the signal present in the data from the
noise inherent in system and in the data collection process. If this is done effectively, the model can then be used to
make accurate predictions about the system when presented with new, similar data. Additionally, introspecting on an
ML model can reveal key information about the system being modeled, such as which inputs and transformations of
the inputs are most useful to the ML model for learning the signal in the data, and are therefore the most predictive.

There are a variety of ML problem types. Supervised learning describes the case where the collected data contains an
output value to be modeled and a set of inputs with which to train the model. EvalML focuses on training supervised
learning models.

EvalML supports three common supervised ML problem types. The first is regression, where the target value to model
is a continuous numeric value. Next are binary and multiclass classification, where the target value to model consists
of two or more discrete values or categories. The choice of which supervised ML problem type is most appropriate
depends on domain expertise and on how the model will be evaluated and used.

EvalML is currently building support for supervised time series problems: time series regression, time series binary
classification, and time series multiclass classification. While we’ve added some features to tackle these kinds of
problems, our functionality is still being actively developed so please be mindful of that before using it.

AutoML and Search

AutoML is the process of automating the construction, training and evaluation of ML models. Given a data and some
configuration, AutoML searches for the most effective and accurate ML model or models to fit the dataset. During the
search, AutoML will explore different combinations of model type, model parameters and model architecture.

An effective AutoML solution offers several advantages over constructing and tuning ML models by hand. AutoML can
assist with many of the difficult aspects of ML, such as avoiding overfitting and underfitting, imbalanced data, detecting
data leakage and other potential issues with the problem setup, and automatically applying best-practice data cleaning,
feature engineering, feature selection and various modeling techniques. AutoML can also leverage search algorithms to
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optimally sweep the hyperparameter search space, resulting in model performance which would be difficult to achieve
by manual training.

4.1.2 AutoML in EvalML

EvalML supports all of the above and more.

In its simplest usage, the AutoML search interface requires only the input data, the target data and a problem_type
specifying what kind of supervised ML problem to model.

** Graphing methods, like verbose AutoMLSearch, on Jupyter Notebook and Jupyter Lab require ipywidgets to be
installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

import evalml
from evalml.utils import infer_feature_types

X, y = evalml.demos.load_fraud(n_rows=650)

Number of Features

Boolean 1
Categorical 6
Numeric 5

Number of training examples: 650

Targets
False 86.31%
True 13.69%

Name: count, dtype: object

To provide data to EvalML, it is recommended that you initialize a Woodwork accessor on your data. This allows you
to easily control how EvalML will treat each of your features before training a model.

EvalML also accepts pandas input, and will run type inference on top of the input pandas data. If you’d like to change
the types inferred by EvalML, you can use the infer_feature_types utility method, which takes pandas or numpy
input and converts it to a Woodwork data structure. The feature_types parameter can be used to specify what types
specific columns should be.

Feature types such as Natural Language must be specified in this way, otherwise Woodwork will infer it as Unknown
type and drop it during the AutoMLSearch.

In the example below, we reformat a couple features to make them easily consumable by the model, and then specify
that the provider, which would have otherwise been inferred as a column with natural language, is a categorical column.

X.ww["expiration_date"] = X["expiration_date"].apply(
lambda x: "20{}-01-{}".format(x.split("/")[1], x.split("/")[01)

)
X = infer_feature_types(
X,
feature_types={
"store_id": "categorical",
"expiration_date": "datetime",
"lat": "categorical",
"lng": "categorical",
"provider": "categorical",

(continues on next page)
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(continued from previous page)

},

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2
)

Data Checks

Before calling AutoMLSearch. search, we should run some sanity checks on our data to ensure that the input data
being passed will not run into some common issues before running a potentially time-consuming search. EvalML has
various data checks that makes this easy. Each data check will return a collection of warnings and errors if it detects
potential issues with the input data. This allows users to inspect their data to avoid confusing errors that may arise
during the search process. You can learn about each of the data checks available through our data checks guide.

Here, we will run the DefaultDataChecks class, which contains a series of data checks that are generally useful.

from evalml.data_checks import DefaultDataChecks

data_checks = DefaultDataChecks("binary", "log loss binary'")
data_checks.validate(X_train, y_train)

(]

Since there were no warnings or errors returned, we can safely continue with the search process.

Holdout Set for Pipeline Ranking

If the holdout_set_size parameter is set and the input dataset has more than 500 rows, AutoMLSearch will create
a holdout set from holdout_set_size of the training data. Alternatively, a holdout set can be manually specified
by using the X_holdout and y_holdout parameters in AutoMLSearch(). In this example, the holdout set created
previously will be used by AutoML search.

During the AutoML search process, the mean of the objective scores of all cross validation folds (shown the
“mean_cv_score” column in the pipeline rankings), is calculated. This score is passed to the AutoML search tuner
to further optimize the hyperparameters of the next batch of pipelines.

After, the pipeline will be fitted on the entire training dataset and scored on this new holdout set. This score is repre-
sented under the “ranking_score” column on the pipeline rankings board and is used to rank pipeline performance.

If a dataset has less than 500 rows or holdout_set_size=0 (which is the default setting), the “mean_cv_score” will
be used as the ranking_score instead.

automl = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,
X_holdout=X_holdout,
y_holdout=y_holdout,
problem_type="binary",
verbose=True,

(continues on next page)
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)

automl.search(interactive_plot=False)

AutoMLSearch will use the holdout set to score and rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type
Using default limit of max_batches=2.

B e R R R R R L R R R kT

* Beginning pipeline search *

R O R R R R R R R R R R R R R R R R TR

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 4.921

Starting holdout set scoring

Finished holdout set scoring - Log Loss Binary: 4.991

B O R R R R R R R R R R R R R R R TR Tk

* Evaluating Batch Number 1 *

Fededededd % e LR LRI

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.254
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.219

B R R R R R R R R R R R R R R R R TR

2 *

*%

* Evaluating Batch Number

Fededehdedefedededefedededhdedefddedehdd Nk

[LightGBM] [Info] Number of positive: 59, number of negative: 239

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000092 seconds.

You can set " force_col_wise=true’ to remove the overhead.

[LightGBM] [Info] Total Bins 450

[LightGBM] [Info] Number of data points in the train set: 298, number of used features:.
20

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[Info] Number of positive: 59, number of negative: 239
[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.
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[LightGBM] [Info] Number of data points in the train set: 298, number of used features:.
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[Info] Number of positive: 59, number of negative: 239
[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.
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You can set " force_col_wise=true’
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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[Warning] No further splits with positive gain, best gain: -inf
[Warning] No further splits with positive gain, best gain: -inf
[Info] Number of positive: 89, number of negative: 359
[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

[Info] Number of data points in the train set: 448, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.300

Starting holdout set scoring

Finished holdout set scoring - Log Loss Binary: 0.161
Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.361

Starting holdout set scoring

Finished holdout set scoring - Log Loss Binary: 0.348
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +.
—.Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +.
—One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.375

Starting holdout set scoring

Finished holdout set scoring - Log Loss Binary: 0.400
XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder..
<+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.257

Starting holdout set scoring

Finished holdout set scoring - Log Loss Binary: 0.142
Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +.
—Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard.
—Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +.
—Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.374

Starting holdout set scoring

Finished holdout set scoring - Log Loss Binary: 0.402

Search finished after 36.02 seconds

Best pipeline: XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer..
—+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select.
—.Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot.
—Encoder + Oversampler (continues on next page)
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Best pipeline Log Loss Binary: 0.142417

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

{1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
—': 6.526562213897705,

'Total time of batch': 6.657414436340332},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler': 4.0094428062438965,

'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns,,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler': 5.943113565444946,

'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label,
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +.
—Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +.
—.One Hot Encoder + Standard Scaler + Oversampler': 5.363128662109375,

'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—Oversampler': 4.84464955329895,

'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer..
-+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard.
—.Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +.
—Imputer + One Hot Encoder + Standard Scaler + Oversampler': 7.4569501876831055,

'Total time of batch': 28.425612926483154}}

With the verbose argument set to True, the AutoML search will log its progress, reporting each pipeline and parameter
set evaluated during the search. The search iteration plot shown during AutoML search tracks the current pipeline’s
validation score (tracked as the gray point) against the best pipeline validation score (tracked as the blue line).

There are a number of mechanisms to control the AutoML search time. One way is to set the max_batches parameter
which controls the maximum number of rounds of AutoML to evaluate, where each round may train and score a variable
number of pipelines. Another way is to set the max_iterations parameter which controls the maximum number of
candidate models to be evaluated during AutoML. By default, AutoML will search for a single batch. The first pipeline
to be evaluated will always be a baseline model representing a trivial solution.

The AutoML interface supports a variety of other parameters. For a comprehensive list, please refer to the API refer-
ence.

We also provide a standalone search method which does all of the above in a single line, and returns the AutoMLSearch
instance and data check results. If there were data check errors, AutoML will not be run and no AutoMLSearch instance
will be returned.
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Detecting Problem Type

EvalML includes a simple method, detect_problem_type, to help determine the problem type given the target data.

This function can return the predicted problem type as a ProblemType enum, choosing from ProblemType.BINARY,
ProblemType. MULTICLASS, and ProblemType.REGRESSION. If the target data is invalid (for instance when there
is only 1 unique label), the function will throw an error instead.

import pandas as pd
from evalml.problem_types import detect_problem_type

y_binary = pd.Series([0, 1, 1, O, 1, 1])
detect_problem_type(y_binary)

<ProblemTypes.BINARY: 'binary'>

Objective parameter

AutoMLSearch takes in an objective parameter to determine which objective to optimize for. By default,
this parameter is set to auto, which allows AutoML to choose LogLossBinary for binary classification problems,
LogLossMulticlass for multiclass classification problems, and R2 for regression problems.

It should be noted that the objective parameter is only used in ranking and helping choose the pipelines to iterate
over, but is not used to optimize each individual pipeline during fit-time.

To get the default objective for each problem type, you can use the get_default_primary_search_objective
function.

from evalml.automl import get_default_primary_search_objective

binary_objective = get_default_primary_search_objective("binary")
multiclass_objective = get_default_primary_search_objective("multiclass")
regression_objective = get_default_primary_search_objective("regression™)

print(binary_objective.name)
print(multiclass_objective.name)
print(regression_objective.name)

Log Loss Binary
Log Loss Multiclass
R2

Using custom pipelines

EvalML’s AutoML algorithm generates a set of pipelines to search with. To provide a custom set instead, set al-
lowed_component_graphs to a dictionary of custom component graphs. AutoMLSearch will use these to generate
Pipeline instances. Note: this will prevent AutoML from generating other pipelines to search over.

from evalml.pipelines import MulticlassClassificationPipeline

automl_custom = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,

(continues on next page)
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problem_type="multiclass",
verbose=True,
allowed_component_graphs={
"My_pipeline": ["Simple Imputer", "Random Forest Classifier"],
"My_other_pipeline": ["One Hot Encoder", "Random Forest Classifier"],
3
)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type
Using default limit of max_batches=2.

Stopping the search early

To stop the search early, hit Ctrl-C. This will bring up a prompt asking for confirmation. Responding with y will
immediately stop the search. Responding with n will continue the search.

Callback functions

AutolMLSearch supports several callback functions, which can be specified as parameters when initializing an
AutolMLSearch object. They are:

e start_iteration_callback
¢ add_result_callback

e error_callback

Start Iteration Callback

Users can set start_iteration_callback to set what function is called before each pipeline training iteration.
This callback function must take three positional parameters: the pipeline class, the pipeline parameters, and the
AutoMLSearch object.

## start_iteration_callback example function
def start_iteration_callback_example(pipeline_class, pipeline_params, automl_obj):
print("Training pipeline with the following parameters:", pipeline_params)

Add Result Callback

Users can set add_result_callback to set what function is called after each pipeline training iteration. This callback
function must take three positional parameters: a dictionary containing the training results for the new pipeline, an
untrained_pipeline containing the parameters used during training, and the AutoMLSearch object.

## add_result_callback example function
def add_result_callback_example(pipeline_results_dict, untrained_pipeline, automl_obj):
print(

(continues on next page)
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"Results for trained pipeline with the following parameters:"
pipeline_results_dict,

Error Callback

Users can set the error_callback to set what function called when search () errors and raises an Exception. This
callback function takes three positional parameters: the Exception raised, the traceback, and the AutoMLSearch
object. This callback function must also accept kwargs, so AutoMLSearch is able to pass along other parameters
used by default.

Evalml defines several error callback functions, which can be found under evalml.automl.callbacks. They are:
e silent_error_callback
* raise_error_callback
¢ log_and_save_error_callback
* raise_and_save_error_callback

¢ log_error_callback (default used when error_callback is None)

# error_callback example; this is implemented in the evalml library
def raise_error_callback(exception, traceback, automl, **kwargs):
"""Raises the exception thrown by the AutoMLSearch object. Also logs the exception.
—as an error."""
logger.error(f"AutoMLSearch raised a fatal exception: {str(exception)}")
logger.error("\n".join(traceback))

raise exception

4.1.3 View Rankings

A summary of all the pipelines built can be returned as a pandas DataFrame which is sorted by the validation score.

» For AutoML searches completed with a holdout set, the validation score is the holdout score of the pipeline fitted
using the entire training dataset.

» For AutoML searches completed without a holdout set, the validation score is the average score across all cross-
validation folds.

automl . rankings

id pipeline_name search_order \
XGBoost Classifier w/ Label Encoder + Select C... 5
LightGBM Classifier w/ Label Encoder + Select ...
Random Forest Classifier w/ Label Encoder + Dr...
Extra Trees Classifier w/ Label Encoder + Sele...
Elastic Net Classifier w/ Label Encoder + Sele...
Logistic Regression Classifier w/ Label Encode..
Mode Baseline Binary Classification P1pe11ne

OV WN R D
SO0 WE NUn
SO b WKL N

ranking_score holdout_score mean_cv_score standard_deviation_cv_score \
0 0.142417 0.142417 0.256950 0.137180

(continues on next page)
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1 0.160955 0.160955 0.299971
2 0.219145 0.219145 0.254382
3 0.348408 0.348408 0.361341
4 0.400375 0.400375 0.374725
5 0.401581 0.401581 0.374364
6 4.990660 4.990660 4.921248
percent_better_than_baseline high_variance_cv
0 94.778757 False
1 93.904575 False
2 94.830946 False
3 92.657543 False
4 92.385573 False
5 92.392914 False
6 0.000000 False
parameters
® {'Label Encoder': {'positive_label': None}, 'N...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'D...
3 {'Label Encoder': {'positive_label': None}, 'N...
4 {'Label Encoder': {'positive_label': None}, 'N...
5 {'Label Encoder': {'positive_label': None}, 'N...
6 {'Label Encoder': {'positive_label': None}, 'B...

Recommendation Score

(=B — I — I — I — ]

(continued from previous page)

.206176
.045124
.021758
.050027
.049925
.112910

If you would like a more robust evaluation of the performance of your models, EvalML additionally provides a rec-
ommendation score alongside the selected objective. The recommendation score is a weighted average of a number of
default objectives for your problem type, normalized and scaled so that the final score can be interpreted as a percent-
age from O to 100. This weighted score provides a more holistic understanding of model performance, and prioritizes
model generalizability rather than one single objective which may not completely serve your use case.

automl .get_recommendation_scores(use_pipeline_names=True)

{'Baseline Classifier': 25.0,

'Random Forest Classifier': 89.20280594475338,

'LightGBM Classifier':

'Extra Trees Classifier':
'Elastic Net Classifier':

'XGBoost Classifier':

'Logistic Regression Classifier':

91.29441485901573,
76.4891509448369,
64.98618569828929,

93.1572081558569,

64.88094236798517}

automl.get_recommendation_scores(priority="F1", use_pipeline_names=True)

{'Baseline Classifier'

'Random Forest Classifier':

16.666666666666664,

87.42552654381409,

'LightGBM Classifier': 90.0296099060105,

'Extra Trees Classifier':
'Elastic Net Classifier':

68.38407164438401,
53.893229489916436,

'XGBoost Classifier': 92.40783574026823,

'Logistic Regression Classifier': 53.8230672697137}
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To see what objectives are included in the recommendation score, you can use:

evalml.objectives.get_default_recommendation_objectives('binary")

{'AUC",

If you would like to automatically rank your pipelines by this recommendation score,

'Balanced Accuracy Binary',

'F].',

use_recommendation=True when initializing AutoMLSearch

automl_recommendation = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,

X_holdout=X_holdout,
y_holdout=y_holdout,

problem_type="binary",
use_recommendation=True,

)

automl_recommendation.search(interactive_plot=False)

automl_recommendation.rankings[

[

llidll’

"pipeline_name",

"search_order",
"recommendation_score",

"holdout_score",
"mean_cv_score",

]

'Log Loss Binary'}

[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000081 seconds.

You can set " force_col_wise=true’
[Info] Total Bins 450

[LightGBM]
[LightGBM]
.20

[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
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[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]

to remove the overhead.

you can set

[Info] Number of data points in the train set: 298, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926

[Info] Start

[Warning]
[Warning]
[Warning]
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[Warning]
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splits
splits
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splits
splits
splits
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-1.398926
positive
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positive
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positive
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positive
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gain,
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gain,
gain,
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gain,
gain,

best
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best
best
best
best
best
best
best
best

gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:

-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
~.0.000082

You can set " force_col_wise=true’
[Info] Total Bins 445

[LightGBM]
[LightGBM]
.22
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[Info] Number of positive: 59, number of negative: 239
[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.
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[Info] Number of data points in the train set: 298, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926

[Info] Start
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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~.0.000085

You can set " force_col_wise=true’
[Info] Total Bins 449
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[Info] Number of positive: 59, number of negative: 239
[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.
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[Info] Number of data points in the train set: 298, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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You can set " force_col_wise=true’
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[Info] Number of positive: 89, number of negative: 359
[Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

(continued from previous page)

-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf

[Info] Number of data points in the train set: 448, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686

[Info] Start training from score -1.394686

[Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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(continued from previous page)

3 3 Extra Trees Classifier w/ Label Encoder + Sele... 3

4 4 Elastic Net Classifier w/ Label Encoder + Sele... 4

5 6 Logistic Regression Classifier w/ Label Encode... 6

6 0 Mode Baseline Binary Classification Pipeline 0
recommendation_score holdout_score mean_cv_score

0 93.157208 0.142417 0.256950

1 91.294415 0.160955 0.299971

2 89.202806 0.219145 0.254382

3 76.489151 0.348408 0.361341

4 64.986186 0.400375 0.374725

5 64.880942 0.401581 0.374364

6 25.000000 4.990660 4.921248

There is a helper function on the AutoMLSearch object to help you understand how the recommendation score was
calculated. It displays the raw scores of the objectives included within the score calculation. Here, we take a look at
pipeline with 1d=9, the Decision Tree pipeline:

automl_recommendation.get_recommendation_score_breakdown(3)

{"AUC': 0.845734126984127,
'Log Loss Binary': 0.3484078428021002,
'Balanced Accuracy Binary': 0.7619047619047619,
'F1': 0.5217391304347826}%

4.1.4 Describe Pipeline

Each pipeline is given an id. We can get more information about any particular pipeline using that id. Here, we will
get more information about the pipeline with id = 1.

automl .describe_pipeline(1)

B A R R R ORUROROROROSOSOROROSOROS

* Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model.

LLF

FhhhhhhhhNNh NN NN NN hdddddededededdedededededededededededededededededededhhhhh AR h RN hhhddddddededededededededededededededededededede e

Problem Type: binary
Model Family: Random Forest

Pipeline Steps

1. Label Encoder
* positive_label : None
2. Drop Columns Transformer
* columns : ['currency']
3. DateTime Featurizer
* features_to_extract : ['year', 'month', 'day_of_week', 'hour']
* encode_as_categories : False
* time_index : None

(continues on next page)
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4. Imputer

* numeric_impute_strategy : mean

* boolean_impute_strategy : most_frequent

* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

5. One Hot Encoder

* top_n : 10

* features_to_encode : None
* categories : None

* drop : if_binary

* handle_unknown : ignore

* handle_missing : error

6. Oversampler

— 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
—44, 45,

* sampling_ratio : 0.25

* k_neighbors_default : 5

* n_jobs : -1

* sampling_ratio_dict : None

* categorical_features : [3, 10,

46, 47, 48, 49]
* k_neighbors : 5

7. RF Classifier Select From Model

* number_features : None
* n_estimators : 10

* max_depth : None

* percent_features : 0.5
* threshold : median

* n_jobs : -1

8. Random Forest Classifier

Training

Training

Total training time (including CV): 6.5 seconds

* n_estimators : 100
* max_depth : 6
* n_jobs : -1

for binary problems.

Cross Validation

0

— 0.854
1

— 0.652
2

— 0.896
mean

— 0.801

Log Loss Binary MCC Binary Gini
—.Binary Accuracy Binary # Training # Validation

0.240 0.823 0.844 0.922
0.960 346

0.305 0.524 0.493 0.747
0.908 347

0.218 0.875 0.839 0.920
0.971 347

0.254 0.741 0.726 0.863
0.946 -

categorical_impute_strategy : most_frequent

(continued from previous page)

14, 15, 16, 17, 18, 19, 20, 21, 22,
36, 37, 38, 39, 40, 41, 42, 43,.

Precision F1 Balanced Accuracy.
1.000 0.829 o
1.000 0.467 o
1.000 0.884 o
1.000 0.727 o

(continues on next page)
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(continued from previous page)

std 0.045 0.189 0.201 0.101 0.000 0.227 o
— 0.130 0.034 - -
coef of var 0.177 0.255 0.277 0.117 0.000 0.312 o
— 0.163 0.036 - -

4.1.5 Get Pipeline

We can get the object of any pipeline via their id as well:

pipeline = automl.get_pipeline(1)
print(pipeline.name)
print(pipeline.parameters)

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
{'Label Encoder': {'positive_label': None}, 'Drop Columns Transformer': {'columns': [

—'currency']}, 'DateTime Featurizer': {'features_to_extract': ['year', 'month', 'day_of_
—week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer': {

- 'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean’,

— 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
—fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder': {'top_n': 10,

. 'features_to_encode': None, 'categories': None, 'drop': 'if binary', 'handle_unknown':
—'ignore', 'handle_missing': 'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_
—neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features

~': [3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,.
-30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], 'k_

—neighbors': 5}, 'RF Classifier Select From Model': {'number_features': None, 'n_
—estimators': 10, 'max_depth': None, 'percent_features': 0.5, 'threshold': 'median', 'n_
—~jobs': -1}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_jobs':

- -1}}

Get best pipeline

If you specifically want to get the best pipeline, there is a convenient accessor for that. The pipeline returned
is already fitted on the input X, y data that we passed to AutoMLSearch. To turn off this default behavior, set
train_best_pipeline=False when initializing AutoMLSearch.

best_pipeline = automl.best_pipeline
print (best_pipeline.name)

print (best_pipeline.parameters)
best_pipeline.predict(X_train)

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder..
—+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—.Oversampler

{'Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Select Columns By Type..
—Transformer': {'column_types': ['category', 'EmailAddress', 'URL'], 'exclude': True},
—,'Numeric Pipeline - Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Drop..
—.Columns Transformer': {'columns': ['currency']}, 'Numeric Pipeline - DateTime.

—Featurizer': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_
—aS_ Ldl.cyul"les . False, 'time_index': None}, ' Numeric rlpELli‘ie - J.ulpuu:l ! '(co{ntmueb on next page)

— categorlcal 1mpute Strategy 'most_frequent , 'numeric_ 1mpute strategy 'mean’

90£i11 value None, 'boolean fill_value': None}, 'Numerlc P1pe11ne —Cﬁ‘@Rt@E ‘toﬂﬁﬂ"sGWde
—Transformer': {'columns': ['card_id', store_id', "amount', 'customer_present', 'lat',
. '1lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour']}, 'Categorical.
—Pipeline - Select Columns Transformer': {'columns': ['expiration_date', 'provider',
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id

144 False
253 True
221 False
432 False
384 False
128 False
98 False
472 False
642 False
494 False

Name: fraud, Length: 520, dtype: bool

(continued from previous page)

4.1.6 Training and Scoring Multiple Pipelines using AutoMLSearch

AutoMLSearch will automatically fit the best pipeline on the entire training data. It also provides an easy API for
training and scoring other pipelines.

If you’d like to train one or more pipelines on the entire training data, you can use the train_pipelines method.

Similarly, if you’d like to score one or more pipelines on a particular dataset, you can use the score_pipelines

method.

trained_pipelines =
trained_pipelines

[LightGBM] [Info] Number of positive: 89, number of negative: 359
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
-0.000104 seconds.

You can set " force_col_wise=true’
[Info] Total Bins 575
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to remove the overhead.

automl.train_pipelines([automl.get_pipeline(i) for i in [0, 1, 2]11)

[Info] Number of data points in the train set: 448, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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{'Mode Baseline Binary Classification Pipeline': pipeline =_.

—BinaryClassificationPipeline (component_graph={'Label Encoder':
['Baseline Classifier',
~y']}, parameters={'Label Encoder':{'positive_label': None},
'mode’'}}, custom_name='Mode Baseline Binary Classification Pipeline',.

"'y'])

- 'strategy':

—random_seed=0),
'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime._
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model

'Baseline Classifier':

gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:

(continued from previous page)

-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf

'Label Encoder.x',
'Baseline Classifier':{

['Label Encoder',

'X',

'Label Encoder.

—': pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder':

—Encoder"',

'X', lyl]

— 'Label Encoder.y'],

—Transformer.x',

— "Label Encoder.y'],

‘ﬁy'],

. strategy'

'Oversampler':
—Classifier Select From Model':
— 'Oversampler.y'],
—Classifier Select From Model.x',
< 'positive_label': None},
< 'DateTime Featurizer':{'features_to_extract':

: 'most_frequent',

['Oversampler',

'Drop Columns Transformer':
'DateTime Featurizer':
'Label Encoder.y'],
'One Hot Encoder':

'Imputer':

'Random Forest Classifier':

['DateTime Featurizer',

'numeric_impute_strategy':

['year',

['Imputer',
['One Hot Encoder',
'One Hot Encoder.x',
['RF Classifier Select From Model',
['Random Forest Classifier',
'Oversampler.y']}, parameters={'Label Encoder':{
'Drop Columns Transformer':{'columns':

'Imputer.x',

['Drop Columns Transformer',
'Drop Columns..
'DateTime Featurizer.x',

['Label.
lxl ,

'Label Encoder.

'Label Encoder.y'],

'month',

'mean’,

['currency']},
'day_of_week',

'RF.,
'Oversampler.x',
'RF.

'hour'],
., 'encode_as_categories': False, 'time_index': None}, 'Imputer':{'categoric¥imi@sneepaee

'boolean_impute_strategy

41.: AfshateeNRithine EabPAMG(MutbML) Search None, 'numeric_fill_value': None,

'features_to_encode':

—'boolean_£fill_value': None},

—None,
—missing':

Tora o~ la~T .

'error'},

'categories': None,

"drop':

'One Hot Encoder':{'top_n': 10,

1 T mmvien ] m ey vt m o~ A a1

'if_binary"',
'Oversampler':{'sampling_ratio': 0.25,

AT A s o~

'handle_unknown':

ro

'ignore',
'k_neighbors_default': 5,

10

'handle_

11

1

1
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'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler': pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder':
-, ['Label Encoder', 'X', 'y'], 'Numeric Pipeline - Select Columns By Type Transformer':.
—['Select Columns By Type Transformer', 'X', 'Label Encoder.y'], 'Numeric Pipeline -.
—Label Encoder': ['Label Encoder', 'Numeric Pipeline - Select Columns By Type.
—Transformer.x', 'Label Encoder.y'], 'Numeric Pipeline - Drop Columns Transformer': [

<~ 'Drop Columns Transformer', 'Numeric Pipeline - Select Columns By Type Transformer.x',
< '"Numeric Pipeline - Label Encoder.y'], 'Numeric Pipeline - DateTime Featurizer': [

- 'DateTime Featurizer', 'Numeric Pipeline - Drop Columns Transformer.x', 'Numeric.
—Pipeline - Label Encoder.y'], 'Numeric Pipeline - Imputer': ['Imputer', 'Numeric.
—Pipeline - DateTime Featurizer.x', 'Numeric Pipeline - Label Encoder.y'], 'Numeric.
—Pipeline - Select Columns Transformer': ['Select Columns Transformer', 'Numeric.
—Pipeline - Imputer.x', 'Numeric Pipeline - Label Encoder.y'], 'Categorical Pipeline -.
—.Select Columns Transformer': ['Select Columns Transformer', 'X', 'Label Encoder.y'],
—'Categorical Pipeline - Label Encoder': ['Label Encoder', 'Categorical Pipeline -..
—Select Columns Transformer.x', 'Label Encoder.y'], 'Categorical Pipeline - Imputer': [
— 'Imputer', 'Categorical Pipeline - Select Columns Transformer.x', 'Categorical.
—Pipeline - Label Encoder.y'], 'Categorical Pipeline - One Hot Encoder': ['One Hot.
—Encoder', 'Categorical Pipeline - Imputer.x', 'Categorical Pipeline - Label Encoder.y
—"'], 'Oversampler': ['Oversampler', 'Numeric Pipeline - Select Columns Transformer.x',

- 'Categorical Pipeline - One Hot Encoder.x', 'Categorical Pipeline - Label Encoder.y'],
—'LightGBM Classifier': ['LightGBM Classifier', 'Oversampler.x', 'Oversampler.y']},.
—parameters={'Label Encoder':{'positive_label': None}, 'Numeric Pipeline - Select.
—.Columns By Type Transformer':{'column_types': ['category', 'EmailAddress', 'URL'],
—'exclude': True}, 'Numeric Pipeline - Label Encoder':{'positive_label': None},

< '"Numeric Pipeline - Drop Columns Transformer':{'columns': ['currency']}, 'Numeric.

—Pipeline - DateTime Featurizer':{'features_to_extract': ['year', 'month', 'day_of_week
"', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Numeric Pipeline -.
—Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy':

- 'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None,

— 'numeric_fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select.
—Columns Transformer':{'columns': ['card_id', 'store_id', 'amount',6 'customer_present',

~'lat', 'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour']},
-, 'Categorical Pipeline - Select Columns Transformer':{'columns': ['expiration_date',

—'provider', 'region', 'country']}, 'Categorical Pipeline - Label Encoder':{'positive_
—label': None}, 'Categorical Pipeline - Imputer':{'categorical_impute_strategy': 'most_
—frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent

— "', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value':.
—None}, 'Categorical Pipeline - One Hot Encoder':{'top_n': 10, 'features_to_encode':.

—None, 'categories': None, 'drop': 'if _binary', 'handle_unknown': 'ignore', 'handle_
—missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_neighbors_default': 5,
—'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features': [3, 9, 10, 11, 12,.

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
- 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], 'k_neighbors': 5}, 'LightGBM.
—Classifier':{'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 100, 'max_

—depth': 0, 'num_leaves': 31, 'min_child_samples': 20, 'n_jobs': -1, 'bagging_freq': 0,

- 'bagging_fraction': 0.9}}, random_seed=0)}

[22]: pipeline_holdout_scores = automl.score_pipelines(

[trained_pipelines[name] for name in trained_pipelines.keys()],
(continues on next page)
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X_holdout,

y_holdout,

["Accuracy Binary", "F1", "AUC"],
)

pipeline_holdout_scores

{'Mode Baseline Binary Classification Pipeline': OrderedDict([('Accuracy Binary',
0.8615384615384616),
('F1', 0.0),
('AUC', 0.5)1),
'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime._
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
—"': OrderedDict([('Accuracy Binary',
0.9615384615384616),
('F1', 0.8387096774193548),
('AUC', 0.9122023809523809)]1),
'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler': OrderedDict([('Accuracy Binary',
0.9692307692307692),
('F1', 0.8750000000000001),
('AUC', 0.9201388888888888)1)}

4.1.7 Saving AutoMLSearch and pipelines from AutoMLSearch

There are two ways to save results from AutoMLSearch.

* You can save the AutoMLSearch object itself, calling . save (<filepath>) to do so. This will allow you to save
the AutoMLSearch state and reload all pipelines from this.

» If you want to save a pipeline from AutoMLSearch for future use, pipeline classes themselves have a .
save(<filepath>) method.

# saving the entire automl search

automl.save("automl.cloudpickle™)

automl2 = evalml.automl.AutoMLSearch.load("automl.cloudpickle™)

# saving the best pipeline using .save()
best_pipeline.save("pipeline.cloudpickle™)

best_pipeline_copy = evalml.pipelines.PipelineBase.load("pipeline.cloudpickle™)

4.1.8 Limiting the AutoML Search Space

The AutoML search algorithm first trains each component in the pipeline with their default values. After the first
iteration, it then tweaks the parameters of these components using the pre-defined hyperparameter ranges that these
components have. To limit the search over certain hyperparameter ranges, you can specify a search_parameters ar-
gument with your AutoMLSearch parameters. These parameters will limit the hyperparameter search space or pipeline
parameter space.

Hyperparameter ranges can be found through the API reference for each component. Parameter arguments must be
specified as dictionaries, but the associated values must be skopt . space Real, Integer, Categorical objects for setting
hyperparameter ranges.
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If however you’d like to specify certain values for the initial batch of the AutoML search algorithm, you can use the
search_parameters argument with non skopt. space objects. This will set the initial batch’s component parameters
to the values passed by this argument.

[24]: from evalml import AutoMLSearch
from evalml.demos import load_fraud
from skopt.space import Categorical
from evalml.model_family import ModelFamily
import woodwork as ww

X, v = load_fraud(n_rows=1000)

# example of setting parameter to just one value
search_parameters = {"Imputer": {"numeric_impute_strategy": "mean"}}

# limit the numeric impute strategy to include only ‘median’ and ‘most_frequent
# ‘mean’ is the default value for this argument, but it doesn't need to be included in.,
—the specified hyperparameter range for this to work
search_parameters = {
"Imputer": {"numeric_impute_strategy": Categorical(["median", "most_frequent"])}

}

# using this custom hyperparameter means that our Imputer components in these pipelines.
—will only search through
# ‘median' and most_frequent' strategies for 'numeric_impute_strategy'
automl_constrained = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
search_parameters=search_parameters,
verbose=True,

)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 1000

Targets
False 85.90%
True 14.10%

Name: count, dtype: object
AutoMLSearch will use mean CV score to rank pipelines.
Using default limit of max_batches=2.

A skopt.space Integer, Real, or Categorical will set the hyperparameter space explored during search. All other
values will set the pipeline parameters directly. Setting pipeline parameters directly defines the initialization parameters
that a pipeline starts with during the first batch of AutoMLSearch. the hyperparameter range then defines the space of
possible new parameter values, which the tuner chooses.

Let’s walk through some examples to explain this. For instance,
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search_parameters = {'Imputer': {
'numeric_impute_strategy': 'mean'

1}

then in the initial search, the algorithm would use mean as the impute strategy in batch 1. However, since Imputer.
numeric_impute_strategy has a valid hyperparameter range, if the algorithm suggests a different strategy, it can
and will change this value. To limit this to using mean only for the duration of the search, it is necessary to use the
skopt.space:

search_parameters = {'Imputer': {
'numeric_impute_strategy': Categorical(['mean'])

1}

However, if a value has no hyperparameter range associated, then the algorithm will use this value as the only parameter.
For instance,

search_parameters = {'Label Encoder': {
'positive_label': True

1}

Since Label Encoder.positive_label has no associated hyperparameter range, the algorithm will use this param-
eter for the entire duration of the search.

4.1.9 Imbalanced Data

The AutoML search algorithm now has functionality to handle imbalanced data during classification! AutoMLSearch
now provides two additional parameters, sampler_method and sampler_balanced_ratio, that allow you to let
AutoMLSearch know whether to sample imbalanced data, and how to do so. sampler_method takes in either
Undersampler, Oversampler, auto, or None as the sampler to use, and sampler_balanced_ratio specifies the
minority/majority ratio that you want to sample to. Details on the Undersampler and Oversampler components
can be found in the documentation.

This can be used for imbalanced datasets, like the fraud dataset, which has a ‘minority:majority’ ratio of < 0.2.

automl_auto = AutoMLSearch(
X_train=X, y_train=y, problem_type="binary", automl_algorithm="iterative"
)

automl_auto.allowed_pipelines[-1]

pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
', 'X'", 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],
—'"Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':.
<—['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Oversampler': ['Oversampler',

< 'One Hot Encoder.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra Trees.
—Classifier', 'Oversampler.x', 'Oversampler.y']}, parameters={'Label Encoder':{

< 'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year', 'month
"', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer
- '":{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',

— 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
—fill_value': None, 'boolean_£fill_value': None}, 'One Hot Encoder':{'top_n': 10,

- 'features_to_encode': None, 'categories': None, 'drop': 'if binary', 'handle_unknown':
<~ 'ignore', 'handle_missing': 'error'}, 'Oversampler':{'sampling ratio': 0.25, 'k_
—neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None}, 'Extra Trees.
—Classifier':{'n_estimators': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_
—split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}, random_seed=@§ontinues on nextpage)
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The Oversampler is chosen as the default sampling component here, since the sampler_balanced_ratio = 0.
25. If you specified a lower ratio, for instance sampler_balanced_ratio = 0.1, then there would be no sampling
component added here. This is because if a ratio of 0.1 would be considered balanced, then a ratio of 0.2 would also
be balanced.

The Oversampler uses SMOTE under the hood, and automatically selects whether to use SMOTE, SMOTEN, or SMO-
TENC based on the data it receives.

automl_auto_ratio = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
sampler_balanced_ratio=0.1,
automl_algorithm="iterative",
)

automl_auto_ratio.allowed_pipelines[-1]

pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
', 'X'", 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],

— '"Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':.
—['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra.
—.Trees Classifier', 'One Hot Encoder.x', 'Label Encoder.y']}, parameters={'Label Encoder
—'":{'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year',
—'month', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None},

< "Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy':
—'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_£fill value': None,

— 'numeric_fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n':._
.10, 'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_
—unknown': 'ignore', 'handle_missing': 'error'}, 'Extra Trees Classifier':{'n_estimators
—': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_
—fraction_leaf': 0.0, 'n_jobs': -1}}, random_seed=0)

Additionally, you can add more fine-grained sampling ratios by passing in a sampling_ratio_dict in pipeline pa-
rameters. For this dictionary, AutoMLSearch expects the keys to be int values from 0 to n-1 for the classes, and the
values would be the sampler_balanced__ratio associated with each target. This dictionary would override the
AutoML argument sampler_balanced_ratio. Below, you can see the scenario for Oversampler component on this
dataset. Note that the logic for Undersamplers is included in the commented section.

# In this case, the majority class is the negative class
# for the oversampler, we don't want to oversample this class, so class 0 (majority) will.,
—have a ratio of 1 to itself
# for the minority class 1, we want to oversample it to have a minority/majority ratio.
—of 0.5, which means we want minority to have 1/2 the samples as the minority
sampler_ratio_dict = {0: 1, 1: 0.5}
search_parameters = {"Oversampler": {"sampler_balanced_ratio": sampler_ratio_dict}}
automl_auto_ratio_dict = AutolMLSearch(

X_train=X,

y_train=y,

problem_type="binary",

search_parameters=search_parameters,

automl_algorithm="iterative",

(continues on next page)
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(continued from previous page)

automl_auto_ratio_dict.allowed_pipelines[-1]

# Undersampler case

# we don't want to undersample this class, so class 1 (minority) will have a ratio of 1.
—~to itself

# for the majority class 0, we want to undersample it to have a minority/majority ratio.
—of 0.5, which means we want majority to have 2x the samples as the minority

# sampler_ratio_dict = {0: 0.5, 1: 1}

# search_parameters = {"Oversampler': {"sampler_balanced_ratio": sampler_ratio_dict}}

# automl_auto_ratio_dict = AutoMLSearch(X_train=X, y_train=y, problem_type=binary’,.
—»Ssearch_parameters=search_parameters)

pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder

', 'X', 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],

<~ '"Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':.
—['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Oversampler': ['Oversampler',
—'One Hot Encoder.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra Trees.
—.Classifier', 'Oversampler.x', 'Oversampler.y']}, parameters={'Label Encoder':{

< 'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year', 'month
"', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer
—':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean’,
—'boolean_impute_strategy': 'most_frequent', 'categorical_fill value': None, 'numeric_
—.fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,

- 'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
- 'ignore', 'handle_missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_
—neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'sampler_balanced_
—ratio': {0: 1, 1: 0.5}}, 'Extra Trees Classifier':{'n_estimators': 100, 'max_features':
— 'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_
—jobs': -1}}, random_seed=0)

4.1.10 Adding ensemble methods to AutoML

Stacking

Stacking is an ensemble machine learning algorithm that involves training a model to best combine the predictions
of several base learning algorithms. First, each base learning algorithms is trained using the given data. Then, the
combining algorithm or meta-learner is trained on the predictions made by those base learning algorithms to make a
final prediction.

AutoML enables stacking using the ensembling flag during initalization; this is set to False by default. How en-
sembling runs is defined by the AutoML algorithm you choose. In the IterativeAlgorithm, the stacking ensemble
pipeline runs in its own batch after a whole cycle of training has occurred (each allowed pipeline trains for one batch).
Note that this means a large number of iterations may need to run before the stacking ensemble runs. It is also
important to note that only the first CV fold is calculated for stacking ensembles because the model internally uses
CV folds. See below in the AutoML Algorithms section to see how ensembling is run for DefaultAlgorithm. Please
do note that ensembling is currently unavailable for time series problems.

X, y = evalml.demos.load_breast_cancer()

automl_with_ensembling = AutolMLSearch(
X_train=X,
y_train=y,
(continues on next page)
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(continued from previous page)
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
max_batches=4,
ensembling=True,
automl_algorithm="iterative",
verbose=True,

)
automl_with_ensembling.search(interactive_plot=False)

Number of Features
Numeric 30

Number of training examples: 569

Targets

benign 62.74%

malignant 37.26%

Name: count, dtype: object

AutoMLSearch will use mean CV score to rank pipelines.
Generating pipelines to search over...

Ensembling will run every 3 batches.

2 pipelines ready for search.

* Beginning pipeline search *

B e R R R R R R R ok R R T

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 4 batches for a total of 14 pipelines.
Allowed model families: linear_model, linear_model

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 13.429

R R R R R R R R R R R R R R TR R

* Evaluating Batch Number 1 *

B e R R R R R L R R R R kT

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.077

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.077

* Evaluating Batch Number 2 *

B R R R R R R R R L R R R kT

(continues on next page)
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(continued from previous page)

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.090

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.085

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.081

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.097

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.093

B O R R R R R R R R R R R R R R TR

* Evaluating Batch Number 3 *

Fededehededefedededefededefdededehddededdefdddn

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075
Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.076
Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075
Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.079
Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075

B R R R R R R R R R R R

* Evaluating Batch Number 4 *

R O R R R R R R R R R R R R R R R R TR

Stacked Ensemble Classification Pipeline:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.103

Search finished after 24.29 seconds
Best pipeline: Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler
Best pipeline Log Loss Binary: 0.075391

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html
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[28]: {1: {'Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.

-,6966469287872314,

'Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
-.884481430053711,

'Total time of batch': 3.790522575378418}%,
2: {'Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
+7397925853729248,

'Total time of batch': 9.396330118179321},
3: {'Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
—609971046447754,

'Total time of batch': 8.84861445426941},
4: {'Stacked Ensemble Classification Pipeline': 1.457606315612793,

'Total time of batch': 1.5739214420318604}}

We can view more information about the stacking ensemble pipeline (which was the best performing pipeline) by
calling .describe().

[29]: automl_with_ensembling.best_pipeline.describe()

FeRBARNRNNNNNN NSNS RS dedededededededededededededededededededededededehhhhhhh NN NRNNNNNNNNNNNNN%

* Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler *

R O R R R R R R R R R R R R TR R ok ko o o O R R R R R R R R R R R

Problem Type: binary
Model Family: Linear
Number of features: 30

Pipeline Steps

1. Label Encoder
* positive_label : None
2. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : knn
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None
3. Standard Scaler
4. Elastic Net Classifier
* penalty : elasticnet
* C : 8.474044870453413
* 11 _ratio : 0.6235636967859725
* n_jobs : -1
* multi_class : auto
* solver : saga
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4.1.11 AutoML Algorithms

EvalML currently has two algorithms available for users to choose from. Below, we will run through how each algorithm
works and how to access them through AutoMLSearch as well as the top level search methods.

IterativeAlgorithm

IterativeAlgorithm is the first AutoML Algorithm created in EvalML and can be acessed with the
search_iterative method or specifiying AutoMLSearch(automl_algorithm="'iterative'). The algorithm
works as follows:

 Every batch (after the initial baseline model) contains pipelines of all available estimators for the specified prob-
lem type

* Pipelines contain preprocessing (imputing, encoding, etc.) needed for machine learning but no feature selection
is applied

* Ensembling can be turned on by passing in the ensembling=True parameter and will be run after a whole cycle
of training has occurred (each allowed pipeline trains for one batch)

import evalml

X, y = evalml.demos.load_fraud(n_rows=250)

Number of Features

Boolean 1
Categorical 6
Numeric 5

Number of training examples: 250

Targets
False 88.40%
True 11.60%

Name: count, dtype: object

from evalml.automl import search_iterative

# top level search method will run ‘AutoMLSearch® with ‘IterativeAlgorithm™ as well as.
—apply our default data checks
auto_iterative, messages_iterative = search_iterative(X, y, problem_type="binary")

from evalml import AutoMLSearch

auto_iterative = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
automl_algorithm="iterative",
verbose=True,

)

auto_iterative.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency', 'expiration_date'] because they are of 'Unknown' type

(continues on next page)
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Generating pipelines to search over...
6 pipelines ready for search.
Using default limit of max_batches=1.

B R R R R R R R R R R R R R R

* Beginning pipeline search *

R R R R R TR TR

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.

Searching up to 1 batches for a total of None pipelines.

Allowed model families: linear_model, linear_model, xgboost, lightgbm, random_forest,..
—extra_trees

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 4.181

B O R R R R R R R R R R R R R R R R R R

1 *

Yo e

* Evaluating Batch Number

FTehdAlNNNNn 3 TAhTNN

Elastic Net Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer.,
<+ Imputer + One Hot Encoder + Oversampler + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.429
Logistic Regression Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.429
XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer +.
—Imputer + One Hot Encoder + Oversampler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.266
[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
—0.000066 seconds.
You can set " force_row_wise=true  to remove the overhead.
And if memory is not enough, you can set " force_col_wise=true’.
[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:.
12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[Info] Number of positive: 29, number of negative: 117
[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM] [Info] Total Bins 225
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[LightGBM] [Info] Number of data points in the train set: 146, number of used features:.

12

(continues on next page)

106

Chapter 4. User Guide



EvalML Documentation, Release 0.80.0

[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]
[LightGBM]

(continued from previous page)

[Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878

[Info] Start
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[Info] Number of positive: 29, number of negative:
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[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.

seconds.
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You can set " force_row_wise=true’

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.
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[Info] Total Bins 225
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[Info] Number of data points in the train set: 147, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389

[Info] Start
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(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer +.
—Imputer + One Hot Encoder + Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.325
Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.287
Extra Trees Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer.
—+ Imputer + One Hot Encoder + Oversampler:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 0.347

Search finished after 20.50 seconds
Best pipeline: XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.

—Featurizer + Imputer + One Hot Encoder + Oversampler
Best pipeline Log Loss Binary: 0.266464

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[32]: {1: {'Elastic Net Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler': 3.
—»290501356124878,

'Logistic Regression Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler': 3.
-.316211462020874,

'XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer.,
—+ Imputer + One Hot Encoder + Oversampler': 2.945275068283081,

'LightGBM Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer..
—+ Imputer + One Hot Encoder + Oversampler': 2.6253421306610107,

'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler': 3.277402877807617,

'Extra Trees Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler': 3.8431999683380127,

'Total time of batch': 19.91035509109497}}

DefaultAlgorithm

DefaultAlgorithm was designed to do three main things:
1. Abstract out more parameters and decisions from the user.
2. Perform deeper tuning for high performing pipelines.
3. Create a platform to introduce feature selection as well as other potential techniques/heuristics for AutoML.

DefaultAlgorithm does this by creating the concept of two modes: fast and long, where fast is a subset of long.
The algorithm runs as follows:

1. Run naive pipelines:
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a. arandom forest pipeline with the default preprocessing pipeline

2. Run the same pipelines, this time with feature selection. Subsequent pipelines will use the selected features with
a SelectedColumns transformer.

3. Run all pipelines with preprocessing components:
a. scan rest of estimators (IterativeAlgorithm batch 1).

4. First ensembling run

Fast mode ends here. Begin long mode.

6. Run top 3 estimators:
a. Generate 50 random parameter sets. Run all 150 in one batch

7. Second ensembling run

8. Repeat 8a and 8b indefinitely until the specified time in AutoMLSearch is met:
a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one batch
b. Run ensembling

To this end, it is recommended to use the top level search() method to run DefaultAlgorithm. This allows users to
specify running search with just the mode parameter, where fast is recommended for users who want a fast scan at how
EvalML pipelines will perform on their problem and where long is reserved for a deeper dive into high performing
pipelines. If one needs finer control over AutoML parameters, one can also specify automl_algorithm='default'
using AutoMLSearch and it will default to using fast mode. However, in this case ensembling will be defined
by the ensembling flag (if ensembling=False the abovementioned ensembling batches will be skipped). Users
are welcome to select max_batches according to the algorithm above (or other stopping criteria) but should be
aware that results may not be optimal if the algorithm does not run for the full length of fast mode. Note that the
allowed_model_families and excluded_model_families parameters are only applied to the non-naive batches
in the default algorithms. If users want to apply these to all estimators, use the iterative algorithm by specifying
automl_algorithm="iterative'.

from evalml.automl import search

# top level search method will run ‘AutoMLSearch® with ‘IterativeAlgorithm® as well as.
—apply our default data checks

auto_default, messages_default = search(X, y, problem_type="binary", mode="fast")

[LightGBM] [Info] Number of positive: 29, number of negative: 117

[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
—0.000093 seconds.

You can set " force_row_wise=true  to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:..
12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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You can set " force_row_wise=true’
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[Info] Number of positive: 29, number of negative: 117
[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’ .
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[Info] Total Bins 225
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[Info] Number of data points in the train set: 146, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878

[Info] Start training from score -1.394878

[Warning] No further splits with positive gain, best gain: -inf
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[Info] Number of positive: 29, number of negative: 118
[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true .
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[Info] Total Bins 225
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[Info] Number of data points in the train set: 147, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389

[Info] Start

[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

training from score

further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further
further

splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits
splits

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

-1.403389
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive
positive

gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,
gain,

best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best
best

gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:
gain:

-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search

117



EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 44, number of negative: 177
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000070 seconds.

You can set " force_col_wise=true’
[Info] Total Bins 296
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[LightGBM]
18
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to remove the overhead.

[Info] Number of data points in the train set: 221, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.199095 -> initscore=-1.391960

[Info] Start
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
120 Chapter 4. User Guide



[34]:

EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

from evalml import AutoMLSearch

auto_default = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
automl_algorithm="default",
ensembling=True,
verbose=True,

)

auto_default.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency', 'expiration_date'] because they are of 'Unknown' type
Using default limit of max_batches=3.

B R R R R R R R R R R R R

* Beginning pipeline search *

kxS LR O O R R AR

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 3 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation

Finished cross validation - mean Log Loss Binary: 4.181

B R R R R R R R R R R R R R

* Evaluating Batch Number 1 *

R R R R R o e dededededededededed

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.282

B R R R R R R R R R T

* Evaluating Batch Number 2 *

B R R R R R R R R R R R R R R R

(continues on next page)
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[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.
—0.000377 seconds.

You can set " force_row_wise=true’

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

(continued from previous page)

[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:.
12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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You can set " force_row_wise=true’
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[Info] Number of positive: 29, number of negative:
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[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:.
12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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~.0.000322

You can set " force_row_wise=true’

[Warning]
[Warning]
[Warning]
[Warning]
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[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]
[Warning]

[Info] Number of positive: 29, number of negative:
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[Warning] Auto-choosing row-wise multi-threading, the overhead of testing was.

seconds.

to remove the overhead.

And if memory is not enough, you can set " force_col_wise=true’.

[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 147, number of used features:.
12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389
[LightGBM] [Info] Start training from score -1.403389
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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LightGBM Classifier w/ Label Encoder +
—Encoder + Drop Columns Transformer +

* Evaluating Batch Number 3 *
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Select Columns By Type Transformer + Label..
DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.325
Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—Oversampler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.348
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +.
—Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +.
—One Hot Encoder + Standard Scaler + Oversampler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.422
XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder..
—+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—0Oversampler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.266
Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +.
—Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard.
—Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +.
—Imputer + One Hot Encoder + Standard Scaler + Oversampler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.422

(continues on next page)
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Stacked Ensemble Classification Pipeline:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.238

Search finished after 34.30 seconds

[LightGBM] [Info] Number of positive: 44, number of negative:

177

(continued from previous page)

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000071 seconds.

You can set " force_col_wise=true’
[Info] Total Bins 296

[LightGBM]
[LightGBM]
.18
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to remove the overhead.

[Info] Number of data points in the train set: 221, number of used features:.

[Info] [binary:BoostFromScore]: pavg=0.199095 -> initscore=-1.391960

[Info] Start
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(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

Best pipeline: Stacked Ensemble Classification Pipeline
Best pipeline Log Loss Binary: 0.238485

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[34]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime.
—Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
—': 4.356227397918701,

'Total time of batch': 4.488199234008789},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—0Oversampler': 2.834508180618286,

'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns.,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +.
—Oversampler': 4.066455125808716,

'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label,
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +.
—Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +.
—.One Hot Encoder + Standard Scaler + Oversampler': 3.698127508163452,

'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label.
—Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns,
—Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +_
—Oversampler': 3.14319109916687,

'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer..
-+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard.
—.Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +.
—Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.6026413440704346,

'Total time of batch': 18.148832082748413},

3: {'Stacked Ensemble Classification Pipeline': 10.924249649047852,

'Total time of batch': 11.075061559677124}}
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4.1.12 Pipeline differences

Through the search output above, we can see how pipelines differ between IterativeAlgorithm
and DefaultAlgorithm. This is because DefaultAlgorithm utilizes new components such as
RFRegressorSelectFromModel and other column selectors for feature selection as well as a new pipeline
structure to handle feature selection for categorical and non-categorical features.

auto_iterative.get_pipeline(4).graph()

auto_default.get_pipeline(6).graph()

4.1.13 Access raw results

The AutoMLSearch class records detailed results information under the results field, including information about
the cross-validation scoring and parameters.

import pprint
pp = pprint.PrettyPrinter(indent=0, width=100, depth=3, compact=True, sort_dicts=False)

pp.pprint(automl.results)

{'pipeline_results': {0: {'id': O,
'pipeline_name': 'Mode Baseline Binary Classification Pipeline',
'pipeline_class': <class 'evalml.pipelines.binary_classification_
—pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Baseline Classifier w/ Label Encoder',
'parameters': {...},
'mean_cv_score': 4.921248270190403,
'standard_deviation_cv_score': 0.11291020093698304,
'high_variance_cv': False,
"training_time': 0.7588338851928711,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 0,
'ranking_score': 4.990659700031606,
'ranking_additional_objectives': {...},
'holdout_score': 4.990659700031606},
1: {'id': 1,
'pipeline_name': 'Random Forest Classifier w/ Label Encoder +.
—Drop Columns '
'Transformer + DateTime Featurizer + Imputer +.
—One Hot '
'Encoder + Oversampler + RF Classifier Select.
—From Model',
'pipeline_class': <class 'evalml.pipelines.binary_classification_
—pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Random Forest Classifier w/ Label Encoder +.
—Drop '
'Columns Transformer + DateTime Featurizer +.

—Imputer +

(continues on next page)
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'One Hot Encoder + Oversampler + RF.
—Classifier Select '
'From Model',
'parameters': {...},
'mean_cv_score': 0.25438195931603735,
'standard_deviation_cv_score': 0.045124093951054996,
'high_variance_cv': False,
"training_time': 6.487484931945801,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 94.83094643168255,
'ranking_score': 0.21914451718965428,
'ranking_additional_objectives': {...},
'holdout_score': 0.21914451718965428}%,
2: {'id': 2,
'pipeline_name': 'LightGBM Classifier w/ Label Encoder + Select.
—Columns By '
'Type Transformer + Label Encoder + Drop Columns

v
—

'Transformer + DateTime Featurizer + Imputer +.
—Select '

'Columns Transformer + Select Columns,.
—Transformer + Label '

'Encoder + Imputer + One Hot Encoder +.

—0Oversampler',

'pipeline_class': <class 'evalml.pipelines.binary_classification_
—.pipeline.BinaryClassificationPipeline'>,

'pipeline_summary': 'LightGBM Classifier w/ Label Encoder +.

—Select Columns
'By Type Transformer + Label Encoder + Drop.

—Columns
'Transformer + DateTime Featurizer + Imputer.

—+ Select '
'Columns Transformer + Select Columns.

—Transformer +

'Label Encoder + Imputer + One Hot Encoder + '
'Oversampler’',

'parameters': {...},

'mean_cv_score': 0.2999710030621828,

'standard_deviation_cv_score': 0.2061756997312182,

'high_variance_cv': False,

"training_time': 3.988393783569336,

'cv_data': [...],

'percent_better_than_baseline_all_objectives': {...},

'percent_better_than_baseline': 93.90457488440069,

'ranking_score': 0.1609546813582899,

'ranking_additional_objectives': {...},

'holdout_score': 0.1609546813582899},

3: {'id': 3,
'pipeline_name': 'Extra Trees Classifier w/ Label Encoder +.
—Select Columns '
'By Type Transformer + Label Encoder + Drop..
—Columns (continues on next page)
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'Transformer + DateTime Featurizer + Imputer +.
—Select '
'Columns Transformer + Select Columns,.
—Transformer + Label '
'Encoder + Imputer + One Hot Encoder +.
—.Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_
—pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Extra Trees Classifier w/ Label Encoder +.
—Select '
'Columns By Type Transformer + Label Encoder.
<+ Drop '
'Columns Transformer + DateTime Featurizer +.

—Imputer +
'Select Columns Transformer + Select Columns '
'Transformer + Label Encoder + Imputer + One.
—Hot '
'Encoder + Oversampler',
'parameters': {...},
'mean_cv_score': 0.36134054274378125,
'standard_deviation_cv_score': 0.021758185101253727,
'high_variance_cv': False,
"training_time': 5.9230005741119385,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.65754290567824,
'ranking_score': 0.3484078428021002,
'ranking_additional_objectives': {...},
'holdout_score': 0.3484078428021002},
4: {'id': 4,
'pipeline_name': 'Elastic Net Classifier w/ Label Encoder +.

—Select Columns
'By Type Transformer + Label Encoder + Drop.

—Columns '

'Transformer + DateTime Featurizer + Imputer +.
—Standard '

'Scaler + Select Columns Transformer + Select.
—Columns '

'Transformer + Label Encoder + Imputer + One Hot.
—Encoder + '

'Standard Scaler + Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_
—.pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Elastic Net Classifier w/ Label Encoder +.
—Select '
'Columns By Type Transformer + Label Encoder..
<+ Drop '
'Columns Transformer + DateTime Featurizer +.
—Imputer + '
'Standard Scaler + Select Columns Transformer.
—+ Select '
'Columns Transformer + Label Encoder +.

— Imputer + One °’ (continues on next page)
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'Hot Encoder + Standard Scaler + Oversampler',
'parameters': {...},
'mean_cv_score': 0.37472485974788244,
'standard_deviation_cv_score': 0.050026569255638,
'high_variance_cv': False,
"training_time': 5.342469215393066,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.38557294461829,
'ranking_score': 0.4003754206567058,
'ranking_additional_objectives': {...},
'holdout_score': 0.4003754206567058%,
5: {'id': 5,
'pipeline_name': 'XGBoost Classifier w/ Label Encoder + Select.
—Columns By '
'Type Transformer + Label Encoder + Drop Columns
'Transformer + DateTime Featurizer + Imputer +.
—Select '
'Columns Transformer + Select Columns..
—Transformer + Label '
'Encoder + Imputer + One Hot Encoder +.
—Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_
—pipeline.BinaryClassificationPipeline'>,

'pipeline_summary': 'XGBoost Classifier w/ Label Encoder + Select.
—Columns '
'By Type Transformer + Label Encoder + Drop.
—Columns '
'Transformer + DateTime Featurizer + Imputer.
—+ Select '

'Columns Transformer + Select Columns.
—Transformer + '

'Label Encoder + Imputer + One Hot Encoder + '

'Oversampler',

'parameters': {...},
'mean_cv_score': 0.2569503163235051,
'standard_deviation_cv_score': 0.13717967037488366,
'high_variance_cv': False,
"training_time': 4.824225664138794,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 94.77875729456821,
'ranking_score': 0.14241700777377544,
'ranking_additional_objectives': {...},
'holdout_score': 0.14241700777377544},

6: {'id': 6,
'pipeline_name': 'Logistic Regression Classifier w/ Label Encoder.
—+ Select '
'Columns By Type Transformer + Label Encoder +.
—Drop '
'Columns Transformer + DateTime Featurizer +.
— Imputer + °® (continues on next page)
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'Standard Scaler + Select Columns Transformer +.
—Select '
'Columns Transformer + Label Encoder + Imputer +.
—One Hot '
'Encoder + Standard Scaler + Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_
—pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Logistic Regression Classifier w/ Label.
—Encoder + '
'Select Columns By Type Transformer + Label.
—Encoder + '
'Drop Columns Transformer + DateTime.
—Featurizer + '
'Imputer + Standard Scaler + Select Columns.
—Transformer '
'+ Select Columns Transformer + Label Encoder.
—+ Imputer '
'+ One Hot Encoder + Standard Scaler +.
—Oversampler',
'parameters': {...},
'mean_cv_score': 0.3743635904964204,
'standard_deviation_cv_score': 0.04992524856036527,
'high_variance_cv': False,
"training_time': 7.436560392379761,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.39291395307035,
'ranking_score': 0.40158056138768455,
'ranking_additional_objectives': {...},
'holdout_score': 0.40158056138768455}},
'search_order': [0, 1, 2, 3, 4, 5, 6]}

If there are errors, such as with the Iterative Algorithm example above, we can examine these closer by accessing the
errors field. There is one dictionary entry per pipeline fold that failed, and each entry contains the pipeline parameters
with the error that was thrown and its full traceback.

[38]: auto_iterative.errors

[38]: {}
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4.1.14 Parallel AutoML

By default, all pipelines in an AutoML batch are evaluated in series. Pipelines can be evaluated in parallel to improve
performance during AutoML search. This is accomplished by a futures style submission and evaluation of pipelines
in a batch. As of this writing, the pipelines use a threaded model for concurrent evaluation. This is similar to the
currently implemented n_jobs parameter in the estimators, which uses increased numbers of threads to train and
evaluate estimators.

Quick Start

To quickly use some parallelism to enhance the pipeline searching, a string can be passed through to AutoMLSearch
during initialization to setup the parallel engine and client within the AutoMLSearch object. The current options are
“cf_threaded”, “cf_process”, “dask_threaded” and “dask_process” and indicate the futures backend to use and whether
to use threaded- or process-level parallelism.

automl_cf_threaded = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine="cf_threaded",
)
automl_cf_threaded.search(interactive_plot=False)
automl_cf_ threaded.close_engine()

Parallelism with Concurrent Futures

The EngineBase class is robust and extensible enough to support futures-like implementations from a variety
of libraries. The CFEngine extends the EngineBase to use the native Python concurrent.futures library. The
CFEngine supports both thread- and process-level parallelism. The type of parallelism can be chosen using either
the ThreadPoolExecutor or the ProcessPoolExecutor. If either executor is passed a max_workers parameter,
it will set the number of processes and threads spawned. If not, the default number of processes will be equal to the
number of processors available and the number of threads set to five times the number of processors available.

Here, the CFEngine is invoked with default parameters, which is threaded parallelism using all available threads.

from concurrent.futures import ThreadPoolExecutor
from evalml.automl.engine.cf_engine import CFEngine, CFClient

cf_engine = CFEngine(CFClient(ThreadPoolExecutor (max_workers=4)))
automl_cf_threaded = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=cf_engine,
)
automl_cf_threaded.search(interactive_plot=False)
automl_cf_ threaded.close_engine()

Note: the cell demonstrating process-level parallelism is a markdown due to incompatibility with our ReadTheDocs
build. It can be run successfully locally.
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from concurrent.futures import ProcessPoolExecutor

# Repeat the process but using process-level parallelism\
cf_engine = CFEngine(CFClient (ProcessPoolExecutor (max_workers=2)))
automl_cf process = AutoMLSearch(X_train=X, y_train=y,
problem_type="binary",
engine="cf_process")
automl_cf_process.search(interactive_plot = False)
automl_cf_process.close_engine()

Parallelism with Dask

Thread or process level parallelism can be explicitly invoked for the DaskEngine (as well as the CFEngine). The
processes can be set to True and the number of processes set using n_workers. If processes is set to False, then
the resulting parallelism will be threaded and n_workers will represent the threads used. Examples of both follow.

from dask.distributed import LocalCluster

from evalml.automl.engine import DaskEngine

dask_engine_p2

automl_dask_p?2
X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=dask_engine_p2,

DaskEngine(cluster=LocalCluster(processes=True, n_workers=2))
AutoMLSearch(

)
automl_dask_p2.search(interactive_plot=False)

# Explicitly shutdown the automl object's LocalCluster
automl_dask_p2.close_engine()

Inside a Dask worker with daemon=True, setting n_jobs=1.

Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.

Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1l.

Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1l.

Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

(continues on next page)
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before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1l.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1l.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:

- dask.config.set({'distributed.worker.daemon': False})

- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

before creating your Dask cluster.

dask_engine_t4

automl_dask_t4 AutoMLSearch(
X_train=X,

y_train=y,

(continued from previous page)

DaskEngine(cluster=LocalCluster(processes=False, n_workers=4))

(continues on next page)
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problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=dask_engine_t4,

)

automl_dask_t4.search(interactive_plot=False)

automl_dask_t4.close_engine()

As we can see, a significant performance gain can result from simply using something other than the default
SequentialEngine, ranging from a 100% speed up with multiple processes to 500% speedup with multiple threads!

print("Sequential search duration: " % str(automl.search_duration))
print(
"Concurrent futures (threaded) search duration:
% str(automl_cf_threaded.search_duration)

)

print("Dask (two processes) search duration: " % str(automl_dask_p2.search_duration))
print("Dask (four threads)search duration: " % str(automl_dask_t4.search_duration))

Sequential search duration: 36.022363901138306

Concurrent futures (threaded) search duration: 13.98148226737976
Dask (two processes) search duration: 21.20076012611389

Dask (four threads)search duration: 16.483511209487915

4.2 Pipelines

EvalML pipelines represent a sequence of operations to be applied to data, where each operation is either a data trans-
formation or an ML modeling algorithm.

A pipeline holds a combination of one or more components, which will be applied to new input data in sequence.

Each component and pipeline supports a set of parameters which configure its behavior. The AutoML search process
seeks to find the combination of pipeline structure and pipeline parameters which perform the best on the data.

4.2.1 Defining a Pipeline Instance

Pipeline instances can be instantiated using any of the following classes:
* RegressionPipeline
e BinaryClassificationPipeline
e MulticlassClassificationPipeline
* TimeSeriesRegressionPipeline
e TimeSeriesBinaryClassificationPipeline
e TimeSeriesMulticlassClassificationPipeline

The class you want to use will depend on your problem type. The only required parameter input for instantiating a
pipeline instance is component_graph, which can be a ComponentGraph instance, a list, or a dictionary containing a
sequence of components to be fit and evaluated.

A component_graph list is the default representation, which represents a linear order of transforming components
with an estimator as the final component. A component_graph dictionary is used to represent a non-linear graph of
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components, where the key is a unique name for each component and the value is a list with the component’s class
as the first element and any parents of the component as the following element(s). For these two component_graph
formats, each component can be provided as a reference to the component class for custom components, and as either
a string name or as a reference to the component class for components defined in EvalML.

If you choose to provide a ComponentGraph instance and want to set custom parameters for your pipeline, set it through
the pipeline initialization rather than ComponentGraph.instantiate()

[1]: from evalml.pipelines import MulticlassClassificationPipeline, ComponentGraph

component_graph_as_list = ["Imputer"”, "Random Forest Classifier"]
MulticlassClassificationPipeline(component_graph=component_graph_as_list)

[1]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
~'y'], 'Random Forest Classifier': ['Random Forest Classifier', 'Imputer.x', 'y'l},.
—parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_
—,strategy': 'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value

< ": None, 'numeric_£fill_value': None, 'boolean_fill_value': None}, 'Random Forest.
—.Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

[2]: component_graph_as_dict = {
"Imputer": ["Imputer", "X", "y"],
"Encoder": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest Clf": ["Random Forest Classifier", "Encoder.x", "y"],
"Elastic Net Clf": ["Elastic Net Classifier", "Encoder.x", "y"I,
"Final Estimator": [
"Logistic Regression Classifier",
"Random Forest Clf.x",
"Elastic Net Clf.x",

v
1,
¥

MulticlassClassificationPipeline(component_graph=component_graph_as_dict)

[2]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
—'y'], 'Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Random Forest Clf': ['Random.
—Forest Classifier', 'Encoder.x', 'y'], 'Elastic Net Clf': ['Elastic Net Classifier',

- 'Encoder.x', 'y'], 'Final Estimator': ['Logistic Regression Classifier', 'Random.

—Forest Clf.x', 'Elastic Net Clf.x', 'y']}, parameters={'Imputer’':{'categorical_impute_

—strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
': 'most_frequent', 'categorical fill_value': None, 'numeric_£fill_value': None,

- 'boolean_fill_value': None}, 'Encoder':{'top_n': 10, 'features_to_encode': None,

-, 'categories': None, 'drop': 'if _binary', 'handle_unknown': 'ignore', 'handle_missing':

—'error'}, 'Random Forest Clf':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1},
—'Elastic Net Clf':{'penalty': 'elasticnet', 'C': 1.0, 'll_ratio': 0.15, 'n_jobs': -1,
—'multi_class': 'auto', 'solver': 'saga'}, 'Final Estimator':{'penalty': '12', 'C': 1.0,
< 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

[3]: cg = ComponentGraph(component_graph_as_dict)

# set parameters in the pipeline rather than through cg.instantiate()
MulticlassClassificationPipeline(component_graph=cg, parameters={})
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[3]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
—'y'], 'Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Random Forest Clf': ['Random.,
—Forest Classifier', 'Encoder.x', 'y'], 'Elastic Net Clf': ['Elastic Net Classifier',

—'Encoder.x', 'y'], 'Final Estimator': ['Logistic Regression Classifier', 'Random.

—Forest Clf.x', 'Elastic Net Clf.x', 'y']}, parameters={'Imputer':{'categorical_impute_

—.strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,

< 'boolean_fill_value': None}, 'Encoder':{'top_n': 10, 'features_to_encode': None,

< 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing':

—'error'}, 'Random Forest Clf':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1},

-, 'Elastic Net Clf':{'penalty': 'elasticnet', 'C': 1.0, 'll_ratio': ®.15, 'n_jobs': -1,

—'multi_class': 'auto', 'solver': 'saga'}, 'Final Estimator':{'penalty': '1l2', 'C': 1.0,

< 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

If you’re using your own custom components you can refer to them like so:

[4]: from evalml.pipelines.components import Transformer

class NewTransformer(Transformer):
name = "New Transformer"
hyperparameter_ranges = {"parameter_1": ["a", "b", "c"]}

def __init__(self, parameter_1=1, random_seed=0):
parameters = {"parameter_1": parameter_1}
super().__init__ (parameters=parameters, random_seed=random_seed)

def transform(self, X, y=None):
# Your code here!
return X

MulticlassClassificationPipeline([NewTransformer, "Random Forest Classifier"])

[4]: pipeline = MulticlassClassificationPipeline(component_graph={'New Transformer':.

< [NewTransformer, 'X', 'y'], 'Random Forest Classifier': ['Random Forest Classifier',
— 'New Transformer.x', 'y']}, parameters={'New Transformer':{'parameter_1': 1}, 'Random.
- Forest Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

4.2.2 Pipeline Usage

All pipelines define the following methods:
e fit fits each component on the provided training data, in order.
* predict computes the predictions of the component graph on the provided data.

* score computes the value of an objective on the provided data.

[5]: from evalml.demos import load_wine
X, vy = load_wine()

pipeline = MulticlassClassificationPipeline(

(continues on next page)
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component_graph={
"Label Encoder": ["Label Encoder", "X", "y"],
"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Random Forest Classifier": [
"Random Forest Classifier",
"Imputer.x",
"Label Encoder.y",
i
}
)
pipeline.fit(X, y)
print(pipeline.predict (X))
print(pipeline.score(X, y, objectives=["log loss multiclass"]))

Number of Features
Numeric 13

Number of training examples: 178
Targets

class_1 39.89%

class_0 33.15%

class_2 26.97%

Name: count, dtype: object

0 class_0
1 class_®
2 class_®
3 class_0
4 class_0

173 class_2

174 class_2

175 class_2

176 class_2

177 class_2

Length: 178, dtype: category

Categories (3, object): ['class_0', 'class_1', 'class_2']
OrderedDict([('Log Loss Multiclass', 0.04132737017536072)])

4.2.3 Custom Name

By default, a pipeline’s name is created using the component graph that makes up the pipeline. E.g. A pipeline with
an imputer, one-hot encoder, and logistic regression classifier will have the name ‘Logistic Regression Classifier w/
Imputer + One Hot Encoder’.

If you'd like to override the pipeline’s name attribute, you can set the custom_name parameter when initalizing a
pipeline, like so:

component_graph = ["Imputer", "One Hot Encoder", "Logistic Regression Classifier"]
pipeline = MulticlassClassificationPipeline(component_graph)
print("Pipeline with default name:", pipeline.name)

(continues on next page)
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pipeline_with_name = MulticlassClassificationPipeline(
component_graph, custom_name="My cool custom pipeline"
)

print("Pipeline with custom name:", pipeline_with_name.name)

Pipeline with default name: Logistic Regression Classifier w/ Imputer + One Hot Encoder
Pipeline with custom name: My cool custom pipeline

4.2.4 Pipeline Parameters

You can also pass in custom parameters by using the parameters parameter, which will then be used when instan-
tiating each component in component_graph. The parameters dictionary needs to be in the format of a two-layered
dictionary where the key-value pairs are the component name and corresponding component parameters dictionary.
The component parameters dictionary consists of (parameter name, parameter values) key-value pairs.

An example will be shown below. The API reference for component parameters can also be found /ere.

parameters = {
"Imputer": {
"categorical_impute_strategy": "most_frequent",
"numeric_impute_strategy": "median",
}7
"Logistic Regression Classifier": {
"penalty": "12",

"C": 1.0,

1
}
component_graph = [

"Imputer",

"One Hot Encoder",

"Standard Scaler",

"Logistic Regression Classifier",
]
MulticlassClassificationPipeline(component_graph=component_graph, parameters=parameters)
pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
—'y'], 'One Hot Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Standard Scaler': [
—'Standard Scaler', 'One Hot Encoder.x', 'y'], 'Logistic Regression Classifier': [
—'Logistic Regression Classifier', 'Standard Scaler.x', 'y']}, parameters={'Imputer':{
<. 'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'median',
- 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
—.fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,
- 'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
—'ignore', 'handle_missing': 'error'}, 'Logistic Regression Classifier':{'penalty': 'l2
', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

144 Chapter 4. User Guide



[8]:

[8]:
[9]:

[9]:

[10]:

EvalML Documentation, Release 0.80.0

4.2.5 Pipeline Description

You can call .graph() to see each component and its parameters. Each component takes in data and feeds it to the
next.

component_graph = [
"Imputer",
"One Hot Encoder",
"Standard Scaler",
"Logistic Regression Classifier",
]
pipeline = MulticlassClassificationPipeline(
component_graph=component_graph, parameters=parameters
)
pipeline.graph()

component_graph_as_dict = {
"Imputer": ["Imputer", "X", "y"I,
"Encoder": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest Clf": ["Random Forest Classifier", "Encoder.x", "y"],
"Elastic Net Clf": ["Elastic Net Classifier", "Encoder.x", "y"],
"Final Estimator": [
"Logistic Regression Classifier",
"Random Forest Clf.x",
"Elastic Net Clf.x",

"y,
1,

¥

nonlinear_pipeline = MulticlassClassificationPipeline(
component_graph=component_graph_as_dict

)

nonlinear_pipeline.graph()

You can see a textual representation of the pipeline by calling .describe():

pipeline.describe()

*

* Logistic Regression Classifier w/ Imputer + One Hot Encoder + Standard Scaler
ThAANNNNNN NN N RN ddddddededdededededededededededededededdedhhhhhhh NN RN RN hhhdddddddedededddeddd

Problem Type: multiclass
Model Family: Linear

Pipeline Steps

1. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : median
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
(continues on next page)
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* numeric_fill_value : None
* boolean_fill_value : None
2. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error
3. Standard Scaler
4. Logistic Regression Classifier
* penalty : 12
*=C: 1.0
* n_jobs : -1
* multi_class : auto
* solver : lbfgs

nonlinear_pipeline.describe()

B R R R R R R R R R R R o o e o R R A L R R R R R R LR R

(continued from previous page)

K e O R R R R R R R R R R R R R T o

* Logistic Regression Classifier w/ Imputer + One Hot Encoder + Random Forest Classifier.

*

<+ Elastic Net Classifier

FehhhRNhRNN NN NN NN NS fdddddedededededededededededededededededededededededede e

Problem Type: multiclass
Model Family: Linear

Pipeline Steps

1. Imputer

* numeric_fill_value : None
* boolean_fill_value : None
2. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error
3. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1
4. Elastic Net Classifier
* penalty : elasticnet
*C: 1.0
* 1l_ratio : 0.15

* categorical_impute_strategy
* numeric_impute_strategy : mean

* boolean_impute_strategy : most_frequent
* categorical_fill_value : None

: most_frequent

(continues on next page)
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(continued from previous page)
* n_jobs : -1
* multi_class : auto
* solver : saga
5. Logistic Regression Classifier

* penalty : 12
*C: 1.0
* n_jobs : -1

* multi_class : auto
* solver : lbfgs

4.2.6 Component Graph

You can use pipeline.get_component(name) and provide the component name to access any component (API
reference here):

pipeline.get_component ("Imputer")

Imputer(categorical_impute_strategy="most_frequent', numeric_impute_strategy='median',.
—.boolean_impute_strategy='"most_frequent', categorical_£fill_value=None, numeric_fill_
—value=None, boolean_fill_value=None)

nonlinear_pipeline.get_component("Elastic Net CLf")
ElasticNetClassifier(penalty='elasticnet', C=1.0, 1ll_ratio=0.15, n_jobs=-1, multi_class=

- 'auto', solver='saga')

Alternatively, you can index directly into the pipeline to get a component

first_component = pipeline[0]
print (first_component .name)

Imputer

nonlinear_pipeline["Final Estimator"]

LogisticRegressionClassifier(penalty="'12"', C=1.0, n_jobs=-1, multi_class="auto', solver=
—"'lbfgs"')

4.2.7 Pipeline Estimator

EvalML enforces that the last component of a linear pipeline is an estimator. You can access this estimator directly by
using pipeline.estimator.

pipeline.estimator

LogisticRegressionClassifier(penalty="'12"', C=1.0, n_jobs=-1, multi_class="auto', solver=
—"'lbfgs"')

4.2. Pipelines 147



[17]:

[17]:

[18]:

EvalML Documentation, Release 0.80.0

4.2.8 Input Feature Names

After a pipeline is fitted, you can access a pipeline’s input_feature_names attribute to obtain a dictionary containing
a list of feature names passed to each component of the pipeline. This could be especially useful for debugging where
a feature might have been dropped or detecting unexpected behavior.

pipeline = MulticlassClassificationPipeline(["Imputer", "Random Forest Classifier"])
pipeline.fit(X, y)
pipeline.input_feature_names

{'Imputer': ['alcohol',
'malic_acid’',

'ash',

'alcalinity_of_ash',
'magnesium',

'total_phenols',

'flavanoids',
'nonflavanoid_phenols',
'proanthocyanins’',
'color_intensity',

'hue',
'0d280/0d315_of_diluted_wines',
'proline'],

Random Forest Classifier': ['alcohol',
'malic_acid',

'ash',

'alcalinity_of_ash',
'magnesium’,

'total_phenols',

'flavanoids',
'nonflavanoid_phenols',
'proanthocyanins’',
'color_intensity',

'hue',
'0d280/0d315_of_diluted_wines',
'proline’']}

4.2.9 Binary Classification Pipeline Thresholds

For binary classification pipelines, you can choose to tune the decision boundary threshold, which allows the pipeline
to distinguish predictions from positive to negative. The default boundary, if none is set, is 0.5, which means that
predictions with a probability of >= 0.5 are classified as the positive class, while all others are negative.

You can use the binary classification pipeline’s optimize_thresholds method to choose the best threshold for
an objective, or it can be manually set. EvalML's AutoMLSearch uses optimize_thresholds by default for
binary problems, and it uses F1 as the default objective to optimize on. This can be turned off by pass-
ing in optimize_thresholds=False, or you can changed the objective used by changing the objective or
alternate_thresholding_objective arguments.

from evalml.demos import load_breast_cancer
from evalml.pipelines import BinaryClassificationPipeline

X, y = load_breast_cancer()

(continues on next page)
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X_to_predict = X.tail(10)
bcp = BinaryClassificationPipeline(

"Imputer": ["Imputer”, "X", "y"I,
"Label Encoder": ["Label Encoder", "Imputer.x", "y"],
"RFC": ["Random Forest Classifier", "Imputer.x", "Label Encoder.y"],
}

)
bep. fit (X, y)

predict_proba = bcp.predict_proba(X_to_predict)
predict_proba

Number of Features
Numeric 30

Number of training examples: 569
Targets

benign 62.74%

malignant 37.26%

Name: count, dtype: object

benign malignant

559 0.925711 0.074289
560 0.939512 0.060488
561 0.991177 0.008823
562 0.010155 0.989845
563 0.000155 0.999845
564 0.000100 0.999900
565 0.000155 0.999845
566 0.011528 0.988472
567 0.000155 0.999845
568 0.994452 0.005548

# view the current threshold
print("The threshold is ".format (bcp.threshold))

# view the first few predictions
print (bcp.predict(X_to_predict))

The threshold is None

559 benign
560 benign
561 benign

562 malignant
563 malignant
564 malignant
565 malignant
566 malignant
567 malignant
568 benign
dtype: category

(continues on next page)
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Categories (2, object): ['benign', 'malignant']

Note that the default threshold above is None, which means that the pipeline defaults to using 0.5 as the threshold.

You can manually set the threshold as well:

# you can manually set the threshold
bcp.threshold = 0.99

# view the threshold

print("The threshold is ".format (bcp.threshold))

# view the first few predictions
print(bcp.predict (X_to_predict))

The threshold is 0.99

559 benign
560 benign
561 benign
562 benign

563 malignant
564 malignant
565 malignant

566 benign

567 malignant

568 benign

Name: malignant, dtype: category

Categories (2, object): ['benign', 'malignant']

However, the best way to set the threshold is by using the pipeline’s optimize_threshold method. This takes in the
predicted values, as well as the true values and objective to optimize with, and it finds the best threshold to maximize
this objective value.

This method is best used with validation data, since optimizing on training data could lead to overfitting and optimizing
on test data would introduce large biases.

Below walks through threshold tuning using the F1 objective.

from evalml.objectives import F1

# get predictions for positive class only
predict_proba = predict_proba.iloc[:, -1]
bcp.optimize_threshold(X_to_predict, y.tail(10), predict_proba, F1(Q))

print("The new threshold is ".format (bcp.threshold))

# view the first few predictions
print (bcp.predict (X_to_predict))

The new threshold is 0.13521817340545206

559 benign
560 benign
561 benign

562 malignant
563 malignant
564 malignant

(continues on next page)
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565 malignant

566 malignant

567 malignant

568 benign

Name: malignant, dtype: category

Categories (2, object): ['benign', 'malignant']

4.2.10 Grabbing rows near the decision boundary

For binary classification problems, you can also look at the rows closest to the decision boundary by using
rows_of_interest. This method returns the indices of interest, which can then be used to obtain the subset of
the data that falls closest to the decision boundary. This can help with further analysis of the model, and can give you
better understanding of what rows the model could be having trouble with.

rows_of_interest takes in an epsilon parameter (defaulted to 0. 1), which determines which rows to return. The
rows that are returned are the rows where the probability of it being in the positive class fall between the threshold
+- epsilon range. Increase the epsilon value to get more rows, and decrease it to get fewer rows.

Below is a walkthrough of using rows_of_interest, building off the previous pipeline which is already thresholded.

from evalml.pipelines.utils import rows_of_interest

indices = rows_of_interest(bcp, X, y, types="all")
X.iloc[indices] .head()

mean radius mean texture mean perimeter mean area mean smoothness \
375 16.17 16.07 106.30 788.5 0.09880
472 14.92 14.93 96.45 686.9 0.08098
191 12.77 21.41 82.02 507.4 0.08749
290 14.41 19.73 96.03 651.0 0.08757
413 14.99 22.11 97.53 693.7 0.08515
mean compactness mean concavity mean concave points mean symmetry \
375 0.14380 0.06651 0.05397 0.1990
472 0.08549 0.05539 0.03221 0.1687
191 0.06601 0.03112 0.02864 0.1694
290 0.16760 0.13620 0.06602 0.1714
413 0.10250 0.06859 0.03876 0.1944
mean fractal dimension ... worst radius worst texture \
375 0.06572 ... 16.97 19.14
472 0.05669 ... 17.18 18.22
191 0.06287 ... 13.75 23.50
290 0.07192 ... 15.77 22.13
413 0.05913 ... 16.76 31.55
worst perimeter worst area worst smoothness worst compactness \
375 113.10 861.5 0.12350 0.25500
472 112.00 906.6 0.10650 0.27910
191 89.04 579.5 0.09388 0.08978
290 101.70 767.3 0.09983 0.24720
413 110.20 867.1 0.10770 0.33450

(continues on next page)
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worst concavity worst concave points worst symmetry \

375 0.21140 0.12510 0.3153
472 0.31510 0.11470 0.2688
191 0.05186 0.04773 0.2179
290 0.22200 0.10210 0.2272
413 0.31140 0.13080 0.3163

worst fractal dimension

375 0.08960
472 0.08273
191 0.06871
290 0.08799
413 0.09251

[5 rows x 30 columns]

You can see what the probabilities are for these rows to determine how close they are to the new pipeline threshold. X
is used here for brevity.

[23]: pred_proba = bcp.predict_proba(X)
pos_value_proba = pred_proba.iloc[:, -1]
pos_value_proba.iloc[indices].head()

[23]: 375 0.133328
472 0.130808
191 0.128998
290 0.127939
413 0.149718
Name: malignant, dtype: float64

4.2.11 Saving and Loading Pipelines

You can save and load trained or untrained pipeline instances using the Python pickle format, like so:

[24]: import pickle

pipeline_to_pickle = BinaryClassificationPipeline(
["Imputer", "Random Forest Classifier"]

)

with open("pipeline.pkl"”, "wb") as f:
pickle.dump(pipeline_to_pickle, £f)

pickled_pipeline = None
with open("pipeline.pkl", "rb") as f:
pickled_pipeline = pickle.load(f)

assert pickled_pipeline == pipeline_to_pickle
pickled_pipeline.fit(X, y)

[24]: pipeline = BinaryClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X', 'y
— '], 'Random Forest Classifier': ['Random Forest (Classifier', 'Imputer.x', 'y'l}
4 ot . ’ v " Acomtinde’ diT next page)
—parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_

.o LI | .o LI |

152: None, 'numeric_fill_value': None, 'boolean_fill_value': None}, 'Ghapiertbrdiser Guide
—Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)
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4.2.12 Generate Code

Once you have instantiated a pipeline, you can generate string Python code to recreate this pipeline, which can then be
saved and run elsewhere with EvalML. generate_pipeline_code requires a pipeline instance as the input. It can
also handle custom components, but it won’t return the code required to define the component. Note that any external
libraries used in creating the pipeline instance will also need to be imported to execute the returned code.

Code generation is not yet supported for nonlinear pipelines.

from evalml.pipelines.utils import generate_pipeline_code
from evalml.pipelines import BinaryClassificationPipeline
import pandas as pd

from evalml.utils import infer_feature_types

from skopt.space import Integer

class MyDropNullColumns(Transformer) :
"""Transformer to drop features whose percentage of NaN values exceeds a specified.
—threshold"""

name = "My Drop Null Columns Transformer"
hyperparameter_ranges = {}

def __init__(self, pct_null_threshold=1.0, random_seed=0, **kwargs):
"""Initalizes an transformer to drop features whose percentage of NaN values.
—exceeds a specified threshold.

Args:
pct_null_threshold(float): The percentage of NaN values in an input feature.
—to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop.
—columns with any null values.
If equal to 1.0, will drop columns with all null values. Defaults to 0.
—95.
if pct_null_threshold < ® or pct_null_threshold > 1:
raise ValueError(
"pct_null_threshold must be a float between O and 1, inclusive."
)
parameters = {"pct_null_threshold": pct_null_threshold}
parameters.update (kwargs)

self._cols_to_drop = None
super().__init__(
parameters=parameters, component_obj=None, random_seed=random_seed

)

def fit(self, X, y=None):
pct_null_threshold = self.parameters["pct_null_threshold"]
X = infer_feature_types(X)

(continues on next page)
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percent_null = X.isnull().mean()
if pct_null_threshold == 0.0:
null_cols = percent_null[percent_null > 0]
else:
null_cols = percent_null[percent_null >= pct_null_threshold]
self._cols_to_drop = list(null_cols.index)
return self

def transform(self, X, y=None):
"""Transforms data X by dropping columns that exceed the threshold of null.,
—values.

Args:
X (pd.DataFrame): Data to transform
y (pd.Series, optional): Targets

Returns:
pd.DataFrame: Transformed X

i

X = infer_feature_types(X)
return X.drop(columns=self._cols_to_drop)

pipeline_instance = BinaryClassificationPipeline(
[
"Imputer",
MyDropNullColumns,
"DateTime Featurizer",
"Natural Language Featurizer",
"One Hot Encoder",
"Random Forest Classifier",
1,
custom_name="Pipeline with Custom Component",
random_seed=20,

code = generate_pipeline_code(pipeline_instance)
print(code)

# This string can then be pasted into a separate window and run, although since the.,
—pipeline has custom component ‘MyDropNullColumns",

# the code for that component must also be included

from evalml.demos import load_fraud

X, y = load_fraud(1000)
exec(code)
pipeline.fit(X, y)

from evalml.pipelines.binary_classification_pipeline import BinaryClassificationPipeline

pipeline = BinaryClassificationPipeline(
component_graph={
"Tmputer”: ["Imputer", "X", "y"1,

(continues on next page)
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"My Drop Null Columns Transformer": [MyDropNullColumns, "Imputer.x", "y"],
"DateTime Featurizer": [

"DateTime Featurizer",

"My Drop Null Columns Transformer.x",

vy,

1,

"Natural Language Featurizer": [
"Natural Language Featurizer",
"DateTime Featurizer.x",

non

Yy,
1,
"One Hot Encoder": ["One Hot Encoder", "Natural Language Featurizer.x", "y"],
"Random Forest Classifier": [

"Random Forest Classifier",

"One Hot Encoder.x",

Yy,
1,

1,
parameters={
"Imputer": {

"categorical_impute_strategy": "most_frequent",
"numeric_impute_strategy": "mean",
"boolean_impute_strategy": "most_frequent",

"categorical_fill_value": None,
"numeric_fill_value": None,
"boolean_fill_value": None,
1
"My Drop Null Columns Transformer": {"pct_null_threshold": 1.0},
"DateTime Featurizer": {
"features_to_extract": ["year", "month", "day_of_week", "hour"],
"encode_as_categories": False,
"time_index": None,
1,
"One Hot Encoder": {
"top_n": 10,
"features_to_encode": None,
"categories": None,
"drop": "if_binary",
"handle_unknown": "ignore",
"handle_missing": "error",
1,
"Random Forest Classifier": {"n_estimators": 100, "max_depth": 6, "n_jobs": -1},
1,
custom_name="Pipeline with Custom Component",
random_seed=20,

)

Number of Features
Boolean 1
Categorical 6
Numeric 5

(continues on next page)
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Number of training examples: 1000
Targets

False 85.90%

True 14.10%

Name: count, dtype: object

pipeline = BinaryClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X', 'y
'], "My Drop Null Columns Transformer': [MyDropNullColumns, 'Imputer.x', 'y'],

- 'DateTime Featurizer': ['DateTime Featurizer', 'My Drop Null Columns Transformer.x',
'], 'Natural Language Featurizer': ['Natural Language Featurizer', 'DateTime.
—Featurizer.x', 'y'], 'One Hot Encoder': ['One Hot Encoder', 'Natural Language.
—Featurizer.x', 'y'], 'Random Forest Classifier': ['Random Forest Classifier', 'One Hot.
—Encoder.x', 'y']}, parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent
", 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent',

- 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value': None}
<, 'My Drop Null Columns Transformer':{'pct_null_threshold': 1.0}, 'DateTime Featurizer
—":{'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_as_
—,categories': False, 'time_index': None}, 'One Hot Encoder':{'top_n': 10, 'features_to_
—encode': None, 'categories': None, 'drop': 'if binary', 'handle_unknown': 'ignore',

- 'handle_missing': 'error'}, 'Random Forest Classifier':{'n_estimators': 100, 'max_depth
—~':1 6, 'n_jobs': -1}}, custom_name='Pipeline with Custom Component', random_seed=20)

y

4.3 Component Graphs

EvalML component graphs represent and describe the flow of data in a collection of related components. A component
graph is comprised of nodes representing components, and edges between pairs of nodes representing where the inputs
and outputs of each component should go. It is the backbone of the features offered by the EvalML pipeline, but is
also a powerful data structure on its own. EvalML currently supports component graphs as linear and directed acyclic
graphs (DAG).

4.3.1 Defining a Component Graph

Component graphs can be defined by specifying the dictionary of components and edges that describe the graph.

In this dictionary, each key is a reference name for a component. Each corresponding value is a list, where the first
element is the component itself, and the remaining elements are the input edges that should be connected to that
component. The component as listed in the value can either be the component object itself or its string name.

This stucture is very similar to that of Dask computation graphs.

For example, in the code example below, we have a simple component graph made up of two components: an Imputer
and a Random Forest Classifer. The names used to reference these two components are given by the keys, “My Im-
puter” and “RF Classifier” respectively. Each value in the dictionary is a list where the first element is the component
corresponding to the component name, and the remaining elements are the inputs, e.g. “My Imputer” represents an
Imputer component which has inputs “X” (the original features matrix) and “y” (the original target).

Feature edges are specified as "X" or "{component_name}.x". For example, {"My Component": [MyComponent,
"Imputer.x", ...]} indicates that we should use the feature output of the Imputer as as part of the feature in-
put for MyComponent. Similarly, target edges are specified as "y" or "{component_name}.y". {"My Component
": [MyComponent, "Target Imputer.y", ...]} indicates that we should use the target output of the Target
Imputer as a target input for MyComponent.
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Each component can have a number of feature inputs, but can only have one target input. All input edges must be
explicitly defined.

Using a real example, we define a simple component graph consisting of three nodes: an Imputer (“My Imputer”), an
One-Hot Encoder (“OHE”), and a Random Forest Classifier (“RF Classifier”).

* “My Imputer” takes the original X as a features input, and the original y as the target input
* “OHE” also takes the original X as a features input, and the original y as the target input

» “RF Classifer” takes the concatted feature outputs from “My Imputer” and “OHE” as a features input, and the
original y as the target input.

from evalml.pipelines import ComponentGraph

component_dict = {
"My Imputer": ["Imputer", "X", "y"],
"OHE": ["One Hot Encoder", "X", "y"I,
"RF Classifier": [
"Random Forest Classifier",
"My Imputer.x",
"OHE.x",

Yy,
], # takes in multiple feature inputs

}

cg_simple = ComponentGraph(component_dict)

All component graphs must end with one final or terminus node. This can either be a transformer or an estimator.
Below, the component graph is invalid because has two terminus nodes: the “RF Classifier” and the “EN Classifier”.

# Can't instantiate a component graph with more than one terminus node (here: RF.
—Classifier, EN Classifier)
component_dict = {

"My Imputer": ["Imputer", "X", "y"],

"RF Classifier": ["Random Forest Classifier", "My Imputer.x", "y"],

"EN Classifier": ["Elastic Net Classifier", "My Imputer.x", "y"I,

Once we have defined a component graph, we can instantiate the graph with specific parameter values for each compo-
nent using .instantiate(parameters). All components in a component graph must be instantiated before fitting,
transforming, or predicting.

Below, we instantiate our graph and set the value of our Imputer’s numeric_impute_strategy to “most_frequent”.

cg_simple.instantiate({"My Imputer": {"numeric_impute_strategy": "most_frequent"}})

{'My Imputer': ['Imputer', 'X', 'y'], 'OHE': ['One Hot Encoder', 'X', 'y'], 'RF.
—Classifier': ['Random Forest Classifier', 'My Imputer.x', 'OHE.x', 'y']}
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4.3.2 Components in the Component Graph

You can use .get_component (name) and provide the unique component name to access any component in the com-
ponent graph. Below, we can grab our Imputer component and confirm that numeric_impute_strategy has indeed
been set to “most_frequent”.

[4]: cg_simple.get_component("My Imputer')

[4]: Imputer(categorical_impute_strategy="most_frequent', numeric_impute_strategy="most_
—frequent', boolean_impute_strategy="most_frequent', categorical_fill_value=None, ..
—numeric_fill_value=None, boolean_fill_value=None)

You can also .get_inputs(name) and provide the unique component name to to retrieve all inputs for that component.

Below, we can grab our “RF Classifier” component and confirm that we use "My Imputer.x" as our features input

and "y" as target input.
[5]: cg_simple.get_inputs("RF Classifier")

[5]: ['My Imputer.x', 'OHE.x', 'y']

4.3.3 Component Graph Computation Order

Upon initalization, each component graph will generate a topological order. We can access this generated order by call-
ing the .compute_order attribute. This attribute is used to determine the order that components should be evaluated
during calls to £fit and transform.

[6]: cg_simple.compute_order

[6]: ['My Imputer', 'OHE', 'RF Classifier']

4.3.4 Visualizing Component Graphs

We can get more information about an instantiated component graph by calling .describe(). This method will
pretty-print each of the components in the graph and its parameters.

[7]1: # Using a more involved component graph with more complex edges
component_dict = {
"Imputer": ["Imputer", "X", "y"I,
"Target Imputer": ["Target Imputer", "X", "y"],

"OneHot_RandomForest": ["One Hot Encoder", "Imputer.x", "Target Imputer.y"],
"OneHot_ElasticNet": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest": ["Random Forest Classifier", "OneHot_RandomForest.x", "y"],

"Elastic Net": [
"Elastic Net Classifier",
"OneHot_ElasticNet.x",
"Target Imputer.y",

1,

"Logistic Regression": [
"Logistic Regression Classifier",
"Random Forest.x",
"Elastic Net.x",

Yo

(continues on next page)
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1,
}
cg_with_estimators = ComponentGraph(component_dict)
cg_with_estimators.instantiate({})
cg_with_estimators.describe()

1. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None
2. Target Imputer
* impute_strategy : most_frequent
* fill_value : None
3. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error
4. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error
5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1
6. Elastic Net Classifier
* penalty : elasticnet

*C=:1.0
* 1l_ratio : 0.15
* n_jobs : -1

* multi_class : auto
* solver : saga
7. Logistic Regression Classifier

* penalty : 12
*C: 1.0
* n_jobs : -1

* multi_class : auto
* solver : lbfgs

We can also visualize a component graph by calling .graph().

[8]: cg_with_estimators.graph()
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[8]:

4.3.5 Component graph methods

Similar to the pipeline structure, we can call fit, transform or predict.

We can also call fit_features which will fit all but the final component and
compute_final_component_features which will transform all but the final component. These two meth-
ods may be useful in cases where you want to understand what transformed features are being passed into the last
component.

[9]: from evalml.demos import load_breast_cancer

X, v = load_breast_cancer()
component_dict = {

"My Imputer": ["Imputer", "X", "y"],

"OHE": ["One Hot Encoder", "My Imputer.x", "y"],
}
cg_with_final_transformer = ComponentGraph(component_dict)
cg_with_final_transformer.instantiate({})
cg_with_final_transformer.fit(X, y)

# We can call “transform™ for ComponentGraphs with a final transformer
cg_with_final_transformer.transform(X, y)

Number of Features
Numeric 30

Number of training examples: 569
Targets

benign 62.74%

malignant 37.26%

Name: count, dtype: object

[9]: mean radius mean texture mean perimeter mean area mean smoothness \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960
3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030
564 21.56 22.39 142.00 1479.0 0.11100
565 20.13 28.25 131.20 1261.0 0.09780
566 16.60 28.08 108.30 858.1 0.08455
567 20.60 29.33 140.10 1265.0 0.11780
568 7.76 24.54 47.92 181.0 0.05263

mean compactness mean concavity mean concave points mean symmetry \

0 0.27760 0.30010 0.14710 0.2419
1 0.07864 0.08690 0.07017 0.1812
2 0.15990 0.19740 0.12790 0.2069
3 0.28390 0.24140 0.10520 0.2597
4 0.13280 0.19800 0.10430 0.1809

(continues on next page)
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564
565
566
567
568
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0.27700
0.04362

mean fractal dimension

worst perimeter
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98.87
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184.60

59.16
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9
5
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0
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0.
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564 0.07115
565 0.06637
566 0.07820
567 0.12400
568 0.07039

[569 rows x 30 columns]

cg_with_estimators.fit(X, y)

# We can call ‘predict’ for ComponentGraphs with a final transformer
cg_with_estimators.predict(X)

0 malignant

1 malignant

2 malignant

3 malignant

4 malignant

564 malignant

565 malignant

566 malignant

567 malignant

568 benign

Length: 569, dtype: category
Categories (2, object): ['benign', 'malignant']

4.4 Components

Components are the lowest level of building blocks in EvalML. Each component represents a fundamental operation
to be applied to data.

All components accept parameters as keyword arguments to their __init__ methods. These parameters can be used
to configure behavior.

Each component class definition must include a human-readable name for the component. Additionally, each compo-
nent class may expose parameters for AutoML search by defining a hyperparameter_ranges attribute containing
the parameters in question.

EvalML splits components into two categories: transformers and estimators.

4.4.1 Transformers

Transformers subclass the Transformer class, and define a £it method to learn information from training data and a
transform method to apply a learned transformation to new data.

For example, an imputer is configured with the desired impute strategy to follow, for instance the mean value. The
imputers fit method would learn the mean from the training data, and the transform method would fill the learned
mean value in for any missing values in new data.

All transformers can execute fit and transform separately or in one step by calling fit_transform. Defining a
custom fit_transform method can facilitate useful performance optimizations in some cases.
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import numpy as np
import pandas as pd
from evalml.pipelines.components import SimpleImputer

X = pd.DataFrame([[1, 2, 3],

display(X)

0 1
0 1 2.0
1 1 NaN

w w N

[1, np.nan, 311D

import woodwork as ww

imp = SimpleImputer(impute_strategy="mean'")

X.ww.init Q)

X = imp.fit_transform(X)

display(X)

0 1 2
® 1 2.0 3
11 2.0 3

Below is a list of all transformers included with EvalML:

from evalml.pipelines.components.utils import all_components, Estimator, Transformer

for component in all_components():
if issubclass(component, Transformer):

print (f"Transformer:

Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:
Transformer:

component .name /")

Time Series Regularizer

Drop NaN Rows Transformer

Replace Nullable Types Transformer
Drop Rows Transformer

URL Featurizer

Email Featurizer

Log Transformer

STL Decomposer

Polynomial Decomposer

DFS Transformer

Time Series Featurizer

Natural Language Featurizer

LSA Transformer

Drop Null Columns Transformer
DateTime Featurizer

PCA Transformer

Linear Discriminant Analysis Transformer
Select Columns By Type Transformer
Select Columns Transformer

Drop Columns Transformer
Oversampler

Undersampler

Standard Scaler

(continues on next page)
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Transformer: Time Series Imputer
Transformer: Target Imputer

Transformer: Imputer

Transformer: KNN Imputer

Transformer: Per Column Imputer

Transformer: Simple Imputer

Transformer: RFE Selector with RF Regressor
Transformer: RFE Selector with RF Classifier
Transformer: RF Regressor Select From Model
Transformer: RF Classifier Select From Model
Transformer: Ordinal Encoder

Transformer: Label Encoder

Transformer: Target Encoder

Transformer: One Hot Encoder

4.4.2 Estimators

(continued from previous page)

Each estimator wraps an ML algorithm. Estimators subclass the Estimator class, and define a £it method to learn in-
formation from training data and a predict method for generating predictions from new data. Classification estimators
should also define a predict_proba method for generating predicted probabilities.

Estimator classes each define a model_family attribute indicating what type of model is used.

Here’s an example of using the LogisticRegressionClassifier estimator to fit and predict on a simple dataset:

from evalml.pipelines.components import LogisticRegressionClassifier

clf = LogisticRegressionClassifier()

X
= [1, 0]

<
|

clf. fit(X, y)
clf.predict(X)

0 0
1 0
dtype: int64

Below is a list of all estimators included with EvalML:

from evalml.pipelines.components.utils import all_components, Estimator, Transformer

for component in all_components():
if issubclass(component, Estimator):
print(f"Estimator: {component.name/ ")

Estimator: Stacked Ensemble Regressor
Estimator: Stacked Ensemble Classifier
Estimator: Vowpal Wabbit Regressor
Estimator: VARMAX Regressor

Estimator: ARIMA Regressor

Estimator: Exponential Smoothing Regressor

(continues on next page)
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Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:
Estimator:

SVM Regressor

Prophet Regressor

Multiseries Time Series Baseline Regressor
Time Series Baseline Estimator
Decision Tree Regressor
Baseline Regressor

Extra Trees Regressor

XGBoost Regressor

CatBoost Regressor

Random Forest Regressor
LightGBM Regressor

Linear Regressor

Elastic Net Regressor

Vowpal Wabbit Multiclass Classifier
Vowpal Wabbit Binary Classifier
SVM Classifier

KNN Classifier

Decision Tree Classifier
LightGBM Classifier

Baseline Classifier

Extra Trees Classifier

Elastic Net Classifier

CatBoost Classifier

XGBoost Classifier

Random Forest Classifier
Logistic Regression Classifier

4.4.3 Defining Custom Components

(continued from previous page)

EvalML allows you to easily create your own custom components by following the steps below.

Custom Transformers

Your transformer must inherit from the correct subclass. In this case Transformer for components that transform data.
Next we will use EvalML’s DropNullColumns as an example.

from evalml.pipelines.components import Transformer
from evalml.utils import (
infer_feature_types,

class DropNullColumns(Transformer):

o

—threshold"""

name = "Drop Null Columns Transformer"
hyperparameter_ranges = {}

Transformer to drop features whose percentage of NaN values exceeds a specified.

def __init__(self, pct_null_threshold=1.0, random_seed=0, **kwargs):

(continues on next page)
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(continued from previous page)

i

Initalizes an transformer to drop features whose percentage of NaN values.
—,exceeds a specified threshold.

Args:
pct_null_threshold(float): The percentage of NaN values in an input feature.
—to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop.
—columns with any null values.
If equal to 1.0, will drop columns with all null values. Defaults to 0.
-95.
if pct_null_threshold < ® or pct_null_threshold > 1:
raise ValueError(
"pct_null_threshold must be a float between O and 1, inclusive."
)
parameters = {"pct_null_threshold": pct_null_threshold}
parameters.update(kwargs)

self._cols_to_drop = None
super().__init__(
parameters=parameters, component_obj=None, random_seed=random_seed

)

def fit(self, X, y=None):
"""Fits DropNullColumns component to data

Args:
X (pd.DataFrame): The input training data of shape [n_samples, n_features]
y (pd.Series, optional): The target training data of length [n_samples]

Returns:
self
pct_null_threshold = self.parameters["pct_null_threshold"]
X_t = infer_feature_types(X)
percent_null = X_t.isnull() .mean()
if pct_null_threshold == 0.0:
null_cols = percent_null[percent_null > 0]
else:
null_cols = percent_null[percent_null >= pct_null_threshold]
self._cols_to_drop = list(null_cols.index)
return self

def transform(self, X, y=None):
"""Transforms data X by dropping columns that exceed the threshold of null.

—values.
Args:
X (pd.DataFrame): Data to transform
y (pd.Series, optional): Ignored.
Returns:

(continues on next page)
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pd.DataFrame: Transformed X

i

X_t = infer_feature_types(X)
return X_t.drop(self._cols_to_drop)

Required fields

e name: A human-readable name.

* modifies_features: A boolean that specifies whether this component modifies (subsets or transforms) the
features variable during transform.

* modifies_target: A boolean that specifies whether this component modifies (subsets or transforms) the target
variable during transform.

Required methods

Likewise, there are select methods you need to override as Transformer is an abstract base class:

e __init__(): The __init__() method of your transformer will need to call super() .__init__() and pass
three parameters in: a parameters dictionary holding the parameters to the component, the component_obj,
and the random_seed value. You can see that component_obj is set to None above and we will discuss
component_obj in depth later on.

e fit(): The fit() method is responsible for fitting your component on training data. It should return the
component object.

e transform(): After fitting a component, the transform() method will take in new data and transform ac-
cordingly. It should return a pandas dataframe with woodwork initialized. Note: a component must call £fit()
before transform().

You can also call or override fit_transform() that combines fit () and transform() into one method.

Custom Estimators

Your estimator must inherit from the correct subclass. In this case Estimator for components that predict new target
values. Next we will use EvalML’s BaselineRegressor as an example.

[7]: import numpy as np
import pandas as pd

from evalml.model_family import ModelFamily

from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes

class BaselineRegressor(Estimator):
"""Regressor that predicts using the specified strategy.

This is useful as a simple baseline regressor to compare with other regressors.

e

(continues on next page)
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name = "Baseline Regressor"
hyperparameter_ranges = {}
model_family = ModelFamily.BASELINE
supported_problem_types = [

]

def

ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,

__init__(self, strategy="mean", random_seed=0, **kwargs):
"""Baseline regressor that uses a simple strategy to make predictions.

Args:
strategy (str): Method used to predict. Valid options are "mean", "median"..

—Defaults to "mean".

def

def

random_seed (int): Seed for the random number generator. Defaults to 0.

i

if strategy not in ["mean", "median"]:
raise ValueError(
"'strategy' parameter must equal either 'mean' or 'median

)
parameters = {"strategy": strategy}
parameters.update(kwargs)

self._prediction_value = None
self._num_features = None
super().__init__(
parameters=parameters, component_obj=None, random_seed=random_seed

)

fit(self, X, y=None):

if y is None:

raise ValueError("Cannot fit Baseline regressor if y is None")
infer_feature_types(X)

infer_feature_types(y)

X
y

if self.parameters["strategy"] == "mean":
self._prediction_value = y.mean()

elif self.parameters["strategy"] == "median":
self._prediction_value = y.median()

self._num_features = X.shape[1]

return self

predict(self, X):

X = infer_feature_types(X)

predictions = pd.Series([self._prediction_value] * len(X))
return infer_feature_types(predictions)

@property

def

feature_importance(self):
"""Returns importance associated with each feature. Since baseline regressors do.

—not use input features to calculate predictions, returns an array of zeroes.

(continues on next page)
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Returns:
np.ndarray (float): An array of zeroes

o

return np.zeros(self._num_features)

Required fields

* name: A human-readable name.
e model_family - EvalML model_family that this component belongs to
* supported_problem_types - list of EvaIML problem_types that this component supports

* modifies_features: A boolean that specifies whether the return value from predict or predict_proba
should be used as features.

* modifies_target: A boolean that specifies whether the return value from predict or predict_proba should
be used as the target variable.

Model families and problem types include:

from evalml.model_family import ModelFamily
from evalml.problem_types import ProblemTypes

print("Model Families:\n", [m.value for m in ModelFamily])
print ("Problem Types:\n", [p.value for p in ProblemTypes])

Model Families:

['k_neighbors', 'random_forest', 'svm', 'xgboost', 'lightgbm', 'linear_model', 'catboost
", 'extra_trees', 'ensemble', 'decision_tree', 'exponential_smoothing', 'arima',

< 'varmax', 'baseline', 'prophet', 'vowpal_wabbit', 'none']
Problem Types:

['binary', 'multiclass', 'regression', 'time series regression', 'time series binary',
—'time series multiclass', 'multiseries time series regression']

Required methods

e __init__(Q) - the __init__() method of your estimator will need to call super().__init__() and pass
three parameters in: a parameters dictionary holding the parameters to the component, the component_obj,
and the random_seed value.

e £fit() - the fit () method is responsible for fitting your component on training data.

e predict() - after fitting a component, the predict() method will take in new data and predict new target
values. Note: a component must call £it () before predict().

e feature_importance - feature_importance is a Python property that returns a list of importances associ-
ated with each feature.

If your estimator handles classification problems it also requires an additonal method:

* predict_proba() - this method predicts probability estimates for classification labels
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Components Wrapping Third-Party Objects

The component_obj parameter is used for wrapping third-party objects and using them in component implementation.
If you’re using a component_obj you will need to define __init__() and pass in the relevant object that has also
implemented the required methods mentioned above. However, if the component_obj does not follow EvalML com-
ponent conventions, you may need to override methods as needed. Below is an example of EvalML’s LinearRegressor.

from sklearn.linear_model import LinearRegression as SKLinearRegression

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes

class LinearRegressor(Estimator):
"""Linear Regressor."""

name = "Linear Regressor"

model_family = ModelFamily.LINEAR_MODEL

supported_problem_types = [ProblemTypes.REGRESSION]

def __init__(
self, fit_intercept=True, normalize=False, n_jobs=-1, random_seed=0, **kwargs

parameters = {
"fit_intercept": fit_intercept,
"normalize": normalize,
"n_jobs": n_jobs,

}

parameters.update (kwargs)

linear_regressor = SKLinearRegression(**parameters)

super().__init__(
parameters=parameters,
component_obj=linear_regressor,
random_seed=random_seed,

)

@property
def feature_importance(self):
return self._component_obj.coef

Hyperparameter Ranges for AutoML

hyperparameter_ranges is a dictionary mapping the parameter name (str) to an allowed range (SkOpt Space) for
that parameter. Both lists and skopt.space.Categorical values are accepted for categorical spaces.

AutoML will perform a search over the allowed ranges for each parameter to select models which produce
optimal performance within those ranges. AutoML gets the allowed ranges for each component from the
component’s hyperparameter_ranges class attribute. ~Any component parameter you add an entry for in
hyperparameter_ranges will be included in the AutoML search. If parameters are omitted, AutoML will use the
default value in all pipelines.

170 Chapter 4. User Guide


https://scikit-optimize.github.io/stable/modules/classes.html#module-skopt.space.space

[10]:

[11]:

[12]:

EvalML Documentation, Release 0.80.0

4.4.4 Generate Component Code

Once you have a component defined in EvalML, you can generate string Python code to recreate this component, which
can then be saved and run elsewhere with EvalML. generate_component_code requires a component instance as
the input. This method works for custom components as well, although it won’t return the code required to define the
custom component.

from evalml.pipelines.components import LogisticRegressionClassifier
from evalml.pipelines.components.utils import generate_component_code

lr = LogisticRegressionClassifier(C=5)
code = generate_component_code(lr)
print(code)

from evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.

—import LogisticRegressionClassifier

logisticRegressionClassifier = LogisticRegressionClassifier(**{'penalty': '12', 'C': 5,
—'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'})

# this string can then be copy and pasted into a separate window and executed as python.
—code
exec(code)

# We can also do this for custom components
from evalml.pipelines.components.utils import generate_component_code

myDropNull = DropNullColumns ()
print (generate_component_code (myDropNull))

dropNullColumnsTransformer = DropNullColumns(**{'pct_null_threshold': 1.0})

Expectations for Custom Classification Components

EvalML expects the following from custom classification component implementations:
¢ Classification targets will range from O to n-1 and are integers.

* For classification estimators, the order of predict_proba’s columns must match the order of the target, and the
column names must be integers ranging from 0 to n-1

4.5 Objectives

4.5.1 Overview

One of the key choices to make when training an ML model is what metric to choose by which to measure the efficacy
of the model at learning the signal. Such metrics are useful for comparing how well the trained models generalize to
new similar data.

This choice of metric is a key component of AutoML because it defines the cost function the AutoML search will
seek to optimize. In EvalML, these metrics are called objectives. AutoML will seek to minimize (or maximize) the
objective score as it explores more pipelines and parameters and will use the feedback from scoring pipelines to tune the
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available hyperparameters and continue the search. Therefore, it is critical to have an objective function that represents
how the model will be applied in the intended domain of use.

EvalML supports a variety of objectives from traditional supervised ML including mean squared error for regression
problems and cross entropy or area under the ROC curve for classification problems. EvalML also allows the user to
define a custom objective using their domain expertise, so that AutoML can search for models which provide the most
value for the user’s problem.

Optimization vs Ranking Objectives

There are many common objectives used for evaluating model performance. However, not all of these objectives should
be used to optimize AutoMLSearch. Consider the popular objective recall, which is the number of true positives
divided by the number of true positives and false negatives. If the model has no false negatives, the recall ends up
being a perfect score of 1. During automatic optimization, models can exploit this by predicting the positive label in
every case, making a completely useless but seemingly highly performant model. However, this objective is still useful
when trying to evaluate performance after a model has been trained.

Due to this potential issue, we define two types of objectives: optimization and ranking. Optimization objectives
are those that can be used within AutoMLSearch to train performant models. Ranking objectives can be used after
AutoMLSearch has been run, to rank or otherwise evaluate model performance. These include all of the optimization
metrics, as well as all other important metrics such as recall that are excluded from optimization.

Note that we also define a third class of objectives, non-core objectives, which are domain-specific and require addi-
tional configuration before they can be used.

4.5.2 Optimization Objectives

Use the get_optimization_objectives method to get a list of which objectives can be used for optimization in
AutoMLSearch for each problem type:

from evalml.objectives import get_optimization_objectives
from evalml.problem_types import ProblemTypes

for objective in get_optimization_objectives(ProblemTypes.BINARY):
print(objective.name)

MCC Binary

Log Loss Binary

Gini

AUC

Precision

F1

Balanced Accuracy Binary
Accuracy Binary
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4.5.3 Ranking Objectives

Use the get_ranking_objectives method to get a list of which objectives are included with EvalML for each prob-

lem type:

from evalml.objectives import get_ranking_objectives

for objective in get_ranking objectives(ProblemTypes.BINARY):

print(objective.name)

MCC Binary

Log Loss Binary

Gini

AUC

Recall

Precision

F1

Balanced Accuracy Binary
Accuracy Binary

EvalML defines a base objective

class for each problem type: RegressionObjective,

BinaryClassificationObjective and MulticlassClassificationObjective. All EvalML objectives

are a subclass of one of these.

Binary Classification Objectives and Thresholds

All binary classification objectives have a threshold property. Some binary classification objectives like log loss and
AUC are unaffected by the choice of binary classification threshold, because they score based on predicted probabilities
or examine a range of threshold values. These metrics are defined with score_needs_proba set to False. For all
other binary classification objectives, we can compute the optimal binary classification threshold from the predicted

probabilities and the target.

from evalml.pipelines import BinaryClassificationPipeline

from evalml.demos import load_fraud

from evalml.objectives import F1

X, vy = load_fraud(n_rows=100)
X.ww.init(
logical_types={

"provider": "Categorical",
"region": "Categorical",
"currency": "Categorical",
"expiration_date": "Categorical",

}

)
objective = F1(Q)

pipeline = BinaryClassificationPipeline(

component_graph=[
"Imputer",
"DateTime Featurizer",
"One Hot Encoder",

"Random Forest Classifier",

(continues on next page)
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pipeline.fit(X, y)
print(pipeline.threshold)
print(pipeline.score(X, y, objectives=[objective]))

y_pred_proba = pipeline.predict_proba(X) [True]

pipeline.threshold = objective.optimize_threshold(y_pred_proba, y)
print(pipeline.threshold)

print(pipeline.score(X, y, objectives=[objective]))

Number of Features

Boolean 1
Categorical 6
Numeric 5

Number of training examples: 100
Targets
False 91.00%

True

9.00%

Name: count, dtype: object

None

OrderedDict([('F1', 1.0)1)
0.37905689607742854
OrderedDict([('F1', 1.0)1)

4.5.4 Custom Objectives

Often times, the objective function is very specific to the use-case or business problem. To get the right objective
to optimize requires thinking through the decisions or actions that will be taken using the model and assigning a
cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a
custom objective function.

Defining a Custom Objective Function

To create a custom objective class, we must define several elements:

name: The printable name of this objective.

objective_function: This function takes the predictions, true labels, and an optional reference to the inputs,
and returns a score of how well the model performed.

greater_is_better: Trueif ahigher objective_function value represents a better solution, and otherwise
False.

score_needs_proba: Only for classification objectives. True if the objective is intended to function with
predicted probabilities as opposed to predicted values (example: cross entropy for classifiers).

decision_function: Only for binary classification objectives. This function takes predicted probabilities that
were output from the model and a binary classification threshold, and returns predicted values.

perfect_score: The score achieved by a perfect model on this objective.
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* expected_range: The expected range of values we want this objective to output, which doesn’t necessarily
have to be equal to the possible range of values. For example, our expected R2 range is from [-1, 1], although
the actual range is (-inf, 1].

Example: Fraud Detection

To give a concrete example, let’s look at how the fraud detection objective function is built.

from evalml.objectives.binary_classification_objective import (
BinaryClassificationObjective,

)

import pandas as pd

class FraudCost(BinaryClassificationObjective):
"""Score the percentage of money lost of the total transaction amount process due to.
— fraud"""

name = "Fraud Cost"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0

def __init__(
self,
retry_percentage=0.5,
interchange_fee=0.02,
fraud_payout_percentage=1.0,
amount_col="amount",

i

Create instance of FraudCost

Args:
retry_percentage (float): What percentage of customers that will retry a.
—transaction if it
is declined. Between 0O and 1. Defaults to .5

interchange_fee (float): How much of each successful transaction you can.
—collect.
Between ® and 1. Defaults to .02

fraud_payout_percentage (float): Percentage of fraud you will not be able to.
—collect.
Between 0 and 1. Defaults to 1.0

amount_col (str): Name of column in data that contains the amount. Defaults..
—to "amount"
self.retry_percentage = retry_percentage
self.interchange_fee = interchange_fee
self.fraud_payout_percentage = fraud_payout_percentage
self.amount_col = amount_col

(continues on next page)
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def decision_function(self, ypred_proba, threshold=0.0, X=None):
"""Determine if a transaction is fraud given predicted probabilities, threshold,..
—and dataframe with transaction amount

Args:
ypred_proba (pd.Series): Predicted probablities
X (pd.DataFrame): Dataframe containing transaction amount
threshold (float): Dollar threshold to determine if transaction is fraud

Returns:

pd.Series: Series of predicted fraud labels using X and threshold
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)

if not isinstance(ypred_proba, pd.Series):
ypred_proba = pd.Series(ypred_proba)

transformed_probs = ypred_proba.values * X[self.amount_col]
return transformed_probs > threshold

def objective_function(self, y_true, y_predicted, X):
"""Calculate amount lost to fraud per transaction given predictions, true values,
< and dataframe with transaction amount

Args:
y_predicted (pd.Series): predicted fraud labels
y_true (pd.Series): true fraud labels
X (pd.DataFrame): dataframe with transaction amounts

Returns:

float: amount lost to fraud per transaction
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)

if not isinstance(y_predicted, pd.Series):
y_predicted = pd.Series(y_predicted)

if not isinstance(y_true, pd.Series):
y_true = pd.Series(y_true)

# extract transaction using the amount columns in users data
try:
transaction_amount = X[self.amount_col]
except KeyError:
raise ValueError(" {}  is not a valid column in X.".format(self.amount_col))

# amount paid if transaction is fraud
fraud_cost = transaction_amount * self.fraud_payout_percentage

# money made from interchange fees on transaction

(continues on next page)
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interchange_cost = (
transaction_amount * (1 - self.retry_percentage) * self.interchange_fee

)

# calculate cost of missing fraudulent transactions
false_negatives = (y_true & ~y_predicted) * fraud_cost

# calculate money lost from fees
false_positives = (~y_true & y_predicted) * interchange_cost

loss = false_negatives.sum() + false_positives.sum()
loss_per_total_processed = loss / transaction_amount.sum()

return loss_per_total_processed

4.6 Model Understanding

Simply examining a model’s performance metrics is not enough to select a model and promote it for use in a production
setting. While developing an ML algorithm, it is important to understand how the model behaves on the data, to examine
the key factors influencing its predictions and to consider where it may be deficient. Determination of what “success”
may mean for an ML project depends first and foremost on the user’s domain expertise.

EvalML includes a variety of tools for understanding models, from graphing utilities to methods for explaining predic-
tions.

** Graphing methods on Jupyter Notebook and Jupyter Lab require ipywidgets to be installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

4.6.1 Explaining Feature Influence

The EvalML package offers a variety of methods for understanding which features in a dataset have an impact on the
output of the model. We can investigate this either through feature importance or through permutation importance, and
leverage either in generating more readable explanations.

First, let’s train a pipeline on some data.

import evalml
from evalml.pipelines import BinaryClassificationPipeline

X, y = evalml.demos.load_breast_cancer()

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

pipeline_binary = BinaryClassificationPipeline(
component_graph={
"Label Encoder": ["Label Encoder", "X", "y"],

(continues on next page)

4.6. Model Understanding 177


https://ipywidgets.readthedocs.io/en/latest/user_install.html
https://plotly.com/python/getting-started/#jupyterlab-support-python-35
https://nodejs.org/en/download/

[2]:
[2]:

EvalML Documentation, Release 0.80.0

)

"Imputer": ["Imputer",

"X", "Label Encoder.y"],

"Random Forest Classifier": [
"Random Forest Classifier",

"Imputer.x",

"Label Encoder.y",

1,
}

pipeline_binary.fit(X_train, y_train)
print(pipeline_binary.score(X_holdout, y_holdout, objectives=["log loss binary"]))

Number of Features

Numeric 30

Number of training examples: 569

Targets
benign 62.74%
malignant 37.26%

Name: count, dtype: object
OrderedDict([('Log Loss Binary', 0.1686746297113362)])

Feature Importance

We can get the importance associated with each feature of the resulting pipeline

pipeline_binary.feature_importance

(continued from previous page)

feature importance
0 mean concave points 0.138857
1 worst perimeter 0.137780
2 worst concave points 0.117782
3 worst radius 0.100584
4 mean concavity 0.086402
5 worst area 0.072027
6 mean perimeter 0.046500
7 worst concavity 0.043408
8 mean radius 0.037664
9 mean area 0.033683
10 radius error 0.025036
11 area error 0.019324
12 worst texture 0.014754
13 worst compactness 0.014462
14 mean texture 0.013856
15 worst smoothness 0.013710
16 worst symmetry 0.011395
17 perimeter error 0.010284
18 mean compactness 0.008162
19 mean smoothness 0.008154
20 worst fractal dimension 0.007034
21 fractal dimension error 0.005502
22 compactness error 0.004953
23 smoothness error 0.004728

(continues on next page)
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24 texture error 0.004384
25 symmetry error 0.004250
26 mean fractal dimension 0.004164
27 concavity error 0.004089
28 mean symmetry 0.003997
29 concave points error 0.003076

We can also create a bar plot of the feature importances

pipeline_binary.graph_feature_importance()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

If we have a linear model, we can also view feature importance by simply inspecting the coefficients of the model.

from evalml.model_understanding import get_linear_coefficients

pipeline_linear = BinaryClassificationPipeline(
component_graph={
"Label Encoder": ["Label Encoder", "X", "y"1,
"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Logistic Regression Classifier": [
"Logistic Regression Classifier",
"Imputer.x",
"Label Encoder.y",
A g
3
)

pipeline_linear.fit(X_train, y_train)

get_linear_coefficients(pipeline_linear.estimator, features=X.columns)

Intercept -0.352325
worst radius -1.841560
mean radius -1.734090
texture error -0.769215
perimeter error -0.301213
radius error -0.078451
mean texture -0.064298
mean perimeter -0.041579
mean area 0.001247
fractal dimension error 0.005983
smoothness error 0.006360
symmetry error 0.019811
mean fractal dimension 0.020884
worst area 0.023366
concave points error 0.023432
compactness error 0.060427
mean smoothness 0.076231
concavity error 0.087974
mean symmetry 0.090586

(continues on next page)
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worst fractal dimension
area error

worst smoothness
mean concave points
worst texture

worst perimeter
worst symmetry

mean compactness
worst concave points
mean concavity

worst compactness
worst concavity
dtype: float64

Permutation Importance

We can also compute and plot the permutation importance of the pipeline.

.102868
.114724
.131197
.190348
.251384
.284895
.285985
.320826
.361658
.439937
.981815
.235671

(continued from previous page)

from evalml.model_understanding import calculate_permutation_importance

calculate_permutation_importance(
pipeline_binary, X_holdout, y_holdout, "log loss binary"

)

feature importance
0 worst perimeter 0.063657
1 worst area 0.045759
2 worst radius 0.041926
3 mean concave points 0.029325
4 worst concave points 0.021045
5 worst concavity 0.010105
6 worst texture 0.010044
7 mean texture 0.006178
8 mean symmetry 0.005857
9 mean area 0.004745
10 worst smoothness 0.003190
11 area error 0.003113
12 mean perimeter 0.002478
13 mean fractal dimension 0.001981
14 compactness error 0.001968
15 concavity error 0.001947
16 texture error 0.000291
17 smoothness error -0.000206
18 mean smoothness -0.000745
19 fractal dimension error -0.000835
20 worst compactness -0.002392
21 mean concavity -0.003188
22 mean compactness -0.005377
23 radius error -0.006229
24 mean radius -0.006870
25 worst fractal dimension -0.007415

(continues on next page)

180 Chapter 4. User Guide


https://scikit-learn.org/stable/modules/permutation_importance.html

[6]:

[77:

[8]:

EvalML Documentation, Release 0.80.0
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26 symmetry error -0.008175
27 perimeter error -0.008980
28 concave points error -0.010415
29 worst symmetry -0.018645

from evalml.model_understanding import graph_permutation_importance

graph_permutation_importance(pipeline_binary, X_holdout, y_holdout, "log loss binary")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Human Readable Importance

We can generate a more human-comprehensible understanding of either the feature or permutation importance by using
readable_explanation(pipeline). This picks out a subset of features that have the highest impact on the output
of the model, sorting them into either “heavily” or “somewhat” influential on the model. These features are selected
either by feature importance or permutation importance with a given objective. If there are any features that actively
decrease the performance of the pipeline, this function highlights those and recommends removal.

Note that permutation importance runs on the original input features, while feature importance runs on the features as
they were passed in to the final estimator, having gone through a number of preprocessing steps. The two methods will
highlight different features as being important, and feature names may vary as well.

from evalml.model_understanding import readable_explanation

readable_explanation(
pipeline_binary,
X_holdout,
y_holdout,
objective="log loss binary",
importance_method="permutation",

)

Random Forest Classifier: The output as measured by log loss binary is heavily.
—influenced by worst perimeter, and is somewhat influenced by worst area, worst radius,.
—.mean concave points, and worst concave points.

The features smoothness error, mean smoothness, fractal dimension error, worst.
-,compactness, mean concavity, mean compactness, radius error, mean radius, worst.
—.fractal dimension, symmetry error, perimeter error, concave points error, and worst.
—symmetry detracted from model performance. We suggest removing these features.

readable_explanation(
pipeline_binary, importance_method="feature"
) # feature importance doesn't require X and y

Random Forest Classifier: The output is somewhat influenced by mean concave points,..
-.Worst perimeter, worst concave points, worst radius, and mean concavity.

We can adjust the number of most important features visible with the max_features argument, or modify the minimum
threshold for “importance” with min_importance_threshold. However, these values will not affect any detrimental
features displayed, as this function always displays all of them.
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4.6.2 Metrics for Model Understanding
Confusion Matrix

For binary or multiclass classification, we can view a confusion matrix of the classifier’s predictions. In the DataFrame
output of confusion_matrix(), the column header represents the predicted labels while row header represents the
actual labels.

from evalml.model_understanding.metrics import confusion_matrix
y_pred = pipeline_binary.predict(X_holdout)
confusion_matrix(y_holdout, y_pred)

benign malignant
benign 0.930556 0.069444
malignant 0.023810 0.976190

from evalml.model_understanding.metrics import graph_confusion_matrix

y_pred = pipeline_binary.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Precision-Recall Curve
For binary classification, we can view the precision-recall curve of the pipeline.
from evalml.model_understanding.metrics import graph_precision_recall_curve

# get the predicted probabilities associated with the "true" label
import woodwork as ww

y_encoded = y_holdout.ww.map({"benign": 0, "malignant": 1})
y_pred_proba = pipeline_binary.predict_proba(X_holdout)["malignant"]
graph_precision_recall_curve(y_encoded, y_pred_proba)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

ROC Curve

For binary and multiclass classification, we can view the Receiver Operating Characteristic (ROC) curve of the pipeline.

from evalml.model_understanding.metrics import graph_roc_curve

# get the predicted probabilities associated with the "malignant" label
y_pred_proba = pipeline_binary.predict_proba(X_holdout)["malignant"]
graph_roc_curve(y_encoded, y_pred_proba)

182 Chapter 4. User Guide


https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

[13]:

[14]:

[14]:

EvalML Documentation, Release 0.80.0

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

The ROC curve can also be generated for multiclass classification problems. For multiclass problems, the graph will

show a one-vs-many ROC curve for each class.

from evalml.pipelines import MulticlassClassificationPipeline

X_multi, y_multi = evalml.demos.load_wine()

pipeline_multi = MulticlassClassificationPipeline(
["Simple Imputer", "Random Forest Classifier"]

)
pipeline_multi.fit(X_multi, y_multi)

y_pred_proba = pipeline_multi.predict_proba(X_multi)
graph_roc_curve(y_multi, y_pred_proba)

Number of Features
Numeric 13

Number of training examples: 178
Targets

class_1 39.89%

class_0 33.15%

class_2 26.97%

Name: count, dtype: object

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.6.3 Visualizations

Binary Objective Score vs. Threshold Graph

Some binary classification objectives (objectives that have score_needs_proba set to False) are sensitive to a decision
threshold. For those objectives, we can obtain and graph the scores for thresholds from zero to one, calculated at evenly-

spaced intervals determined by steps.

from evalml.model_understanding.visualizations import binary_objective_vs_threshold

binary_objective_vs_threshold(pipeline_binary, X_holdout, y_holdout, "fl", steps=10)

threshold score
0 0.0 0.538462
1 0.1 0.811881
2 0.2 0.891304
3 0.3 0.901099
4 0.4 0.931818
5 0.5 0.931818
6 0.6 0.941176

(continues on next page)
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(continued from previous page)
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from evalml.model_understanding.visualizations import (
graph_binary_objective_vs_threshold,

)

graph_binary_objective_vs_threshold(
pipeline_binary, X_holdout, y_holdout, "fl1", steps=100
)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Predicted Vs Actual Values Graph for Regression Problems

We can also create a scatterplot comparing predicted vs actual values for regression problems. We can specify an
outlier_threshold to color values differently if the absolute difference between the actual and predicted values are
outside of a given threshold.

from evalml.model_understanding.visualizations import graph_prediction_vs_actual
from evalml.pipelines import RegressionPipeline

X_regress, y_regress = evalml.demos.load_diabetes()
X_train_reg, X_test_reg, y_train_reg, y_test_reg = evalml.preprocessing.split_data(
X_regress, y_regress, problem_type="regression"

)

pipeline_regress = RegressionPipeline(["One Hot Encoder", "Linear Regressor'])
pipeline_regress.fit(X_train_reg, y_train_reg)

y_pred = pipeline_regress.predict(X_test_reg)

graph_prediction_vs_actual(y_test_reg, y_pred, outlier_threshold=50)
Number of Features

Numeric 10

Number of training examples: 442

Targets

200 1.36%
72 1.36%
90 1.13%
178 1.13%
71 1.13%
73 0.23%
222 0.23%
86 0.23%
79 0.23%

(continues on next page)
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(continued from previous page)

57 0.23%
Name: count, Length: 214, dtype: object

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Tree Visualization

Now let’s train a decision tree on some data. We can visualize the structure of the Decision Tree that was fit to that
data, and save it if necessary.

pipeline_dt = BinaryClassificationPipeline(
["Simple Imputer", "Decision Tree Classifier"]

)
pipeline_dt.fit(X_train, y_train)

pipeline = BinaryClassificationPipeline(component_graph={'Simple Imputer': ['Simple..

—Imputer', 'X', 'y'], 'Decision Tree Classifier': ['Decision Tree Classifier', 'Simple.
—Imputer.x', 'y']}, parameters={'Simple Imputer':{'impute_strategy': 'most_frequent',
-, 'fill_value': None}, 'Decision Tree Classifier':{'criterion': 'gini', 'max_features':

—'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0}},.
—random_seed=0)

from evalml.model_understanding.visualizations import visualize_decision_tree

visualize_decision_tree(
pipeline_dt.estimator, max_depth=2, rotate=False, filled=True, filepath=None

)

Confusion Matrix and Thresholds for Binary Classification Pipelines

For binary classification pipelines, EvalML also provides the ability to compare the actual positive and actual negative
histograms, as well as obtaining the confusion matrices and ideal thresholds per objective.

from evalml.model_understanding import find_confusion_matrix_per_thresholds

df, objective_thresholds = find_confusion_matrix_per_thresholds(
pipeline_binary, X, y, n_bins=10

)

df.head(10)

true_pos_count true_neg_count true_positives true_negatives \
0.1 1 309 211 309
0.2 0 35 211 344
0.3 0 5 211 349
0.4 0 3 211 352
0.5 0 0 211 352
0.6 3 2 208 354
0.7 2 2 206 356
0.8 9 1 197 357

(continues on next page)
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(continued from previous page)

0.9 15 0 182 357
1.0 182 0 0 357
false_positives false_negatives data_in_bins
0.1 48 1 [19, 20, 21, 37, 46]
0.2 13 1 [68, 92, 123, 133, 147]
0.3 8 1 [112, 157, 484, 491, 505]
0.4 5 1 [208, 340, 465]
0.5 5 1 [1]
0.6 3 4 [40, 89, 128, 263, 297]
0.7 1 6 [13, 81, 385, 421]
0.8 0 15 [38, 41, 54, 73, 86]
0.9 0 30 [39, 44, 91, 99, 100]
1.0 0 212 [6, 1, 2, 3, 4]

objective_thresholds

{'accuracy': {'objective score': 0.9894551845342706, 'threshold value': 0.4},
'balanced_accuracy': {'objective score': 0.9906387083135141,
'threshold value': 0.4},
'precision': {'objective score': 1.0, 'threshold value': 0.8},
'f1': {'objective score': 0.9859813084112149, 'threshold value': 0.4}}

In the above results, the first dataframe contains the histograms for the actual positive and negative classes, indicated by
true_pos_count and true_neg_count. The columns true_positives, true_negatives, false_positives,
and false_negatives contain the confusion matrix information for the associated threshold, and the data_in_bins
holds a random subset of row indices (both postive and negative) that belong in each bin. The index of the dataframe
represents the associated threshold. For instance, at index 0.1, there is 1 positive and 309 negative rows that fall
between [0.0, 0.1].

The returned objective_thresholds dictionary has the objective measure as the key, and the dictionary value as-
sociated contains both the best objective score and the threshold that results in the associated score.

Visualize high dimensional data in lower space

We can use T-SNE to visualize data with many features on a 2D plot, making it easier to see relationships in your data.

# Our data is highly dimensional, we can't plot this in a way we understand
print(len(X.columns))

30

from evalml.model_understanding import graph_t_sne

fig = graph_t_sne(X)
fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html
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4.6.4 Partial Dependence Plots

We can calculate the one-way partial dependence plots for a feature.

from evalml.model_understanding import partial_dependence

partial_dependence(
pipeline_binary, X_holdout, features="mean radius", grid_resolution=5

)

feature_values partial_dependence class_label
0 9.69092 0.392453 malignant
1 12.40459 0.395962 malignant
2 15.11826 0.417396 malignant
3 17.83193 0.429542 malignant
4 20.54560 0.429717 malignant

from evalml.model_understanding import graph_partial_dependence

graph_partial_dependence(
pipeline_binary, X_holdout, features="mean radius", grid_resolution=5

)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

We can also compute the partial dependence for a categorical feature. We will demonstrate this on the fraud dataset.

X_fraud, y_fraud = evalml.demos.load_fraud(100, verbose=False)
X_fraud.ww.init(
logical_types={

"provider": "Categorical",
"region": "Categorical",
"currency'": "Categorical",
"expiration_date": "Categorical",

)

fraud_pipeline = BinaryClassificationPipeline(
["DateTime Featurizer", "One Hot Encoder", "Random Forest Classifier"]

)
fraud_pipeline. fit(X_fraud, y_fraud)

graph_partial_dependence(fraud_pipeline, X_fraud, features="provider")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Two-way partial dependence plots are also possible and invoke the same API.

partial_dependence(
pipeline_binary,
X_holdout,

(continues on next page)
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features=("worst perimeter", "worst radius"),
grid_resolution=>5,
)
10.6876 14.404924999999999 18.12225
69.140700 0.279038 0.282898 0.435179
94.334275  0.304335 0.308194 0.458283
119.527850 0.464455 0.468314 0.612137
144.721425 0.483437 0.487297 0.631120
169.915000 ©.483437 0.487297 0.631120
class_label
69.140700 malignant
94.334275 malignant
119.527850 malignant
144.721425 malignant
169.915000 malignant
graph_partial_dependence(
pipeline_binary,
X_holdout,
features=("worst perimeter", "worst radius"),

grid_resolution=5,

[N — I — I — I —

.839575
.435355
.458458
.616932
.635915
.635915

(continued from previous page)

25.5569 \
0.435355
0.458458
0.616932
0.635915
0.635915

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.6.5 Explaining Predictions

We can explain why the model made certain predictions with the explain_predictions function. This can use either
the Shapley Additive Explanations (SHAP) algorithm or the Local Interpretable Model-agnostic Explanations (LIME)

algorithm to identify the top features that explain the predicted value.

This function can explain both classification and regression models - all you need to do is provide the pipeline, the input
features, and a list of rows corresponding to the indices of the input features you want to explain. The function will
return a table that you can print summarizing the top 3 most positive and negative contributing features to the predicted

value.

In the example below, we explain the prediction for the third data point in the data set. We see that the worst concave
points feature increased the estimated probability that the tumor is malignant by 20% while the worst radius feature
decreased the probability the tumor is malignant by 5%.

from evalml.model_understanding.prediction_explanations import explain_predictions

table = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[3],
top_k_features=6,

(continues on next page)
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(continued from previous page)

include_explainer_values=True,

)
print(table)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
- 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
—.frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_

—value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n
—jobs': -1}}

1of1l
Feature Name Feature Value Contribution to Prediction  SHAP.
—Value

worst concavity 0.18 - -0.

02
mean concavity 0.04 - -0.

—03
worst area 599.50 - -0.

03
worst radius 14.04 - -0.

05
mean concave points 0.03 - -0.

05
worst perimeter 92.80 - -0.

06

The interpretation of the table is the same for regression problems - but the SHAP value now corresponds to the
change in the estimated value of the dependent variable rather than a change in probability. For multiclass classification
problems, a table will be output for each possible class.

Below is an example of how you would explain three predictions with explain_predictions.

from evalml.model_understanding.prediction_explanations import explain_predictions

report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=y_holdout,
indices_to_explain=[0, 4, 9],
include_explainer_values=True,
output_format="text",

)

print (report)

Random Forest Classifier w/ Label Encoder + Imputer

(continues on next page)
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(continued from previous page)
{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
— 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
—frequent', 'categorical fill_value': None, 'numeric_fill_value': None, 'boolean_£fill_
—value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n
—jobs': -1}}

1 of 3
Feature Name Feature Value Contribution to Prediction SHAP.,
—Value
worst perimeter 101.20 - -0.
<~>®4
worst concave points 0.06 - -0.
05
mean concave points 0.01 - -0.
< >®5
2 of 3
Feature Name Feature Value Contribution to Prediction  SHAP.,
—Value
worst radius 11.94 - -0.
05
worst perimeter 80.78 - -0.
06
mean concave points 0.02 - -0.
06
3 of 3
Feature Name Feature Value Contribution to Prediction SHAP.,
—Value
worst concave points 0.10 - -0.
worst perimeter 99.21 - -0.
06
mean concave points 0.03 - -0.
08

The above examples used the SHAP algorithm, since that is what explain_predictions uses by default. If you
would like to use LIME instead, you can change that with the algorithm="1ime" argument.
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[30]: from evalml.model_understanding.prediction_explanations import explain_predictions

table = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[3],
top_k_features=6,
include_explainer_values=True,
algorithm="1ime",

)

print(table)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':

— 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
—frequent', 'categorical fill_value': None, 'numeric_fill_value': None, 'boolean_£fill_
—~value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
—jobs': -1}}
lofl
Feature Name Feature Value Contribution to Prediction LIME.
—Value
worst radius 14.04 + 0.
06
worst perimeter 92.80 + 0.
—06
worst area 599.50 + 0.
—05
mean concave points 0.03 + 0.
04
worst concave points 0.12 + 0.
—04
worst concavity 0.18 + 0.
—03

[31]: from evalml.model_understanding.prediction_explanations import explain_predictions

report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[0, 4, 9],
include_explainer_values=True,
output_format="text",
algorithm="1ime",

(continues on next page)
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(continued from previous page)

)
print (report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
— 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
—frequent', 'categorical fill_value': None, 'numeric_fill_value': None, 'boolean_£fill_
—~value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n
—~jobs': -1}}

1 of 3
Feature Name Feature Value Contribution to Prediction LIME Value
worst perimeter 101.20 + 0.06
worst radius 15.14 + 0.06
worst area 718.90 + 0.05
2 of 3
Feature Name Feature Value Contribution to Prediction LIME Value
worst perimeter 80.78 + 0.06
worst radius 11.94 + 0.06
worst area 433.10 + 0.05
3 of 3
Feature Name Feature Value Contribution to Prediction LIME Value
worst radius 14.42 + 0.06
worst perimeter 99.21 + 0.06
worst area 634.30 + 0.05

Explaining Best and Worst Predictions

When debugging machine learning models, it is often useful to analyze the best and worst predictions the model made.
The explain_predictions_best_worst function can help us with this.

This function will display the output of explain_predictions for the best 2 and worst 2 predictions. By default, the best
and worst predictions are determined by the absolute error for regression problems and cross entropy for classification
problems.

We can specify our own ranking function by passing in a function to the metric parameter. This function will be called
on y_true and y_pred. By convention, lower scores are better.

At the top of each table, we can see the predicted probabilities, target value, error, and row index for that prediction.
For a regression problem, we would see the predicted value instead of predicted probabilities.

192 Chapter 4. User Guide


https://en.wikipedia.org/wiki/Cross_entropy

EvalML Documentation, Release 0.80.0

[32]: from evalml.model_understanding.prediction_explanations import (
explain_predictions_best_worst,

)

shap_report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
include_explainer_values=True,
top_k_features=6,
num_to_explain=2,

)

print (shap_report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':

— 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
—frequent', 'categorical_£fill_value': None, 'numeric_fill_value': None, 'boolean_£fill_
—~value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
—~jobs': -1}}

Best 1 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign

Target Value: benign

Cross Entropy: 0.0

Index ID: 502

Feature Name Feature Value Contribution to Prediction  SHAP.
—Value

mean concavity 0.06 - -0.

03
worst area 552.00 - -0.

—03
worst concave points 0.08 - -0.

05
worst radius 13.57 - -0.

05
mean concave points 0.03 - -0.

—05
worst perimeter 86.67 - -0.

06

Best 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign

(continues on next page)
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Target Value: benign
Cross Entropy: 0.0
Index ID: 52

Feature Name

Feature Value

(continued from previous page)

Contribution to Prediction SHAP..,

—Value
mean concavity 0.02 -0.
02
worst area 527.20 -0.
03
worst radius 13.10 -0.
‘*}@4
worst concave points 0.06 -0.
04
mean concave points 0.01 -0.
< >®5
worst perimeter 83.67 -0.
06
Worst 1 of 2
Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
Cross Entropy: 1.325
Index ID: 363
Feature Name Feature Value Contribution to Prediction SHAP Value
worst perimeter 117.20 + 0.13
worst radius 18.13 + 0.12
worst area 1009.00 + 0.11
mean area 838.10 + 0.06
mean radius 16.50 + 0.05
worst concavity 0.17 - -0.05
Worst 2 of 2
Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
Cross Entropy: 7.987
Index ID: 135
Feature Name Feature Value Contribution to Prediction SHAP.,
—Value
(continues on next page)
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(continued from previous page)

mean concavity 0.05 - -0.
03
worst area 653.60 - -0.
04
worst concave points 0.09 - -0.
05
worst radius 14.49 - -0.
05
worst perimeter 92.04 - -0.
06
mean concave points 0.03 - -0.
06
[33]: lime_report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
include_explainer_values=True,
top_k_features=6,
num_to_explain=2,
algorithm="1ime",
)
print (lime_report)
Random Forest Classifier w/ Label Encoder + Imputer
{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
— 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
—frequent', 'categorical fill_value': None, 'numeric_fill_value': None, 'boolean_£fill_
—~value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
—jobs': -1}}
Best 1 of 2
Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 502
Feature Name Feature Value Contribution to Prediction LIME.
—Value
worst radius 13.57 + 0.
06
worst perimeter 86.67 + 0.
06

(continues on next page)
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(continued from previous page)

worst area 552.00 + 0.
05
mean concave points 0.03 + 0.
04
worst concave points 0.08 + 0.
04
worst concavity 0.19 + 0.
03
Best 2 of 2
Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 52
Feature Name Feature Value Contribution to Prediction LIME.
—Value
worst radius 13.10 + 0.
06
worst perimeter 83.67 + 0.
06
worst area 527.20 + 0.
05
mean concave points 0.01 + 0.
—04
worst concave points 0.06 + 0.
04
worst concavity 0.09 + 0.
03
Worst 1 of 2
Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
Cross Entropy: 1.325
Index ID: 363
Feature Name Feature Value Contribution to Prediction LIME.
—Value
worst concavity 0.17 - -0.
03
worst concave points 0.09 - -0.
—04

(continues on next page)
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(continued from previous page)

mean concave points 0.05 - -0.
—04
worst area 1009.00 - -0.
05
worst perimeter 117.20 - -0.
- 06
worst radius 18.13 - -0.
—06
Worst 2 of 2
Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
Cross Entropy: 7.987
Index ID: 135
Feature Name Feature Value Contribution to Prediction LIME.
—Value
worst radius 14.49 + 0.
—06
worst perimeter 92.04 + 0.
06
worst area 653.60 + 0.
—05
mean concave points 0.03 + 0.
—04
worst concave points 0.09 + 0.
04
worst concavity 0.22 + 0.
—03

We use a custom metric (hinge loss) for selecting the best and worst predictions. See this example:

[34]: import numpy as np

def hinge_loss(y_true, y_pred_proba):
probabilities = np.clip(y_pred_proba.iloc[:, 1], 0.001, 0.999)
y_truel[y_true == 0] = -1

return np.clip(

1 - y_true * np.log(probabilities / (1 - probabilities)), a_min=0, a_max=None

)

(continues on next page)
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(continued from previous page)

report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X,
y_true=y,
include_explainer_values=True,
num_to_explain=5,
metric=hinge_loss,

print(report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
— 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
—frequent', 'categorical fill_value': None, 'numeric_fill_value': None, 'boolean_£fill_

—value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
—jobs': -1}}

Best 1 of 5

Predicted Probabilities: [benign: 0.03, malignant: 0.97]
Predicted Value: malignant

Target Value: malignant

hinge_loss: 0.0

Index ID: O
Feature Name Feature Value Contribution to Prediction SHAP.,
—Value
worst concave points 0.27 + 0.
—08
worst perimeter 184.60 + 0.
08
mean concave points 0.15 + 0.
08
Best 2 of 5
Predicted Probabilities: [benign: 0.998, malignant: 0.002]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 388
Feature Name Feature Value Contribution to Prediction  SHAP,
—Value
worst concave points 0.08 - -0.
< >®5

(continues on next page)
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(continued from previous page)

mean concave points 0.03 - -0.
06
worst perimeter 79.73 - -0.
07
Best 3 of 5
Predicted Probabilities: [benign: 0.988, malignant: 0.012]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 387
Feature Name Feature Value Contribution to Prediction  SHAP.
—Value
worst perimeter 99.66 - -0.
05
worst concave points 0.05 - -0.
05
mean concave points 0.01 - -0.
< >®5
Best 4 of 5
Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 386
Feature Name Feature Value Contribution to Prediction  SHAP.
—Value
worst radius 13.13 - -0.
<>®4
worst perimeter 87.65 - -0.
06
mean concave points 0.03 - -0.
06
Best 5 of 5

Predicted Probabilities: [benign: 0.969, malignant: 0.031]
Predicted Value: benign

Target Value: benign

hinge_loss: 0.0

(continues on next page)
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(continued from previous page)

Index ID: 384

Feature Name Feature Value Contribution to Prediction  SHAP.
—Value

worst concave points 0.09 - -0.

—04
worst perimeter 96.59 - -0.

05
mean concave points 0.03 - -0.

—06

Worst 1 of 5

Predicted Probabilities: [benign: 0.409, malignant: 0.591]
Predicted Value: malignant

Target Value: benign

hinge_loss: 1.369

Index ID: 128

Feature Name Feature Value Contribution to Prediction  SHAP.
—Value

mean concave points 0.09 + 0.

10
worst concave points 0.14 + 0.

—09
mean concavity 0.11 + 0.

.08

Worst 2 of 5

Predicted Probabilities: [benign: 0.39, malignant: 0.61]
Predicted Value: malignant

Target Value: benign

hinge_loss: 1.446

Index ID: 421

Feature Name Feature Value Contribution to Prediction  SHAP.
—Value

mean concave points 0.06 + 0.

.08
mean concavity 0.14 + 0.

—~07
worst perimeter 114.10 + 0.

—07

(continues on next page)
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Worst 3 of 5

Predicted Probabilities:

Predicted Value: malignant

Target Value: benign

(continued from previous page)

[benign: 0.343, malignant: 0.657]

hinge_loss: 1.652
Index ID: 81
Feature Name Feature Value Contribution to Prediction SHAP.,
—Value
worst concave points 0.17 ++ 0.
15
mean concave points 0.07 + 0.
11
worst compactness 0.48 + 0.
07
Worst 4 of 5
Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
hinge_loss: 2.016
Index ID: 363
Feature Name Feature Value Contribution to Prediction SHAP Value
worst perimeter 117.20 + 0.13
worst radius 18.13 + 0.12
worst area 1009.00 + 0.11
Worst 5 of 5
Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
hinge_loss: 7.907
Index ID: 135
Feature Name Feature Value Contribution to Prediction SHAP. .,
—Value
worst radius 14.49 - -0.
“ )05
worst perimeter 92.04 - -0.
86

(continues on next page)
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(continued from previous page)

mean concave points 0.03 - -0.
—06

Changing Output Formats

Instead of getting the prediction explanations as text, you can get the report as a python dictionary or pandas
dataframe. All you have to do is pass output_format="dict" or output_format="dataframe" to either
explain_prediction, explain_predictions, or explain_predictions_best_worst

Single prediction as a dictionary

[35]: import json

single_prediction_report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
indices_to_explain=[3],
y=y_holdout,
top_k_features=6,
include_explainer_values=True,
output_format="dict",

)

print(json.dumps(single_prediction_report, indent=2))

{
"explanations": [
{
"explanations": [
{

"feature_names": [
"worst concavity",
"mean concavity",
"worst area'",
"worst radius",
"mean concave points",
"worst perimeter"

1,

"feature_values": [
0.1791,
0.038,
599.5,
14.04,
0.034,
92.8

1,

"qualitative_explanation": [

non
’

(continues on next page)
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n_n
n_mn
n_n
n_n

1,

"quantitative_explanation":
-0.023008481104309524,
-0.02621982146725469,
-0.033821592020020774,
-0.04666659740586632,
-0.0541511910494414,
-0.05523688273171911

1,

"drill_down": {},
"class_name": "malignant",
"expected_value": 0.3711208791208791

Single prediction as a dataframe

single_prediction_report =

indices_to_explain=[3],

y=y_holdout,
top_k_features=6,

include_explainer_values=True,
output_format="dataframe",

)

single_prediction_report

feature_names

worst concavity
mean concavity
worst area

worst radius

mean concave points
worst perimeter

v WN R

0.1791
0.0380
599.5000
14.0400
0.0340
92.8000

quantitative_explanation class_name

-0.
-0.
-0.
-0.
-0.
-0.

v WN R

023008
026220
033822
046667
054151
055237

malignant
malignant
malignant
malignant
malignant
malignant

[

explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,

feature_values qualitative_explanation \

prediction_number

(= I — I — I — I — ]

(continued from previous page)
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Best and worst predictions as a dictionary

report = explain_predictions_best_worst(

)

pipeline=pipeline_binary,
input_features=X,

y_true=y,

num_to_explain=1,
top_k_features=6,
include_explainer_values=True,
output_format="dict",

print(json.dumps(report, indent=2))

{

"explanations": [

"rank": {
"prefix": "best",
"index": 1

1,

"predicted_values": {

"probabilities": {

"benign": 1.0,
"malignant": 0.0

1,

"predicted_value": "benign",

"target_value": "benign",

"error_name": "Cross Entropy",

"error_value": 0.0001970443507070075,

"index_id": 475

1,

"explanations": [

{

"feature_names": [
"mean concavity",
"worst area",

"worst radius",

"worst concave points",
"worst perimeter",
"mean concave points"

1,

"feature_values": [
0.05835,

605.8,

14.09,

0.09783,

93.22,

0.03078
1,

"qualitative_explanation": [
s
_II’
_II’

(continues on next page)
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1,

"quantitative_explanation": [
-0.028481050954786636,
-0.03050522196002462,
-0.042922079201003216,
-0.04429366151003684,
-0.05486784013962313,
-0.05639460900233733

1,
"drill_down": {3},
"class_name": "malignant",
"expected_value": 0.3711208791208791
}
]
3
{
"rank": {
"prefix": "worst",
"index": 1
3,

"predicted_values": {
"probabilities": {
"benign": 1.0,

"malignant": 0.0

3,

"predicted_value": "benign",
"target_value": "malignant",
"error_name": "Cross Entropy",

"error_value": 7.986911819330411,
"index_id": 135
1,
"explanations": [
{
"feature_names": [
"mean concavity",
"worst area",
"worst concave points",
"worst radius",
"worst perimeter",
"mean concave points"
1,
"feature_values": [
0.04711,
653.6,
0.09331,
14.49,
92.04,
0.02704

(continued from previous page)
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(continued from previous page)

"qualitative_explanation": [
_II’
_II’
s
v

1,

"quantitative_explanation": [
-0.029936744551331215,
-0.03748357654576422,
-0.04553126236476177,
-0.0483274199182721,
-0.06039220265366764,
-0.060441902449258976

1,

"drill_down": {},

"class_name": "malignant",
"expected_value": 0.3711208791208791

Best and worst predictions as a dataframe

[38]: report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
num_to_explain=1,
top_k_features=6,
include_explainer_values=True,
output_format="dataframe",

)
report
[38]: feature_names feature_values qualitative_explanation \

0 mean concavity 0.05928 -
1 worst area 552.00000 -
2 worst concave points 0.08411 -
3 worst radius 13.57000 -
4 mean concave points 0.03279 -
5 worst perimeter 86.67000 -
6 mean concavity 0.04711 -
7 worst area 653.60000 -
8 worst concave points 0.09331 -
9 worst radius 14.49000 -
10 worst perimeter 92.04000 -
11 mean concave points 0.02704 -

(continues on next page)
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quantitative_explanation class_name

O o0 NOUVITA WN R D

o
=]

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

029022
034112
046896
046928
052902
064320
029937
037484
045531
048327
060392
060442

malignant
malignant
malignant
malignant
malignant
malignant
malignant
malignant
malignant
malignant
malignant
malignant

label_benign_probability \

label_malignant_probability predicted_value target_value

O oo NO VI WN =R

=
=

error_value

0

R R OO NOUUVIDA WNR

=]
N NNNNNooooe

.000197
.000197
.000197
.000197
.000197
.000197
.986912
.986912
.986912
.986912
.986912
.986912

502
502
502
502
502
502
135
135
135
135
135
135

0.

(=R — I — R — I — N — I — I — I — A —
[ I — I — I — I — I — I — B I — I — I~

0

index_id rank prefix

1 best
best
best
best
best
best

worst

worst
worst
worst
worst
worst

R R R R

benign
benign
benign
benign
benign
benign
benign
benign
benign
benign
benign
benign

benign
benign
benign
benign
benign
benign
malignant
malignant
malignant
malignant
malignant
malignant

1.0

B R R R R R R R R R R
@D
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Cross
Cross
Cross
Cross
Cross
Cross
Cross
Cross
Cross
Cross
Cross
Cross

Entropy
Entropy
Entropy
Entropy
Entropy
Entropy
Entropy
Entropy
Entropy
Entropy
Entropy
Entropy
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4.6.6 Force Plots

Force plots can be generated to predict single or multiple rows for binary, multiclass and regression problem types.
These use the SHAP algorithm. Here’s an example of predicting a single row on a binary classification dataset. The
force plots show the predictive power of each of the features in making the negative (“‘Class: 0”) prediction and the
positive (“Class: 1) prediction.

import shap
from evalml.model_understanding.force_plots import graph_force_plot
rows_to_explain = [0] # Should be a list of integer indices of the rows to explain.

results = graph_force_plot(
pipeline_binary,
rows_to_explain=rows_to_explain,
training_data=X_holdout,
y=y_holdout,

)

for result in results:
for cls in result:
print("Class:", cls)
display(result[cls]["plot"])

<IPython.core.display.HTML object>
Class: malignant

<shap.plots._force.AdditiveForceVisualizer at 0x7£f170995a640>

Here’s an example of a force plot explaining multiple predictions on a multiclass problem. These plots show the force
plots for each row arranged as consecutive columns that can be ordered by the dropdown above. Clicking the column
indicates which row explanation is underneath.

rows_to_explain = [
’
’
’

3

B w N R 2|

1 # Should be a list of integer indices of the rows to explain.

results = graph_force_plot(
pipeline_multi, rows_to_explain=rows_to_explain, training_data=X_multi, y=y_multi

)

for idx, result in enumerate(results):
print("Row:", idx)
for cls in result:
print("Class:", cls)
display(result[cls]["plot"])

<IPython.core.display.HTML object>
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Row: 0O
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7£f1709a8b8b0>
Class: class_1
<shap.plots._force.AdditiveForceVisualizer at 0x7£1709a8b9d0®>
Class: class_2
<shap.plots._force.AdditiveForceVisualizer at 0x7£1709a8b190>

Row: 1
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7£f1709a8b1£f0>
Class: class_1
<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ecf160>
Class: class_2
<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ecfaf®>

Row: 2
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b100>
Class: class_1
<shap.plots._force.AdditiveForceVisualizer at 0x7£f1709a8bf10>
Class: class_2
<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304340>

Row: 3
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304430>
Class: class_1
<shap.plots._force.AdditiveForceVisualizer at 0x7£170a304400>
Class: class_2
<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304460>

Row: 4
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7£f170a304220>
Class: class_1
<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b610>
Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ede790>
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4.7 Data Checks

EvalML provides data checks to help guide you in achieving the highest performing model. These utility functions
help deal with problems such as overfitting, abnormal data, and missing data. These data checks can be found un-
der evalml/data_checks. Below we will cover examples for each available data check in EvalML, as well as the
DefaultDataChecks collection of data checks.

4.7.1 Missing Data

Missing data or rows with NaN values provide many challenges for machine learning pipelines. In the worst case,
many algorithms simply will not run with missing data! EvalML pipelines contain imputation components to ensure
that doesn’t happen. Imputation works by approximating missing values with existing values. However, if a column
contains a high number of missing values, a large percentage of the column would be approximated by a small per-
centage. This could potentially create a column without useful information for machine learning pipelines. By using
NullDataCheck, EvaIML will alert you to this potential problem by returning the columns that pass the missing values
threshold.

import numpy as np
import pandas as pd

from evalml.data_checks import NullDataCheck

X = pd.DataFrame(
[f1, 2, 3], [0, 4, np.nan], [1, 4, np.nan], [9, 4, np.nan], [8, 6, np.nan]]
)

null_check = NullDataCheck(pct_null_col_threshold=0.8, pct_null_row_threshold=0.8)
messages = null_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning['"message"])

for error in errors:
print("Error:", error["message"])

Warning: Column(s) '2' are 80.0% or more null

4.7.2 Abnormal Data

EvalML provides a few data checks to check for abnormal data:
* NoVarianceDataCheck
* ClassImbalanceDataCheck
e TargetLeakageDataCheck
e InvalidTargetDataCheck
* IDColumnsDataCheck

e OutliersDataCheck
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e HighVarianceCVDataCheck

e MulticollinearityDataCheck

¢ UniquenessDataCheck

e TargetDistributionDataCheck

* DateTimeFormatDataCheck

* TimeSeriesParametersDataCheck

e TimeSeriesSplittingDataCheck

Zero Variance

Data with zero variance indicates that all values are identical. If a feature has zero variance, it is not likely to be a useful
feature. Similarly, if the target has zero variance, there is likely something wrong. NoVarianceDataCheck checks if
the target or any feature has only one unique value and alerts you to any such columns.

from evalml.data_checks import NoVarianceDataCheck

X = pd.DataFrame({"no var col": [0, 0, 0], "good col": [0, 4, 1]})
y = pd.Series([1, 0, 1])

no_variance_data_check = NoVarianceDataCheck()

messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning['"message"])

Warning: 'no var col' has 1 unique value.

Note that you can set NaN to count as an unique value, but NoVarianceDataCheck will still return a warning if there
is only one unique non-NaN value in a given column.

from evalml.data_checks import NoVarianceDataCheck

X = pd.DataFrame(
{
"no var col": [0, 0, 0],
"no var col with nan": [1, np.nan, 1],
"good col": [0, 4, 1],
}
)
y = pd.Series([1, 0, 1])

no_variance_data_check = NoVarianceDataCheck(count_nan_as_value=True)
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning['"message"])
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Warning: 'no var col' has 1 unique value.
Warning: 'no var col with nan' has two unique values including nulls. Consider encoding.
—the nulls for this column to be useful for machine learning.

Class Imbalance

For classification problems, the distribution of examples across each class can vary. For small variations, this is normal
and expected. However, when the number of examples for each class label is disproportionately biased or skewed
towards a particular class (or classes), it can be difficult for machine learning models to predict well. In addition, having
a low number of examples for a given class could mean that one or more of the CV folds generated for the training data
could only have few or no examples from that class. This may cause the model to only predict the majority class and
ultimately resulting in a poor-performant model.

ClassImbalanceDataCheck checks if the target labels are imbalanced beyond a specified threshold for a certain
number of CV folds. It returns DataCheckError messages for any classes that have less samples than double the
number of CV folds specified (since that indicates the likelihood of having at little to no samples of that class in a given
fold), and DataCheckWarning messages for any classes that fall below the set threshold percentage.

from evalml.data_checks import ClassImbalanceDataCheck

X
y

pd'DataFrame([[]'! 2! ®! 1]! [4! 1! 9! ®]! [41 4! 8! 3]! [91 2! 7! 1]])
pd.Series([0, 1, 1, 1, 1)

class_imbalance_check = ClassImbalanceDataCheck(threshold=0.25, num_cv_folds=4)
messages = class_imbalance_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning['"message"])

for error in errors:
print("Error:", error["message"])

Warning: The following labels fall below 25% of the target: [0]

Warning: The following labels in the target have severe class imbalance because they.
—fall under 25% of the target and have less than 100 samples: [0]

Error: The number of instances of these targets is less than 2 * the number of cross.
—folds = 8 instances: [0, 1]

Target Leakage

Target leakage, also known as data leakage, can occur when you train your model on a dataset that includes information
that should not be available at the time of prediction. This causes the model to score suspiciously well, but perform
poorly in production. TargetLeakageDataCheck checks for features that could potentially be “leaking” information
by calculating the Pearson correlation coefficient between each feature and the target to warn users if there are features
are highly correlated with the target. Currently, only numerical features are considered.

from evalml.data_checks import TargetLeakageDataCheck

X = pd.DataFrame(

(continues on next page)
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(continued from previous page)

{
"leak": [10, 42, 31, 51, 61] * 5,
"x": [42, 54, 12, 64, 12] * 5,
"y": [12, 5, 13, 74, 24] * 5,

}

)
y = pd.Series([10, 42, 31, 51, 40] * 5)

target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.38)
messages = target_leakage_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning['"message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns 'leak', 'x', 'y' are 80.0% or more correlated with the target

Invalid Target Data

The InvalidTargetDataCheck checks if the target data contains any missing or invalid values. Specifically:
« if any of the target values are missing, a DataCheckError message is returned

« if the specified problem type is a binary classification problem but there is more or less than two unique values
in the target, a DataCheckError message is returned

« if binary classification target classes are numeric values not equal to {0, 1}, a DataCheckError message is
returned because it can cause unpredictable behavior when passed to pipelines

from evalml.data_checks import InvalidTargetDataCheck

X
y

pd.DataFrame({})
pd.Series([0, 1, None, None])

invalid_target_check = InvalidTargetDataCheck("binary", "Log Loss Binary")
messages = invalid_target_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning['"message"])

for error in errors:
print("Error:", error["message"])

Warning: Input target and features have different lengths
Warning: Input target and features have mismatched indices. Details will include the.

—first 10 mismatched indices.
(continues on next page)
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Error: 2 row(s) (50.0%) of target values are null

ID Columns

ID columns in your dataset provide little to no benefit to a machine learning pipeline as the pipeline cannot extrapolate
useful information from unique identifiers. Thus, IDColumnsDataCheck reminds you if these columns exists. In the
given example, ‘user_number’ and ‘revenue_id’ columns are both identified as potentially being unique identifiers that
should be removed.

from evalml.data_checks import IDColumnsDataCheck

X = pd.DataFrame(
[[®, 53, 6325, 5], [1, 90, 6325, 101, [2, 90, 18, 20]1],
columns=["user_number", "cost", "revenue", "revenue_id"],

)

id_col_check = IDColumnsDataCheck(id_threshold=0.9)
messages = id_col_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns 'user_number', 'revenue_id' are 90.0% or more likely to be an ID column

Primary key columns however, can be useful. Primary key columns are typically the first column in the dataset, have
all unique values, and are either named ID or a name that ends with _id. Though they are ignored from the modeling
process, they can be used as an identifier to query on before or after the modeling process. IDColumnsDataCheck will
also remind you if it finds that the first column of the DataFrame is a primary key. In the given example, user_id is
identified as a primary key, while revenue_id was identified as a regular unique identifier.

from evalml.data_checks import IDColumnsDataCheck
X = pd.DataFrame(
[[6, 53, 6325, 5], [1, 90, 6325, 10], [2, 90, 18, 20]],

columns=["user_id", "cost", "revenue", "revenue_id"],

)

id_col_check = IDColumnsDataCheck(id_threshold=0.9)
messages = id_col_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

(continues on next page)
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for error in errors:
print("Error:", error["message"])

Warning: The first column 'user_id' is likely to be the primary key
Warning: Columns 'revenue_id' are 90.0% or more likely to be an ID column

Multicollinearity

The MulticollinearityDataCheck data check is used in to detect if are any set of features that are likely to be
multicollinear. Multicollinear features affect the performance of a model, but more importantly, it may greatly impact
model interpretation. EvalML uses mutual information to determine collinearity.

from evalml.data_checks import MulticollinearityDataCheck

y = pd.Series([1, 0, 2, 3, 4] * 5)
X = pd.DataFrame(
{
"col_1": vy,
"col 2": y * 3,
"col_3": ~y,
"col_4": vy / 2,
"col 5": y + 1,
"not_collinear": [0, 1, O, O, 0] * 5,
}

)

multi_check = MulticollinearityDataCheck(threshold=0.95)
messages = multi_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns are likely to be correlated: [('col_1', 'col_2'), ('col_1', 'col_3'), (
~'col_1', 'col_4'), ('col_1', 'col_5"), ('col_2', 'col_3"), ('col_2', 'col_4'), ('col_2
"', 'col_5"), ('col_3', 'col_4'), ('col_3', 'col_5'), ('col_4', 'col_5")]
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Uniqueness

The UniquenessDataCheck is used to detect columns with either too unique or not unique enough values. For re-
gression type problems, the data is checked for a lower limit of uniqueness. For multiclass type problems, the data is
checked for an upper limit.

import pandas as pd
from evalml.data_checks import UniquenessDataCheck

X = pd.DataFrame(

{
"most_unique": [float(x) for x in range(10)], # [0,1,2,3,4,5,6,7,8,9]
"more_unique": [x % 5 for x in range(10)], # [0,1,2,3,4,0,1,2,3,4]
"unique": [x % 3 for x in range(10)], # [0,1,2,0,1,2,0,1,2,0]
"less_unique": [x % 2 for x in range(10)], # [0,1,0,1,0,1,0,1,0,1]
"not_unique": [float(l) for x in range(10)],

}

) #1[1,1,1,1,1,1,1,1,1,1]

uniqueness_check = UniquenessDataCheck(problem_type="regression", threshold=0.5)
messages = uniqueness_check.validate(X)

errors = [message for message in messages if message["level"] == "error"
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Input columns 'not_unique' for regression problem type are not unique enough.

Sparsity

The SparsityDataCheck is used to identify features that contain a sparsity of values.

from evalml.data_checks import SparsityDataCheck

X = pd.DataFrame(

{
"most_sparse": [float(x) for x in range(10)], # [0,1,2,3,4,5,6,7,8,9]
"more_sparse": [x % 5 for x in range(10)], # [0,1,2,3,4,0,1,2,3,4]
"sparse": [x % 3 for x in range(10)], # [0,1,2,0,1,2,0,1,2,0]
"less_sparse": [x % 2 for x in range(10)], # [0,1,0,1,0,1,0,1,0,1]
"not_sparse": [float(l) for x in range(10)],

}

) #1[1,1,1,1,1,1,1,1,1,1]

sparsity_check = SparsityDataCheck(
problem_type="multiclass", threshold=0.4, unique_count_threshold=3
)

(continues on next page)
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messages = sparsity_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning['"message"])

for error in errors:
print("Error:", error["message"])

Warning: Input columns ('most_sparse', 'more_sparse', 'sparse') for multiclass problem.,
—type are too sparse.

Outliers

Outliers are observations that differ significantly from other observations in the same sample. Many machine learning
pipelines suffer in performance if outliers are not dropped from the training set as they are not representative of the
data. OutliersDataCheck () uses IQR to notify you if a sample can be considered an outlier.

Below we generate a random dataset with some outliers.

data = np.tile(np.arange(10) * 0.01, (100, 10))
X = pd.DataFrame(data=data)

generate some outliers in columns 3, 25, 55, and 72
.iloc[0®, 3] = -10000

.iloc[3, 25] 10000

.iloc[5, 55] = 10000

.iloc[10, 72] = -10000

Pd P4 P4 D4 W

We then utilize OutliersDataCheck () to rediscover these outliers.

from evalml.data_checks import OutliersDataCheck

outliers_check = OutliersDataCheck()
messages = outliers_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Column(s) '3', '25', '55', '72' are likely to have outlier data.
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Target Distribution

Target data can come in a variety of distributions, such as Gaussian or Lognormal. When we work with machine
learning models, we feed data into an estimator that learns from the training data provided. Sometimes the data can
be significantly spread out with a long tail or outliers, which could lead to a lognormal distribution. This can cause
machine learning model performance to suffer.

To help the estimators better understand the underlying relationships in the data between the features and the target, we
can use the TargetDistributionDataCheck to identify such a distribution.

from scipy.stats import lognorm
from evalml.data_checks import TargetDistributionDataCheck

data np.tile(np.arange(10) * 0.01, (100, 10))
X = pd.DataFrame(data=data)
y = pd.Series(lognorm.rvs(s=0.4, loc=1, scale=1, size=100))

target_dist_check = TargetDistributionDataCheck()
messages = target_dist_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Target may have a lognormal distribution.

Datetime Format

Datetime information is a necessary component of time series problems, but sometimes the data we deal with may
contain flaws that make it impossible for time series models to work with them. For example, in order to identify a
frequency in the datetime information there has to be equal interval spacing between data points i.e. January 1, 2021,
January 3, 2021, January 5, 2021, ...etc which are separated by two days. If instead there are random jumps in the
datetime data i.e. January 1, 2021, January 3, 2021, January 12, 2021, then a frequency can’t be inferred. Another com-
mon issue with time series models are that they can’t handle datetime information that isn’t properly sorted. Datetime
values that aren’t monotonically increasing (sorted in ascending order) will encounter this issue and their frequency
cannot be inferred.

To make it easy to verify that the datetime column you’re working with is properly spaced and sorted, we can leverage
the DatetimeFormatDataCheck. When initializing the data check, pass in the name of the column that contains your
datetime information (or pass in “index” if it’s found in either your X or y indices).

from evalml.data_checks import DateTimeFormatDataCheck

X = pd.DataFrame(
pd.date_range("January 1, 2021", periods=8, freq="2D"), columns=["dates"]

pd.Series([1, 2, 4, 2, 1, 2, 3, 1])

# Replaces the last entry with January 16th instead of January 15th

(continues on next page)
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# so that the data is no longer evenly spaced.
X.iloc[7] = "January 16, 2021"

datetime_format_check = DateTimeFormatDataCheck(datetime_column="dates")
messages = datetime_format_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

I T (G ")

# Reverses the order of the index datetime values to be decreasing.
X = X[::-1]
messages = datetime_format_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Error: Column 'dates' has datetime values that do not align with the inferred frequency.
Error: A frequency was detected in column 'dates', but there are faulty datetime values.
—that need to be addressed.

Error: Datetime values must be sorted in ascending order.

Error: No frequency could be detected in column 'dates', possibly due to uneven..
—intervals or too many duplicate/missing values.

Time Series Parameters

In order to support time series problem types in AutoML, certain conditions have to be met. - The parameters gap,
max_delay, forecast_horizon, and time_index have to be passed in to problem_configuration. - The values
of gap, max_delay, forecast_horizon have to be appropriate for the size of the data.

For point 2 above, this means that the window size (as defined by gap + max_delay + forecast_horizon) has to be
less than the number of observations in the data divided by the number of splits + 1. For example, with 100 observations
and 3 splits, the split size would be 25. This means that the window size has to be less than 25.

from evalml.data_checks import TimeSeriesParametersDataCheck

X pd.DataFrame(pd.date_range("1/1/21", periods=100), columns=["dates"])
y = pd.Series([i % 2 for i in range(100)])

(continues on next page)
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problem_config = {
"gap": 1,
"max_delay": 23,
"forecast_horizon": 1,
"time_index": "dates",

}

# With 3 splits, the split size will be 25 (100/3+1)

# Since gap + max_delay + forecast_horizon is 25, this will

# throw an error for window size.

ts_params_data_check = TimeSeriesParametersDataCheck(
problem_configuration=problem_config, n_splits=3

)

messages = ts_params_data_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Time Series Splitting

Due to the nature of time series data, splitting cannot involve shuffling and has to be done in a sequential manner. This
means splitting the data into n_splits + 1 different sections and increasing the size of the training data by the split
size every iteration while keeping the test size equal to the split size.

For every split in the data, the training and validation segments must contain target data that has an example of every
class found in the entire target set for time series binary and time series multiclass problems. The reason for this is that
many classification machine learning models run into issues if they’re trained on data that doesn’t contain an instance
of a class but then the model is expected to be able to predict for it. For example, with 3 splits and a split size of 25,
this means that every training/validation split: (0:25)/(25:50), (0:50)/(50:75), (0:75)/(75:100) must contain at least one
instance of all unique target classes in the training and validation set. - At least one instance of both classes in a time
series binary problem. - At least one instance of all classes in a time series multiclass problem.

from evalml.data_checks import TimeSeriesSplittingDataCheck

X
y

None
pd.Series([0 if i < 50 else i % 2 for i in range(100)])

ts_splitting_check = TimeSeriesSplittingDataCheck("time series binary", 3)
messages = ts_splitting check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:

(continues on next page)
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print("Warning:", warning['"message"])

for error in errors:
print("Error:", error["message"])

Error: Time Series Binary and Time Series Multiclass problem types require every..
—»training and validation split to have at least one instance of all the target classes..
—.The following splits are invalid: [1, 2]

4.7.3 Data Check Messages

Each data check’s validate method returns a list of DataCheckMessage objects indicating warnings or errors found;
warnings are stored as a DataCheckWarning object and errors are stored as a DataCheckError object. You can filter
the messages returned by a data check by checking for the type of message returned. Below, NoVarianceDataCheck
returns a list containing a DataCheckWarning and a DataCheckError message. We can determine which is which
by checking the type of each message.

from evalml.data_checks import NoVarianceDataCheck, DataCheckWarning

X = pd.DataFrame(

{
"no var col": [®, 0O, 0],
"no var col with nan": [1, np.nan, 1],
"good col": [0, 4, 1],

3

pd.Series([1, 0, 11)

no_variance_data_check = NoVarianceDataCheck(count_nan_as_value=True)
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]
for warning in warnings:
print("Warning:", warning['"message"])

Warning: 'no var col' has 1 unique value.
Warning: 'no var col with nan' has two unique values including nulls. Consider encoding..
—the nulls for this column to be useful for machine learning.

4.7.4 Writing Your Own Data Check

If you would prefer to write your own data check, you can do so by extending the DataCheck class and implementing
the validate(self, X, y) class method. Below, we’ve created a new DataCheck, ZeroVarianceDataCheck,
which is similar to NoVarianceDataCheck defined in EvalML. The validate(self, X, y) method should return
a dictionary with ‘warnings’ and ‘errors’ as keys mapping to list of warnings and errors, respectively.

from evalml.data_checks import DataCheck

class ZeroVarianceDataCheck(DataCheck):
(continues on next page)
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def validate(self, X, y):
messages = []
if not isinstance(X, pd.DataFrame):
X = pd.DataFrame(X)

warning_msg = "Column '{}' has zero variance"
messages.extend(
[

DataCheckError (warning_msg.format(column), self.name)
for column in X.columns
if len(X[column].unique()) == 1

)

return messages

4.7.5 Defining Collections of Data Checks

For convenience, EvalML provides a DataChecks class to represent a collection of data checks. We will go over
DefaultDataChecks (API reference), a collection defined to check for some of the most common data issues.

Default Data Checks
DefaultDataChecks is a collection of data checks defined to check for some of the most common data issues. They
include:

e NullDataCheck

* IDColumnsDataCheck

e TargetLeakageDataCheck

e InvalidTargetDataCheck

e TargetDistributionDataCheck (for regression problem types)

* ClassImbalanceDataCheck (for classification problem types)

* NoVarianceDataCheck

* DateTimeFormatDataCheck (for time series problem types)

* TimeSeriesParametersDataCheck (for time series problem types)

* TimeSeriesSplittingDataCheck (for time series classification problem types)

4.7.6 Writing Your Own Collection of Data Checks

If you would prefer to create your own collection of data checks, you could either write your own data checks class
by extending the DataChecks class and setting the self.data_checks attribute to the list of DataCheck classes or
objects, or you could pass that list of data checks to the constructor of the DataChecks class. Below, we create two
identical collections of data checks using the two different methods.

# Create a subclass of ‘DataChecks’
from evalml.data_checks import (
DataChecks,

(continues on next page)
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NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
ClassImbalanceDataCheck,
TargetLeakageDataCheck,

)

from evalml.problem_types import ProblemTypes, handle_problem_types

class MyCustomDataChecks(DataChecks):
data_checks = [

def

NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
TargetLeakageDataCheck,

__init__(self, problem_type, objective):
A collection of basic data checks.
Args:
problem_type (str): The problem type that is being validated. Can be.

—regression, binary, or multiclass.

e

if handle_problem_types(problem_type) == ProblemTypes.REGRESSION:
super().__init__(
self.data_checks,
data_check_params={
"InvalidTargetDataCheck": {
"problem_type": problem_type,
"objective": objective,

e
)
else:
super().__init__(
self.data_checks + [ClassImbalanceDataCheck],
data_check_params={
"InvalidTargetDataCheck": {
"problem_type": problem_type,
"objective": objective,

custom_data_checks = MyCustomDataChecks(
problem_type=ProblemTypes.REGRESSION, objective="R2"

)

for data_check in custom_data_checks.data_checks:
print (data_check.name)
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NullDataCheck
InvalidTargetDataCheck
NoVarianceDataCheck
TargetLeakageDataCheck

# Pass list of data checks to the ‘data_checks' parameter of DataChecks
same_custom_data_checks = DataChecks(
data_checks=[
NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
TargetLeakageDataCheck,
1,
data_check_params={
"InvalidTargetDataCheck": {
"problem_type": ProblemTypes.REGRESSION,
"objective": "R2",
}
3
)
for data_check in custom_data_checks.data_checks:
print(data_check.name)
NullDataCheck
InvalidTargetDataCheck
NoVarianceDataCheck

TargetLeakageDataCheck

4.8 Understanding Data Check Actions

EvalML streamlines the creation and implementation of machine learning models for tabular data. One of the many
features it offers is data checks, which help determine the health of our data before we train a model on it. These data
checks have associated actions with them and will be shown in this notebook. In our default data checks, we have the
following checks:

e NullDataCheck: Checks whether the rows or columns are null or highly null

* IDColumnsDataCheck: Checks for columns that could be ID columns

» TargetLeakageDataCheck: Checks if any of the input features have high association with the targets
e InvalidTargetDataCheck: Checks if there are null or other invalid values in the target

* NoVarianceDataCheck: Checks if either the target or any features have no variance

EvalML has additional data checks that can be seen here, with usage examples here. Below, we will walk through usage
of EvalML’s default data checks and actions.

First, we import the necessary requirements to demonstrate these checks.

import woodwork as ww

import pandas as pd

from evalml import AutoMLSearch

from evalml.demos import load_fraud

from evalml.preprocessing import split_data
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Let’s look at the input feature data. EvalML uses the Woodwork library to represent this data. The demo data that
EvalML returns is a Woodwork DataTable and DataColumn.

X, vy = load_fraud(n_rows=1500)

X.head(Q

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 1500

Targets

False 86.60%

True 13.40%

Name: count, dtype: object
card_id store_id datetime amount currency customer_present \

id

0 32261 8516 2019-01-01 00:12:26 24900 cuc True

1 16434 8516 2019-01-01 09:42:03 15789 MYR False

2 23468 8516 2019-04-17 08:17:01 1883 AUD False

3 14364 8516 2019-01-30 11:54:30 82120 KRW True

4 29407 8516 2019-05-01 17:59:36 25745 MUR True
expiration_date provider lat Ing region \

id

0 08/24 Mastercard 38.58894 -89.99038 Fairview Heights

1 11/21 Discover 38.58894 -89.99038 Fairview Heights

2 09/27 Discover 38.58894 -89.99038 Fairview Heights

3 09/20 JCB 16 digit 38.58894 -89.99038 Fairview Heights

4 09/22 American Express 38.58894 -89.99038 Fairview Heights
country

id

0 Us

1 Us

2 Us

3 Us

4 Us

4.8.1 Adding noise and unclean data
This data is already clean and compatible with EvalML’s AutoMLSearch. In order to demonstrate EvalML default data
checks, we will add the following:

¢ A column of mostly null values (<0.5% non-null)

* A column with low/no variance

* A row of null values

* A missing target value

We will add the first two columns to the whole dataset and we will only add the last two to the training data. Note:
these only represent some of the scenarios that EvalML default data checks can catch.
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[3]: # add a column with no variance in the data
X["no_variance"] = [1 for _ in range(X.shape[0])]

# add a column with >99.5% null values
X["mostly_nulls"] = [None] * (X.shape[®] - 5) + [i for i in range(5)]

# since we changed the data, let's reinitialize the woodwork datatable
X.ww.init Q)

# let's split some training and validation data

X_train, X_valid, y_train, y_valid = split_data(X, y, problem_type="binary")

[4]: # make row 1 all nan values
X_train.iloc[1] = [None] * X_train.shape[1]

# make one of the target values null
y_train[990] = None

X_train.ww.init(Q)
y_train = ww.init_series(y_train, logical_type="Categorical")
# Let's take another look at the new X_train data

X_train
[4]: card_id store_id datetime amount currency \
id
872 15492 2868 2019-08-03 02:50:04 80719 HNL
1477 <NA> <NA> NaT <NA> NaN
158 22440 6813 2019-07-12 11:07:25 1849 SEK
808 8096 8096 2019-06-11 21:33:36 41358 MOP
336 33270 1529 2019-03-23 21:44:00 32594 cuc
339 8484 5358 2019-01-10 07:47:28 89503 GMD
1383 17565 3929 2019-01-15 01:11:02 14264 DKK
893 108 44 2019-05-17 00:53:39 93218 SLL
385 29983 152 2019-06-09 06:50:29 41105 RWF
1074 26197 4927 2019-05-22 15:57:27 50481 MNT
customer_present expiration_date provider lat Ing \
id
872 True 08/27 American Express 5.47090 100.24529
1477 <NA> NaN NaN NaN NaN
158 True 09/20 American Express 26.26490 81.54855
808 True 04/29 VISA 13 digit 59.37722 28.19028
336 False 04/22 Mastercard 51.39323 0.47713
339 False 11/24 Maestro 47.30997 8.52462
1383 True 06/20 VISA 13 digit 50.72043 11.34046
893 True 12/24 JCB 16 digit 15.72892 120.57224
385 False 07/20 JCB 16 digit -6.80000 39.25000
1074 False 05/26 JCB 15 digit 41.00510 -73.78458
region country no_variance mostly_nulls
id
872  Batu Feringgi MY 1 <NA>

(continues on next page)
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1477 NaN NaN <NA> <NA>
158 Jais IN 1 <NA>
808 Narva EE 1 <NA>
336 Strood GB 1 <NA>
339 Adliswil CH 1 <NA>
1383 Rudolstadt DE 1 <NA>
893 Burgos PH 1 <NA>
385 Magomeni TZ 1 <NA>
1074 Scarsdale Us 1 <NA>

[1200 rows x 14 columns]

If we call AutoMLSearch. search() on this data, the search will fail due to the columns and issues we’ve added above.
Note: we use a try/except here to catch the resulting ValueError that AutoMLSearch raises.

automl = AutolMLSearch(X_train=X_train, y_train=y_train, problem_type="binary")
try:

automl .search()
except ValueError as e:

# to make the error message more distinct

print(”:" ¥ 8®’ Il\nll)
print("Search errored out! Message received is: ".format(e))
print(":" o 80, Il\nll)

Search errored out! Message received is: Input y contains NaNl.

We can use the search_iterative() function provided in EvalML to determine what potential health issues our
data has. We can see that this search_iterative function is a public method available through evalml.automl and is
different from the search function of the AutoMLSearch class in EvalML. This search_iterative() function allows
us to run the default data checks on the data, and, if there are no errors, automatically runs AutoMLSearch. search().

from evalml.automl import search_iterative

automl, messages = search_iterative(X_train, y_train, problem_ type="binary")
automl, messages

(None,
[{'message': 'l out of 1200 rows are 95.0% or more null',
'data_check_name': 'NullDataCheck',
'level': 'warning',

'details': {'columns': None,

'rows': [1477],

'pct_null_cols': id
1477 1.0
dtype: float64},
'code': "HIGHLY_NULL_ROWS',
'action_options': [{'code': 'DROP_ROWS',

'data_check_name': 'NullDataCheck',

(continues on next page)
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'metadata': {'columns': None, 'rows': [1477]},
'parameters': {}}]1},

{'message’': "Column(s) 'mostly_nulls' are 95.0% or more null",
'data_check_name': 'NullDataCheck',
'level': 'warning',

'details': {'columns': ['mostly_nulls'],

'rows': None,

'pct_null_rows': {'mostly_nulls': 0.9966666666666667}},

'code': "HIGHLY_NULL_COLS',

'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NullDataCheck',
'metadata’: {'columns': ['mostly_nulls'], 'rows': None},
'parameters': {}}1},

{'message': 'l row(s) (0.08333333333333334%) of target values are null',
'data_check_name': 'InvalidTargetDataCheck',

'level': 'error',
'details': {'columns': None,
'rows': [990],

'num_null_rows': 1,

'pct_null_rows': 0.08333333333333334},

'code': 'TARGET_HAS_NULL',

'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'InvalidTargetDataCheck',
'metadata’: {'columns': None, 'rows': [990], 'is_target': True},
'parameters': {}}1},

{'message': "'no_variance' has 1 unique value.",
'data_check_name': 'NoVarianceDataCheck',
'level': 'warning',

'details': {'columns': ['no_variance'], 'rows': None},

'code': 'NO_VARIANCE',

'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NoVarianceDataCheck',
'metadata’': {'columns': ['no_variance'], 'rows': None},
'parameters’': {}}13}1)

The return value of the search_iterative function above is a tuple. The first element is the AutolMLSearch object
if it runs (and None otherwise), and the second element is a dictionary of potential warnings and errors that the default
data checks find on the passed-in X and y data. In this dictionary, warnings are suggestions that the data checks give
that can useful to address to make the search better but will not break AutoMLSearch. On the flip side, errors indicate
issues that will break AutoMLSearch and need to be addressed by the user.

Above, we can see that there were errors so search did not automatically run.
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4.8.2 Addressing warnings and errors

We can automatically address the warnings and errors returned by search_iterative by using
make_pipeline_from_data_check_output, a utility method that creates a pipeline that will automatically
clean up our data. We just need to pass this method the messages from running DataCheck.validate() and our
problem type.

from evalml.pipelines.utils import make_pipeline_from_data_check_output

actions_pipeline = make_pipeline_from_data_check_output("binary", messages)
actions_pipeline.fit(X_train, y_train)
X_train_cleaned, y_train_cleaned = actions_pipeline.transform(X_train, y_train)
print(

"The new length of X_train is and y_train is ", format(

len(X_train_cleaned), len(X_train_cleaned)

)

)

The new length of X_train is 1198 and y_train is 1198

Now, we can run search_iterative to completion.

results_cleaned = search_iterative(
X_train_cleaned, y_train_cleaned, problem_type="binary"

)

Note that this time, we get an AutoMLSearch object returned to us as the first element of the tuple. We can use and
inspect the AutoMLSearch object as needed.

automl_object = results_cleaned[0]
automl_object.rankings

id pipeline_name search_order \

0 1 Random Forest Classifier w/ Label Encoder + Da... 1

1 0 Mode Baseline Binary Classification Pipeline 0
ranking_score mean_cv_score standard_deviation_cv_score \

0 0.238873 0.238873 0.016718

1 4.843912 4.843912 0.049015
percent_better_than_baseline high_variance_cv \

0 95.06859 False

1 0.00000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'D...
1 {'Label Encoder': {'positive_label': None}, 'B...

If we check the second element in the tuple, we can see that there are no longer any warnings or errors detected!

data_check_results = results_cleaned[1]
data_check_results

(]
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4.8.3 Only addressing DataCheck errors

Previously, we used make_pipeline_from_actions to address all of the warnings and errors returned by
search_iterative. We will now show how we can also manually address errors to allow AutoMLSearch to run,
and how ignoring warnings will come at the expense of performance.

We can print out the errors first to make it easier to read, and then we’ll create new features and targets from the original
training data.

errors = [message for message in messages if message["level"] == "error"]
errors

[{'message': 'l row(s) (0.08333333333333334%) of target values are null',

'data_check_name': 'InvalidTargetDataCheck',

'level': 'error',

'details': {'columns': None,

'rows': [990],

'num_null_rows': 1,

'pct_null_rows': 0.08333333333333334},

'code': 'TARGET_HAS_NULL',

'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'InvalidTargetDataCheck',
'metadata': {'columns': None, 'rows': [990], 'is_target': True},
'parameters': {}}]1}]

# copy the DataTables to new variables
X_train_no_errors = X_train.copy()
y_train_no_errors = y_train.copy()

# We address the errors by looking at the resulting dictionary errors listed

# let's address the ‘TARGET_HAS_NULL® error
y_train_no_errors.fillna(False, inplace=True)

# let's reinitialize the Woodwork DataTable
X_train_no_errors.ww.init()
X_train_no_errors.head()

card_id store_id datetime amount currency \
id
872 15492 2868 2019-08-03 02:50:04 80719 HNL
1477 <NA> <NA> NaT <NA> NaN
158 22440 6813 2019-07-12 11:07:25 1849 SEK
808 8096 8096 2019-06-11 21:33:36 41358 MOP
336 33270 1529 2019-03-23 21:44:00 32594 cuc

customer_present expiration_date provider lat Ing \
id
872 True 08/27 American Express 5.47090 100.24529
1477 <NA> NaN NaN NaN NaN
158 True 09/20 American Express 26.26490 81.54855
808 True 04/29 VISA 13 digit 59.37722 28.19028
336 False 04/22 Mastercard 51.39323 0.47713

region country no_variance mostly_nulls
(continues on next page)
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id

872  Batu Feringgi MY 1 <NA>
1477 NaN NaN <NA> <NA>
158 Jais IN 1 <NA>
808 Narva EE 1 <NA>
336 Strood GB 1 <NA>

‘We can now run searchon X_train_no_errors and y_train_no_errors. Note that the search here doesn’t fail since
we addressed the errors, but there will still exist warnings in the returned tuple. This search allows the mostly_nulls
column to remain in the features during search.

[13]: results_no_errors = search_iterative(
X_train_no_errors, y_train_no_errors, problem_type="binary"

)

results_no_errors

[13]: (<evalml.automl.automl_search.AutoMLSearch at 0x7f3a41b18340>,

[{'message': 'l out of 1200 rows are 95.0% or more null',
'data_check_name': 'NullDataCheck',
'level': 'warning',

'details': {'columns': None,
'rows': [1477],
'pct_null_cols': id
1477 1.0

dtype: float64},

'code': "HIGHLY_NULL_ROWS',

'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'NullDataCheck',
'metadata': {'columns': None, 'rows': [1477]},
'parameters': {}}1},

{'message': "Column(s) 'mostly_nulls' are 95.0% or more null",
'data_check_name': 'NullDataCheck',
'level': 'warning',

'details': {'columns': ['mostly_nulls'],
'rows': None,
'pct_null_rows': {'mostly_nulls': 0.9966666666666667}},
'code': '"HIGHLY_NULL_COLS',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NullDataCheck',
'metadata’: {'columns': ['mostly_nulls'], 'rows': None},
'parameters': {}}1},

{'message': "'no_variance' has 1 unique value.",
'data_check_name': 'NoVarianceDataCheck',
'level': 'warning',

'details': {'columns': ['no_variance'], 'rows': None},

'code': 'NO_VARIANCE',

'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NoVarianceDataCheck',
'metadata': {'columns': ['no_variance'], 'rows': None},
'parameters': {}}13}1)
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4.9 Utilities

4.9.1 Configuring Logging
EvalML uses the standard Python logging package. Default logging behavior prints WARNING level logs and above
(ERROR and CRITICAL) to stdout. To configure different behavior, please refer to the Python logging documentation.

To see up-to-date feedback as AutoMLSearch runs, use the argument verbose=True when instantiating the object.
This will temporarily set up a logging object to print INFO level logs and above to stdout, as well as display a graph of
the best score over pipeline iterations.

4.9.2 System Information

EvalML provides a command-line interface (CLI) tool prints the version of EvalML and core dependencies installed,
as well as some basic system information. To use this tool, just run evalml info in your shell or terminal. This could
be useful for debugging purposes or tracking down any version-related issues.

levalml info

/usr/bin/sh: 1: evalml: not found

4.10 AutoMLSearch for time series problems

In this guide, we’ll show how you can use EvalML to perform an automated search of machine learning pipelines for
time series problems. Time series support is still being actively developed in EvalML so expect this page to improve
over time.

4.10.1 But first, what is a time series?

A time series is a series of measurements taken at different moments in time (Wikipedia). The main difference between
a time series dataset and a normal dataset is that the rows of a time series dataset are ordered chronologically, where the
relative time between rows is significant. This relationship between the rows does not exist in non-time series datasets.
In a non-time-series dataset, you can shuffle the rows and the dataset still has the same meaning. If you shuffle the rows
of a time series dataset, the relationship between the rows is completely different!

4.10.2 What does AutoMLSearch for time series do?

In a machine learning setting, we are usually interested in using past values of the time series to predict future values.
That is what EvalML’s time series functionality is built to do.
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4.10.3 Loading the data

In this guide, we work with daily minimum temperature recordings from Melbourne, Austrailia from the beginning of

1981 to end of 1990.

We start by loading the temperature data into two splits. The first split will be a training split consisting of data from
1981 to end of 1989. This is the data we’ll use to find the best pipeline with AutoML. The second split will be a testing
split consisting of data from 1990. This is the split we’ll use to evaluate how well our pipeline generalizes on unseen

data.

import pandas as pd
from evalml.demos import load_weather

X, y = load_weather()

Number of Features
Categorical 1

Number of training examples: 3650

Targets

10.0 1.40%
11.0 1.40%
13.0 1.32%
12.5 1.21%
10.5 1.21%
0.2 0.03%
24.0 0.03%
25.2 0.03%
22.7 0.03%

21.6 0.03%
Name: count, Length: 229, dtype: object

train_dates, test_dates = X.Date < "1990-01-01", X.Date >= "1990-01-01"
X_train, y_train = X.ww.loc[train_dates], y.ww.loc[train_dates]
X_test, y_test = X.ww.loc[test_dates], y.ww.loc[test_dates]

Visualizing the training set
import plotly.graph_objects as go

data = [
go.Scatter(
x=X_train["Date"],
y=y_train,
mode="1ines+markers",
name="Temperature (CO)",
line=dict(color="#1£77b4"),
)
]
# Let plotly pick the best date format.
layout = go.Layout(

(continues on next page)

4.10. AutoMLSearch for time series problems

233



[6]:

[7]:

[8]:

EvalML Documentation, Release 0.80.0

(continued from previous page)
title={"text": "Min Daily Temperature, Melbourne 1980-1989"},
xaxis={"title": "Time"},
yaxis={"title": "Temperature (C)"},

go.Figure(data=data, layout=layout)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.4 Fixing the data

Sometimes, the datasets we work with do not have perfectly consistent DateTime columns. We can use the
TimeSeriesRegularizer and TimeSeriesImputer to correct any discrepancies in our data in a time-series spe-
cific way.

To show an example of this, let’s create some discrepancies in our training data. We’ll also add a couple of extra
columns in the X DataFrame to highlight more of the options with these tools.

X["Categorical"] [str(i % 4) for i in range(len(X))]
X["Categorical"] = X["Categorical"].astype("category™)
X["Numeric"] = [i for i in range(len(X))]

# Re-split the data since we modified X
X_train, y_train = X.loc[train_dates], y.ww.loc[train_dates]
X_test, y_test = X.loc[test_dates], y.ww.loc[test_dates]

X_train["Date"][500] = None
X_train["Date"][1042] = None
X_train["Date"][1043] = None
X_train["Date"][231] = pd.Timestamp("1981-08-19")

X_train.drop(1209, inplace=True)
X_train.drop(398, inplace=True)
y_train.drop(1209, inplace=True)
y_train.drop(398, inplace=True)

With these changes, there are now NaN values in the training data that our models won’t be able to recognize, and there
is no longer a clear frequency between the dates.

print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(£f"NaNs in date column: {X_train['Date'].isna().any(Q}")
print(
f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
< train[ 'Numeric'].isna().any(Q /"
)
print(f"NaNs in target data: {y_train.isna(Q).any(Q)}")

Inferred frequency: None
NaNs in date column: True

(continues on next page)
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NaNs in other training data columns: False
NaNs in target data: False

Time Series Regularizer

We can use the TimeSeriesRegularizer component to restore the missing and NaN DateTime values we’ve created
in our data. This component is designed to infer the proper frequency using Woodwork’s “infer_frequency” function
and generate a new DataFrame that follows it. In order to maintain as much original information from the input data
as possible, all rows with completely correct times are ported over into this new DataFrame. If there are any rows that
have the same timestamp as another, these will be dropped. The first occurrence of a date or time maintains priority.
If there are any values that don’t quite line up with the inferred frequency they will be shifted to any closely missing
datetimes, or dropped if there are none nearby.

from evalml.pipelines.components import TimeSeriesRegularizer

regularizer = TimeSeriesRegularizer(time_index="Date")
X_train, y_train = regularizer.fit_transform(X_train, y_train)

Now we can see that pandas has successfully inferred the frequency of the training data, and there are no more null
values within X_train. However, by adding values that were dropped before, we have created NaN values within the
target data, as well as the other columns in our training data.

print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in training data: {X_train['Date'].isna().any(Q}")
print(
f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
—train[ 'Numeric'].isna().any(}"
)
print(f"NaNs in target data: {y_train.isna().any(Q) }")

Inferred frequency: D

NaNs in training data: False

NaNs in other training data columns: True
NaNs in target data: True

Time Series Imputer

We could easily use the Imputer and TargetImputer components to fill in the missing gaps in our X and y
data. However, these tools are not built for time series problems. Their supported imputation strategies of “mean”,
“most_frequent”, or similar are all static. They don’t account for the passing of time, and how neighboring data points
may have more predictive power than simply taking the average. The TimeSeriesImputer solves this problem by
offering three different imputation strategies: - “forwards_fill”: fills in any NaN values with the same value as found
in the previous non-NaN cell. - “backwards_fill”: fills in any NaN values with the same value as found in the next
non-NaN cell. - “interpolate”: (numeric columns only) fills in any NaN values by linearly interpolating the values of
the previous and next non-NaN cells.

from evalml.pipelines.components import TimeSeriesImputer

ts_imputer = TimeSeriesImputer(
categorical_impute_strategy="forwards_fill",
numeric_impute_strategy="backwards_£fill",

(continues on next page)
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target_impute_strategy="interpolate",

)

X_train, y_train = ts_imputer.fit_transform(X_train, y_train)

Now, finally, we have a DataFrame that’s back in order without flaws, which we can use for running AutoMLSearch
and running models without issue.

print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in training data: {X_train['Date'].isna().any(Q}")
print(
f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
—train[ 'Numeric'].isna().any(}"
)
print(f"NaNs in target data: {y_train.isna().any(Q }")

Inferred frequency: D

NaNs in training data: False

NaNs in other training data columns: False
NaNs in target data: False

4.10.5 Trending and Seasonality Decomposition

Decomposing a target signal into a trend and/or a cyclical signal is a common pre-processing step for time series
modeling. Having an understanding of the presence or absence of these component signals can provide additional
insight and decomposing the signal into these constituent components can enable non-time-series aware estimators to
perform better while attempting to model this data. We have two unique decomposers, the PolynomialDecompser
and the STLDecomposer.

Let’s first take a look at a year’s worth of the weather dataset.

import matplotlib.pyplot as plt

length = 365

X_train_time = X_train.set_index("Date").asfreq(pd.infer_freq(X_train["Date"]))
y_train_time = y_train.set_axis(X_train["Date"]).asfreq(pd.infer_freq(X_train["Date"]))
plt.plot(y_train_time[0:length], "bo")

plt.show()
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With the knowledge that this is a weather dataset and the data itself is daily weather data, we can assume that the
seasonal data will have a period of approximately 365 data points. Let’s build and fit decomposers to detrend and
deseasonalize this data.

Polynomial Decomposer

from evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer import..
¢
PolynomialDecomposer,

)

pdc = PolynomialDecomposer(degree=1, period=365)
X_t, y_t = pdc.fit_transform(X_train_time, y_train_time)

plt.plot(y_train_time, "bo", label="Signal")

plt.plot(y_t, "rx", label="Detrended/Deseasonalized Signal")
plt.legend()

plt.show()
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The result is the residual signal, with the trend and seasonality removed. If we want to look at what the component
identified as the trend and seasonality, we can call the plot_decomposition() function.

[15]: res = pdc.plot_decomposition(X_train_time, y_train_time)
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It is desirable to enhance the decomposer component with a guess at the period of the seasonal aspect of the signal
before decomposing it. To do that, we can use the determine_periodicity (X, y) function of the Decomposer
class.

period = pdc.determine_periodicity(X_train_time, y_train_time)
print (period)

351

The PolynomialDecomposer class, if not explicitly set in the constructor, will set its period parameter based on a
statsmodels function freq_to_period that considers the frequency of the datetime data. This will give a reasonable
guess as to what the frequency could be. For example, if the PolynomialDecomposer object is fit with period not
explicitly set, it will take on a default value of 7, which is good for daily data signals that have a known seasonal
component period that is weekly.

In this case where the seasonal period is not known beforehand, the set_period() convenience function will look at
the target data, determine a better guess for the period and set the Decomposer object appropriately.

pdc = PolynomialDecomposer ()
pdc.fit(X_train_time, y_train_time)

assert pdc.period ==
pdc.set_period(X_train_time, y_train_time)
assert 350 < pdc.period < 370
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STLDecomposer

The STLDecomposer runs on statsmodels’ implementation of STL decomposition. Let’s take a look at how STL
decomposes the weather dataset.

from evalml.pipelines.components import STLDecomposer

stl = STLDecomposer()
X_t, y_t = stl.fit_transform(X_train_time, y_train_time)

res = stl.plot_decomposition(X_train_time, y_train_time)
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This doesn’t look nearly as good as the PolynomialDecomposer did. This is because STL decomposition performs
best when the data has a small seasonal period, generally less than 14 time units. The weather dataset’s seasonal period

of ~365 days does not work as well since STL extracted a shorter term seasonality for decomposition.

We can generate some synthetic data that better highlights where STL performs well. For this example, we’ll generate
monthly data with an annual seasonal period.

import random
import numpy as np
from datetime import datetime

from sklearn.preprocessing import minmax_scale
(continues on next page)
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def

(continued from previous page)

generate_synthetic_data(
period=12,
num_periods=25,
scale=10,
seasonal_scale=2,
trend_degree=1,
freq_str="M",

freq = 2 * np.pi / period

x = np.arange(0®, period * num_periods, 1)

dts = pd.date_range(datetime.today(), periods=len(x), freq=freq_str)
X = pd.DataFrame({"x": x})

X = X.set_index(dts)

if trend_degree ==
y_trend = pd.Series(scale * minmax_scale(x + 2))
elif trend_degree ==
y_trend = pd.Series(scale * minmax_scale(x**2))
elif trend_degree ==
y_trend = pd.Series(scale * minmax_scale((x - 5) ** 3 + x**2))
y_seasonal = pd.Series(seasonal_scale * np.sin(freq * x))
y_random = pd.Series(np.random.normal(0®, 1, len(X)))
y = y_trend + y_seasonal + y_random
return X, y

X_stl, y_stl = generate_synthetic_data()

Let’s see how the STLDecomposer does at decomposing this data.

stl

= STLDecomposer ()

X_t_stl, y_t_stl = stl.fit_transform(X_stl, y_stl)

res

= stl.plot_decomposition(X_stl, y_stl)
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signal

12.5 4

7.51

5.0

0.01

—2.54

T r r r T r T
2024 2028 2032 2036 2040 2044 2048
trend
2024 2028 2032 2036 2040 2044 2048

seasonality
T r r r T T T
2024 2028 2032 2036 2040 2044 2048
residual
T T T T T T T
2024 2028 2032 2036 2040 2044 2048

On top of decomposing this type of data well, the statsmodels implementation of STL automatically determines the
seasonal period of the data, which is saved during fit time for this component.

stl = STLDecomposer()
assert stl.period == None
stl.fit(X_stl, y_stl)
print(stl.period)

12

4.10.6 Running AutoMLSearch

AutoMLSearch for time series problems works very similarly to the other problem types with the exception that users

need to pass in a new parameter called problem_configuration.

The problem_configuration is a dictionary specifying the following values:

« forecast_horizon: The number of time periods we are trying to forecast. In this example, we’re interested in
predicting weather for the next 7 days, so the value is 7.

» gap: The number of time periods between the end of the training set and the start of the test set. For example, in
our case we are interested in predicting the weather for the next 7 days with the data as it is “today”, so the gap
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is 0. However, if we had to predict the weather for next Monday-Sunday with the data as it was on the previous
Friday, the gap would be 2 (Saturday and Sunday separate Monday from Friday). It is important to select a value
that matches the realistic delay between the forecast date and the most recently avaliable data that can be used to
make that forecast.

e max_delay: The maximum number of rows to look in the past from the current row in order to compute features.
In our example, we’ll say we can use the previous week’s weather to predict the current week’s.

* time_index: The column of the training dataset that contains the date corresponding to each observation. While
only some of the models we run during time series searches require the time_index, we require it to be passed
in to top level search so that the parameter can reach the models that need it.

Note that the values of these parameters must be in the same units as the training/testing data.

Visualization of forecast horizon and gap

Forecast Horizon: 2
Gap: 1

All  Data
[ ] 1
1 ' T
Training Data Gap  TestData
[22]: from evalml.automl import AutoMLSearch
problem_config = {"gap": 0, "max_delay": 7, "forecast_horizon": 7, "time_index": "Date"}

automl = AutoMLSearch(

X_train,
y_train,
problem_type="time series regression",
max_batches=1,
problem_configuration=problem_config,
automl_algorithm="iterative",
allowed_model_families=[

"xgboost",

"random_forest",

"linear_model",

"extra_trees",

1,

[23]: automl.search()
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[23]: {1: {'Elastic Net Regressor w/ Imputer + Time Series Featurizer + STL Decomposer +.

—,DateTime Featurizer + One Hot Encoder + Drop NaN Rows Transformer + Standard Scaler':.
-+15.156692504882812,

'Elastic Net Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One.
—Hot Encoder + Drop NaN Rows Transformer + Standard Scaler': 3.712909460067749,

'XGBoost Regressor w/ Imputer + Time Series Featurizer + STL Decomposer + DateTime.
—Featurizer + One Hot Encoder': 17.164578199386597,

'XGBoost Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One Hot.
—Encoder': 5.957250356674194,

'Random Forest Regressor w/ Imputer + Time Series Featurizer + STL Decomposer +.
—.DateTime Featurizer + One Hot Encoder + Drop NaN Rows Transformer': 18.46796202659607,

'Random Forest Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer +.
—,One Hot Encoder + Drop NaN Rows Transformer': 6.976490497589111,

'Extra Trees Regressor w/ Imputer + Time Series Featurizer + STL Decomposer + DateTime.
—Featurizer + One Hot Encoder + Drop NaN Rows Transformer': 15.023889780044556,

'Extra Trees Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One.
—~Hot Encoder + Drop NaN Rows Transformer': 3.5976009368896484,

'Total time of batch': 86.87056303024292}}

4.10.7 Understanding what happened under the hood

This is great, AutoMLSearch is able to find a pipeline that scores an R2 value of 0.44 compared to a baseline pipeline
that is only able to score 0.07. But how did it do that?

Data Splitting

EvalML uses rolling origin cross validation for time series problems. Basically, we take successive cuts of the training
data while keeping the validation set size fixed at forecast_horizon number of time units. Note that the splits are
not separated by gap number of units. This is because we need access to all the data to generate features for every row
of the validation set. However, the feature engineering done by our pipelines respects the gap value. This is explained
more in the feature engineering section.
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All  Data
Split 1
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Training Data Validation Not Used
Data
Split 2
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Training Data Validation Not Used
Data
Split 3
S O I S I O
L J
N Valic;ation

Training Data
Data

Baseline Pipeline

The most naive thing we can do in a time series problem is use the most recently available observation to predict the
next observation. In our example, this means we’ll use the measurement from 7 days ago as the prediction for the
current date.

import pandas as pd

baseline = automl.get_pipeline(0)
baseline.fit(X_train, y_train)
naive_baseline_preds = baseline.predict_in_sample(
X_test, y_test, objective=None, X_train=X_train, y_train=y_train
)
expected_preds = pd.Series(
pd.concat([y_train.iloc[-7:], y_test]).shift(7).iloc[7:], name="target"
)

pd.testing.assert_series_equal (expected_preds, naive_baseline_preds)

Feature Engineering

EvalML uses the values of gap, forecast_horizon, and max_delay to calculate a “window” of allowed dates that
can be used for engineering the features of each row in the validation/test set. The formula for computing the bounds
of the window is:

[t - (max_delay + forecast_horizon + gap), t - (forecast_horizon + gap)]

As an example, this is what the features for the first five days of August would look like in our current problem:
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Forecast Horizon: 7
Gap: 0
Max Delay: 7

Prediction Latest date Earliest date
Date for lagging for lagging
e e

08-01 07-25 07-18

|| Prediction point 08-02 07-26 07-19

I:l Data before the 08-03 07-27 07-20

forecast point
08-04 07-28 07-21
08-05 07-29 07-22
The estimator then takes these features to generate predictions:
How the estimator generates predictions
—— I ——
Prediction Latest date Earliest date Prediction Predicted
Date for lagging for lagging Date Value
08-01 07-25 07-18 08-01 11.2
H H 08-02 7-2 7-1 08-02 12.4
estimator.predict orae | orwd

08-03 07-27 07-20 08-03 10.9
08-04 07-28 07-21 08-04 14.2
08-05 07-29 07-22 08-05 12,6

—— —

Feature engineering components for time series

For an example of a time-series feature engineering component see 7imeSeriesFeaturizer

4.10.8 Evaluate best pipeline on test data

Now that we have covered the mechanics of how EvalML runs AutoMLSearch for time series pipelines, we can compare
the performance on the test set of the best pipeline found during search and the baseline pipeline.

pl = automl.best_pipeline
pl.fit(X_train, y_train)

best_pipeline_score = pl.score(X_test, y_test,
"MedianAE"

["MedianAE"], X_train, y_train)[

]
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[26]: best_pipeline_score

[26]: 1.903458595275879

[27]: baseline = automl.get_pipeline(0)
baseline.fit(X_train, y_train)
naive_baseline_score = baseline.score(X_test, y_test, ["MedianAE"], X_train, y_train)[
"MedianAE"

]

[28]: naive_baseline_score
[28]: 2.3
The pipeline found by AutoMLSearch has a 31% improvement over the naive forecast!

[29]: automl.objective.calculate_percent_difference(best_pipeline_score, naive_baseline_score)

[29]: 17.240930640179172

4.10.9 Visualize the predictions over time

[30]: from evalml.model_understanding import graph_prediction_vs_actual_over_time

fig = graph_prediction_vs_actual_over_time(
pl, X_test, y_test, X_train, y_train, dates=X_test["Date"]

)
fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.10 Predicting on unseen data

You’ll notice that in the code snippets here, we use the predict_in_sample pipeline method as opposed to the usual
predict method. What’s the difference?

e predict_in_sample is used when the target value is known on the dates we are predicting on. This is true in
cross validation. This method has an expected y parameter so that we can compute features using previous target
values for all of the observations on the holdout set.

* predict is used when the target value is not known, e.g. the test dataset. The y parameter is not expected as
only the target is observed in the training set. The test dataset must be separated by gap units from the training
dataset. For the moment, the test set size must be less than or equal to forecast_horizon.

Here is an example of these two methods in action:
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predict_in_sample

pl.predict_in_sample(X_test, y_test, objective=None, X_train=X_train, y_train=y_train)

3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833

3647 13.354449
3648 13.750842
3649 13.747188
3650 14.131168
3651 12.356060
Name: target, Length: 365, dtype: float64

predict

pl.predict(X_test, objective=None, X_train=X_train, y_train=y_train)

3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833

3647 13.228288
3648 13.290761
3649 13.062471
3650 13.233994
3651 14.117554
Name: target, Length: 365, dtype: float64

4.10.11 Validating the holdout data

Before we predict on our holdout data, it is important to validate that it meets the requirements we summarized in the
second point above in Predicting on unseen data. We can call on validate_holdout_datasets in order to verify
the two requirements:

1. The holdout data is separated by gap units from the training dataset. This is determined by the time_index
column, not the index e.g. if your datetime frequency for the column “Date” is 2 days with a gap of 3, then the
holdout data must start 2 days x 3 = 6 days after the training data.

2. The length of the holdout data must be less than or equal to the forecast_horizon.

from evalml.utils.gen_utils import validate_holdout_datasets

# Holdout dataset has 365 observations

validation_results = validate_holdout_datasets(X_test, X_train, problem_config)
assert not validation_results.is_valid

# Holdout dataset has 7 observations

(continues on next page)
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(continued from previous page)

validation_results = validate_holdout_datasets(
X_test.iloc[: pl.forecast_horizon], X_train, problem_config
)

assert validation_results.is_valid

predict — Test set size matches forecast horizon

[34]: pl.predict(
X_test.iloc[: pl.forecast_horizon], objective=None, X_train=X_train, y_train=y_train

)

[34]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833
3292 11.532094
3293 12.126741
Name: target, dtype: float64

predict — Test set size is less than forecast horizon

[35]: pl.predict(
X_test.iloc[: pl.forecast_horizon - 2],
objective=None,
X_train=X_train,
y_train=y_train,

[35]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833
Name: target, dtype: float64

predict — Test set size index starts at 0

[36]: pl.predict(
X_test.iloc[: pl.forecast_horizon].reset_index(drop=True),
objective=None,
X_train=X_train,
y_train=y_train,

[36]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142

(continues on next page)
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3291
3292
3293

Name: target, dtype: float64

4.10.12 Prediction Intervals

Getting Prediction Intervals

11.636833
11.532094
12.126741

(continued from previous page)

While predictions that are generated by EvalML pipelines aim to be accurate as possible, it is very rarely the case that
future results are the exact same values as predicted. Prediction intervals can help to contextualize a prediction by

showing the range a future prediction is expected to fall within a certain likelihood.

Given the preprocessed (transformed, ready for prediction) features, the corresponding predictions, and a fitted EvalML
estimator, the prediction intervals for this set of predictions is generated by calling get_prediction_intervals()
on the pipeline’s estimator. Here, we use the fitted estimator in our trained EvalML pipeline to generate the prediction

intervals:

X_trans = pl.transform_all_but_final (X_test, y_test)

y_pred = pl.predict(X_test, objective=None, X_train=X_train, y_train=y_train)

pl.estimator.get_prediction_intervals(X=X_trans, y=y_pred)

{'0.95_lower': 3287
3288 16.504353
3289 16.688278
3290 16.811346
3291 16.942591
3647 12.070903
3648 12.418325
3649 12.379229
3650 12.787175
3651 11.024206
Length:
'0.95_upper': 3287
3288 17.292648
3289 17.476574
3290 17.599642
3291 17.730886
3647 14.637996
3648 15.083359
3649 15.115146
3650 15.475162
3651 13.687914
Length:

365, dtype: float64,

365, dtype: float64}

By default, prediction intervals are calculated for the 95% upper and lower bound. In the above example, 95% of the

time, a prediction sometime in the future will fall in this range.

To generate prediction intervals for a custom value, use the coverage parameter. In the example below, the 80%

interval range is calculated below:
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pl.estimator.get_prediction_intervals(X=X_trans, y=y_pred, coverage=[0.8])

{'0.8_lower': 3287 16.605043
3288 16.640781
3289 16.824707
3290 16.947775
3291 17.079019

3647 12.515183

3648 12.879556

3649 12.852728

3650 13.252378

3651 11.485208

Length: 365, dtype: float64,
'0.8_upper': 3287 17.120482
3288 17.156220

3289 17.340145

3290 17.463213

3291 17.594458

3647 14.193715
3648 14.622128
3649 14.641648
3650 15.009959
3651 13.226912
Length: 365, dtype: float64}

4.10.13 Forecasting Future Data

Unlike standard pipelines, time series pipelines are able to generate predictions out to the future. The number of
predictions out in the future is dependent on the forecast_horizon parameter set in the problem configuration of an
AutoML search.

To show that it is possible to generate brand new predictions in the future, the entire weather dataset (including the
holdout set) will be used. The code block below refit the pipeline on the entire dataset and generates a forecast.

X.ww.init Q)
y.ww.init()

pl.fit(X, y)

X_forecast_dates = pl.get_forecast_period(X=X).to_frame()
y_forecast = pl.get_forecast_predictions(X=X, y=y)
display("'Forecast Dates:", X_forecast_dates)
display("Forecast Predictions:", y_forecast)

'Forecast Dates:'

Date
3652 1991-01-01
3653 1991-01-02
3654 1991-01-03
3655 1991-01-04
3656 1991-01-05

(continues on next page)
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3657 199
3658 199

'Forecas

3652
3653
3654
3655
3656
3657
3658

(continued from previous page)
1-01-06
1-01-07

t Predictions:'

12.260047
10.095071
11.425120
12.398380
12.176962
12.155176
12.144207

Name: Temp, dtype: float64

Using these forecasted values, it is possible to generate the prediction intervals for each forecasted point.

[40]: res = pl
X=pd

)
display(

{'0.95_1
3653
3654
3655
3656
3657
3658
Name: O

.get_prediction_intervals(
.DataFrame(X_forecast_dates), y=y_forecast, X_train=X, y_train=y

res)

ower': 3652 8.390696
4.622983
.723208
.659679
.524831
.677241
1.906867
.95_lower, dtype: float64,

N W b D

'0.95_upper': 3652 16.129398

3653
3654
3655
3656
3657
3658
Name: ®

[41]: y_lower
y_upper

15.567159
18.127032
20.137082
20.829093
21.633111
22.381547
.95_upper, dtype: float64}

res["0.95_lower"]
= res["0.95_upper"]

Using the forecasted predictions and corresponding prediction intervals, we can plot this data. For this plot, only the
last 31 days of data will be used so that the forecasted data is visible.

[42]: X_before
y_before

[43]: fig = go
L

= X[-31:]
= y[-31:]

.Figure(

# Plot last 31 days of training data
go.Scatter(x=X_before["Date"], y=y_before, name="Training Data", mode="lines"),
# Plot forecast data
go.Scatter/(
(continues on next page)
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(continued from previous page)

x=X_forecast_dates["Date"], y=y_forecast, name="Forecast Data", mode="lines"
)
# Plot prediction intervals
go.Scatter(
x=pd.concat([X_forecast_dates["Date"], X_forecast_dates["Date"][::-1]11),
y=pd.concat([y_upper, y_lower[::-11]),
fill="toself",
fillcolor="rgba(255,0,0,0.2)",
line=dict(color="rgba(255,0,0,0.2)"),
name="Forecast Prediction Intervals",
showlegend=True,
)
1,
layout={
"title": "Plot of Last Two Weeks of Data + Forecast Data With Prediction.,
—Intervals",
"xaxis": dict(title="Date"),
"yaxis": dict(title="Temperature (O)"),
1,
)
fig.show()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.14 Forecasting into the future

Our previous examples have shown using a pipeline to predict on data we had at training time. However, we can also
use EvalML time series pipelines to forecast dates into the future as long we provide data that meets the requirements
of Predicting on unseen data as well.

To help figure out the dates we need in X_train to forecast dates into the future - we’ve provided
dates_needed_for_prediction and dates_needed_for_prediction_range.

forecast_date = pd.Timestamp("1991-01-07")
beginning_date, end_date = pl.dates_needed_for_prediction(forecast_date)

print("Dates needed:")
print(f"{beginning_date.strftime('%Y-%m- ')} to {end_date.strftime('%Y-%m- DR

Dates needed:
1990-12-23 00:00:00 to 1991-01-06 00:00:00

We can see how the dates are valid by generating some future dates and features with the above date range.

import random

dates = pd.date_range(
beginning_date,
end_date,
freq=pl. frequency.split("-")[0],

(continues on next page)
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(continued from previous page)

)

X_train_forecast = pd.DataFrame(index=[i + 1 for i in range(len(dates))])
categorical_feature = pd.Series(

[random.randint (0, 3) for i in range(len(dates))], index=X_train_forecast.index
)
numeric_feature = pd.Series(

[i + 1 for i in range(len(dates))], index=X_train_forecast.index

)

X_train_forecast["Date"] = pd.Series(dates.values, index=X_train_forecast.index)
X_train_forecast["Categorical"] = pd.Series(
categorical_feature.values, index=X_train_forecast.index
)
X_train_forecast["Numeric"] = pd.Series(
numeric_feature.values, index=X_train_forecast.index

)
X_train_forecast.ww.init(

logical_types={"Categorical": "categorical", "Numeric": "integer"}
)

y_train_forecast = pd.Series(
X_train_forecast["Numeric"].values, index=X_train_forecast.index

)

[46]: X_test_forecast = pd.DataFrame(
{"Date": [forecast_date], "Categorical": [3], "Numeric": [53862]}
)

. and we succesfully have our prediction!

[47]: pl.predict(X_test_forecast, X_train=X_train_forecast, y_train=y_train_forecast)

[47]: 16 10.465612
Name: Temp, dtype: float64

[48]: forecast_start = pd.Timestamp("1991-01-07")
forecast_end = pd.Timestamp("1991-01-14")

dates = pl.dates_needed_for_prediction_range(forecast_start, forecast_end)
print("Dates needed:")
print(f"{dates[0].strftime('%Y-%m- ')} to {dates[1].strftime('%Y-%m- DI

Dates needed:
1990-12-23 00:00:00 to 1991-01-13 00:00:00
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4.10.15 Known-in-advance features

In time series problems, the goal is to predict an unknown value of a data series corresponding to a future moment in
time. Since the state of the world is not known in the future, we create features from data in the past since those values
are known when we go make our prediction.

However, there are some features corresponding to dates in the future that can be known with certainty, either because
they can be derived from the forecast date or because the feature can be controlled by the modeler. This includes
features such as if the date is a US Holiday, or the location of a store in a sales dataset. With these sorts of features, we
don’t need to include them in our time-series specific preprocessing steps (such as Time Series Featurization).

To handle these features, EvaIML will split them into a separate path through the component graph, bypassing the
unnecessary preprocessing steps. Let’s take a look at what that looks like, using some synthetic data.

X = pd.DataFrame(
{"features": range(101, 601), "date": pd.date_range("2010-10-01", periods=500)}

pd.Series(range(500))

X.ww.initQ
X.ww["bool_feature"] = (
pd.Series([True, False]).sample(n=X.shape[0], replace=True).reset_index(drop=True)

X.ww["cat_feature"] = (

pd.Series(["a", "b", "c"]).sample(n=X.shape[0], replace=True).reset_index(drop=True)

)

automl = AutoMLSearch(
X,
y i

problem_type="time series regression",
problem_configuration={
"max_delay": 5,

"gap": 3,

"forecast_horizon": 2,

"time_index": "date",

"known_in_advance": ["bool_feature", "cat_feature"],

},
)

automl.search()

19:43:56 - cmdstanpy - INFO - Chain [1] start processing
19:43:56 - cmdstanpy - INFO - Chain [1] done processing
19:43:56 - cmdstanpy - INFO - Chain [1] start processing
19:43:56 - cmdstanpy - INFO - Chain [1] done processing
19:43:57 - cmdstanpy - INFO - Chain [1] start processing
19:43:57 - cmdstanpy - INFO - Chain [1] done processing

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was.
—0.000209 seconds.

You can set " force_col_wise=true  to remove the overhead.

[LightGBM] [Info] Total Bins 1997

[LightGBM] [Info] Number of data points in the train set: 494, number of used features:.
19

[LightGBM] [Info] Start training from score 246.500000

(continues on next page)
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[LightGBM] [Info] Total Bins 2015
[LightGBM] [Info] Number of data points in the train set: 498, number of used features:.
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(continues on next page)
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[LightGBM]
[LightGBM]

{1: {'Random Forest Regressor w/ Select Columns Transformer + Imputer + Time Series.
—Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot.
—.Encoder + Drop NaN Rows Transformer':

'Total time of batch': 2.411851406097412},
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2: {'ARIMA Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +.

—Select Columns Transformer + Imputer + One Hot Encoder': 38.40943789482117,

'Exponential Smoothing Regressor w/ Select Columns Transformer + Imputer + Time Series.

—Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot.

—Encoder"':

—Select Columns Transformer + Imputer + One Hot Encoder': 1.579469919204712,
'Extra Trees Regressor w/ Select Columns Transformer + Imputer + Time Series.
—Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot.

1.1225345134735107,
'Prophet Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +.

—~Encoder + Drop NaN Rows Transformer': 1.5910940170288086,
'XGBoost Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +.

—DateTime Featurizer + Select Columns Transformer + Imputer + One Hot Encoder':

—9004225730895996,
'LightGBM Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +.

—.DateTime Featurizer + Select Columns Transformer + Imputer + One Hot Encoder': 1.

—3942763805389404,

'Elastic Net Regressor w/ Select Columns Transformer + Imputer + Time Series.
—Featurizer + DateTime Featurizer + Standard Scaler + Select Columns Transformer +.
—Imputer + One Hot Encoder + Standard Scaler + Drop NaN Rows Transformer':

—7085111141204834,

'Total time of batch': 48.71627402305603}}

pipeline =

automl .best_pipeline
pipeline.graph(Q

4.10. AutoMLSearch for time series problems
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4.11 FAQ

4.11.1 Q: What is the difference between EvalML and other AutoML libraries?

EvalML optimizes machine learning pipelines on custom practical objectives instead of vague machine learning loss
functions so that it will find the best pipelines for your specific needs. Furthermore, EvalML pipelines are able to take
in all kinds of data (missing values, categorical, etc.) as long as the data are in a single table. EvalML also allows
you to build your own pipelines with existing or custom components so you can have more control over the AutoML
process. Moreover, EvalML also provides you with support in the form of data checks to ensure that you are aware of
potential issues your data may cause with machine learning algorithms.

4.11.2 Q: How does EvalML handle missing values?
EvalML contains imputation components in its pipelines so that missing values are taken care of. EvalML optimizes

over different types of imputation to search for the best possible pipeline. You can find more information about com-
ponents /ere and in the API reference /ere.

4.11.3 Q: How does EvalML handle categorical encoding?

EvalML provides a one-hot-encoding component in its pipelines for categorical variables. EvalML plans to support
other encoders in the future.

4.11.4 Q: How does EvalML handle feature selection?
EvalML currently utilizes scikit-learn’s SelectFromModel with a Random Forest classifier/regressor to handle feature

selection. EvalML plans on supporting more feature selectors in the future. You can find more information in the API
reference here.

4.11.5 Q: How is feature importance calculated?
Feature importance depends on the estimator used. Variable coefficients are used for regression-based estimators (Lo-

gistic Regression and Linear Regression) and Gini importance is used for tree-based estimators (Random Forest and
XGBoost).

4.11.6 Q: How does hyperparameter tuning work?

EvalML tunes hyperparameters for its pipelines through Bayesian optimization. In the future we plan to support more
optimization techniques such as random search.
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4.11.7 Q: Can | create my own objective metric?

Yes you can! You can create your own custom objective so that EvalML optimizes the best model for your needs.

4.11.8 Q: How does EvalML avoid overfitting?

EvalML provides data checks to combat overfitting. Such data checks include detecting label leakage, unstable
pipelines, hold-out datasets and cross validation. EvalML defaults to using Stratified K-Fold cross-validation for clas-
sification problems and K-Fold cross-validation for regression problems but allows you to utilize your own cross-
validation methods as well.

4.11.9 Q: Can | create my own pipeline for EvalML?

Yes! EvalML allows you to create custom pipelines using modular components. This allows you to customize EvalML
pipelines for your own needs or for AutoML.

4.11.10 Q: Does EvalML work with X algorithm?

EvalML is constantly improving and adding new components and will allow your own algorithms to be used as com-
ponents in our pipelines.
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5.1 Demo Datasets

API REFERENCE

load_breast_cancer

Load breast cancer dataset. Binary classification prob-
lem.

load_churn

Load churn dataset, which can be used for binary classi-
fication problems.

load_diabetes

Load diabetes dataset. Used for regression problem.

load_fraud

Load credit card fraud dataset.

load_weather

Load the Australian daily-min-termperatures weather
dataset.

load_wine

Load wine dataset. Multiclass problem.

5.2 Preprocessing

5.2.1 Preprocessing Utils

Utilities to preprocess data before using evalml.

load_data

Load features and target from file.

number_of_features

Get the number of features of each specific dtype in a
DataFrame.

split_data

Split data into train and test sets.

target_distribution

Get the target distributions.

5.2.2 Data Splitters

NoSplit Does not split the training data into training and valida-
tion sets.

KFold Wrapper class for sklearn's KFold splitter.

StratifiedKFold Wrapper class for sklearn's Stratified KFold splitter.

TrainingValidationSplit Split the training data into training and validation sets.

TimeSeriesSplit Rolling Origin Cross Validation for time series prob-

lems.
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5.3 Exceptions

AutoMLSearchException

Exception raised when all pipelines in an automl batch
return a score of NaN for the primary objective.

ComponentNotYetFittedError

An exception to be raised when pre-
dict/predict_proba/transform is called on a component
without fitting first.

DataCheckInitError

Exception raised when a data check can't initialize with
the parameters given.

MethodPropertyNotFoundError

Exception to raise when a class is does not have an ex-
pected method or property.

MissingComponentError

An exception raised when a component is not found in
all_components().

NoPositiveLabelException

Exception when a particular classification label for the
'positive’ class cannot be found in the column index or
unique values.

ObjectiveCreationError

Exception when get_objective tries to instantiate an ob-
jective and required args are not provided.

ObjectiveNotFoundError

Exception to raise when specified objective does not ex-
ist.

PartialDependenceError

Exception raised for all errors that partial dependence
can raise.

PipelineError

Exception raised for errors that can be raised when ap-
plying a pipeline.

PipelineNotFoundError

An exception raised when a particular pipeline is not
found in automl search results.

PipelineNotYetFittedError

An exception to be raised when pre-
dict/predict_proba/transform is called on a pipeline
without fitting first.

PipelineScoreError

An exception raised when a pipeline errors while scoring
any objective in a list of objectives.

5.3.1 Warnings

NullsInColumnWarning

Warning thrown when there are null values in the column
of interest.

ParameterNotUsedWarning

Warning thrown when a pipeline parameter isn't used in
a defined pipeline's component graph during initializa-
tion.
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5.3.2 Error Codes

PartialDependenceErrorCode

Enum identifying the type of error encountered in partial
dependence.

PipelineErrorCodeEnum

Enum identifying the type of error encountered while
applying a pipeline.

ValidationErrorCode

Enum identifying the type of error encountered in hold-
out validation.

5.4 AutoML

5.4.1 AutoML Search Interface

AutoMLSearch

Automated Pipeline search.

5.4.2 AutoML Utils

get_default_primary_search_objective

Get the default primary search objective for a problem
type.

get_threshold_tuning_info

Determine for a given automl config and pipeline what
the threshold tuning objective should be and whether or
not training data should be further split to achieve proper
threshold tuning.

make_data_splitter

Given the training data and ML problem parameters,
compute a data splitting method to use during AutoML
search.

resplit_training data

Further split the training data for a given pipeline. This
is needed for binary pipelines in order to properly tune
the threshold.

search

Given data and configuration, run an automl search.

search_iterative

Given data and configuration, run an automl search.

tune_binary_threshold

Tunes the threshold of a binary pipeline to the X and y
thresholding data.

5.4.3 AutoML Algorithm Classes

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

IterativeAlgorithm An automl algorithm which first fits a base round of

pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

5.4. AutoML
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5.4.4 AutoML Callbacks

log_error_callback

Logs the exception thrown as an error.

raise_error_callback

Raises the exception thrown by the AutoMLSearch ob-
ject.

silent_error_callback

No-op.

5.4.5 AutoML Engines

CFEngine The concurrent.futures (CF) engine.
DaskEngine The dask engine.

EngineBase Base class for EvalML engines.
SequentialEngine The default engine for the AutoML search.

5.5 Pipelines

5.5.1 Pipeline Base Classes

BinaryClassificationPipeline

Pipeline subclass for all binary classification pipelines.

ClassificationPipeline

Pipeline subclass for all classification pipelines.

MulticlassClassificationPipeline

Pipeline subclass for all multiclass classification
pipelines.

PipelineBase

Machine learning pipeline.

RegressionPipeline

Pipeline subclass for all regression pipelines.

TimeSeriesBinaryClassificationPipeline

Pipeline base class for time series binary classification
problems.

TimeSeriesClassificationPipeline

Pipeline base class for time series classification prob-
lems.

TimeSeriesMulticlassClassificationPipeline

Pipeline base class for time series multiclass classifica-
tion problems.

TimeSeriesRegressionPipeline

Pipeline base class for time series regression problems.
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5.5.2 Pipeline Utils

get_actions_from_option_defaults

Returns a list of actions based on the defaults parameters
of each option in the input DataCheckActionOption list.

generate_pipeline_code

Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

generate_pipeline_example

Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

make_pipeline

Given input data, target data, an estimator class and the
problem type, generates a pipeline class with a prepro-
cessing chain which was recommended based on the in-
puts. The pipeline will be a subclass of the appropriate
pipeline base class for the specified problem_type.

make_pipeline_from_actions

Creates a pipeline of components to address the input
DataCheckAction list.

make_pipeline_from_data_check_output

Creates a pipeline of components to address warnings
and errors output from running data checks. Uses all
default suggestions.

rows_of_interest

Get the row indices of the data that are closest to the
threshold. Works only for binary classification problems
and pipelines.

5.6 Component Graphs

ComponentGraph

Component graph for a pipeline as a directed acyclic
graph (DAG).

5.7 Components

5.7.1 Component Base Classes

Components represent a step in a pipeline.

ComponentBase Base class for all components.

Transformer A component that may or may not need fitting that trans-
forms data. These components are used before an esti-
mator.

Estimator A component that fits and predicts given data.

5.6. Component Graphs
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5.7.2 Component Utils

allowed_model_families

List the model types allowed for a particular problem
type.

estimator_unable_to_handle_nans

If True, provided estimator class is unable to handle NaN
values as an input.

generate_ component_code

Creates and returns a string that contains the Python im-
ports and code required for running the EvalML compo-
nent.

get_estimators

Returns the estimators allowed for a particular problem
type.

handle_component_class

Standardizes input from a string name to a Component-
Base subclass if necessary.

make_balancing_dictionary

Makes dictionary for oversampler components. Find ra-
tio of each class to the majority. If the ratio is smaller
than the sampling_ratio, we want to oversample, other-
wise, we don't want to sample at all, and we leave the
data as is.

5.7.3 Transformers

Transformers are components that take in data as input and output transformed data.

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

DFSTransformer Featuretools DFS component that generates features for
the input features.

DropColumns Drops specified columns in input data.

DropNaNRowsTransformer Transformer to drop rows with NaN values.

DropNullColumns Transformer to drop features whose percentage of NaN
values exceeds a specified threshold.

DropRowsTransformer Transformer to drop rows specified by row indices.

EmailFeaturizer Transformer that can automatically extract features from
emails.

Imputer Imputes missing data according to a specified imputation
strategy.

LabelEncoder A transformer that encodes target labels using values be-

tween 0 and num_classes - 1.

LinearDiscriminantAnalysis

Reduces the number of features by using Linear Dis-
criminant Analysis.

LogTransformer

Applies a log transformation to the target data.

LSA

Transformer to calculate the Latent Semantic Analysis
Values of text input.

NaturalLanguageFeaturizer

Transformer that can automatically featurize text
columns using featuretools' nlp_primitives.

OneHotEncoder A transformer that encodes categorical features in a one-
hot numeric array.

OrdinalEncoder A transformer that encodes ordinal features as an array
of ordinal integers representing the relative order of cat-
egories.

continues on next page
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Table 1 - continued from previous page

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

PerColumnImputer Imputes missing data according to a specified imputation

strategy per column.

PolynomialDecomposer

Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

ReplaceNullableTypes

Transformer to replace features with the new nullable
dtypes with a dtype that is compatible in EvalML.

RFClassifierRFESelector

Selects relevant features using recursive feature elimina-
tion with a Random Forest Classifier.

RFClassifierSelectFromModel

Selects top features based on importance weights using
a Random Forest classifier.

RFRegressorRFESelector

Selects relevant features using recursive feature elimina-
tion with a Random Forest Regressor.

RFRegressorSelectFromModel

Selects top features based on importance weights using
a Random Forest regressor.

SelectByType Selects columns by specified Woodwork logical type or
semantic tag in input data.

SelectColumns Selects specified columns in input data.

SimpleImputer Imputes missing data according to a specified imputation
strategy. Natural language columns are ignored.

StandardScaler A transformer that standardizes input features by remov-
ing the mean and scaling to unit variance.

STLDecomposer Removes trends and seasonality from time series using
the STL algorithm.

TargetEncoder A transformer that encodes categorical features into tar-
get encodings.

TargetImputer Imputes missing target data according to a specified im-

putation strategy.

TimeSeriesFeaturizer

Transformer that delays input features and target variable
for time series problems.

TimeSeriesImputer

Imputes missing data according to a specified
timeseries-specific imputation strategy.

TimeSeriesRegularizer

Transformer that regularizes an inconsistently spaced
datetime column.

Undersampler

Initializes an undersampling transformer to downsample
the majority classes in the dataset.

URLFeaturizer

Transformer that can automatically extract features from
URL.

5.7. Components
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5.7.4 Estimators
Classifiers

Classifiers are components that output a predicted class label.

BaselineClassifier Classifier that predicts using the specified strategy.

CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeClassifier Decision Tree Classifier.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with
elasticnet penalty as the base estimator.

ExtraTreesClassifier Extra Trees Classifier.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LogisticRegressionClassifier Logistic Regression Classifier.
RandomForestClassifier Random Forest Classifier.
StackedEnsembleClassifier Stacked Ensemble Classifier.
SVMClassifier Support Vector Machine Classifier.
VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
XGBoostClassifier XGBoost Classifier.

Regressors

Regressors are components that output a predicted target value.
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ARIMARegressor

Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model. ARIMA .html.

BaselineRegressor

Baseline regressor that uses a simple strategy to make
predictions. This is useful as a simple baseline regressor
to compare with other regressors.

CatBoostRegressor

CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeRegressor

Decision Tree Regressor.

ElasticNetRegressor Elastic Net Regressor.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesRegressor Extra Trees Regressor.

LightGBMRegressor LightGBM Regressor.

LinearRegressor Linear Regressor.

ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestRegressor

Random Forest Regressor.

StackedEnsembleRegressor

Stacked Ensemble Regressor.

SVMRegressor

Support Vector Machine Regressor.

TimeSeriesBaselineEstimator

Time series estimator that predicts using the naive fore-
casting approach.

VowpalWabbitRegressor

Vowpal Wabbit Regressor.

XGBoostRegressor

XGBoost Regressor.

5.7. Components
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5.8 Model Understanding

5.8.1 Metrics

binary_objective_vs_threshold

Computes objective score as a function of potential bi-
nary classification decision thresholds for a fitted binary
classification pipeline.

calculate_permutation_importance

Calculates permutation importance for features.

calculate_permutation_importance_one_column

Calculates permutation importance for one column in
the original dataframe.

confusion_matrix

Confusion matrix for binary and multiclass classifica-
tion.

find_confusion_matrix_per_thresholds

Gets the confusion matrix and histogram bins for each
threshold as well as the best threshold per objective.
Only works with Binary Classification Pipelines.

get_linear_coefficients

Returns a dataframe showing the features with the great-
est predictive power for a linear model.

get_prediction_vs_actual_data Combines y_true and y_pred into a single
dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

get_prediction_vs_actual_over_time_data Get the data needed for the  predic-

tion_vs_actual_over_time plot.

normalize_confusion_matrix

Normalizes a confusion matrix.

partial_dependence

Calculates one or two-way partial dependence.

precision_recall_curve

Given labels and binary classifier predicted proba-
bilities, compute and return the data representing a
precision-recall curve.

roc_curve Given labels and classifier predicted probabilities, com-
pute and return the data representing a Receiver Operat-
ing Characteristic (ROC) curve. Works with binary or
multiclass problems.

t_sne Get the transformed output after fitting X to the embed-

ded space using t-SNE.

get_influential_features

Finds the most influential features as well as any detri-
mental features from a dataframe of feature importances.

readable_explanation

Outputs a human-readable explanation of trained
pipeline behavior.
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5.8.2 Visualization Methods

graph_binary_objective_vs_threshold

Generates a plot graphing objective score vs. decision
thresholds for a fitted binary classification pipeline.

graph_confusion_matrix

Generate and display a confusion matrix plot.

graph_partial_dependence

Create an one-way or two-way partial dependence plot.

graph_permutation_importance

Generate a bar graph of the pipeline's permutation im-
portance.

graph_precision_recall_curve

Generate and display a precision-recall plot.

graph_prediction_vs_actual

Generate a scatter plot comparing the true and predicted
values. Used for regression plotting.

graph_prediction_vs_actual_over_time

Plot the target values and predictions against time on the
X-axis.

graph_roc_curve

Generate and display a Receiver Operating Characteris-
tic (ROC) plot for binary and multiclass classification
problems.

graph_t_sne

Plot high dimensional data into lower dimensional space
using t-SNE.

5.8.3 Prediction Explanations

explain_predictions

Creates a report summarizing the top contributing fea-
tures for each data point in the input features.

explain_predictions_best_worst

Creates a report summarizing the top contributing fea-
tures for the best and worst points in the dataset as mea-
sured by error to true labels.

5.9 Objectives

5.9.1 Objective Base Classes

ObjectiveBase

Base class for all objectives.

BinaryClassificationObjective

Base class for all binary classification objectives.

MulticlassClassificationObjective

Base class for all multiclass classification objectives.

RegressionObjective

Base class for all regression objectives.

5.9. Objectives
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5.9.2 Domain-Specific Objectives

CostBenefitMatrix Score using a cost-benefit matrix. Scores quantify the
benefits of a given value, so greater numeric scores rep-
resents a better score. Costs and scores can be negative,
indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score
represents loss of cash flow.

FraudCost Score the percentage of money lost of the total transac-
tion amount process due to fraud.

LeadScoring Lead scoring.

SensitivityLowAlert Sensitivity at Low Alert Rates.
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5.9.3 Classification Objectives

AccuracyBinary Accuracy score for binary classification.

AccuracyMulticlass Accuracy score for multiclass classification.

AUC AUC score for binary classification.

AUCMacro AUC score for multiclass classification using macro av-
eraging.

AUCMicro AUC score for multiclass classification using micro av-
eraging.

AUClWeighted AUC Score for multiclass classification using weighted
averaging.

Gini Gini coefficient for binary classification.

BalancedAccuracyBinary

Balanced accuracy score for binary classification.

BalancedAccuracyMulticlass

Balanced accuracy score for multiclass classification.

F1

F1 score for binary classification.

FlMicro F1 score for multiclass classification using micro aver-
aging.

F1Macro F1 score for multiclass classification using macro aver-
aging.

FlWeighted F1 score for multiclass classification using weighted av-
eraging.

LogLossBinary Log Loss for binary classification.

LogLossMulticlass Log Loss for multiclass classification.

MCCBinary Matthews correlation coefficient for binary classifica-
tion.

MCCMulticlass Matthews correlation coefficient for multiclass classifi-
cation.

Precision Precision score for binary classification.

PrecisionMicro Precision score for multiclass classification using micro
averaging.

PrecisionMacro Precision score for multiclass classification using
macro-averaging.

Precisionlieighted Precision score for multiclass classification using
weighted averaging.

Recall Recall score for binary classification.

RecallMicro Recall score for multiclass classification using micro av-
eraging.

RecallMacro Recall score for multiclass classification using macro av-
eraging.

RecallWeighted Recall score for multiclass classification using weighted

averaging.

5.9. Objectives
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5.9.4 Regression Objectives

ExpVariance Explained variance score for regression.

MAE Mean absolute error for regression.

MASE Mean absolute scaled error for time series regression.

MAPE Mean absolute percentage error for time series regres-
sion. Scaled by 100 to return a percentage.

SMAPE Symmetric mean absolute percentage error for time se-
ries regression. Scaled by 100 to return a percentage.

MSE Mean squared error for regression.

MeanSquaredLogError Mean squared log error for regression.

MedianAE Median absolute error for regression.

MaxError Maximum residual error for regression.

R2 Coeflicient of determination for regression.

RootMeanSquaredError

Root mean squared error for regression.

RootMeanSquaredLogError

Root mean squared log error for regression.

5.9.5 Objective Utils

get_all _objective_names

Get a list of the names of all objectives.

get_core_objectives

Returns all core objective instances associated with the
given problem type.

get_core_objective_names

Get a list of all valid core objectives.

get_default_recommendation_objectives

Get the default recommendation score metrics for the
given problem type.

get_non_core_objectives

Get non-core objective classes.

get_objective

Returns the Objective class corresponding to a given ob-
jective name.

get_optimization_objectives

Get objectives for optimization.

get_ranking objectives

Get objectives for pipeline rankings.

normalize_objectives

Converts objectives from a [0, inf) scale to [0, 1] given
a max and min for each objective.

organize_objectives

Generate objectives to consider, with optional modifica-
tions to the defaults.

ranking_only_objectives

Get ranking-only objective classes.

recommendation_score

Computes a recommendation score for a model given
scores for a group of objectives.
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5.10 Problem Types

detect_problem_type

Determine the type of problem is being solved based on
the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

handle_problem_types

Handles problem_type by either returning the Problem-
Types or converting from a str.

is_binary

Determines if the provided problem_type is a binary
classification problem type.

is_classification

Determines if the provided problem_type is a classifica-
tion problem type.

is_multiclass

Determines if the provided problem_type is a multiclass
classification problem type.

is_regression

Determines if the provided problem_type is a regression
problem type.

is_time_series

Determines if the provided problem_type is a time series
problem type.

ProblemTypes

Enum defining the supported types of machine learning
problems.

5.11 Model Family

handle_model_family

Handles model_family by either returning the Mod-
elFamily or converting from a string.

ModelFamily

Enum for family of machine learning models.

5.12 Tuners

Tuner Base Tuner class.

SKOptTuner Bayesian Optimizer.

GridSearchTuner Grid Search Optimizer, which generates all of the possi-
ble points to search for using a grid.

RandomSearchTuner Random Search Optimizer.

5.10. Problem Types
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5.13 Data Checks

5.13.1 Data Check Classes

ClassImbalanceDataCheck

Check if any of the target labels are imbalanced, or if the
number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

DateTimeFormatDataCheck

Check if the datetime column has equally spaced inter-
vals and is monotonically increasing or decreasing in or-
der to be supported by time series estimators.

IDColumnsDataCheck

Check if any of the features are likely to be ID columns.

InvalidTargetDataCheck

Check if the target data is considered invalid.

MulticollinearityDataCheck

Check if any set features are likely to be multicollinear.

NoVarianceDataCheck Check if the target or any of the features have no vari-
ance.

NullDataCheck Check if there are any highly-null numerical, boolean,
categorical, natural language, and unknown columns
and rows in the input.

OutliersDataCheck Checks if there are any outliers in input data by using
IQR to determine score anomalies.

SparsityDataCheck Check if there are any columns with sparsely populated

values in the input.

TargetDistributionDataCheck

Check if the target data contains certain distributions that
may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when
the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

TargetLeakageDataCheck

Check if any of the features are highly correlated with the
target by using mutual information, Pearson correlation,
and other correlation metrics.

TimeSeriesParametersDataCheck

Checks whether the time series parameters are compati-
ble with data splitting.

TimeSeriesSplittingDataCheck

Checks whether the time series target data is compatible
with splitting.

UniquenessDataCheck Check if there are any columns in the input that are ei-
ther too unique for classification problems or not unique
enough for regression problems.

DataCheck Base class for all data checks.

DataChecks A collection of data checks.

DefaultDataChecks A collection of basic data checks that is used by AutoML
by default.
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5.13.2 Data Check Messages

DataCheckMessage Base class for a message returned by a DataCheck,
tagged by name.

DataCheckError DataCheckMessage subclass for errors returned by data
checks.

DataChecklWarning DataCheckMessage subclass for warnings returned by

data checks.

5.13.3 Data Check Message Types

DataCheckMessageType

Enum for type of data check message: WARNING or
ERROR.

5.13.4 Data Check Message Codes

DataCheckMessageCode

Enum for data check message code.

5.13.5 Data Check Actions

DataCheckAction

A recommended action returned by a DataCheck.

DataCheckActionCode

Enum for data check action code.

DataCheckActionOption

A recommended action option returned by a DataCheck.

5.13. Data Checks
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5.14 Utils

5.14.1 General Utils

convert_to_seconds

Converts a string describing a length of time to its length
in seconds.

downcast_nullable_types

Downcasts IntegerNullable, BooleanNullable types to
Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

drop_rows_with_nans

Drop rows that have any NaNs in all dataframes or series.

get_importable_subclasses

Get importable subclasses of a base class. Used to
list all of our estimators, transformers, components and
pipelines dynamically.

get_logger

Get the logger with the associated name.

get_time_index

Determines the column in the given data that should be
used as the time index.

import_or_raise

Attempts to import the requested library by name. If the
import fails, raises an ImportError or warning.

infer feature_types

Create a Woodwork structure from the given list, pan-
das, or numpy input, with specified types for columns.
If a column's type is not specified, it will be inferred by
Woodwork.

is_all_numeric

Checks if the given DataFrame contains only numeric
values.

get_random_state

Generates a numpy.random.RandomState instance using
seed.

get_random_seed

Given a numpy.random.RandomState object, generate
an int representing a seed value for another random num-
ber generator. Or, if given an int, return that int.

pad_with_nans

Pad the beginning num_to_pad rows with nans.

safe_repr Convert the given value into a string that can safely be
used for repr.
save_plot Saves fig to filepath if specified, or to a default location
if not.
Evalml
EvalML.
Subpackages
Automl

AutoMLSearch and related modules.
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Subpackages
automl_algorithm

AutoML algorithms that power EvalML.

Submodules
automl_algorithm

Base class for the AutoML algorithms which power EvalML.

Module Contents

Classes Summary

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

Exceptions Summary

Contents

class evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm(allowed_pipelines=None,
al-
lowed_model_families=None,
ex-
cluded_model_families=None,
al-
lowed_component_graphs=None,
search_parameters=None,
tuner_class=None,
text_in_ensembling=False,
random_seed=0,
n_jobs=- 1)

Base class for the AutoML algorithms which power EvalML.

This class represents an automated machine learning (AutoML) algorithm. It encapsulates the decision-making
logic behind an automl search, by both deciding which pipelines to evaluate next and by deciding what set of
parameters to configure the pipeline with.

To use this interface, you must define a next_batch method which returns the next group of pipelines to evaluate
on the training data. That method may access state and results recorded from the previous batches, although that
information is not tracked in a general way in this base class. Overriding add_result is a convenient way to record
pipeline evaluation info if necessary.

Parameters
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* allowed_pipelines (list(class)) — A list of PipelineBase subclasses indicating the
pipelines allowed in the search. The default of None indicates all pipelines for this problem
type are allowed.

» search_parameters (dict) — Search parameter ranges specified for pipelines to iterate
over.

* tuner_class (class)— A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

* text_in_ensembling (boolean) - If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to None.

» random_seed (int) — Seed for the random number generator. Defaults to 0.

Methods

add_result Register results from evaluating a pipeline.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.

num_pipelines_per_batch Return the number of pipelines in the nth batch.

pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result (self, score_to_minimize, pipeline, trained_pipeline_results)

Register results from evaluating a pipeline.
Parameters

» score_to_minimize (float) — The score obtained by this pipeline on the primary ob-
jective, converted so that lower values indicate better pipelines.

e pipeline (PipelineBase) — The trained pipeline object which was used to compute the
score.

* trained_pipeline_results (dict) — Results from training a pipeline.
Raises PipelineNotFoundError — If pipeline is not allowed in search.

property batch_number (self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

abstract next_batch(self)
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.
Return type list[PipelineBase]

abstract num_pipelines_per_batch(self, batch_number)

Return the number of pipelines in the nth batch.
Parameters batch_number (int) — which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.
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Return type int

property pipeline_number (self)
Returns the number of pipelines which have been recommended so far.

exception evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithmException

Exception raised when an error is encountered during the computation of the automl algorithm.

default_algorithm

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.

Module Contents

Classes Summary

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

Contents

class evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm(X, y, problem_type,
sampler_name, al-
lowed_model_families=None,
ex-
cluded_model_families=None,
tuner_class=None,
random_seed=0,
search_parameters=None,
n_jobs=1,
text_in_ensembling=False,
top_n=3,
ensembling=False,
num_long_explore_pipelines=50,
num_long_pipelines_per_batch=10,
al-
low_long_running_models=False,
features=None,
run_feature_selection=True,
verbose=Fualse, ex-
clude_featurizers=None)

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.
1. Naive pipelines:
a. run baseline with default preprocessing pipeline
b. run naive linear model with default preprocessing pipeline
c. run basic RF pipeline with default preprocessing pipeline

2. Naive pipelines with feature selection
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a. subsequent pipelines will use the selected features with a SelectedColumns transformer
At this point we have a single pipeline candidate for preprocessing and feature selection
3. Pipelines with preprocessing components:
a. scan rest of estimators (our current batch 1).
4. First ensembling run
Fast mode ends here. Begin long mode.
6. Run top 3 estimators:
a. Generate 50 random parameter sets. Run all 150 in one batch
7. Second ensembling run
8. Repeat these indefinitely until stopping criterion is met:

a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one
batch

b. Run ensembling

Parameters
* X (pd.DataFrame) — Training data.
* y (pd. Series) — Target data.
* problem_type (ProblemType) — Problem type associated with training data.
» sampler_name (BaseSampler) — Sampler to use for preprocessing.

* tuner_class (class)— A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

» random_seed (int) — Seed for the random number generator. Defaults to 0.

» search_parameters (dict or None) — Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

* n_jobs (int or None) — Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

* text_in_ensembling (boolean) - If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

* top_n (int) — top n number of pipelines to use for long mode.

* num_long_explore_pipelines (int) — number of pipelines to explore for each top n
pipeline at the start of long mode.

e num_long_pipelines_per_batch (int) — number of pipelines per batch for each top n
pipeline through long mode.

* allow_long_running models (bool) — Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.
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Methods

features (1ist) — List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature has not been computed yet.

run_feature_selection (bool) — If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm.

verbose (boolean) — Whether or not to display logging information regarding pipeline
building. Defaults to False.

exclude_featurizers (1ist[str])— A list of featurizer components to exclude from the
pipelines built by DefaultAlgorithm. Valid options are “DatetimeFeaturizer”, “EmailFeatur-
izer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

allowed_model_families (list(str, ModelFamily)) - The model fam-
ilies to search. @ The default of None searches over all model families. = Run
evalml.pipelines.components.utils.allowed_model_families(“binary”’) to see options.
Change binary to multiclass or regression depending on the problem type. For default
algorithm, this only applies to estimators in the non-naive batches.

excluded_model_families (1ist(str, ModelFamily)) — A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

add_result

Register results from evaluating a pipeline. In batch
number 2, the selected column names from the fea-
ture selector are taken to be used in a column selec-
tor. Information regarding the best pipeline is up-
dated here as well.

batch_number

Returns the number of batches which have been rec-
ommended so far.

default_max_batches

Returns the number of max batches AutoMLSearch
should run by default.

next_batch

Get the next batch of pipelines to evaluate.

num_pipelines_per_batch

Return the number of pipelines in the nth batch.

pipeline_number

Returns the number of pipelines which have been rec-
ommended so far.

add_result (self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)

Register results from evaluating a pipeline. In batch number 2, the selected column names from the feature
selector are taken to be used in a column selector. Information regarding the best pipeline is updated here
as well.

Parameters

» score_to_minimize (float) — The score obtained by this pipeline on the primary ob-
jective, converted so that lower values indicate better pipelines.

e pipeline (PipelineBase) — The trained pipeline object which was used to compute the

score.

e trained_pipeline_results (dict) — Results from training a pipeline.

5.14.

Utils

283



EvalML Documentation, Release 0.80.0

* cached_data (dict) — A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hashl: trained_component_graph, hash2:
trained_component_graph... }... }. Defaults to None.

property batch_number (self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self)
Get the next batch of pipelines to evaluate.

Returns a list of instances of PipelineBase subclasses, ready to be trained and evaluated.
Return type list(PipelineBase)

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) — which batch to calculate the number of pipelines for.
Returns number of pipelines in the given batch.
Return type int

property pipeline_number (self)

Returns the number of pipelines which have been recommended so far.

iterative_algorithm

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of parameter
tuning on each pipeline in order of performance.

Module Contents

Classes Summary

IterativeAlgorithm An automl algorithm which first fits a base round of
pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

Contents
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class evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm(X, y,
problem_type,

sam-

pler_name=None,

al-

lowed_model_families=None,

ex-

cluded_model_families=None,

al-

lowed_component_graphs=None,
max_batches=None,
max_iterations=None,
tuner_class=None,
random_seed=0,
pipelines_per_batch=3,
n_jobs=- 1, num-
ber_features=None,

ensem-

bling=False,

text_in_ensembling=False,
search_parameters=None,

_estima-

tor_family_order=None,

al-

low_long_running_models=False,
features=None,
verbose=Fualse,

ex-

clude_featurizers=None)

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of performance.

Parameters

X (pd.DataFrame) — Training data.

y (pd. Series) — Target data.

problem_type (ProblemType) — Problem type associated with training data.
sampler_name (BaseSampler) — Sampler to use for preprocessing. Defaults to None.

allowed_model_families (list(str, ModelFamily)) - The model fam-
ilies to search. = The default of None searches over all model families. = Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored.

excluded_model_families (1ist(str, ModelFamily)) — A list of model families to
exclude from the estimators used when building pipelines.

allowed_component_graphs (dict)— A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0":
[list_of_components], “Name_1": [ComponentGraph(...)] }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

5.14. Utils
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e.g. allowed_component_graphs = { “My_Graph™: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

e max_batches (int)— The maximum number of batches to be evaluated. Used to determine
ensembling. Defaults to None.

e max_iterations (int) — The maximum number of iterations to be evaluated. Used to
determine ensembling. Defaults to None.

* tuner_class (class)— A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

» random_seed (int) — Seed for the random number generator. Defaults to 0.

* pipelines_per_batch (int) — The number of pipelines to be evaluated in each batch,
after the first batch. Defaults to 5.

* n_jobs (int or None) — Non-negative integer describing level of parallelism used for
pipelines. Defaults to None.

e number_features (int)— The number of columns in the input features. Defaults to None.

* ensembling (boolean) — If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. Defaults to False.

* text_in_ensembling (boolean) - If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

» search_parameters (dict or None) - Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

» _estimator_family_order (list(ModelFamily) or None) — specify the sort order
for the first batch. Defaults to None, which uses _ESTIMATOR_FAMILY_ORDER.

* allow_long_running models (bool) — Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

» features (list) — List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature itself is not in input.

» verbose (boolean) — Whether or not to display logging information regarding pipeline
building. Defaults to False.

» exclude_featurizers (list[str]) — A list of featurizer components to exclude from
the pipelines built by IterativeAlgorithm. Valid options are “DatetimeFeaturizer”, “Email-
Featurizer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

Methods
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add_result Register results from evaluating a pipeline.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.

num_pipelines_per_batch Return the number of pipelines in the nth batch.

pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result (self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)

Register results from evaluating a pipeline.
Parameters

¢ score_to_minimize (float) — The score obtained by this pipeline on the primary ob-
jective, converted so that lower values indicate better pipelines.

» pipeline (PipelineBase) — The trained pipeline object which was used to compute the
score.

¢ trained_pipeline_results (dict) — Results from training a pipeline.

e cached_data (dict) — A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hashl: trained_component_graph, hash2:
trained_component_graph... }...}. Defaults to None.

Raises ValueError - If default parameters are not in the acceptable hyperparameter ranges.

property batch_number (self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self)
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.
Return type list[PipelineBase]
Raises AutoMLAlgorithmException — If no results were reported from the first batch.

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) — which batch to calculate the number of pipelines for.
Returns number of pipelines in the given batch.
Return type int

property pipeline_number (self)
Returns the number of pipelines which have been recommended so far.
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Package Contents

Classes Summary

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.
DefaultAlgorithm An automl algorithm that consists of two modes: fast

and long, where fast is a subset of long.

IterativeAlgorithm An automl algorithm which first fits a base round of

pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

Exceptions Summary

Contents

class evalml.automl.automl_algorithm.AutoMLAlgorithm(allowed_pipelines=None,

allowed_model_families=None,
excluded_model_families=None,
allowed_component_graphs=None,
search_parameters=None, tuner_class=None,
text_in_ensembling=False, random_seed=0,
n_jobs=- 1)

Base class for the AutoML algorithms which power EvalML.
This class represents an automated machine learning (AutoML) algorithm. It encapsulates the decision-making

logic behind an automl search, by both deciding which pipelines to evaluate next and by deciding what set of
parameters to configure the pipeline with.

To use this interface, you must define a next_batch method which returns the next group of pipelines to evaluate
on the training data. That method may access state and results recorded from the previous batches, although that
information is not tracked in a general way in this base class. Overriding add_result is a convenient way to record
pipeline evaluation info if necessary.

Parameters

* allowed_pipelines (1ist(class)) — A list of PipelineBase subclasses indicating the
pipelines allowed in the search. The default of None indicates all pipelines for this problem
type are allowed.

» search_parameters (dict) — Search parameter ranges specified for pipelines to iterate
over.

* tuner_class (class)— A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

* text_in_ensembling (boolean) - If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to None.

» random_seed (int) — Seed for the random number generator. Defaults to 0.
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Methods

add_result Register results from evaluating a pipeline.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.

num_pipelines_per_batch Return the number of pipelines in the nth batch.

pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result (self, score_to_minimize, pipeline, trained_pipeline_results)
Register results from evaluating a pipeline.

Parameters

e score_to_minimize (float) — The score obtained by this pipeline on the primary ob-
jective, converted so that lower values indicate better pipelines.

¢ pipeline (PipelineBase) — The trained pipeline object which was used to compute the
score.

e trained_pipeline_results (dict) — Results from training a pipeline.
Raises PipelineNotFoundError — If pipeline is not allowed in search.

property batch_number (self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

abstract next_batch(self)

Get the next batch of pipelines to evaluate.
Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.
Return type list[PipelineBase]

abstract num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) — which batch to calculate the number of pipelines for.
Returns number of pipelines in the given batch.
Return type int
property pipeline_number (self)
Returns the number of pipelines which have been recommended so far.
exception evalml.automl.automl_algorithm.AutoMLAlgorithmException

Exception raised when an error is encountered during the computation of the automl algorithm.
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class evalml.automl.automl_algorithm.DefaultAlgorithm(X, y, problem_type, sampler_name,
allowed_model_families=None,
excluded_model_families=None,
tuner_class=None, random_seed=0,
search_parameters=None, n_jobs=1,
text_in_ensembling=False, top_n=3,
ensembling=False,
num_long_explore_pipelines=50,
num_long_pipelines_per_batch=10,
allow_long_running_models=False,
features=None, run_feature_selection=True,
verbose=False, exclude_featurizers=None)

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.
1. Naive pipelines:
a. run baseline with default preprocessing pipeline
b. run naive linear model with default preprocessing pipeline
c. run basic RF pipeline with default preprocessing pipeline
2. Naive pipelines with feature selection
a. subsequent pipelines will use the selected features with a SelectedColumns transformer
At this point we have a single pipeline candidate for preprocessing and feature selection
3. Pipelines with preprocessing components:
a. scan rest of estimators (our current batch 1).
4. First ensembling run
Fast mode ends here. Begin long mode.
6. Run top 3 estimators:
a. Generate 50 random parameter sets. Run all 150 in one batch
7. Second ensembling run
8. Repeat these indefinitely until stopping criterion is met:

a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one
batch

b. Run ensembling

Parameters
* X (pd.DataFrame) — Training data.
* y (pd. Series) — Target data.
* problem_type (ProblemType) — Problem type associated with training data.
» sampler_name (BaseSampler) — Sampler to use for preprocessing.

* tuner_class (class)— A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

» random_seed (int) — Seed for the random number generator. Defaults to 0.
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» search_parameters (dict or None) — Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

* n_jobs (int or None) — Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

* text_in_ensembling (boolean)—If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

* top_n (int) — top n number of pipelines to use for long mode.

* num_long_explore_pipelines (int) — number of pipelines to explore for each top n
pipeline at the start of long mode.

* num_long_pipelines_per_batch (int) — number of pipelines per batch for each top n
pipeline through long mode.

* allow_long_running _models (bool) — Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

» features (list) — List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature has not been computed yet.

» run_feature_selection (bool) — If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm.

» verbose (boolean) — Whether or not to display logging information regarding pipeline
building. Defaults to False.

» exclude_featurizers (1ist[str])— A list of featurizer components to exclude from the
pipelines built by DefaultAlgorithm. Valid options are “DatetimeFeaturizer”, “EmailFeatur-
izer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

e allowed_model_families (list(str, ModelFamily)) - The model fam-
ilies to search. = The default of None searches over all model families. = Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. For default
algorithm, this only applies to estimators in the non-naive batches.

e excluded_model_families (1ist(str, ModelFamily)) — A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

Methods
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add_result Register results from evaluating a pipeline. In batch
number 2, the selected column names from the fea-
ture selector are taken to be used in a column selec-
tor. Information regarding the best pipeline is up-
dated here as well.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.

num_pipelines_per_batch Return the number of pipelines in the nth batch.

pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result (self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)

Register results from evaluating a pipeline. In batch number 2, the selected column names from the feature
selector are taken to be used in a column selector. Information regarding the best pipeline is updated here
as well.

Parameters

e score_to_minimize (float) — The score obtained by this pipeline on the primary ob-
jective, converted so that lower values indicate better pipelines.

» pipeline (PipelineBase) — The trained pipeline object which was used to compute the
score.

e trained_pipeline_results (dict) — Results from training a pipeline.

* cached_data (dict) — A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hashl: trained_component_graph, hash2:
trained_component_graph... }...}. Defaults to None.

property batch_number (self)
Returns the number of batches which have been recommended so far.

property default_max_batches(self)
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self)
Get the next batch of pipelines to evaluate.

Returns a list of instances of PipelineBase subclasses, ready to be trained and evaluated.
Return type list(PipelineBase)

num_pipelines_per_batch(self, batch_number)

Return the number of pipelines in the nth batch.
Parameters batch_number (int) — which batch to calculate the number of pipelines for.
Returns number of pipelines in the given batch.
Return type int

property pipeline_number (self)

Returns the number of pipelines which have been recommended so far.
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class evalml.automl.automl_algorithm.IterativeAlgorithm(X, y, problem_type, sampler_name=None,

allowed_model_families=None,
excluded_model_families=None,
allowed_component_graphs=None,

max_batches=None, max_iterations=None,

tuner_class=None, random_seed=0,
pipelines_per_batch=5, n_jobs=- 1,
number_features=None,
ensembling=False,
text_in_ensembling=False,
search_parameters=None,
_estimator_family_order=None,
allow_long_running_models=False,
features=None, verbose=False,
exclude_featurizers=None)

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of performance.

Parameters

X (pd.DataFrame) — Training data.

y (pd. Series) — Target data.

problem_type (ProblemType) — Problem type associated with training data.
sampler_name (BaseSampler) — Sampler to use for preprocessing. Defaults to None.

allowed_model_families (list(str, ModelFamily)) - The model fam-
ilies to search. = The default of None searches over all model families. = Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored.

excluded_model_families (1ist(str, ModelFamily)) — A list of model families to
exclude from the estimators used when building pipelines.

allowed_component_graphs (dict)— A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0":
[list_of_components], “Name_1"": [ComponentGraph(...)] }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause a