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EvalML is an AutoML library that builds, optimizes, and evaluates machine learning pipelines using domain-specific
objective functions.

Combined with Featuretools and Compose, EvalML can be used to create end-to-end supervised machine learning
solutions.

CONTENTS 1

https://featuretools.featurelabs.com
https://compose.featurelabs.com
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CHAPTER

ONE

INSTALL

EvalML is available for Python 3.8 and 3.9. It can be installed from pypi, conda-forge, or from source.

To install EvalML on your platform, run one of the following commands:

$ pip install evalml

$ conda install -c conda-forge evalml

# See the EvalML with core dependencies only section
$ pip install evalml --no-dependencies
$ pip install -r core-requirements.txt

# See the EvalML with core dependencies only section
$ conda install -c conda-forge evalml-core

1.1 EvalML with core dependencies only

EvalML includes several optional dependencies. The xgboost and catboost packages support pipelines built around
those modeling libraries. The plotly and ipywidgets packages support plotting functionality in automl searches.
These dependencies are recommended, and are included with EvalML by default but are not required in order to install
and use EvalML.

EvalML’s core dependencies are listed in core-requirements.txt in the source code, while the default collection
of requirements is specified in pyproject.toml’s dependencies.

To install EvalML with only the core-required dependencies with pypi, first download the EvalML source from pypi or
github to access the requirements files before running the following command.

$ pip install evalml --no-dependencies
$ pip install -r core-requirements.txt

$ conda install -c conda-forge evalml-core

3

https://pypi.org/project/evalml/
https://anaconda.org/conda-forge/evalml
https://github.com/alteryx/evalml
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1.2 Add-ons

EvalML allows users to install add-ons individually or all at once:

• Update Checker: Receive automatic notifications of new EvalML releases

• Time Series: Use EvalML with Facebook’s Prophet library for time series support.

$ pip install evalml[complete]

$ pip install evalml[prophet]

$ pip install evalml[updater]

$ conda install -c conda-forge alteryx-open-src-update-checker

1.3 Time Series support with Facebook’s Prophet

To support the Prophet time series estimator, be sure to install it as an extra requirement. Please note that this may
take a few minutes.

pip install evalml[prophet]

Another option for installing Prophet with CmdStan as a backend is to use make installdeps-prophet.

1.4 Windows Additional Requirements & Troubleshooting

If you are using pip to install EvalML on Windows, it is recommended you first install the following packages using
conda:

• numba (needed for shap and prediction explanations). Install with conda install -c conda-forge numba

• graphviz if you’re using EvalML’s plotting utilities. Install with conda install -c conda-forge
python-graphviz

The XGBoost library may not be pip-installable in some Windows environments. If you are encountering installation
issues, please try installing XGBoost from Github before installing EvalML or install evalml with conda.

1.5 Mac Additional Requirements & Troubleshooting

In order to run on Mac, LightGBM requires the OpenMP library to be installed, which can be done with HomeBrew by
running:

brew install libomp

Additionally, graphviz can be installed by running:

brew install graphviz

4 Chapter 1. Install

https://pypi.org/project/xgboost/
https://xgboost.readthedocs.io/en/latest/build.html
https://pypi.org/project/lightgbm/
https://brew.sh/
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1.5.1 Installing EvalML on an M1 Mac

Not all of EvalML’s dependencies support Apple’s new M1 chip. For this reason, pip or conda installing EvalML will
fail. The core set of EvalML dependencies can be installed in the M1 chip, so we recommend you install EvalML with
core dependencies.

Alternatively, there is experimental support for M1 chips with the Rosetta terminal. After setting up a Rosetta terminal,
you should be able to pip or conda install EvalML.

For Docker fans, an included Dockerfile.arm can be built and run to provide an environment for testing. Details are
included within.

1.5. Mac Additional Requirements & Troubleshooting 5
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CHAPTER

TWO

START

In this guide, we’ll show how you can use EvalML to automatically find the best pipeline for predicting whether or not a
credit card transaction is fradulent. Along the way, we’ll highlight EvalML’s built-in tools and features for understanding
and interacting with the search process.

[1]: import evalml
from evalml import AutoMLSearch
from evalml.utils import infer_feature_types

First, we load in the features and outcomes we want to use to train our model.

[2]: X, y = evalml.demos.load_fraud(n_rows=250)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 250
Targets
False 88.40%
True 11.60%
Name: count, dtype: object

First, we will clean the data. Since EvalML accepts a pandas input, it can run type inference on this data directly. Since
we’d like to change the types inferred by EvalML, we can use the infer_feature_types utility method. Here’s what
we’re going to do with the following dataset:

• Reformat the expiration_date column so it reflects a more familiar date format.

• Cast the lat and lng columns from float to str.

• Use infer_feature_types to specify what types certain columns should be. For example, to avoid having the
provider column be inferred as natural language text, we have specified it as a categorical column instead.

The infer_feature_types utility method takes a pandas or numpy input and converts it to a pandas dataframe with
a Woodwork accessor, providing us with flexibility to cast the data as necessary.

[3]: X.ww["expiration_date"] = X["expiration_date"].apply(
lambda x: "20{}-01-{}".format(x.split("/")[1], x.split("/")[0])

)
X = infer_feature_types(

X,
feature_types={

(continues on next page)
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(continued from previous page)

"store_id": "categorical",
"expiration_date": "datetime",
"lat": "categorical",
"lng": "categorical",
"provider": "categorical",

},
)
X.ww

[3]: Physical Type Logical Type Semantic Tag(s)
Column
card_id int64 Integer ['numeric']
store_id int64 Integer ['numeric']
datetime datetime64[ns] Datetime []
amount int64 Integer ['numeric']
currency string Unknown []
customer_present bool Boolean []
expiration_date datetime64[ns] Datetime []
provider category Categorical ['category']
lat float64 Double ['numeric']
lng float64 Double ['numeric']
region category Categorical ['category']
country category Categorical ['category']

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

[4]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2

)

Note: To provide data to EvalML, it is recommended that you initialize a woodwork accessor so that you control how
EvalML will treat each feature, such as as a numeric feature, a categorical feature, a text feature or other type of feature.
Consult the the Woodwork project for help on how to do this. Here, split_data() returns dataframes with woodwork
accessors.

EvalML has many options to configure the pipeline search. At the minimum, we need to define an objective function.
For simplicity, we will use the F1 score in this example. However, the real power of EvalML is in using domain-specific
objective functions or building your own.

Below EvalML utilizes Bayesian optimization (EvalML’s default optimizer) to search and find the best pipeline defined
by the given objective.

EvalML provides a number of parameters to control the search process. max_batches is one of the parameters which
controls the stopping criterion for the AutoML search. It indicates the maximum number of rounds of AutoML to
evaluate, where each round may train and score a variable number of pipelines. In this example, max_batches is set
to 1.

** Graphing methods, like AutoMLSearch, on Jupyter Notebook and Jupyter Lab require ipywidgets to be installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

[5]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,

(continues on next page)
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https://woodwork.alteryx.com/en/stable/
https://evalml.alteryx.com/en/stable/user_guide/objectives.html#Custom-Objectives
https://ipywidgets.readthedocs.io/en/latest/user_install.html
https://plotly.com/python/getting-started/#jupyterlab-support-python-35
https://nodejs.org/en/download/
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(continued from previous page)

problem_type="binary",
objective="f1",
max_batches=2,
verbose=True,

)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type

When we call search(), the search for the best pipeline will begin. There is no need to wrangle with missing data
or categorical variables as EvalML includes various preprocessing steps (like imputation, one-hot encoding, feature
selection) to ensure you’re getting the best results. As long as your data is in a single table, EvalML can handle it. If
not, you can reduce your data to a single table by utilizing Featuretools and its Entity Sets.

You can find more information on pipeline components and how to integrate your own custom pipelines into EvalML
here.

[6]: automl.search(interactive_plot=False)

*****************************
* Beginning pipeline search *
*****************************

Optimizing for F1.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean F1: 0.000

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:

Starting cross validation
Finished cross validation - mean F1: 0.663

*****************************
* Evaluating Batch Number 2 *
*****************************

[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000061 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 217

(continues on next page)
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(continued from previous page)

[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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(continued from previous page)

[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 215
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 208
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.589

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.376

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.395

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.690

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean F1: 0.231

Search finished after 24.64 seconds
Best pipeline: XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer␣
→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select␣
→˓Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot␣
→˓Encoder + Oversampler
Best pipeline F1: 0.689744

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html
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[6]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 4.420398950576782,
'Total time of batch': 4.553422451019287},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.093733310699463,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.7492175102233887,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 3.8640635013580322,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.882181406021118,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 4.927713394165039,
'Total time of batch': 19.325172424316406}}

If you would like to suppress stdout output, set verbose=False. This is also the default behavior for AutoMLSearch
if verbose is not specified.

Also, if you would like to see the interactive plot update dynamically over time as the search progresses, either remove
the parameter or set interactive_plot=True. This is the default setting for search() if interactive_plot is
not specified (it is set to False here due to documentation workaround).

[7]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="f1",
max_batches=2,
verbose=False,

)
automl.search()

[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 217
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000050 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 215
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11 (continues on next page)
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[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 23, number of negative: 94
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000049 seconds. (continues on next page)
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You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 208
[LightGBM] [Info] Number of data points in the train set: 117, number of used features:␣
→˓11
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.196581 -> initscore=-1.407801
[LightGBM] [Info] Start training from score -1.407801
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[7]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 4.402799606323242,
'Total time of batch': 4.530266761779785},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.86154842376709,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.878255605697632,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 3.7158679962158203,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.855485677719116,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.5774405002593994,
'Total time of batch': 17.690229415893555}}

We also provide a standalone searchmethod which does all of the above in a single line, and returns the AutoMLSearch
instance and data check results. If there were data check errors, AutoML will not be run and no AutoMLSearch instance
will be returned.

After the search is finished we can view all of the pipelines searched, ranked by score. Internally, EvalML performs cross
validation to score the pipelines. If it notices a high variance across cross validation folds, it will warn you. EvalML
also provides additional data checks to analyze your data to assist you in producing the best performing pipeline.

[8]: automl.rankings

[8]: id pipeline_name search_order \
0 5 XGBoost Classifier w/ Label Encoder + Select C... 5
1 1 Random Forest Classifier w/ Label Encoder + Dr... 1
2 2 LightGBM Classifier w/ Label Encoder + Select ... 2
3 4 Elastic Net Classifier w/ Label Encoder + Sele... 4
4 3 Extra Trees Classifier w/ Label Encoder + Sele... 3
5 6 Logistic Regression Classifier w/ Label Encode... 6
6 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.689744 0.689744 0.165041
1 0.663337 0.663337 0.263244
2 0.588889 0.588889 0.083887
3 0.395153 0.395153 0.183837
4 0.376068 0.376068 0.074019

(continues on next page)
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5 0.231260 0.231260 0.035912
6 0.000000 0.000000 0.000000

percent_better_than_baseline high_variance_cv \
0 68.974359 False
1 66.333666 False
2 58.888889 False
3 39.515251 False
4 37.606838 False
5 23.125997 False
6 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'N...
1 {'Label Encoder': {'positive_label': None}, 'D...
2 {'Label Encoder': {'positive_label': None}, 'N...
3 {'Label Encoder': {'positive_label': None}, 'N...
4 {'Label Encoder': {'positive_label': None}, 'N...
5 {'Label Encoder': {'positive_label': None}, 'N...
6 {'Label Encoder': {'positive_label': None}, 'B...

If we are interested in see more details about the pipeline, we can view a summary description using the id from the
rankings table:

[9]: automl.describe_pipeline(3)

*******************************************************************************************************************************************************************************************************************************************************************************
* Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler *
*******************************************************************************************************************************************************************************************************************************************************************************

Problem Type: binary
Model Family: Extra Trees

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Select Columns By Type Transformer

* column_types : ['category', 'EmailAddress', 'URL']
* exclude : True

3. Label Encoder
* positive_label : None

4. Drop Columns Transformer
* columns : ['currency']

5. DateTime Featurizer
* features_to_extract : ['year', 'month', 'day_of_week', 'hour']
* encode_as_categories : False
* time_index : None

6. Imputer
(continues on next page)
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* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

7. Select Columns Transformer
* columns : ['card_id', 'store_id', 'amount', 'customer_present', 'lat', 'lng',

→˓'datetime_month', 'datetime_day_of_week', 'datetime_hour', 'expiration_date_year',
→˓'expiration_date_day_of_week']
8. Select Columns Transformer

* columns : ['provider', 'region', 'country']
9. Label Encoder

* positive_label : None
10. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

11. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

12. Oversampler
* sampling_ratio : 0.25
* k_neighbors_default : 5
* n_jobs : -1
* sampling_ratio_dict : None
* categorical_features : [3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

→˓ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
* k_neighbors : 5

13. Extra Trees Classifier
* n_estimators : 100
* max_features : sqrt
* max_depth : 6
* min_samples_split : 2
* min_weight_fraction_leaf : 0.0
* n_jobs : -1

Training
========
Training for binary problems.
Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
→˓standard_metrics.F1 object at 0x7efdf31a6040>
Total training time (including CV): 3.9 seconds

Cross Validation

(continues on next page)
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----------------
F1 MCC Binary Log Loss Binary Gini AUC Precision Balanced Accuracy␣

→˓Binary Accuracy Binary # Training # Validation
0 0.462 0.421 0.342 0.394 0.697 0.600 ␣
→˓ 0.671 0.896 133 67
1 0.333 0.296 0.341 0.352 0.676 0.500 ␣
→˓ 0.608 0.881 133 67
2 0.333 0.273 0.355 0.361 0.680 0.400 ␣
→˓ 0.617 0.879 134 66
mean 0.376 0.330 0.346 0.369 0.684 0.500 ␣
→˓ 0.632 0.885 - -
std 0.074 0.080 0.008 0.022 0.011 0.100 ␣
→˓ 0.034 0.009 - -
coef of var 0.197 0.241 0.023 0.060 0.016 0.200 ␣
→˓ 0.053 0.010 - -

We can also view the pipeline parameters directly:

[10]: pipeline = automl.get_pipeline(3)
print(pipeline.parameters)

{'Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Select Columns By Type␣
→˓Transformer': {'column_types': ['category', 'EmailAddress', 'URL'], 'exclude': True},
→˓'Numeric Pipeline - Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Drop␣
→˓Columns Transformer': {'columns': ['currency']}, 'Numeric Pipeline - DateTime␣
→˓Featurizer': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_
→˓as_categories': False, 'time_index': None}, 'Numeric Pipeline - Imputer': {
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select Columns␣
→˓Transformer': {'columns': ['card_id', 'store_id', 'amount', 'customer_present', 'lat',
→˓'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour', 'expiration_date_year
→˓', 'expiration_date_day_of_week']}, 'Categorical Pipeline - Select Columns Transformer
→˓': {'columns': ['provider', 'region', 'country']}, 'Categorical Pipeline - Label␣
→˓Encoder': {'positive_label': None}, 'Categorical Pipeline - Imputer': {'categorical_
→˓impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_
→˓strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓ 'boolean_fill_value': None}, 'Categorical Pipeline - One Hot Encoder': {'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features
→˓': [3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,␣
→˓31, 32, 33, 34, 35, 36, 37, 38, 39, 40], 'k_neighbors': 5}, 'Extra Trees Classifier': {
→˓'n_estimators': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_split': 2,
→˓'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}

We can now select the best pipeline and score it on our holdout data:

[11]: pipeline = automl.best_pipeline
pipeline.score(X_holdout, y_holdout, ["f1"])

[11]: OrderedDict([('F1', 0.8)])

We can also visualize the structure of the components contained by the pipeline:
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[12]: pipeline.graph()

[12]:
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THREE

TUTORIALS

Below are examples of how to apply EvalML to a variety of problems:

3.1 Building a Fraud Prediction Model with EvalML

In this demo, we will build an optimized fraud prediction model using EvalML. To optimize the pipeline, we will set
up an objective function to minimize the percentage of total transaction value lost to fraud. At the end of this demo,
we also show you how introducing the right objective during the training results in a much better than using a generic
machine learning metric like AUC.

[1]: import evalml
from evalml import AutoMLSearch
from evalml.objectives import FraudCost

3.1.1 Configure “Cost of Fraud”

To optimize the pipelines toward the specific business needs of this model, we can set our own assumptions for the cost
of fraud. These parameters are

• retry_percentage - what percentage of customers will retry a transaction if it is declined?

• interchange_fee - how much of each successful transaction do you collect?

• fraud_payout_percentage - the percentage of fraud will you be unable to collect

• amount_col - the column in the data the represents the transaction amount

Using these parameters, EvalML determines attempt to build a pipeline that will minimize the financial loss due to
fraud.

[2]: fraud_objective = FraudCost(
retry_percentage=0.5,
interchange_fee=0.02,
fraud_payout_percentage=0.75,
amount_col="amount",

)
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3.1.2 Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as the
holdout set.

[3]: X, y = evalml.demos.load_fraud(n_rows=5000)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 5000
Targets
False 86.20%
True 13.80%
Name: count, dtype: object

EvalML natively supports one-hot encoding. Here we keep 1 out of the 6 categorical columns to decrease computation
time.

[4]: cols_to_drop = ["datetime", "expiration_date", "country", "region", "provider"]
for col in cols_to_drop:

X.ww.pop(col)

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

X.ww

[4]: Physical Type Logical Type Semantic Tag(s)
Column
card_id int64 Integer ['numeric']
store_id int64 Integer ['numeric']
amount int64 Integer ['numeric']
currency category Categorical ['category']
customer_present bool Boolean []
lat float64 Double ['numeric']
lng float64 Double ['numeric']

Because the fraud labels are binary, we will use AutoMLSearch(X_train=X_train, y_train=y_train,
problem_type='binary'). When we call .search(), the search for the best pipeline will begin.

[5]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=fraud_objective,
additional_objectives=["auc", "f1", "precision"],
allowed_model_families=["random_forest", "linear_model"],
max_batches=1,
optimize_thresholds=True,
verbose=True,

)
(continues on next page)
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automl.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Fraud Cost.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Fraud Cost: 0.790

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Fraud Cost: 0.009

Search finished after 5.79 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model
Best pipeline Fraud Cost: 0.008649

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[5]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 4.613372325897217,
'Total time of batch': 4.743490219116211}}
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View rankings and select pipelines

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the fraud
detection objective we defined.

[6]: automl.rankings

[6]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.008649 0.008649 0.000789
1 0.789648 0.789648 0.001136

percent_better_than_baseline high_variance_cv \
0 78.099995 False
1 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

[7]: best_pipeline = automl.best_pipeline

Describe pipelines

We can get more details about any pipeline created during the search process, including how it performed on other
objective functions, by calling the describe_pipeline method and passing the id of the pipeline of interest.

[8]: automl.describe_pipeline(automl.rankings.iloc[1]["id"])

************************************************
* Mode Baseline Binary Classification Pipeline *
************************************************

Problem Type: binary
Model Family: Baseline

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Baseline Classifier

* strategy : mode

Training
========
Training for binary problems.
Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
→˓fraud_cost.FraudCost object at 0x7f31744450a0>

(continues on next page)
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Total training time (including CV): 0.9 seconds

Cross Validation
----------------

Fraud Cost AUC F1 Precision # Training # Validation
0 0.791 0.500 0.000 0.000 2,666 1,334
1 0.789 0.500 0.000 0.000 2,667 1,333
2 0.789 0.500 0.000 0.000 2,667 1,333
mean 0.790 0.500 0.000 0.000 - -
std 0.001 0.000 0.000 0.000 - -
coef of var 0.001 0.000 inf inf - -

3.1.3 Evaluate on holdout data

Finally, since the best pipeline is already trained, we evaluate it on the holdout data.

Now, we can score the pipeline on the holdout data using both our fraud cost objective and the AUC (Area under the
ROC Curve) objective.

[9]: best_pipeline.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

[9]: OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.008257252890414273)])

3.1.4 Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the fraud cost objective to see how
the best pipelines compare.

[10]: automl_auc = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="auc",
additional_objectives=["f1", "precision"],
max_batches=1,
allowed_model_families=["random_forest", "linear_model"],
optimize_thresholds=True,
verbose=True,

)

automl_auc.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for AUC.
(continues on next page)
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Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean AUC: 0.500

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean AUC: 0.852

Search finished after 4.76 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model
Best pipeline AUC: 0.852091

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[10]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 4.090299367904663,
'Total time of batch': 4.220022916793823}}

Like before, we can look at the rankings of all of the pipelines searched and pick the best pipeline.

[11]: automl_auc.rankings

[11]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.852091 0.852091 0.004235
1 0.500000 0.500000 0.000000

percent_better_than_baseline high_variance_cv \
0 35.20905 False
1 0.00000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

34 Chapter 3. Tutorials



EvalML Documentation, Release 0.80.0

[12]: best_pipeline_auc = automl_auc.best_pipeline

[13]: # get the fraud score on holdout data
best_pipeline_auc.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

[13]: OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.025729330840169453)])

[14]: # fraud score on fraud optimized again
best_pipeline.score(X_holdout, y_holdout, objectives=["auc", fraud_objective])

[14]: OrderedDict([('AUC', 0.8673290964726453),
('Fraud Cost', 0.008257252890414273)])

When we optimize for AUC, we can see that the AUC score from this pipeline performs better compared to the AUC
score from the pipeline optimized for fraud cost; however, the losses due to fraud are a much larger percentage of the
total transaction amount when optimized for AUC and much smaller when optimized for fraud cost. As a result, we
lose a noticable percentage of the total transaction amount by not optimizing for fraud cost specifically.

Optimizing for AUC does not take into account the user-specified retry_percentage, interchange_fee,
fraud_payout_percentage values, which could explain the decrease in fraud performance. Thus, the best pipelines
may produce the highest AUC but may not actually reduce the amount loss due to your specific type fraud.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

3.2 Building a Lead Scoring Model with EvalML

In this demo, we will build an optimized lead scoring model using EvalML. To optimize the pipeline, we will set
up an objective function to maximize the revenue generated with true positives while taking into account the cost of
false positives. At the end of this demo, we also show you how introducing the right objective during the training is
significantly better than using a generic machine learning metric like AUC.

[1]: import evalml
from evalml import AutoMLSearch
from evalml.objectives import LeadScoring

3.2.1 Configure LeadScoring

To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for how
much value is gained through true positives and the cost associated with false positives. These parameters are

• true_positive - dollar amount to be gained with a successful lead

• false_positive - dollar amount to be lost with an unsuccessful lead

Using these parameters, EvalML builds a pileline that will maximize the amount of revenue per lead generated.

[2]: lead_scoring_objective = LeadScoring(true_positives=100, false_positives=-5)
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3.2.2 Dataset

We will be utilizing a dataset detailing a customer’s job, country, state, zip, online action, the dollar amount of that
action and whether they were a successful lead.

[3]: from urllib.request import urlopen
import pandas as pd
import woodwork as ww

customers_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/customers.csv"

)
interactions_data = urlopen(

"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/interactions.csv"
)
leads_data = urlopen(

"https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/previous_leads.csv"
)
customers = pd.read_csv(customers_data)
interactions = pd.read_csv(interactions_data)
leads = pd.read_csv(leads_data)

X = customers.merge(interactions, on="customer_id").merge(leads, on="customer_id")
y = X["label"]
X = X.drop(

[
"customer_id",
"date_registered",
"birthday",
"phone",
"email",
"owner",
"company",
"id",
"time_x",
"session",
"referrer",
"time_y",
"label",
"country",

],
axis=1,

)
display(X.head())

job state zip action amount
0 Engineer, mining NY 60091.0 page_view NaN
1 Psychologist, forensic CA NaN purchase 135.23
2 Psychologist, forensic CA NaN page_view NaN
3 Air cabin crew NaN 60091.0 download NaN
4 Air cabin crew NaN 60091.0 page_view NaN

We will convert our data into Woodwork data structures. Doing so enables us to have more control over the types
passed to and inferred by AutoML.
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[4]: X.ww.init(semantic_tags={"job": "category"}, logical_types={"job": "Categorical"})
y = ww.init_series(y)
X.ww

[4]: Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ['numeric']
action category Categorical ['category']
amount float64 Double ['numeric']

3.2.3 Search for the best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

EvalML natively supports one-hot encoding and imputation so the above NaN and categorical values will be taken care
of.

[5]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

X.ww

[5]: Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ['numeric']
action category Categorical ['category']
amount float64 Double ['numeric']

Because the lead scoring labels are binary, we will use set the problem type to “binary”. When we call .search(),
the search for the best pipeline will begin.

[6]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=lead_scoring_objective,
additional_objectives=["auc"],
allowed_model_families=["extra_trees", "linear_model"],
max_batches=2,
verbose=True,

)

automl.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *

(continues on next page)
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*****************************

Optimizing for Lead Scoring.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Lead Scoring: 0.000

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.360

*****************************
* Evaluating Batch Number 2 *
*****************************

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.213

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.235

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Lead Scoring: 1.214

Search finished after 17.87 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model
Best pipeline Lead Scoring: 1.360457
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Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[6]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 4.496005296707153,
'Total time of batch': 4.62613844871521},

2: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer +␣
→˓Label Encoder + Imputer + One Hot Encoder + Oversampler': 3.541353464126587,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler
→˓': 3.5064241886138916,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler': 4.952641487121582,
'Total time of batch': 12.488134145736694}}

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the lead
scoring objective we defined.

[7]: automl.rankings

[7]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Im... 1
1 3 Elastic Net Classifier w/ Label Encoder + Sele... 3
2 4 Logistic Regression Classifier w/ Label Encode... 4
3 2 Extra Trees Classifier w/ Label Encoder + Sele... 2
4 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 1.360457 1.360457 0.590666
1 1.234589 1.234589 0.430687
2 1.214160 1.214160 0.395051
3 1.213167 1.213167 0.709773
4 0.000000 0.000000 0.000000

percent_better_than_baseline high_variance_cv \
0 inf False
1 inf False
2 inf False
3 inf False
4 0.0 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'N...
3 {'Label Encoder': {'positive_label': None}, 'N...

(continues on next page)
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4 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

[8]: best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline, including how it performed on other objective functions by calling .
describe_pipeline() and specifying the id of the pipeline.

[9]: automl.describe_pipeline(automl.rankings.iloc[0]["id"])

*************************************************************************************************************************
* Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler +␣
→˓RF Classifier Select From Model *
*************************************************************************************************************************

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

3. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

4. Oversampler
* sampling_ratio : 0.25
* k_neighbors_default : 5
* n_jobs : -1
* sampling_ratio_dict : None
* categorical_features : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,␣

→˓17, 18, 19, 20]
* k_neighbors : 5

5. RF Classifier Select From Model
* number_features : None
* n_estimators : 10
* max_depth : None

(continues on next page)
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* percent_features : 0.5
* threshold : median
* n_jobs : -1

6. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.
→˓lead_scoring.LeadScoring object at 0x7fc85b076e20>
Total training time (including CV): 4.5 seconds

Cross Validation
----------------

Lead Scoring AUC # Training # Validation
0 2.032 0.700 3,099 1,550
1 0.923 0.593 3,099 1,550
2 1.127 0.643 3,100 1,549
mean 1.360 0.646 - -
std 0.591 0.053 - -
coef of var 0.434 0.083 - -

3.2.4 Evaluate on hold out

Finally, since the best pipeline was trained on all of the training data, we evaluate it on the holdout dataset.

[10]: best_pipeline_score = best_pipeline.score(
X_holdout, y_holdout, objectives=["auc", lead_scoring_objective]

)
best_pipeline_score

[10]: OrderedDict([('AUC', 0.6425506195225144),
('Lead Scoring', 1.5219260533104042)])

3.2.5 Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the lead scoring objective to see
how the best pipelines compare.

[11]: automl_auc = evalml.AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="auc",
additional_objectives=[lead_scoring_objective],
allowed_model_families=["extra_trees", "linear_model"],

(continues on next page)
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max_batches=2,
verbose=True,

)

automl_auc.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for AUC.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean AUC: 0.500

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean AUC: 0.646

*****************************
* Evaluating Batch Number 2 *
*****************************

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean AUC: 0.653

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean AUC: 0.645

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler:

(continues on next page)
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Starting cross validation
Finished cross validation - mean AUC: 0.647

Search finished after 20.02 seconds
Best pipeline: Extra Trees Classifier w/ Label Encoder + Select Columns By Type␣
→˓Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler
Best pipeline AUC: 0.653133

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[11]: {1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler + RF Classifier Select From Model': 5.412939071655273,
'Total time of batch': 5.542449712753296},

2: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer +␣
→˓Label Encoder + Imputer + One Hot Encoder + Oversampler': 4.82740044593811,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler
→˓': 4.414789915084839,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select␣
→˓Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler +␣
→˓Oversampler': 4.230565309524536,
'Total time of batch': 13.954521894454956}}

[12]: automl_auc.rankings

[12]: id pipeline_name search_order \
0 2 Extra Trees Classifier w/ Label Encoder + Sele... 2
1 4 Logistic Regression Classifier w/ Label Encode... 4
2 1 Random Forest Classifier w/ Label Encoder + Im... 1
3 3 Elastic Net Classifier w/ Label Encoder + Sele... 3
4 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.653133 0.653133 0.058096
1 0.646823 0.646823 0.043723
2 0.645598 0.645598 0.053493
3 0.645471 0.645471 0.042740
4 0.500000 0.500000 0.000000

percent_better_than_baseline high_variance_cv \
0 15.313288 False
1 14.682289 False
2 14.559799 False
3 14.547088 False
4 0.000000 False

parameters
(continues on next page)
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0 {'Label Encoder': {'positive_label': None}, 'N...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'I...
3 {'Label Encoder': {'positive_label': None}, 'N...
4 {'Label Encoder': {'positive_label': None}, 'B...

Like before, we can look at the rankings and pick the best pipeline.

[13]: best_pipeline_auc = automl_auc.best_pipeline

[14]: # get the AUC and lead scoring score on holdout data
best_pipeline_auc_score = best_pipeline_auc.score(

X_holdout, y_holdout, objectives=["auc", lead_scoring_objective]
)
best_pipeline_auc_score

[14]: OrderedDict([('AUC', 0.6407071622846781),
('Lead Scoring', 0.21066208082545143)])

[15]: assert best_pipeline_score["Lead Scoring"] >= best_pipeline_auc_score["Lead Scoring"]
assert best_pipeline_auc_score["Lead Scoring"] >= 0

When we optimize for AUC, we can see that the AUC score from this pipeline is similar to the AUC score from the
pipeline optimized for lead scoring. However, the revenue per lead is much smaller per lead when optimized for AUC
and was much larger when optimized for lead scoring. As a result, we would have a huge gain on the amount of revenue
if we optimized for lead scoring.

This happens because optimizing for AUC does not take into account the user-specified true_positive (dollar amount
to be gained with a successful lead) and false_positive (dollar amount to be lost with an unsuccessful lead) values.
Thus, the best pipelines may produce the highest AUC but may not actually generate the most revenue through lead
scoring.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

3.3 Using the Cost-Benefit Matrix Objective

The Cost-Benefit Matrix (CostBenefitMatrix) objective is an objective that assigns costs to each of the quadrants
of a confusion matrix to quantify the cost of being correct or incorrect.

3.3.1 Confusion Matrix

Confusion matrices are tables that summarize the number of correct and incorrectly-classified predictions, broken down
by each class. They allow us to quickly understand the performance of a classification model and where the model gets
“confused” when it is making predictions. For the binary classification problem, there are four possible combinations
of prediction and actual target values possible:

• true positives (correct positive assignments)

• true negatives (correct negative assignments)

• false positives (incorrect positive assignments)

• false negatives (incorrect negative assignments)
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An example of how to calculate a confusion matrix can be found here.

3.3.2 Cost-Benefit Matrix

Although the confusion matrix is an incredibly useful visual for understanding our model, each prediction that is
correctly or incorrectly classified is treated equally. For example, for detecting breast cancer, the confusion matrix does
not take into consideration that it could be much more costly to incorrectly classify a malignant tumor as benign than
it is to incorrectly classify a benign tumor as malignant. This is where the cost-benefit matrix shines: it uses the cost
of each of the four possible outcomes to weigh each outcome differently. By scoring using the cost-benefit matrix, we
can measure the score of the model by a concrete unit that is more closely related to the goal of the model. In the below
example, we will show how the cost-benefit matrix objective can be used, and how it can give us better real-world
impact when compared to using other standard machine learning objectives.

3.3.3 Customer Churn Example

Data

In this example, we will be using a customer churn data set taken from Kaggle.

This dataset includes records of over 7000 customers, and includes customer account information, demographic infor-
mation, services they signed up for, and whether or not the customer “churned” or left within the last month.

The target we want to predict is whether the customer churned (“Yes”) or did not churn (“No”). In the dataset, approxi-
mately 73.5% of customers did not churn, and 26.5% did. We will refer to the customers who churned as the “positive”
class and the customers who did not churn as the “negative” class.

[1]: from evalml.demos.churn import load_churn
from evalml.preprocessing import split_data

X, y = load_churn()
X.ww.set_types(

{"PaymentMethod": "Categorical", "Contract": "Categorical"}
) # Update data types Woodwork did not correctly infer
X_train, X_holdout, y_train, y_holdout = split_data(

X, y, problem_type="binary", test_size=0.3, random_seed=0
)

Number of Features
Categorical 16
Numeric 3

Number of training examples: 7043
Targets
No 73.46%
Yes 26.54%
Name: count, dtype: object

In this example, let’s say that correctly identifying customers who will churn (true positive case) will give us a net
profit of \$400, because it allows us to intervene, incentivize the customer to stay, and sign a new contract. Incorrectly
classifying customers who were not going to churn as customers who will churn (false positive case) will cost \$100
to represent the marketing and effort used to try to retain the user. Not identifying customers who will churn (false
negative case) will cost us \$200 to represent the lost in revenue from losing a customer. Finally, correctly identifying
customers who will not churn (true negative case) will not cost us anything ($0), as nothing needs to be done for that
customer.
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We can represent these values in our CostBenefitMatrix objective, where a negative value represents a cost and a
positive value represents a profit–note that this means that the greater the score, the more profit we will make.

[2]: from evalml.objectives import CostBenefitMatrix

cost_benefit_matrix = CostBenefitMatrix(
true_positive=400, true_negative=0, false_positive=-100, false_negative=-200

)

AutoML Search with Log Loss

First, let us run AutoML search to train pipelines using the default objective for binary classification (log loss).

[3]: from evalml import AutoMLSearch

automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective="log loss binary",
max_iterations=5,
verbose=True,

)
automl.search(interactive_plot=False)

ll_pipeline = automl.best_pipeline
ll_pipeline.score(X_holdout, y_holdout, ["log loss binary"])

AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 5 pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 9.563

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + RF Classifier␣
→˓Select From Model:

Starting cross validation
(continues on next page)
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Finished cross validation - mean Log Loss Binary: 0.424

*****************************
* Evaluating Batch Number 2 *
*****************************

[LightGBM] [Info] Number of positive: 697, number of negative: 1931
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000224 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2628, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265221 -> initscore=-1.019008
[LightGBM] [Info] Start training from score -1.019008
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000217 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000212 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.472

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.431

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.424

(continues on next page)
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Search finished after 14.47 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder +␣
→˓RF Classifier Select From Model
Best pipeline Log Loss Binary: 0.423684

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[3]: OrderedDict([('Log Loss Binary', 0.4180258787635931)])

When we train our pipelines using log loss as our primary objective, we try to find pipelines that minimize log loss.
However, our ultimate goal in training models is to find a model that gives us the most profit, so let’s score our pipeline
on the cost benefit matrix (using the costs outlined above) to determine the profit we would earn from the predictions
made by this model:

[4]: ll_pipeline_score = ll_pipeline.score(X_holdout, y_holdout, [cost_benefit_matrix])
print(ll_pipeline_score)

OrderedDict([('Cost Benefit Matrix', 31.187884524372926)])

[5]: # Calculate total profit across all customers using pipeline optimized for Log Loss
total_profit_ll = ll_pipeline_score["Cost Benefit Matrix"] * len(X)
print(total_profit_ll)

219656.27070515853

AutoML Search with Cost-Benefit Matrix

Let’s try rerunning our AutoML search, but this time using the cost-benefit matrix as our primary objective to optimize.

[6]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
objective=cost_benefit_matrix,
max_iterations=5,
verbose=True,

)
automl.search(interactive_plot=False)

cbm_pipeline = automl.best_pipeline

AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Cost Benefit Matrix.
Greater score is better.

Using SequentialEngine to train and score pipelines.
(continues on next page)
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Searching up to 5 pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: -53.063

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + RF Classifier␣
→˓Select From Model:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 56.796

*****************************
* Evaluating Batch Number 2 *
*****************************

[LightGBM] [Info] Number of positive: 697, number of negative: 1931
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000216 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2628, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265221 -> initscore=-1.019008
[LightGBM] [Info] Start training from score -1.019008
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000212 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
[LightGBM] [Info] Number of positive: 697, number of negative: 1932
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000214 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 637
[LightGBM] [Info] Number of data points in the train set: 2629, number of used features:␣
→˓30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.265120 -> initscore=-1.019526
[LightGBM] [Info] Start training from score -1.019526
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

(continues on next page)
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Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 52.942

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label␣
→˓Encoder + Imputer + One Hot Encoder:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 57.892

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns␣
→˓Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler:

Starting cross validation
Finished cross validation - mean Cost Benefit Matrix: 58.743

Search finished after 19.52 seconds
Best pipeline: Elastic Net Classifier w/ Label Encoder + Select Columns By Type␣
→˓Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer +␣
→˓Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard␣
→˓Scaler
Best pipeline Cost Benefit Matrix: 58.743007

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Now, if we calculate the cost-benefit matrix score on our best pipeline, we see that with this pipeline optimized for
our cost-benefit matrix objective, we are able to generate more profit per customer. Across our 7043 customers, we
generate much more profit using this best pipeline! Custom objectives like CostBenefitMatrix are just one example
of how using EvalML can help find pipelines that can perform better on real-world problems, rather than on arbitrary
standard statistical metrics.

[7]: cbm_pipeline_score = cbm_pipeline.score(X_holdout, y_holdout, [cost_benefit_matrix])
print(cbm_pipeline_score)

OrderedDict([('Cost Benefit Matrix', 62.091812588736396)])

[8]: # Calculate total profit across all customers using pipeline optimized for␣
→˓CostBenefitMatrix
total_profit_cbm = cbm_pipeline_score["Cost Benefit Matrix"] * len(X)
print(total_profit_cbm)

437312.63606247044

[9]: # Calculate difference in profit made using both pipelines
profit_diff = total_profit_cbm - total_profit_ll
print(profit_diff)

217656.3653573119

Finally, we can graph the confusion matrices for both pipelines to better understand why the pipeline trained using
the cost-benefit matrix is able to correctly classify more samples than the pipeline trained with log loss: we were able
to correctly predict more cases where the customer would have churned (true positive), allowing us to intervene and
prevent those customers from leaving.
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[10]: from evalml.model_understanding.metrics import graph_confusion_matrix

# pipeline trained with log loss
y_pred = ll_pipeline.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[11]: # pipeline trained with cost-benefit matrix
y_pred = cbm_pipeline.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

3.4 Using Text Data with EvalML

In this demo, we will show you how to use EvalML to build models which use text data.

[1]: import evalml
from evalml import AutoMLSearch

3.4.1 Dataset

We will be utilizing a dataset of SMS text messages, some of which are categorized as spam, and others which are not
(“ham”). This dataset is originally from Kaggle, but modified to produce a slightly more even distribution of spam to
ham.

[2]: from urllib.request import urlopen
import pandas as pd

input_data = urlopen(
"https://featurelabs-static.s3.amazonaws.com/spam_text_messages_modified.csv"

)
data = pd.read_csv(input_data)[:750]

X = data.drop(["Category"], axis=1)
y = data["Category"]

display(X.head())

Message
0 Free entry in 2 a wkly comp to win FA Cup fina...
1 FreeMsg Hey there darling it's been 3 week's n...
2 WINNER!! As a valued network customer you have...
3 Had your mobile 11 months or more? U R entitle...
4 SIX chances to win CASH! From 100 to 20,000 po...
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The ham vs spam distribution of the data is 3:1, so any machine learning model must get above 75% accuracy in order
to perform better than a trivial baseline model which simply classifies everything as ham.

[3]: y.value_counts(normalize=True)

[3]: Category
spam 0.593333
ham 0.406667
Name: proportion, dtype: float64

In order to properly utilize Woodwork’s ‘Natural Language’ typing, we need to pass this argument in during initializa-
tion. Otherwise, this will be treated as an ‘Unknown’ type and dropped in the search.

[4]: X.ww.init(logical_types={"Message": "NaturalLanguage"})

3.4.2 Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

[5]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

EvalML uses Woodwork to automatically detect which columns are text columns, so you can run search normally, as
you would if there was no text data. We can print out the logical type of the Message column and assert that it is indeed
inferred as a natural language column.

[6]: X_train.ww

[6]: Physical Type Logical Type Semantic Tag(s)
Column
Message string NaturalLanguage []

Because the spam/ham labels are binary, we will use AutoMLSearch(X_train=X_train, y_train=y_train,
problem_type='binary'). When we call .search(), the search for the best pipeline will begin.

[7]: automl = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
max_batches=1,
optimize_thresholds=True,
verbose=True,

)

automl.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

(continues on next page)
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Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 14.658

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.249

Search finished after 7.75 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Natural Language Featurizer +␣
→˓Imputer + RF Classifier Select From Model
Best pipeline Log Loss Binary: 0.248763

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[7]: {1: {'Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer␣
→˓+ RF Classifier Select From Model': 6.920387506484985,
'Total time of batch': 7.049400806427002}}

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched.

[8]: automl.rankings

[8]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Na... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.248763 0.248763 0.056686
1 14.657752 14.657752 0.104049

percent_better_than_baseline high_variance_cv \
0 98.302858 False
1 0.000000 False

(continues on next page)
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parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

[9]: best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline, including how it performed on other objective functions.

[10]: automl.describe_pipeline(automl.rankings.iloc[0]["id"])

***********************************************************************************************************************
* Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model *
***********************************************************************************************************************

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Natural Language Featurizer
3. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

4. RF Classifier Select From Model
* number_features : None
* n_estimators : 10
* max_depth : None
* percent_features : 0.5
* threshold : median
* n_jobs : -1

5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 6.9 seconds

(continues on next page)
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Cross Validation
----------------

Log Loss Binary MCC Binary Gini AUC Precision F1 Balanced Accuracy␣
→˓Binary Accuracy Binary # Training # Validation
0 0.251 0.793 0.917 0.958 0.930 0.868 ␣
→˓ 0.886 0.900 400 200
1 0.191 0.844 0.964 0.982 0.934 0.904 ␣
→˓ 0.917 0.925 400 200
2 0.304 0.782 0.900 0.950 0.886 0.870 ␣
→˓ 0.889 0.895 400 200
mean 0.249 0.806 0.927 0.963 0.917 0.881 ␣
→˓ 0.897 0.907 - -
std 0.057 0.033 0.033 0.017 0.027 0.020 ␣
→˓ 0.017 0.016 - -
coef of var 0.228 0.041 0.036 0.017 0.029 0.023 ␣
→˓ 0.019 0.018 - -

[11]: best_pipeline.graph()

[11]:

Notice above that there is a Natural Language Featurizer as the first step in the pipeline. AutoMLSearch uses
the woodwork accessor to recognize that 'Message' is a text column, and converts this text into numerical values that
can be handled by the estimator.

3.4.3 Evaluate on holdout

Now, we can score the pipeline on the holdout data using the ranking objectives for binary classification problems.

[12]: scores = best_pipeline.score(
X_holdout, y_holdout, objectives=evalml.objectives.get_ranking_objectives("binary")

)
print(f'Accuracy Binary: {scores["Accuracy Binary"]}')

Accuracy Binary: 0.9333333333333333

As you can see, this model performs relatively well on this dataset, even on unseen data.

3.4.4 What does the Natural Language Featurizer do?

Machine learning models cannot handle non-numeric data. Any text must be broken down into numeric features that
provide useful information about that text. The Natural Natural Language Featurizer first normalizes your text by
removing any punctuation and other non-alphanumeric characters and converting any capital letters to lowercase. From
there, it passes the text into featuretools’ nlp_primitives dfs search, resulting in several informative features that replace
the original column in your dataset: Diversity Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic
Analysis), Number of Characters, and Number of Words.

Diversity Score is the ratio of unique words to total words.

Mean Characters per Word is the average number of letters in each word.

Polarity Score is a prediction of how “polarized” the text is, on a scale from -1 (extremely negative) to 1 (extremely
positive).
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Latent Semantic Analysis is an abstract representation of how important each word is with respect to the entire text,
reduced down into two values per text. While the other text features are each a single column, this feature adds two
columns to your data, LSA(column_name)[0] and LSA(column_name)[1].

Number of Characters is the number of characters in the text.

Number of Words is the number of words in the text.

Let’s see what this looks like with our spam/ham example.

[13]: best_pipeline.input_feature_names

[13]: {'Label Encoder': ['Message'],
'Natural Language Featurizer': ['Message'],
'Imputer': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD(Message)',
'NUM_CHARACTERS(Message)',
'NUM_WORDS(Message)',
'POLARITY_SCORE(Message)',
'LSA(Message)[0]',
'LSA(Message)[1]'],
'RF Classifier Select From Model': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD(Message)',
'NUM_CHARACTERS(Message)',
'NUM_WORDS(Message)',
'POLARITY_SCORE(Message)',
'LSA(Message)[0]',
'LSA(Message)[1]'],
'Random Forest Classifier': ['DIVERSITY_SCORE(Message)',
'MEAN_CHARACTERS_PER_WORD(Message)',
'NUM_CHARACTERS(Message)',
'LSA(Message)[0]']}

Here, the Natural Language Featurizer takes in a single “Message” column, but then the next component in the pipeline,
the Imputer, receives five columns of input. These five columns are the result of featurizing the text-type “Message”
column. Most importantly, these featurized columns are what ends up passed in to the estimator.

If the dataset had any non-text columns, those would be left alone by this process. If the dataset had more than one text
column, each would be broken into these five feature columns independently.

The features, more directly

Rather than just checking the new column names, let’s examine the output of this component directly. We can see this
by running the component on its own.

[14]: natural_language_featurizer = evalml.pipelines.components.NaturalLanguageFeaturizer()
X_featurized = natural_language_featurizer.fit_transform(X_train)

Now we can compare the input data to the output from the Natural Language Featurizer:

[15]: X_train.head()

[15]: Message
296 Sunshine Hols. To claim ur med holiday send a ...
652 Yup ü not comin :-(
526 Hello hun how ru? Its here by the way. Im good...

(continues on next page)
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571 I tagged MY friends that you seemed to count a...
472 What happened to our yo date?

[16]: X_featurized.head()

[16]: DIVERSITY_SCORE(Message) MEAN_CHARACTERS_PER_WORD(Message) \
296 1.0 4.344828
652 1.0 3.000000
526 1.0 3.363636
571 0.8 4.083333
472 1.0 3.833333

NUM_CHARACTERS(Message) NUM_WORDS(Message) POLARITY_SCORE(Message) \
296 154.0 29.0 0.003
652 16.0 4.0 0.000
526 143.0 33.0 0.162
571 60.0 12.0 0.681
472 28.0 6.0 0.000

LSA(Message)[0] LSA(Message)[1]
296 0.150556 -0.072443
652 0.017340 -0.005411
526 0.169954 0.022670
571 0.144713 0.036799
472 0.109373 -0.042754

These numeric values now represent important information about the original text that the estimator at the end of the
pipeline can successfully use to make predictions.

3.4.5 Why encode text this way?

To demonstrate the importance of text-specific modeling, let’s train a model with the same dataset, without letting
AutoMLSearch detect the text column. We can change this by explicitly setting the data type of the 'Message'
column in Woodwork to Categorical using the utility method infer_feature_types.

[17]: from evalml.utils import infer_feature_types

X = infer_feature_types(X, {"Message": "Categorical"})
X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(

X, y, problem_type="binary", test_size=0.2, random_seed=0
)

[18]: automl_no_text = AutoMLSearch(
X_train=X_train,
y_train=y_train,
problem_type="binary",
max_batches=1,
optimize_thresholds=True,
verbose=True,

)

automl_no_text.search(interactive_plot=False)
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AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 14.658

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.249

Search finished after 6.02 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Natural Language Featurizer +␣
→˓Imputer + RF Classifier Select From Model
Best pipeline Log Loss Binary: 0.248763

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[18]: {1: {'Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer␣
→˓+ RF Classifier Select From Model': 5.368223667144775,
'Total time of batch': 5.497136116027832}}

Like before, we can look at the rankings and pick the best pipeline.

[19]: automl_no_text.rankings

[19]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Na... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.248763 0.248763 0.056686
1 14.657752 14.657752 0.104049

percent_better_than_baseline high_variance_cv \
0 98.302858 False

(continues on next page)
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1 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'I...
1 {'Label Encoder': {'positive_label': None}, 'B...

[20]: best_pipeline_no_text = automl_no_text.best_pipeline

Here, changing the data type of the text column removed the Natural Language Featurizer from the pipeline.

[21]: best_pipeline_no_text.graph()

[21]:

[22]: automl_no_text.describe_pipeline(automl_no_text.rankings.iloc[0]["id"])

***********************************************************************************************************************
* Random Forest Classifier w/ Label Encoder + Natural Language Featurizer + Imputer + RF␣
→˓Classifier Select From Model *
***********************************************************************************************************************

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Natural Language Featurizer
3. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

4. RF Classifier Select From Model
* number_features : None
* n_estimators : 10
* max_depth : None
* percent_features : 0.5
* threshold : median
* n_jobs : -1

5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 5.3 seconds

(continues on next page)
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Cross Validation
----------------

Log Loss Binary MCC Binary Gini AUC Precision F1 Balanced Accuracy␣
→˓Binary Accuracy Binary # Training # Validation
0 0.251 0.793 0.917 0.958 0.930 0.868 ␣
→˓ 0.886 0.900 400 200
1 0.191 0.844 0.964 0.982 0.934 0.904 ␣
→˓ 0.917 0.925 400 200
2 0.304 0.782 0.900 0.950 0.886 0.870 ␣
→˓ 0.889 0.895 400 200
mean 0.249 0.806 0.927 0.963 0.917 0.881 ␣
→˓ 0.897 0.907 - -
std 0.057 0.033 0.033 0.017 0.027 0.020 ␣
→˓ 0.017 0.016 - -
coef of var 0.228 0.041 0.036 0.017 0.029 0.023 ␣
→˓ 0.019 0.018 - -

[23]: # get standard performance metrics on holdout data
scores = best_pipeline_no_text.score(

X_holdout, y_holdout, objectives=evalml.objectives.get_ranking_objectives("binary")
)
print(f'Accuracy Binary: {scores["Accuracy Binary"]}')

Accuracy Binary: 0.9333333333333333

Without the Natural Language Featurizer, the 'Message' column was treated as a categorical column, and
therefore the conversion of this text to numerical features happened in the One Hot Encoder. The best pipeline
encoded the top 10 most frequent “categories” of these texts, meaning 10 text messages were one-hot encoded and
all the others were dropped. Clearly, this removed almost all of the information from the dataset, as we can see the
best_pipeline_no_text performs very similarly to randomly guessing “ham” in every case.

60 Chapter 3. Tutorials



CHAPTER

FOUR

USER GUIDE

These guides include in-depth descriptions and explanations of EvalML’s features.

4.1 Automated Machine Learning (AutoML) Search

4.1.1 Background

Machine Learning

Machine learning (ML) is the process of constructing a mathematical model of a system based on a sample dataset
collected from that system.

One of the main goals of training an ML model is to teach the model to separate the signal present in the data from the
noise inherent in system and in the data collection process. If this is done effectively, the model can then be used to
make accurate predictions about the system when presented with new, similar data. Additionally, introspecting on an
ML model can reveal key information about the system being modeled, such as which inputs and transformations of
the inputs are most useful to the ML model for learning the signal in the data, and are therefore the most predictive.

There are a variety of ML problem types. Supervised learning describes the case where the collected data contains an
output value to be modeled and a set of inputs with which to train the model. EvalML focuses on training supervised
learning models.

EvalML supports three common supervised ML problem types. The first is regression, where the target value to model
is a continuous numeric value. Next are binary and multiclass classification, where the target value to model consists
of two or more discrete values or categories. The choice of which supervised ML problem type is most appropriate
depends on domain expertise and on how the model will be evaluated and used.

EvalML is currently building support for supervised time series problems: time series regression, time series binary
classification, and time series multiclass classification. While we’ve added some features to tackle these kinds of
problems, our functionality is still being actively developed so please be mindful of that before using it.

AutoML and Search

AutoML is the process of automating the construction, training and evaluation of ML models. Given a data and some
configuration, AutoML searches for the most effective and accurate ML model or models to fit the dataset. During the
search, AutoML will explore different combinations of model type, model parameters and model architecture.

An effective AutoML solution offers several advantages over constructing and tuning ML models by hand. AutoML can
assist with many of the difficult aspects of ML, such as avoiding overfitting and underfitting, imbalanced data, detecting
data leakage and other potential issues with the problem setup, and automatically applying best-practice data cleaning,
feature engineering, feature selection and various modeling techniques. AutoML can also leverage search algorithms to
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optimally sweep the hyperparameter search space, resulting in model performance which would be difficult to achieve
by manual training.

4.1.2 AutoML in EvalML

EvalML supports all of the above and more.

In its simplest usage, the AutoML search interface requires only the input data, the target data and a problem_type
specifying what kind of supervised ML problem to model.

** Graphing methods, like verbose AutoMLSearch, on Jupyter Notebook and Jupyter Lab require ipywidgets to be
installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

[1]: import evalml
from evalml.utils import infer_feature_types

X, y = evalml.demos.load_fraud(n_rows=650)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 650
Targets
False 86.31%
True 13.69%
Name: count, dtype: object

To provide data to EvalML, it is recommended that you initialize a Woodwork accessor on your data. This allows you
to easily control how EvalML will treat each of your features before training a model.

EvalML also accepts pandas input, and will run type inference on top of the input pandas data. If you’d like to change
the types inferred by EvalML, you can use the infer_feature_types utility method, which takes pandas or numpy
input and converts it to a Woodwork data structure. The feature_types parameter can be used to specify what types
specific columns should be.

Feature types such as Natural Language must be specified in this way, otherwise Woodwork will infer it as Unknown
type and drop it during the AutoMLSearch.

In the example below, we reformat a couple features to make them easily consumable by the model, and then specify
that the provider, which would have otherwise been inferred as a column with natural language, is a categorical column.

[2]: X.ww["expiration_date"] = X["expiration_date"].apply(
lambda x: "20{}-01-{}".format(x.split("/")[1], x.split("/")[0])

)
X = infer_feature_types(

X,
feature_types={

"store_id": "categorical",
"expiration_date": "datetime",
"lat": "categorical",
"lng": "categorical",
"provider": "categorical",

(continues on next page)
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},
)

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

[3]: X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2

)

Data Checks

Before calling AutoMLSearch.search, we should run some sanity checks on our data to ensure that the input data
being passed will not run into some common issues before running a potentially time-consuming search. EvalML has
various data checks that makes this easy. Each data check will return a collection of warnings and errors if it detects
potential issues with the input data. This allows users to inspect their data to avoid confusing errors that may arise
during the search process. You can learn about each of the data checks available through our data checks guide.

Here, we will run the DefaultDataChecks class, which contains a series of data checks that are generally useful.

[4]: from evalml.data_checks import DefaultDataChecks

data_checks = DefaultDataChecks("binary", "log loss binary")
data_checks.validate(X_train, y_train)

[4]: []

Since there were no warnings or errors returned, we can safely continue with the search process.

Holdout Set for Pipeline Ranking

If the holdout_set_size parameter is set and the input dataset has more than 500 rows, AutoMLSearch will create
a holdout set from holdout_set_size of the training data. Alternatively, a holdout set can be manually specified
by using the X_holdout and y_holdout parameters in AutoMLSearch(). In this example, the holdout set created
previously will be used by AutoML search.

During the AutoML search process, the mean of the objective scores of all cross validation folds (shown the
“mean_cv_score” column in the pipeline rankings), is calculated. This score is passed to the AutoML search tuner
to further optimize the hyperparameters of the next batch of pipelines.

After, the pipeline will be fitted on the entire training dataset and scored on this new holdout set. This score is repre-
sented under the “ranking_score” column on the pipeline rankings board and is used to rank pipeline performance.

If a dataset has less than 500 rows or holdout_set_size=0 (which is the default setting), the “mean_cv_score” will
be used as the ranking_score instead.

[5]: automl = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,
X_holdout=X_holdout,
y_holdout=y_holdout,
problem_type="binary",
verbose=True,

(continues on next page)
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)
automl.search(interactive_plot=False)

AutoMLSearch will use the holdout set to score and rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type
Using default limit of max_batches=2.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 2 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 4.921
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 4.991

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.254
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.219

*****************************
* Evaluating Batch Number 2 *
*****************************

[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000092 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 450
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓20
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000083 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 445
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓22 (continues on next page)
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[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000081 seconds. (continues on next page)
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You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 449
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓21
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

70 Chapter 4. User Guide



EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 89, number of negative: 359
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000117 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 575
[LightGBM] [Info] Number of data points in the train set: 448, number of used features:␣
→˓24
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
[LightGBM] [Info] Start training from score -1.394686
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.300
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.161

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.361
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.348

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.375
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.400

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.257
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.142

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.374
Starting holdout set scoring
Finished holdout set scoring - Log Loss Binary: 0.402

Search finished after 36.02 seconds
Best pipeline: XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer␣
→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select␣
→˓Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot␣
→˓Encoder + Oversampler (continues on next page)

4.1. Automated Machine Learning (AutoML) Search 73



EvalML Documentation, Release 0.80.0

(continued from previous page)

Best pipeline Log Loss Binary: 0.142417

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[5]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 6.526562213897705,
'Total time of batch': 6.657414436340332},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 4.0094428062438965,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 5.943113565444946,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 5.363128662109375,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 4.84464955329895,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 7.4569501876831055,
'Total time of batch': 28.425612926483154}}

With the verbose argument set to True, the AutoML search will log its progress, reporting each pipeline and parameter
set evaluated during the search. The search iteration plot shown during AutoML search tracks the current pipeline’s
validation score (tracked as the gray point) against the best pipeline validation score (tracked as the blue line).

There are a number of mechanisms to control the AutoML search time. One way is to set the max_batches parameter
which controls the maximum number of rounds of AutoML to evaluate, where each round may train and score a variable
number of pipelines. Another way is to set the max_iterations parameter which controls the maximum number of
candidate models to be evaluated during AutoML. By default, AutoML will search for a single batch. The first pipeline
to be evaluated will always be a baseline model representing a trivial solution.

The AutoML interface supports a variety of other parameters. For a comprehensive list, please refer to the API refer-
ence.

We also provide a standalone search method which does all of the above in a single line, and returns the AutoMLSearch
instance and data check results. If there were data check errors, AutoML will not be run and no AutoMLSearch instance
will be returned.
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Detecting Problem Type

EvalML includes a simple method, detect_problem_type, to help determine the problem type given the target data.

This function can return the predicted problem type as a ProblemType enum, choosing from ProblemType.BINARY,
ProblemType.MULTICLASS, and ProblemType.REGRESSION. If the target data is invalid (for instance when there
is only 1 unique label), the function will throw an error instead.

[6]: import pandas as pd
from evalml.problem_types import detect_problem_type

y_binary = pd.Series([0, 1, 1, 0, 1, 1])
detect_problem_type(y_binary)

[6]: <ProblemTypes.BINARY: 'binary'>

Objective parameter

AutoMLSearch takes in an objective parameter to determine which objective to optimize for. By default,
this parameter is set to auto, which allows AutoML to choose LogLossBinary for binary classification problems,
LogLossMulticlass for multiclass classification problems, and R2 for regression problems.

It should be noted that the objective parameter is only used in ranking and helping choose the pipelines to iterate
over, but is not used to optimize each individual pipeline during fit-time.

To get the default objective for each problem type, you can use the get_default_primary_search_objective
function.

[7]: from evalml.automl import get_default_primary_search_objective

binary_objective = get_default_primary_search_objective("binary")
multiclass_objective = get_default_primary_search_objective("multiclass")
regression_objective = get_default_primary_search_objective("regression")

print(binary_objective.name)
print(multiclass_objective.name)
print(regression_objective.name)

Log Loss Binary
Log Loss Multiclass
R2

Using custom pipelines

EvalML’s AutoML algorithm generates a set of pipelines to search with. To provide a custom set instead, set al-
lowed_component_graphs to a dictionary of custom component graphs. AutoMLSearch will use these to generate
Pipeline instances. Note: this will prevent AutoML from generating other pipelines to search over.

[8]: from evalml.pipelines import MulticlassClassificationPipeline

automl_custom = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,

(continues on next page)
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problem_type="multiclass",
verbose=True,
allowed_component_graphs={

"My_pipeline": ["Simple Imputer", "Random Forest Classifier"],
"My_other_pipeline": ["One Hot Encoder", "Random Forest Classifier"],

},
)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency'] because they are of 'Unknown' type
Using default limit of max_batches=2.

Stopping the search early

To stop the search early, hit Ctrl-C. This will bring up a prompt asking for confirmation. Responding with y will
immediately stop the search. Responding with n will continue the search.

Callback functions

AutoMLSearch supports several callback functions, which can be specified as parameters when initializing an
AutoMLSearch object. They are:

• start_iteration_callback

• add_result_callback

• error_callback

Start Iteration Callback

Users can set start_iteration_callback to set what function is called before each pipeline training iteration.
This callback function must take three positional parameters: the pipeline class, the pipeline parameters, and the
AutoMLSearch object.

[9]: ## start_iteration_callback example function
def start_iteration_callback_example(pipeline_class, pipeline_params, automl_obj):

print("Training pipeline with the following parameters:", pipeline_params)

Add Result Callback

Users can set add_result_callback to set what function is called after each pipeline training iteration. This callback
function must take three positional parameters: a dictionary containing the training results for the new pipeline, an
untrained_pipeline containing the parameters used during training, and the AutoMLSearch object.

[10]: ## add_result_callback example function
def add_result_callback_example(pipeline_results_dict, untrained_pipeline, automl_obj):

print(
(continues on next page)
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"Results for trained pipeline with the following parameters:",
pipeline_results_dict,

)

Error Callback

Users can set the error_callback to set what function called when search() errors and raises an Exception. This
callback function takes three positional parameters: the Exception raised, the traceback, and the AutoMLSearch
object. This callback function must also accept kwargs, so AutoMLSearch is able to pass along other parameters
used by default.

Evalml defines several error callback functions, which can be found under evalml.automl.callbacks. They are:

• silent_error_callback

• raise_error_callback

• log_and_save_error_callback

• raise_and_save_error_callback

• log_error_callback (default used when error_callback is None)

[11]: # error_callback example; this is implemented in the evalml library
def raise_error_callback(exception, traceback, automl, **kwargs):

"""Raises the exception thrown by the AutoMLSearch object. Also logs the exception␣
→˓as an error."""

logger.error(f"AutoMLSearch raised a fatal exception: {str(exception)}")
logger.error("\n".join(traceback))
raise exception

4.1.3 View Rankings

A summary of all the pipelines built can be returned as a pandas DataFrame which is sorted by the validation score.

• For AutoML searches completed with a holdout set, the validation score is the holdout score of the pipeline fitted
using the entire training dataset.

• For AutoML searches completed without a holdout set, the validation score is the average score across all cross-
validation folds.

[12]: automl.rankings

[12]: id pipeline_name search_order \
0 5 XGBoost Classifier w/ Label Encoder + Select C... 5
1 2 LightGBM Classifier w/ Label Encoder + Select ... 2
2 1 Random Forest Classifier w/ Label Encoder + Dr... 1
3 3 Extra Trees Classifier w/ Label Encoder + Sele... 3
4 4 Elastic Net Classifier w/ Label Encoder + Sele... 4
5 6 Logistic Regression Classifier w/ Label Encode... 6
6 0 Mode Baseline Binary Classification Pipeline 0

ranking_score holdout_score mean_cv_score standard_deviation_cv_score \
0 0.142417 0.142417 0.256950 0.137180
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1 0.160955 0.160955 0.299971 0.206176
2 0.219145 0.219145 0.254382 0.045124
3 0.348408 0.348408 0.361341 0.021758
4 0.400375 0.400375 0.374725 0.050027
5 0.401581 0.401581 0.374364 0.049925
6 4.990660 4.990660 4.921248 0.112910

percent_better_than_baseline high_variance_cv \
0 94.778757 False
1 93.904575 False
2 94.830946 False
3 92.657543 False
4 92.385573 False
5 92.392914 False
6 0.000000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'N...
1 {'Label Encoder': {'positive_label': None}, 'N...
2 {'Label Encoder': {'positive_label': None}, 'D...
3 {'Label Encoder': {'positive_label': None}, 'N...
4 {'Label Encoder': {'positive_label': None}, 'N...
5 {'Label Encoder': {'positive_label': None}, 'N...
6 {'Label Encoder': {'positive_label': None}, 'B...

Recommendation Score

If you would like a more robust evaluation of the performance of your models, EvalML additionally provides a rec-
ommendation score alongside the selected objective. The recommendation score is a weighted average of a number of
default objectives for your problem type, normalized and scaled so that the final score can be interpreted as a percent-
age from 0 to 100. This weighted score provides a more holistic understanding of model performance, and prioritizes
model generalizability rather than one single objective which may not completely serve your use case.

[13]: automl.get_recommendation_scores(use_pipeline_names=True)

[13]: {'Baseline Classifier': 25.0,
'Random Forest Classifier': 89.20280594475338,
'LightGBM Classifier': 91.29441485901573,
'Extra Trees Classifier': 76.4891509448369,
'Elastic Net Classifier': 64.98618569828929,
'XGBoost Classifier': 93.1572081558569,
'Logistic Regression Classifier': 64.88094236798517}

[14]: automl.get_recommendation_scores(priority="F1", use_pipeline_names=True)

[14]: {'Baseline Classifier': 16.666666666666664,
'Random Forest Classifier': 87.42552654381409,
'LightGBM Classifier': 90.0296099060105,
'Extra Trees Classifier': 68.38407164438401,
'Elastic Net Classifier': 53.893229489916436,
'XGBoost Classifier': 92.40783574026823,
'Logistic Regression Classifier': 53.8230672697137}
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To see what objectives are included in the recommendation score, you can use:

[15]: evalml.objectives.get_default_recommendation_objectives("binary")

[15]: {'AUC', 'Balanced Accuracy Binary', 'F1', 'Log Loss Binary'}

If you would like to automatically rank your pipelines by this recommendation score, you can set
use_recommendation=True when initializing AutoMLSearch.

[16]: automl_recommendation = evalml.automl.AutoMLSearch(
X_train=X_train,
y_train=y_train,
X_holdout=X_holdout,
y_holdout=y_holdout,
problem_type="binary",
use_recommendation=True,

)
automl_recommendation.search(interactive_plot=False)

automl_recommendation.rankings[
[

"id",
"pipeline_name",
"search_order",
"recommendation_score",
"holdout_score",
"mean_cv_score",

]
]

[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000081 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 450
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓20
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000082 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 445
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓22
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 59, number of negative: 239
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000085 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 449
[LightGBM] [Info] Number of data points in the train set: 298, number of used features:␣
→˓21
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197987 -> initscore=-1.398926
[LightGBM] [Info] Start training from score -1.398926
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 89, number of negative: 359
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000106 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 575
[LightGBM] [Info] Number of data points in the train set: 448, number of used features:␣
→˓24
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
[LightGBM] [Info] Start training from score -1.394686
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[16]: id pipeline_name search_order \
0 5 XGBoost Classifier w/ Label Encoder + Select C... 5
1 2 LightGBM Classifier w/ Label Encoder + Select ... 2
2 1 Random Forest Classifier w/ Label Encoder + Dr... 1
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3 3 Extra Trees Classifier w/ Label Encoder + Sele... 3
4 4 Elastic Net Classifier w/ Label Encoder + Sele... 4
5 6 Logistic Regression Classifier w/ Label Encode... 6
6 0 Mode Baseline Binary Classification Pipeline 0

recommendation_score holdout_score mean_cv_score
0 93.157208 0.142417 0.256950
1 91.294415 0.160955 0.299971
2 89.202806 0.219145 0.254382
3 76.489151 0.348408 0.361341
4 64.986186 0.400375 0.374725
5 64.880942 0.401581 0.374364
6 25.000000 4.990660 4.921248

There is a helper function on the AutoMLSearch object to help you understand how the recommendation score was
calculated. It displays the raw scores of the objectives included within the score calculation. Here, we take a look at
pipeline with id=9, the Decision Tree pipeline:

[17]: automl_recommendation.get_recommendation_score_breakdown(3)

[17]: {'AUC': 0.845734126984127,
'Log Loss Binary': 0.3484078428021002,
'Balanced Accuracy Binary': 0.7619047619047619,
'F1': 0.5217391304347826}

4.1.4 Describe Pipeline

Each pipeline is given an id. We can get more information about any particular pipeline using that id. Here, we will
get more information about the pipeline with id = 1.

[18]: automl.describe_pipeline(1)

**************************************************************************************************************************************************************************
* Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model␣
→˓*
**************************************************************************************************************************************************************************

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Drop Columns Transformer

* columns : ['currency']
3. DateTime Featurizer

* features_to_extract : ['year', 'month', 'day_of_week', 'hour']
* encode_as_categories : False
* time_index : None

(continues on next page)
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4. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

5. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

6. Oversampler
* sampling_ratio : 0.25
* k_neighbors_default : 5
* n_jobs : -1
* sampling_ratio_dict : None
* categorical_features : [3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

→˓ 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,␣
→˓44, 45, 46, 47, 48, 49]

* k_neighbors : 5
7. RF Classifier Select From Model

* number_features : None
* n_estimators : 10
* max_depth : None
* percent_features : 0.5
* threshold : median
* n_jobs : -1

8. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 6.5 seconds

Cross Validation
----------------

Log Loss Binary MCC Binary Gini AUC Precision F1 Balanced Accuracy␣
→˓Binary Accuracy Binary # Training # Validation
0 0.240 0.823 0.844 0.922 1.000 0.829 ␣
→˓ 0.854 0.960 346 174
1 0.305 0.524 0.493 0.747 1.000 0.467 ␣
→˓ 0.652 0.908 347 173
2 0.218 0.875 0.839 0.920 1.000 0.884 ␣
→˓ 0.896 0.971 347 173
mean 0.254 0.741 0.726 0.863 1.000 0.727 ␣
→˓ 0.801 0.946 - -
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std 0.045 0.189 0.201 0.101 0.000 0.227 ␣
→˓ 0.130 0.034 - -
coef of var 0.177 0.255 0.277 0.117 0.000 0.312 ␣
→˓ 0.163 0.036 - -

4.1.5 Get Pipeline

We can get the object of any pipeline via their id as well:

[19]: pipeline = automl.get_pipeline(1)
print(pipeline.name)
print(pipeline.parameters)

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
{'Label Encoder': {'positive_label': None}, 'Drop Columns Transformer': {'columns': [
→˓'currency']}, 'DateTime Featurizer': {'features_to_extract': ['year', 'month', 'day_of_
→˓week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer': {
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder': {'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features
→˓': [3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,␣
→˓30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], 'k_
→˓neighbors': 5}, 'RF Classifier Select From Model': {'number_features': None, 'n_
→˓estimators': 10, 'max_depth': None, 'percent_features': 0.5, 'threshold': 'median', 'n_
→˓jobs': -1}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_jobs':
→˓ -1}}

Get best pipeline

If you specifically want to get the best pipeline, there is a convenient accessor for that. The pipeline returned
is already fitted on the input X, y data that we passed to AutoMLSearch. To turn off this default behavior, set
train_best_pipeline=False when initializing AutoMLSearch.

[20]: best_pipeline = automl.best_pipeline
print(best_pipeline.name)
print(best_pipeline.parameters)
best_pipeline.predict(X_train)

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler
{'Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Select Columns By Type␣
→˓Transformer': {'column_types': ['category', 'EmailAddress', 'URL'], 'exclude': True},
→˓'Numeric Pipeline - Label Encoder': {'positive_label': None}, 'Numeric Pipeline - Drop␣
→˓Columns Transformer': {'columns': ['currency']}, 'Numeric Pipeline - DateTime␣
→˓Featurizer': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_
→˓as_categories': False, 'time_index': None}, 'Numeric Pipeline - Imputer': {
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select Columns␣
→˓Transformer': {'columns': ['card_id', 'store_id', 'amount', 'customer_present', 'lat',
→˓'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour']}, 'Categorical␣
→˓Pipeline - Select Columns Transformer': {'columns': ['expiration_date', 'provider',
→˓'region', 'country']}, 'Categorical Pipeline - Label Encoder': {'positive_label': None}
→˓, 'Categorical Pipeline - Imputer': {'categorical_impute_strategy': 'most_frequent',
→˓'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent',
→˓'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value': None}
→˓, 'Categorical Pipeline - One Hot Encoder': {'top_n': 10, 'features_to_encode': None,
→˓'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing':
→˓'error'}, 'Oversampler': {'sampling_ratio': 0.25, 'k_neighbors_default': 5, 'n_jobs': -
→˓1, 'sampling_ratio_dict': None, 'categorical_features': [3, 9, 10, 11, 12, 13, 14, 15,␣
→˓16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
→˓ 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], 'k_neighbors': 5}, 'XGBoost Classifier':
→˓{'eta': 0.1, 'max_depth': 6, 'min_child_weight': 1, 'n_estimators': 100, 'n_jobs': -1,
→˓'eval_metric': 'logloss'}}
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[20]: id
144 False
253 True
221 False
432 False
384 False

...
128 False
98 False
472 False
642 False
494 False
Name: fraud, Length: 520, dtype: bool

4.1.6 Training and Scoring Multiple Pipelines using AutoMLSearch

AutoMLSearch will automatically fit the best pipeline on the entire training data. It also provides an easy API for
training and scoring other pipelines.

If you’d like to train one or more pipelines on the entire training data, you can use the train_pipelines method.

Similarly, if you’d like to score one or more pipelines on a particular dataset, you can use the score_pipelines
method.

[21]: trained_pipelines = automl.train_pipelines([automl.get_pipeline(i) for i in [0, 1, 2]])
trained_pipelines

[LightGBM] [Info] Number of positive: 89, number of negative: 359
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000104 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 575
[LightGBM] [Info] Number of data points in the train set: 448, number of used features:␣
→˓24
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198661 -> initscore=-1.394686
[LightGBM] [Info] Start training from score -1.394686
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[21]: {'Mode Baseline Binary Classification Pipeline': pipeline =␣
→˓BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder', 'X',
→˓'y'], 'Baseline Classifier': ['Baseline Classifier', 'Label Encoder.x', 'Label Encoder.
→˓y']}, parameters={'Label Encoder':{'positive_label': None}, 'Baseline Classifier':{
→˓'strategy': 'mode'}}, custom_name='Mode Baseline Binary Classification Pipeline',␣
→˓random_seed=0),
'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label␣
→˓Encoder', 'X', 'y'], 'Drop Columns Transformer': ['Drop Columns Transformer', 'X',
→˓'Label Encoder.y'], 'DateTime Featurizer': ['DateTime Featurizer', 'Drop Columns␣
→˓Transformer.x', 'Label Encoder.y'], 'Imputer': ['Imputer', 'DateTime Featurizer.x',
→˓'Label Encoder.y'], 'One Hot Encoder': ['One Hot Encoder', 'Imputer.x', 'Label Encoder.
→˓y'], 'Oversampler': ['Oversampler', 'One Hot Encoder.x', 'Label Encoder.y'], 'RF␣
→˓Classifier Select From Model': ['RF Classifier Select From Model', 'Oversampler.x',
→˓'Oversampler.y'], 'Random Forest Classifier': ['Random Forest Classifier', 'RF␣
→˓Classifier Select From Model.x', 'Oversampler.y']}, parameters={'Label Encoder':{
→˓'positive_label': None}, 'Drop Columns Transformer':{'columns': ['currency']},
→˓'DateTime Featurizer':{'features_to_extract': ['year', 'month', 'day_of_week', 'hour'],
→˓ 'encode_as_categories': False, 'time_index': None}, 'Imputer':{'categorical_impute_
→˓strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
→˓': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10, 'features_to_encode':␣
→˓None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_
→˓missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_neighbors_default': 5,
→˓'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features': [3, 10, 11, 12, 13,␣
→˓14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
→˓ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], 'k_neighbors': 5}, 'RF␣
→˓Classifier Select From Model':{'number_features': None, 'n_estimators': 10, 'max_depth
→˓': None, 'percent_features': 0.5, 'threshold': 'median', 'n_jobs': -1}, 'Random Forest␣
→˓Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0),

(continues on next page)
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'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder':
→˓ ['Label Encoder', 'X', 'y'], 'Numeric Pipeline - Select Columns By Type Transformer':␣
→˓['Select Columns By Type Transformer', 'X', 'Label Encoder.y'], 'Numeric Pipeline -␣
→˓Label Encoder': ['Label Encoder', 'Numeric Pipeline - Select Columns By Type␣
→˓Transformer.x', 'Label Encoder.y'], 'Numeric Pipeline - Drop Columns Transformer': [
→˓'Drop Columns Transformer', 'Numeric Pipeline - Select Columns By Type Transformer.x',
→˓'Numeric Pipeline - Label Encoder.y'], 'Numeric Pipeline - DateTime Featurizer': [
→˓'DateTime Featurizer', 'Numeric Pipeline - Drop Columns Transformer.x', 'Numeric␣
→˓Pipeline - Label Encoder.y'], 'Numeric Pipeline - Imputer': ['Imputer', 'Numeric␣
→˓Pipeline - DateTime Featurizer.x', 'Numeric Pipeline - Label Encoder.y'], 'Numeric␣
→˓Pipeline - Select Columns Transformer': ['Select Columns Transformer', 'Numeric␣
→˓Pipeline - Imputer.x', 'Numeric Pipeline - Label Encoder.y'], 'Categorical Pipeline -␣
→˓Select Columns Transformer': ['Select Columns Transformer', 'X', 'Label Encoder.y'],
→˓'Categorical Pipeline - Label Encoder': ['Label Encoder', 'Categorical Pipeline -␣
→˓Select Columns Transformer.x', 'Label Encoder.y'], 'Categorical Pipeline - Imputer': [
→˓'Imputer', 'Categorical Pipeline - Select Columns Transformer.x', 'Categorical␣
→˓Pipeline - Label Encoder.y'], 'Categorical Pipeline - One Hot Encoder': ['One Hot␣
→˓Encoder', 'Categorical Pipeline - Imputer.x', 'Categorical Pipeline - Label Encoder.y
→˓'], 'Oversampler': ['Oversampler', 'Numeric Pipeline - Select Columns Transformer.x',
→˓'Categorical Pipeline - One Hot Encoder.x', 'Categorical Pipeline - Label Encoder.y'],
→˓'LightGBM Classifier': ['LightGBM Classifier', 'Oversampler.x', 'Oversampler.y']},␣
→˓parameters={'Label Encoder':{'positive_label': None}, 'Numeric Pipeline - Select␣
→˓Columns By Type Transformer':{'column_types': ['category', 'EmailAddress', 'URL'],
→˓'exclude': True}, 'Numeric Pipeline - Label Encoder':{'positive_label': None},
→˓'Numeric Pipeline - Drop Columns Transformer':{'columns': ['currency']}, 'Numeric␣
→˓Pipeline - DateTime Featurizer':{'features_to_extract': ['year', 'month', 'day_of_week
→˓', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Numeric Pipeline -␣
→˓Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy':
→˓'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None,
→˓'numeric_fill_value': None, 'boolean_fill_value': None}, 'Numeric Pipeline - Select␣
→˓Columns Transformer':{'columns': ['card_id', 'store_id', 'amount', 'customer_present',
→˓'lat', 'lng', 'datetime_month', 'datetime_day_of_week', 'datetime_hour']},
→˓'Categorical Pipeline - Select Columns Transformer':{'columns': ['expiration_date',
→˓'provider', 'region', 'country']}, 'Categorical Pipeline - Label Encoder':{'positive_
→˓label': None}, 'Categorical Pipeline - Imputer':{'categorical_impute_strategy': 'most_
→˓frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent
→˓', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value':␣
→˓None}, 'Categorical Pipeline - One Hot Encoder':{'top_n': 10, 'features_to_encode':␣
→˓None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_
→˓missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_neighbors_default': 5,
→˓'n_jobs': -1, 'sampling_ratio_dict': None, 'categorical_features': [3, 9, 10, 11, 12,␣
→˓13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
→˓ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], 'k_neighbors': 5}, 'LightGBM␣
→˓Classifier':{'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 100, 'max_
→˓depth': 0, 'num_leaves': 31, 'min_child_samples': 20, 'n_jobs': -1, 'bagging_freq': 0,
→˓'bagging_fraction': 0.9}}, random_seed=0)}

[22]: pipeline_holdout_scores = automl.score_pipelines(
[trained_pipelines[name] for name in trained_pipelines.keys()],

(continues on next page)
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X_holdout,
y_holdout,
["Accuracy Binary", "F1", "AUC"],

)
pipeline_holdout_scores

[22]: {'Mode Baseline Binary Classification Pipeline': OrderedDict([('Accuracy Binary',
0.8615384615384616),

('F1', 0.0),
('AUC', 0.5)]),

'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': OrderedDict([('Accuracy Binary',

0.9615384615384616),
('F1', 0.8387096774193548),
('AUC', 0.9122023809523809)]),

'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': OrderedDict([('Accuracy Binary',

0.9692307692307692),
('F1', 0.8750000000000001),
('AUC', 0.9201388888888888)])}

4.1.7 Saving AutoMLSearch and pipelines from AutoMLSearch

There are two ways to save results from AutoMLSearch.

• You can save the AutoMLSearch object itself, calling .save(<filepath>) to do so. This will allow you to save
the AutoMLSearch state and reload all pipelines from this.

• If you want to save a pipeline from AutoMLSearch for future use, pipeline classes themselves have a .
save(<filepath>) method.

[23]: # saving the entire automl search
automl.save("automl.cloudpickle")
automl2 = evalml.automl.AutoMLSearch.load("automl.cloudpickle")
# saving the best pipeline using .save()
best_pipeline.save("pipeline.cloudpickle")
best_pipeline_copy = evalml.pipelines.PipelineBase.load("pipeline.cloudpickle")

4.1.8 Limiting the AutoML Search Space

The AutoML search algorithm first trains each component in the pipeline with their default values. After the first
iteration, it then tweaks the parameters of these components using the pre-defined hyperparameter ranges that these
components have. To limit the search over certain hyperparameter ranges, you can specify a search_parameters ar-
gument with your AutoMLSearch parameters. These parameters will limit the hyperparameter search space or pipeline
parameter space.

Hyperparameter ranges can be found through the API reference for each component. Parameter arguments must be
specified as dictionaries, but the associated values must be skopt.space Real, Integer, Categorical objects for setting
hyperparameter ranges.
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If however you’d like to specify certain values for the initial batch of the AutoML search algorithm, you can use the
search_parameters argument with non skopt.space objects. This will set the initial batch’s component parameters
to the values passed by this argument.

[24]: from evalml import AutoMLSearch
from evalml.demos import load_fraud
from skopt.space import Categorical
from evalml.model_family import ModelFamily
import woodwork as ww

X, y = load_fraud(n_rows=1000)

# example of setting parameter to just one value
search_parameters = {"Imputer": {"numeric_impute_strategy": "mean"}}

# limit the numeric impute strategy to include only `median` and `most_frequent`
# `mean` is the default value for this argument, but it doesn't need to be included in␣
→˓the specified hyperparameter range for this to work
search_parameters = {

"Imputer": {"numeric_impute_strategy": Categorical(["median", "most_frequent"])}
}

# using this custom hyperparameter means that our Imputer components in these pipelines␣
→˓will only search through
# 'median' and 'most_frequent' strategies for 'numeric_impute_strategy'
automl_constrained = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
search_parameters=search_parameters,
verbose=True,

)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 1000
Targets
False 85.90%
True 14.10%
Name: count, dtype: object
AutoMLSearch will use mean CV score to rank pipelines.
Using default limit of max_batches=2.

A skopt.space Integer, Real, or Categorical will set the hyperparameter space explored during search. All other
values will set the pipeline parameters directly. Setting pipeline parameters directly defines the initialization parameters
that a pipeline starts with during the first batch of AutoMLSearch. the hyperparameter range then defines the space of
possible new parameter values, which the tuner chooses.

Let’s walk through some examples to explain this. For instance,
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search_parameters = {'Imputer': {
'numeric_impute_strategy': 'mean'

}}

then in the initial search, the algorithm would use mean as the impute strategy in batch 1. However, since Imputer.
numeric_impute_strategy has a valid hyperparameter range, if the algorithm suggests a different strategy, it can
and will change this value. To limit this to using mean only for the duration of the search, it is necessary to use the
skopt.space:

search_parameters = {'Imputer': {
'numeric_impute_strategy': Categorical(['mean'])

}}

However, if a value has no hyperparameter range associated, then the algorithm will use this value as the only parameter.
For instance,

search_parameters = {'Label Encoder': {
'positive_label': True

}}

Since Label Encoder.positive_label has no associated hyperparameter range, the algorithm will use this param-
eter for the entire duration of the search.

4.1.9 Imbalanced Data

The AutoML search algorithm now has functionality to handle imbalanced data during classification! AutoMLSearch
now provides two additional parameters, sampler_method and sampler_balanced_ratio, that allow you to let
AutoMLSearch know whether to sample imbalanced data, and how to do so. sampler_method takes in either
Undersampler, Oversampler, auto, or None as the sampler to use, and sampler_balanced_ratio specifies the
minority/majority ratio that you want to sample to. Details on the Undersampler and Oversampler components
can be found in the documentation.

This can be used for imbalanced datasets, like the fraud dataset, which has a ‘minority:majority’ ratio of < 0.2.

[25]: automl_auto = AutoMLSearch(
X_train=X, y_train=y, problem_type="binary", automl_algorithm="iterative"

)
automl_auto.allowed_pipelines[-1]

[25]: pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
→˓', 'X', 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],
→˓'Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':␣
→˓['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Oversampler': ['Oversampler',
→˓'One Hot Encoder.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra Trees␣
→˓Classifier', 'Oversampler.x', 'Oversampler.y']}, parameters={'Label Encoder':{
→˓'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year', 'month
→˓', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer
→˓':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None}, 'Extra Trees␣
→˓Classifier':{'n_estimators': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_
→˓split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}, random_seed=0)(continues on next page)
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The Oversampler is chosen as the default sampling component here, since the sampler_balanced_ratio = 0.
25. If you specified a lower ratio, for instance sampler_balanced_ratio = 0.1, then there would be no sampling
component added here. This is because if a ratio of 0.1 would be considered balanced, then a ratio of 0.2 would also
be balanced.

The Oversampler uses SMOTE under the hood, and automatically selects whether to use SMOTE, SMOTEN, or SMO-
TENC based on the data it receives.

[26]: automl_auto_ratio = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
sampler_balanced_ratio=0.1,
automl_algorithm="iterative",

)
automl_auto_ratio.allowed_pipelines[-1]

[26]: pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
→˓', 'X', 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],
→˓'Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':␣
→˓['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra␣
→˓Trees Classifier', 'One Hot Encoder.x', 'Label Encoder.y']}, parameters={'Label Encoder
→˓':{'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year',
→˓'month', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None},
→˓'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy':
→˓'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None,
→˓'numeric_fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n':␣
→˓10, 'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_
→˓unknown': 'ignore', 'handle_missing': 'error'}, 'Extra Trees Classifier':{'n_estimators
→˓': 100, 'max_features': 'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_
→˓fraction_leaf': 0.0, 'n_jobs': -1}}, random_seed=0)

Additionally, you can add more fine-grained sampling ratios by passing in a sampling_ratio_dict in pipeline pa-
rameters. For this dictionary, AutoMLSearch expects the keys to be int values from 0 to n-1 for the classes, and the
values would be the sampler_balanced__ratio associated with each target. This dictionary would override the
AutoML argument sampler_balanced_ratio. Below, you can see the scenario for Oversampler component on this
dataset. Note that the logic for Undersamplers is included in the commented section.

[27]: # In this case, the majority class is the negative class
# for the oversampler, we don't want to oversample this class, so class 0 (majority) will␣
→˓have a ratio of 1 to itself
# for the minority class 1, we want to oversample it to have a minority/majority ratio␣
→˓of 0.5, which means we want minority to have 1/2 the samples as the minority
sampler_ratio_dict = {0: 1, 1: 0.5}
search_parameters = {"Oversampler": {"sampler_balanced_ratio": sampler_ratio_dict}}
automl_auto_ratio_dict = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
search_parameters=search_parameters,
automl_algorithm="iterative",

)
(continues on next page)
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automl_auto_ratio_dict.allowed_pipelines[-1]

# Undersampler case
# we don't want to undersample this class, so class 1 (minority) will have a ratio of 1␣
→˓to itself
# for the majority class 0, we want to undersample it to have a minority/majority ratio␣
→˓of 0.5, which means we want majority to have 2x the samples as the minority
# sampler_ratio_dict = {0: 0.5, 1: 1}
# search_parameters = {"Oversampler": {"sampler_balanced_ratio": sampler_ratio_dict}}
# automl_auto_ratio_dict = AutoMLSearch(X_train=X, y_train=y, problem_type='binary',␣
→˓search_parameters=search_parameters)

[27]: pipeline = BinaryClassificationPipeline(component_graph={'Label Encoder': ['Label Encoder
→˓', 'X', 'y'], 'DateTime Featurizer': ['DateTime Featurizer', 'X', 'Label Encoder.y'],
→˓'Imputer': ['Imputer', 'DateTime Featurizer.x', 'Label Encoder.y'], 'One Hot Encoder':␣
→˓['One Hot Encoder', 'Imputer.x', 'Label Encoder.y'], 'Oversampler': ['Oversampler',
→˓'One Hot Encoder.x', 'Label Encoder.y'], 'Extra Trees Classifier': ['Extra Trees␣
→˓Classifier', 'Oversampler.x', 'Oversampler.y']}, parameters={'Label Encoder':{
→˓'positive_label': None}, 'DateTime Featurizer':{'features_to_extract': ['year', 'month
→˓', 'day_of_week', 'hour'], 'encode_as_categories': False, 'time_index': None}, 'Imputer
→˓':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Oversampler':{'sampling_ratio': 0.25, 'k_
→˓neighbors_default': 5, 'n_jobs': -1, 'sampling_ratio_dict': None, 'sampler_balanced_
→˓ratio': {0: 1, 1: 0.5}}, 'Extra Trees Classifier':{'n_estimators': 100, 'max_features':
→˓ 'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_
→˓jobs': -1}}, random_seed=0)

4.1.10 Adding ensemble methods to AutoML

Stacking

Stacking is an ensemble machine learning algorithm that involves training a model to best combine the predictions
of several base learning algorithms. First, each base learning algorithms is trained using the given data. Then, the
combining algorithm or meta-learner is trained on the predictions made by those base learning algorithms to make a
final prediction.

AutoML enables stacking using the ensembling flag during initalization; this is set to False by default. How en-
sembling runs is defined by the AutoML algorithm you choose. In the IterativeAlgorithm, the stacking ensemble
pipeline runs in its own batch after a whole cycle of training has occurred (each allowed pipeline trains for one batch).
Note that this means a large number of iterations may need to run before the stacking ensemble runs. It is also
important to note that only the first CV fold is calculated for stacking ensembles because the model internally uses
CV folds. See below in the AutoML Algorithms section to see how ensembling is run for DefaultAlgorithm. Please
do note that ensembling is currently unavailable for time series problems.

[28]: X, y = evalml.demos.load_breast_cancer()

automl_with_ensembling = AutoMLSearch(
X_train=X,
y_train=y,

(continues on next page)
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problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
max_batches=4,
ensembling=True,
automl_algorithm="iterative",
verbose=True,

)
automl_with_ensembling.search(interactive_plot=False)

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object
AutoMLSearch will use mean CV score to rank pipelines.
Generating pipelines to search over...
Ensembling will run every 3 batches.
2 pipelines ready for search.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 4 batches for a total of 14 pipelines.
Allowed model families: linear_model, linear_model

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 13.429

*****************************
* Evaluating Batch Number 1 *
*****************************

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.077

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.077

*****************************
* Evaluating Batch Number 2 *
*****************************

(continues on next page)
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Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.090

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.085

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.081

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.097

Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.093

*****************************
* Evaluating Batch Number 3 *
*****************************

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.076

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.079

Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.075

*****************************
* Evaluating Batch Number 4 *
*****************************

Stacked Ensemble Classification Pipeline:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.103

Search finished after 24.29 seconds
Best pipeline: Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler
Best pipeline Log Loss Binary: 0.075391

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html
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[28]: {1: {'Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
→˓6966469287872314,
'Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.

→˓884481430053711,
'Total time of batch': 3.790522575378418},

2: {'Logistic Regression Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
→˓7397925853729248,
'Total time of batch': 9.396330118179321},

3: {'Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler': 1.
→˓609971046447754,
'Total time of batch': 8.84861445426941},

4: {'Stacked Ensemble Classification Pipeline': 1.457606315612793,
'Total time of batch': 1.5739214420318604}}

We can view more information about the stacking ensemble pipeline (which was the best performing pipeline) by
calling .describe().

[29]: automl_with_ensembling.best_pipeline.describe()

***********************************************************************
* Elastic Net Classifier w/ Label Encoder + Imputer + Standard Scaler *
***********************************************************************

Problem Type: binary
Model Family: Linear
Number of features: 30

Pipeline Steps
==============
1. Label Encoder

* positive_label : None
2. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : knn
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

3. Standard Scaler
4. Elastic Net Classifier

* penalty : elasticnet
* C : 8.474044870453413
* l1_ratio : 0.6235636967859725
* n_jobs : -1
* multi_class : auto
* solver : saga
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4.1.11 AutoML Algorithms

EvalML currently has two algorithms available for users to choose from. Below, we will run through how each algorithm
works and how to access them through AutoMLSearch as well as the top level search methods.

IterativeAlgorithm

IterativeAlgorithm is the first AutoML Algorithm created in EvalML and can be acessed with the
search_iterative method or specifiying AutoMLSearch(automl_algorithm='iterative'). The algorithm
works as follows:

• Every batch (after the initial baseline model) contains pipelines of all available estimators for the specified prob-
lem type

• Pipelines contain preprocessing (imputing, encoding, etc.) needed for machine learning but no feature selection
is applied

• Ensembling can be turned on by passing in the ensembling=True parameter and will be run after a whole cycle
of training has occurred (each allowed pipeline trains for one batch)

[30]: import evalml

X, y = evalml.demos.load_fraud(n_rows=250)

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 250
Targets
False 88.40%
True 11.60%
Name: count, dtype: object

[31]: from evalml.automl import search_iterative

# top level search method will run `AutoMLSearch` with `IterativeAlgorithm` as well as␣
→˓apply our default data checks
auto_iterative, messages_iterative = search_iterative(X, y, problem_type="binary")

[32]: from evalml import AutoMLSearch

auto_iterative = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
automl_algorithm="iterative",
verbose=True,

)
auto_iterative.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency', 'expiration_date'] because they are of 'Unknown' type

(continues on next page)
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Generating pipelines to search over...
6 pipelines ready for search.
Using default limit of max_batches=1.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 1 batches for a total of None pipelines.
Allowed model families: linear_model, linear_model, xgboost, lightgbm, random_forest,␣
→˓extra_trees

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 4.181

*****************************
* Evaluating Batch Number 1 *
*****************************

Elastic Net Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣
→˓+ Imputer + One Hot Encoder + Oversampler + Standard Scaler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.429

Logistic Regression Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.429

XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer +␣
→˓Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.266

[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000066 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000062 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12

(continues on next page)
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[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 107



EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 118
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds. (continues on next page)
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You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 147, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389
[LightGBM] [Info] Start training from score -1.403389
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer +␣
→˓Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.325

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.287

Extra Trees Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣
→˓+ Imputer + One Hot Encoder + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.347

Search finished after 20.50 seconds
Best pipeline: XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler
Best pipeline Log Loss Binary: 0.266464

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[32]: {1: {'Elastic Net Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler': 3.
→˓290501356124878,
'Logistic Regression Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣

→˓Featurizer + Imputer + One Hot Encoder + Oversampler + Standard Scaler': 3.
→˓316211462020874,
'XGBoost Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣

→˓+ Imputer + One Hot Encoder + Oversampler': 2.945275068283081,
'LightGBM Classifier w/ Label Encoder + Drop Columns Transformer + DateTime Featurizer␣

→˓+ Imputer + One Hot Encoder + Oversampler': 2.6253421306610107,
'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣

→˓Featurizer + Imputer + One Hot Encoder + Oversampler': 3.277402877807617,
'Extra Trees Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣

→˓Featurizer + Imputer + One Hot Encoder + Oversampler': 3.8431999683380127,
'Total time of batch': 19.91035509109497}}

DefaultAlgorithm

DefaultAlgorithm was designed to do three main things:

1. Abstract out more parameters and decisions from the user.

2. Perform deeper tuning for high performing pipelines.

3. Create a platform to introduce feature selection as well as other potential techniques/heuristics for AutoML.

DefaultAlgorithm does this by creating the concept of two modes: fast and long, where fast is a subset of long.
The algorithm runs as follows:

1. Run naive pipelines:
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a. a random forest pipeline with the default preprocessing pipeline

2. Run the same pipelines, this time with feature selection. Subsequent pipelines will use the selected features with
a SelectedColumns transformer.

3. Run all pipelines with preprocessing components:

a. scan rest of estimators (IterativeAlgorithm batch 1).

4. First ensembling run

Fast mode ends here. Begin long mode.

6. Run top 3 estimators:

a. Generate 50 random parameter sets. Run all 150 in one batch

7. Second ensembling run

8. Repeat 8a and 8b indefinitely until the specified time in AutoMLSearch is met:

a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one batch

b. Run ensembling

To this end, it is recommended to use the top level search() method to run DefaultAlgorithm. This allows users to
specify running search with just the mode parameter, where fast is recommended for users who want a fast scan at how
EvalML pipelines will perform on their problem and where long is reserved for a deeper dive into high performing
pipelines. If one needs finer control over AutoML parameters, one can also specify automl_algorithm='default'
using AutoMLSearch and it will default to using fast mode. However, in this case ensembling will be defined
by the ensembling flag (if ensembling=False the abovementioned ensembling batches will be skipped). Users
are welcome to select max_batches according to the algorithm above (or other stopping criteria) but should be
aware that results may not be optimal if the algorithm does not run for the full length of fast mode. Note that the
allowed_model_families and excluded_model_families parameters are only applied to the non-naive batches
in the default algorithms. If users want to apply these to all estimators, use the iterative algorithm by specifying
automl_algorithm='iterative'.

[33]: from evalml.automl import search

# top level search method will run `AutoMLSearch` with `IterativeAlgorithm` as well as␣
→˓apply our default data checks
auto_default, messages_default = search(X, y, problem_type="binary", mode="fast")

[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000093 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 118
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.

(continues on next page)
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[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 147, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389
[LightGBM] [Info] Start training from score -1.403389
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 44, number of negative: 177
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000070 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 296
[LightGBM] [Info] Number of data points in the train set: 221, number of used features:␣
→˓18
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.199095 -> initscore=-1.391960
[LightGBM] [Info] Start training from score -1.391960
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[34]: from evalml import AutoMLSearch

auto_default = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
automl_algorithm="default",
ensembling=True,
verbose=True,

)
auto_default.search(interactive_plot=False)

AutoMLSearch will use mean CV score to rank pipelines.
Removing columns ['currency', 'expiration_date'] because they are of 'Unknown' type
Using default limit of max_batches=3.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 3 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 4.181

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.282

*****************************
* Evaluating Batch Number 2 *
*****************************

(continues on next page)
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[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000377 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 228
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 117
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000060 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 146, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.198630 -> initscore=-1.394878
[LightGBM] [Info] Start training from score -1.394878
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Number of positive: 29, number of negative: 118
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was␣
→˓0.000322 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 225
[LightGBM] [Info] Number of data points in the train set: 147, number of used features:␣
→˓12
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.197279 -> initscore=-1.403389
[LightGBM] [Info] Start training from score -1.403389
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.325

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.348

Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.422

XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder␣
→˓+ Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.266

Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer +␣
→˓Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler:

Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.422

*****************************
* Evaluating Batch Number 3 *

(continues on next page)
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*****************************

Stacked Ensemble Classification Pipeline:
Starting cross validation
Finished cross validation - mean Log Loss Binary: 0.238

Search finished after 34.30 seconds
[LightGBM] [Info] Number of positive: 44, number of negative: 177
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000071 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 296
[LightGBM] [Info] Number of data points in the train set: 221, number of used features:␣
→˓18
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.199095 -> initscore=-1.391960
[LightGBM] [Info] Start training from score -1.391960
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

(continues on next page)

4.1. Automated Machine Learning (AutoML) Search 129



EvalML Documentation, Release 0.80.0

(continued from previous page)

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
Best pipeline: Stacked Ensemble Classification Pipeline
Best pipeline Log Loss Binary: 0.238485

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

[34]: {1: {'Random Forest Classifier w/ Label Encoder + Drop Columns Transformer + DateTime␣
→˓Featurizer + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model
→˓': 4.356227397918701,
'Total time of batch': 4.488199234008789},

2: {'LightGBM Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣
→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 2.834508180618286,
'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 4.066455125808716,
'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard Scaler +␣
→˓Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot Encoder + Standard Scaler + Oversampler': 3.698127508163452,
'XGBoost Classifier w/ Label Encoder + Select Columns By Type Transformer + Label␣

→˓Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Select Columns␣
→˓Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler': 3.14319109916687,
'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer␣

→˓+ Label Encoder + Drop Columns Transformer + DateTime Featurizer + Imputer + Standard␣
→˓Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.6026413440704346,
'Total time of batch': 18.148832082748413},
3: {'Stacked Ensemble Classification Pipeline': 10.924249649047852,
'Total time of batch': 11.075061559677124}}
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4.1.12 Pipeline differences

Through the search output above, we can see how pipelines differ between IterativeAlgorithm
and DefaultAlgorithm. This is because DefaultAlgorithm utilizes new components such as
RFRegressorSelectFromModel and other column selectors for feature selection as well as a new pipeline
structure to handle feature selection for categorical and non-categorical features.

[35]: auto_iterative.get_pipeline(4).graph()

[35]:

[36]: auto_default.get_pipeline(6).graph()

[36]:

4.1.13 Access raw results

The AutoMLSearch class records detailed results information under the results field, including information about
the cross-validation scoring and parameters.

[37]: import pprint

pp = pprint.PrettyPrinter(indent=0, width=100, depth=3, compact=True, sort_dicts=False)

pp.pprint(automl.results)

{'pipeline_results': {0: {'id': 0,
'pipeline_name': 'Mode Baseline Binary Classification Pipeline',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Baseline Classifier w/ Label Encoder',
'parameters': {...},
'mean_cv_score': 4.921248270190403,
'standard_deviation_cv_score': 0.11291020093698304,
'high_variance_cv': False,
'training_time': 0.7588338851928711,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 0,
'ranking_score': 4.990659700031606,
'ranking_additional_objectives': {...},
'holdout_score': 4.990659700031606},

1: {'id': 1,
'pipeline_name': 'Random Forest Classifier w/ Label Encoder +␣

→˓Drop Columns '
'Transformer + DateTime Featurizer + Imputer +␣

→˓One Hot '
'Encoder + Oversampler + RF Classifier Select␣

→˓From Model',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Random Forest Classifier w/ Label Encoder +␣

→˓Drop '
'Columns Transformer + DateTime Featurizer +␣

→˓Imputer + '
(continues on next page)
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'One Hot Encoder + Oversampler + RF␣
→˓Classifier Select '

'From Model',
'parameters': {...},
'mean_cv_score': 0.25438195931603735,
'standard_deviation_cv_score': 0.045124093951054996,
'high_variance_cv': False,
'training_time': 6.487484931945801,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 94.83094643168255,
'ranking_score': 0.21914451718965428,
'ranking_additional_objectives': {...},
'holdout_score': 0.21914451718965428},

2: {'id': 2,
'pipeline_name': 'LightGBM Classifier w/ Label Encoder + Select␣

→˓Columns By '
'Type Transformer + Label Encoder + Drop Columns

→˓'
'Transformer + DateTime Featurizer + Imputer +␣

→˓Select '
'Columns Transformer + Select Columns␣

→˓Transformer + Label '
'Encoder + Imputer + One Hot Encoder +␣

→˓Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'LightGBM Classifier w/ Label Encoder +␣

→˓Select Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns '
'Transformer + DateTime Featurizer + Imputer␣

→˓+ Select '
'Columns Transformer + Select Columns␣

→˓Transformer + '
'Label Encoder + Imputer + One Hot Encoder + '
'Oversampler',

'parameters': {...},
'mean_cv_score': 0.2999710030621828,
'standard_deviation_cv_score': 0.2061756997312182,
'high_variance_cv': False,
'training_time': 3.988393783569336,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 93.90457488440069,
'ranking_score': 0.1609546813582899,
'ranking_additional_objectives': {...},
'holdout_score': 0.1609546813582899},

3: {'id': 3,
'pipeline_name': 'Extra Trees Classifier w/ Label Encoder +␣

→˓Select Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns ' (continues on next page)
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'Transformer + DateTime Featurizer + Imputer +␣
→˓Select '

'Columns Transformer + Select Columns␣
→˓Transformer + Label '

'Encoder + Imputer + One Hot Encoder +␣
→˓Oversampler',

'pipeline_class': <class 'evalml.pipelines.binary_classification_
→˓pipeline.BinaryClassificationPipeline'>,

'pipeline_summary': 'Extra Trees Classifier w/ Label Encoder +␣
→˓Select '

'Columns By Type Transformer + Label Encoder␣
→˓+ Drop '

'Columns Transformer + DateTime Featurizer +␣
→˓Imputer + '

'Select Columns Transformer + Select Columns '
'Transformer + Label Encoder + Imputer + One␣

→˓Hot '
'Encoder + Oversampler',

'parameters': {...},
'mean_cv_score': 0.36134054274378125,
'standard_deviation_cv_score': 0.021758185101253727,
'high_variance_cv': False,
'training_time': 5.9230005741119385,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.65754290567824,
'ranking_score': 0.3484078428021002,
'ranking_additional_objectives': {...},
'holdout_score': 0.3484078428021002},

4: {'id': 4,
'pipeline_name': 'Elastic Net Classifier w/ Label Encoder +␣

→˓Select Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns '
'Transformer + DateTime Featurizer + Imputer +␣

→˓Standard '
'Scaler + Select Columns Transformer + Select␣

→˓Columns '
'Transformer + Label Encoder + Imputer + One Hot␣

→˓Encoder + '
'Standard Scaler + Oversampler',

'pipeline_class': <class 'evalml.pipelines.binary_classification_
→˓pipeline.BinaryClassificationPipeline'>,

'pipeline_summary': 'Elastic Net Classifier w/ Label Encoder +␣
→˓Select '

'Columns By Type Transformer + Label Encoder␣
→˓+ Drop '

'Columns Transformer + DateTime Featurizer +␣
→˓Imputer + '

'Standard Scaler + Select Columns Transformer␣
→˓+ Select '

'Columns Transformer + Label Encoder +␣
→˓Imputer + One ' (continues on next page)
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'Hot Encoder + Standard Scaler + Oversampler',
'parameters': {...},
'mean_cv_score': 0.37472485974788244,
'standard_deviation_cv_score': 0.050026569255638,
'high_variance_cv': False,
'training_time': 5.342469215393066,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.38557294461829,
'ranking_score': 0.4003754206567058,
'ranking_additional_objectives': {...},
'holdout_score': 0.4003754206567058},

5: {'id': 5,
'pipeline_name': 'XGBoost Classifier w/ Label Encoder + Select␣

→˓Columns By '
'Type Transformer + Label Encoder + Drop Columns

→˓'
'Transformer + DateTime Featurizer + Imputer +␣

→˓Select '
'Columns Transformer + Select Columns␣

→˓Transformer + Label '
'Encoder + Imputer + One Hot Encoder +␣

→˓Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'XGBoost Classifier w/ Label Encoder + Select␣

→˓Columns '
'By Type Transformer + Label Encoder + Drop␣

→˓Columns '
'Transformer + DateTime Featurizer + Imputer␣

→˓+ Select '
'Columns Transformer + Select Columns␣

→˓Transformer + '
'Label Encoder + Imputer + One Hot Encoder + '
'Oversampler',

'parameters': {...},
'mean_cv_score': 0.2569503163235051,
'standard_deviation_cv_score': 0.13717967037488366,
'high_variance_cv': False,
'training_time': 4.824225664138794,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 94.77875729456821,
'ranking_score': 0.14241700777377544,
'ranking_additional_objectives': {...},
'holdout_score': 0.14241700777377544},

6: {'id': 6,
'pipeline_name': 'Logistic Regression Classifier w/ Label Encoder␣

→˓+ Select '
'Columns By Type Transformer + Label Encoder +␣

→˓Drop '
'Columns Transformer + DateTime Featurizer +␣

→˓Imputer + ' (continues on next page)
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'Standard Scaler + Select Columns Transformer +␣
→˓Select '

'Columns Transformer + Label Encoder + Imputer +␣
→˓One Hot '

'Encoder + Standard Scaler + Oversampler',
'pipeline_class': <class 'evalml.pipelines.binary_classification_

→˓pipeline.BinaryClassificationPipeline'>,
'pipeline_summary': 'Logistic Regression Classifier w/ Label␣

→˓Encoder + '
'Select Columns By Type Transformer + Label␣

→˓Encoder + '
'Drop Columns Transformer + DateTime␣

→˓Featurizer + '
'Imputer + Standard Scaler + Select Columns␣

→˓Transformer '
'+ Select Columns Transformer + Label Encoder␣

→˓+ Imputer '
'+ One Hot Encoder + Standard Scaler +␣

→˓Oversampler',
'parameters': {...},
'mean_cv_score': 0.3743635904964204,
'standard_deviation_cv_score': 0.04992524856036527,
'high_variance_cv': False,
'training_time': 7.436560392379761,
'cv_data': [...],
'percent_better_than_baseline_all_objectives': {...},
'percent_better_than_baseline': 92.39291395307035,
'ranking_score': 0.40158056138768455,
'ranking_additional_objectives': {...},
'holdout_score': 0.40158056138768455}},

'search_order': [0, 1, 2, 3, 4, 5, 6]}

If there are errors, such as with the Iterative Algorithm example above, we can examine these closer by accessing the
errors field. There is one dictionary entry per pipeline fold that failed, and each entry contains the pipeline parameters
with the error that was thrown and its full traceback.

[38]: auto_iterative.errors

[38]: {}
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4.1.14 Parallel AutoML

By default, all pipelines in an AutoML batch are evaluated in series. Pipelines can be evaluated in parallel to improve
performance during AutoML search. This is accomplished by a futures style submission and evaluation of pipelines
in a batch. As of this writing, the pipelines use a threaded model for concurrent evaluation. This is similar to the
currently implemented n_jobs parameter in the estimators, which uses increased numbers of threads to train and
evaluate estimators.

Quick Start

To quickly use some parallelism to enhance the pipeline searching, a string can be passed through to AutoMLSearch
during initialization to setup the parallel engine and client within the AutoMLSearch object. The current options are
“cf_threaded”, “cf_process”, “dask_threaded” and “dask_process” and indicate the futures backend to use and whether
to use threaded- or process-level parallelism.

[39]: automl_cf_threaded = AutoMLSearch(
X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine="cf_threaded",

)
automl_cf_threaded.search(interactive_plot=False)
automl_cf_threaded.close_engine()

Parallelism with Concurrent Futures

The EngineBase class is robust and extensible enough to support futures-like implementations from a variety
of libraries. The CFEngine extends the EngineBase to use the native Python concurrent.futures library. The
CFEngine supports both thread- and process-level parallelism. The type of parallelism can be chosen using either
the ThreadPoolExecutor or the ProcessPoolExecutor. If either executor is passed a max_workers parameter,
it will set the number of processes and threads spawned. If not, the default number of processes will be equal to the
number of processors available and the number of threads set to five times the number of processors available.

Here, the CFEngine is invoked with default parameters, which is threaded parallelism using all available threads.

[40]: from concurrent.futures import ThreadPoolExecutor

from evalml.automl.engine.cf_engine import CFEngine, CFClient

cf_engine = CFEngine(CFClient(ThreadPoolExecutor(max_workers=4)))
automl_cf_threaded = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=cf_engine,

)
automl_cf_threaded.search(interactive_plot=False)
automl_cf_threaded.close_engine()

Note: the cell demonstrating process-level parallelism is a markdown due to incompatibility with our ReadTheDocs
build. It can be run successfully locally.
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from concurrent.futures import ProcessPoolExecutor

# Repeat the process but using process-level parallelism\
cf_engine = CFEngine(CFClient(ProcessPoolExecutor(max_workers=2)))
automl_cf_process = AutoMLSearch(X_train=X, y_train=y,

problem_type="binary",
engine="cf_process")

automl_cf_process.search(interactive_plot = False)
automl_cf_process.close_engine()

Parallelism with Dask

Thread or process level parallelism can be explicitly invoked for the DaskEngine (as well as the CFEngine). The
processes can be set to True and the number of processes set using n_workers. If processes is set to False, then
the resulting parallelism will be threaded and n_workers will represent the threads used. Examples of both follow.

[41]: from dask.distributed import LocalCluster

from evalml.automl.engine import DaskEngine

dask_engine_p2 = DaskEngine(cluster=LocalCluster(processes=True, n_workers=2))
automl_dask_p2 = AutoMLSearch(

X_train=X,
y_train=y,
problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=dask_engine_p2,

)
automl_dask_p2.search(interactive_plot=False)

# Explicitly shutdown the automl object's LocalCluster
automl_dask_p2.close_engine()

Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False

(continues on next page)
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before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.
Inside a Dask worker with daemon=True, setting n_jobs=1.
Possible work-arounds:
- dask.config.set({'distributed.worker.daemon': False})
- set the environment variable DASK_DISTRIBUTED__WORKER__DAEMON=False
before creating your Dask cluster.

[42]: dask_engine_t4 = DaskEngine(cluster=LocalCluster(processes=False, n_workers=4))

automl_dask_t4 = AutoMLSearch(
X_train=X,
y_train=y,

(continues on next page)
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problem_type="binary",
allowed_model_families=[ModelFamily.LINEAR_MODEL],
engine=dask_engine_t4,

)
automl_dask_t4.search(interactive_plot=False)
automl_dask_t4.close_engine()

As we can see, a significant performance gain can result from simply using something other than the default
SequentialEngine, ranging from a 100% speed up with multiple processes to 500% speedup with multiple threads!

[43]: print("Sequential search duration: %s" % str(automl.search_duration))
print(

"Concurrent futures (threaded) search duration: %s"
% str(automl_cf_threaded.search_duration)

)
print("Dask (two processes) search duration: %s" % str(automl_dask_p2.search_duration))
print("Dask (four threads)search duration: %s" % str(automl_dask_t4.search_duration))

Sequential search duration: 36.022363901138306
Concurrent futures (threaded) search duration: 13.98148226737976
Dask (two processes) search duration: 21.20076012611389
Dask (four threads)search duration: 16.483511209487915

4.2 Pipelines

EvalML pipelines represent a sequence of operations to be applied to data, where each operation is either a data trans-
formation or an ML modeling algorithm.

A pipeline holds a combination of one or more components, which will be applied to new input data in sequence.

Each component and pipeline supports a set of parameters which configure its behavior. The AutoML search process
seeks to find the combination of pipeline structure and pipeline parameters which perform the best on the data.

4.2.1 Defining a Pipeline Instance

Pipeline instances can be instantiated using any of the following classes:

• RegressionPipeline

• BinaryClassificationPipeline

• MulticlassClassificationPipeline

• TimeSeriesRegressionPipeline

• TimeSeriesBinaryClassificationPipeline

• TimeSeriesMulticlassClassificationPipeline

The class you want to use will depend on your problem type. The only required parameter input for instantiating a
pipeline instance is component_graph, which can be a ComponentGraph instance, a list, or a dictionary containing a
sequence of components to be fit and evaluated.

A component_graph list is the default representation, which represents a linear order of transforming components
with an estimator as the final component. A component_graph dictionary is used to represent a non-linear graph of
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components, where the key is a unique name for each component and the value is a list with the component’s class
as the first element and any parents of the component as the following element(s). For these two component_graph
formats, each component can be provided as a reference to the component class for custom components, and as either
a string name or as a reference to the component class for components defined in EvalML.

If you choose to provide a ComponentGraph instance and want to set custom parameters for your pipeline, set it through
the pipeline initialization rather than ComponentGraph.instantiate().

[1]: from evalml.pipelines import MulticlassClassificationPipeline, ComponentGraph

component_graph_as_list = ["Imputer", "Random Forest Classifier"]
MulticlassClassificationPipeline(component_graph=component_graph_as_list)

[1]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'Random Forest Classifier': ['Random Forest Classifier', 'Imputer.x', 'y']},␣
→˓parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_
→˓strategy': 'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value
→˓': None, 'numeric_fill_value': None, 'boolean_fill_value': None}, 'Random Forest␣
→˓Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

[2]: component_graph_as_dict = {
"Imputer": ["Imputer", "X", "y"],
"Encoder": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest Clf": ["Random Forest Classifier", "Encoder.x", "y"],
"Elastic Net Clf": ["Elastic Net Classifier", "Encoder.x", "y"],
"Final Estimator": [

"Logistic Regression Classifier",
"Random Forest Clf.x",
"Elastic Net Clf.x",
"y",

],
}

MulticlassClassificationPipeline(component_graph=component_graph_as_dict)

[2]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Random Forest Clf': ['Random␣
→˓Forest Classifier', 'Encoder.x', 'y'], 'Elastic Net Clf': ['Elastic Net Classifier',
→˓'Encoder.x', 'y'], 'Final Estimator': ['Logistic Regression Classifier', 'Random␣
→˓Forest Clf.x', 'Elastic Net Clf.x', 'y']}, parameters={'Imputer':{'categorical_impute_
→˓strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
→˓': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓'boolean_fill_value': None}, 'Encoder':{'top_n': 10, 'features_to_encode': None,
→˓'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing':
→˓'error'}, 'Random Forest Clf':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1},
→˓'Elastic Net Clf':{'penalty': 'elasticnet', 'C': 1.0, 'l1_ratio': 0.15, 'n_jobs': -1,
→˓'multi_class': 'auto', 'solver': 'saga'}, 'Final Estimator':{'penalty': 'l2', 'C': 1.0,
→˓ 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

[3]: cg = ComponentGraph(component_graph_as_dict)

# set parameters in the pipeline rather than through cg.instantiate()
MulticlassClassificationPipeline(component_graph=cg, parameters={})
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[3]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Random Forest Clf': ['Random␣
→˓Forest Classifier', 'Encoder.x', 'y'], 'Elastic Net Clf': ['Elastic Net Classifier',
→˓'Encoder.x', 'y'], 'Final Estimator': ['Logistic Regression Classifier', 'Random␣
→˓Forest Clf.x', 'Elastic Net Clf.x', 'y']}, parameters={'Imputer':{'categorical_impute_
→˓strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy
→˓': 'most_frequent', 'categorical_fill_value': None, 'numeric_fill_value': None,
→˓'boolean_fill_value': None}, 'Encoder':{'top_n': 10, 'features_to_encode': None,
→˓'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing':
→˓'error'}, 'Random Forest Clf':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1},
→˓'Elastic Net Clf':{'penalty': 'elasticnet', 'C': 1.0, 'l1_ratio': 0.15, 'n_jobs': -1,
→˓'multi_class': 'auto', 'solver': 'saga'}, 'Final Estimator':{'penalty': 'l2', 'C': 1.0,
→˓ 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)

If you’re using your own custom components you can refer to them like so:

[4]: from evalml.pipelines.components import Transformer

class NewTransformer(Transformer):
name = "New Transformer"
hyperparameter_ranges = {"parameter_1": ["a", "b", "c"]}

def __init__(self, parameter_1=1, random_seed=0):
parameters = {"parameter_1": parameter_1}
super().__init__(parameters=parameters, random_seed=random_seed)

def transform(self, X, y=None):
# Your code here!
return X

MulticlassClassificationPipeline([NewTransformer, "Random Forest Classifier"])

[4]: pipeline = MulticlassClassificationPipeline(component_graph={'New Transformer':␣
→˓[NewTransformer, 'X', 'y'], 'Random Forest Classifier': ['Random Forest Classifier',
→˓'New Transformer.x', 'y']}, parameters={'New Transformer':{'parameter_1': 1}, 'Random␣
→˓Forest Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

4.2.2 Pipeline Usage

All pipelines define the following methods:

• fit fits each component on the provided training data, in order.

• predict computes the predictions of the component graph on the provided data.

• score computes the value of an objective on the provided data.

[5]: from evalml.demos import load_wine

X, y = load_wine()

pipeline = MulticlassClassificationPipeline(
(continues on next page)
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component_graph={
"Label Encoder": ["Label Encoder", "X", "y"],
"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Random Forest Classifier": [

"Random Forest Classifier",
"Imputer.x",
"Label Encoder.y",

],
}

)
pipeline.fit(X, y)
print(pipeline.predict(X))
print(pipeline.score(X, y, objectives=["log loss multiclass"]))

Number of Features
Numeric 13

Number of training examples: 178
Targets
class_1 39.89%
class_0 33.15%
class_2 26.97%
Name: count, dtype: object
0 class_0
1 class_0
2 class_0
3 class_0
4 class_0

...
173 class_2
174 class_2
175 class_2
176 class_2
177 class_2
Length: 178, dtype: category
Categories (3, object): ['class_0', 'class_1', 'class_2']
OrderedDict([('Log Loss Multiclass', 0.04132737017536072)])

4.2.3 Custom Name

By default, a pipeline’s name is created using the component graph that makes up the pipeline. E.g. A pipeline with
an imputer, one-hot encoder, and logistic regression classifier will have the name ‘Logistic Regression Classifier w/
Imputer + One Hot Encoder’.

If you’d like to override the pipeline’s name attribute, you can set the custom_name parameter when initalizing a
pipeline, like so:

[6]: component_graph = ["Imputer", "One Hot Encoder", "Logistic Regression Classifier"]
pipeline = MulticlassClassificationPipeline(component_graph)
print("Pipeline with default name:", pipeline.name)

(continues on next page)
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pipeline_with_name = MulticlassClassificationPipeline(
component_graph, custom_name="My cool custom pipeline"

)
print("Pipeline with custom name:", pipeline_with_name.name)

Pipeline with default name: Logistic Regression Classifier w/ Imputer + One Hot Encoder
Pipeline with custom name: My cool custom pipeline

4.2.4 Pipeline Parameters

You can also pass in custom parameters by using the parameters parameter, which will then be used when instan-
tiating each component in component_graph. The parameters dictionary needs to be in the format of a two-layered
dictionary where the key-value pairs are the component name and corresponding component parameters dictionary.
The component parameters dictionary consists of (parameter name, parameter values) key-value pairs.

An example will be shown below. The API reference for component parameters can also be found here.

[7]: parameters = {
"Imputer": {

"categorical_impute_strategy": "most_frequent",
"numeric_impute_strategy": "median",

},
"Logistic Regression Classifier": {

"penalty": "l2",
"C": 1.0,

},
}
component_graph = [

"Imputer",
"One Hot Encoder",
"Standard Scaler",
"Logistic Regression Classifier",

]
MulticlassClassificationPipeline(component_graph=component_graph, parameters=parameters)

[7]: pipeline = MulticlassClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X',
→˓'y'], 'One Hot Encoder': ['One Hot Encoder', 'Imputer.x', 'y'], 'Standard Scaler': [
→˓'Standard Scaler', 'One Hot Encoder.x', 'y'], 'Logistic Regression Classifier': [
→˓'Logistic Regression Classifier', 'Standard Scaler.x', 'y']}, parameters={'Imputer':{
→˓'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'median',
→˓'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value': None, 'numeric_
→˓fill_value': None, 'boolean_fill_value': None}, 'One Hot Encoder':{'top_n': 10,
→˓'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown':
→˓'ignore', 'handle_missing': 'error'}, 'Logistic Regression Classifier':{'penalty': 'l2
→˓', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}, random_seed=0)
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4.2.5 Pipeline Description

You can call .graph() to see each component and its parameters. Each component takes in data and feeds it to the
next.

[8]: component_graph = [
"Imputer",
"One Hot Encoder",
"Standard Scaler",
"Logistic Regression Classifier",

]
pipeline = MulticlassClassificationPipeline(

component_graph=component_graph, parameters=parameters
)
pipeline.graph()

[8]:

[9]: component_graph_as_dict = {
"Imputer": ["Imputer", "X", "y"],
"Encoder": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest Clf": ["Random Forest Classifier", "Encoder.x", "y"],
"Elastic Net Clf": ["Elastic Net Classifier", "Encoder.x", "y"],
"Final Estimator": [

"Logistic Regression Classifier",
"Random Forest Clf.x",
"Elastic Net Clf.x",
"y",

],
}

nonlinear_pipeline = MulticlassClassificationPipeline(
component_graph=component_graph_as_dict

)
nonlinear_pipeline.graph()

[9]:

You can see a textual representation of the pipeline by calling .describe():

[10]: pipeline.describe()

*********************************************************************************
* Logistic Regression Classifier w/ Imputer + One Hot Encoder + Standard Scaler *
*********************************************************************************

Problem Type: multiclass
Model Family: Linear

Pipeline Steps
==============
1. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : median
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None

(continues on next page)
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* numeric_fill_value : None
* boolean_fill_value : None

2. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

3. Standard Scaler
4. Logistic Regression Classifier

* penalty : l2
* C : 1.0
* n_jobs : -1
* multi_class : auto
* solver : lbfgs

[11]: nonlinear_pipeline.describe()

*******************************************************************************************************************
* Logistic Regression Classifier w/ Imputer + One Hot Encoder + Random Forest Classifier␣
→˓+ Elastic Net Classifier *
*******************************************************************************************************************

Problem Type: multiclass
Model Family: Linear

Pipeline Steps
==============
1. Imputer

* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

2. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

3. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

4. Elastic Net Classifier
* penalty : elasticnet
* C : 1.0
* l1_ratio : 0.15

(continues on next page)
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* n_jobs : -1
* multi_class : auto
* solver : saga

5. Logistic Regression Classifier
* penalty : l2
* C : 1.0
* n_jobs : -1
* multi_class : auto
* solver : lbfgs

4.2.6 Component Graph

You can use pipeline.get_component(name) and provide the component name to access any component (API
reference here):

[12]: pipeline.get_component("Imputer")

[12]: Imputer(categorical_impute_strategy='most_frequent', numeric_impute_strategy='median',␣
→˓boolean_impute_strategy='most_frequent', categorical_fill_value=None, numeric_fill_
→˓value=None, boolean_fill_value=None)

[13]: nonlinear_pipeline.get_component("Elastic Net Clf")

[13]: ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15, n_jobs=-1, multi_class=
→˓'auto', solver='saga')

Alternatively, you can index directly into the pipeline to get a component

[14]: first_component = pipeline[0]
print(first_component.name)

Imputer

[15]: nonlinear_pipeline["Final Estimator"]

[15]: LogisticRegressionClassifier(penalty='l2', C=1.0, n_jobs=-1, multi_class='auto', solver=
→˓'lbfgs')

4.2.7 Pipeline Estimator

EvalML enforces that the last component of a linear pipeline is an estimator. You can access this estimator directly by
using pipeline.estimator.

[16]: pipeline.estimator

[16]: LogisticRegressionClassifier(penalty='l2', C=1.0, n_jobs=-1, multi_class='auto', solver=
→˓'lbfgs')
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4.2.8 Input Feature Names

After a pipeline is fitted, you can access a pipeline’s input_feature_names attribute to obtain a dictionary containing
a list of feature names passed to each component of the pipeline. This could be especially useful for debugging where
a feature might have been dropped or detecting unexpected behavior.

[17]: pipeline = MulticlassClassificationPipeline(["Imputer", "Random Forest Classifier"])
pipeline.fit(X, y)
pipeline.input_feature_names

[17]: {'Imputer': ['alcohol',
'malic_acid',
'ash',
'alcalinity_of_ash',
'magnesium',
'total_phenols',
'flavanoids',
'nonflavanoid_phenols',
'proanthocyanins',
'color_intensity',
'hue',
'od280/od315_of_diluted_wines',
'proline'],
'Random Forest Classifier': ['alcohol',
'malic_acid',
'ash',
'alcalinity_of_ash',
'magnesium',
'total_phenols',
'flavanoids',
'nonflavanoid_phenols',
'proanthocyanins',
'color_intensity',
'hue',
'od280/od315_of_diluted_wines',
'proline']}

4.2.9 Binary Classification Pipeline Thresholds

For binary classification pipelines, you can choose to tune the decision boundary threshold, which allows the pipeline
to distinguish predictions from positive to negative. The default boundary, if none is set, is 0.5, which means that
predictions with a probability of >= 0.5 are classified as the positive class, while all others are negative.

You can use the binary classification pipeline’s optimize_thresholds method to choose the best threshold for
an objective, or it can be manually set. EvalML’s AutoMLSearch uses optimize_thresholds by default for
binary problems, and it uses F1 as the default objective to optimize on. This can be turned off by pass-
ing in optimize_thresholds=False, or you can changed the objective used by changing the objective or
alternate_thresholding_objective arguments.

[18]: from evalml.demos import load_breast_cancer
from evalml.pipelines import BinaryClassificationPipeline

X, y = load_breast_cancer()
(continues on next page)
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X_to_predict = X.tail(10)

bcp = BinaryClassificationPipeline(
{

"Imputer": ["Imputer", "X", "y"],
"Label Encoder": ["Label Encoder", "Imputer.x", "y"],
"RFC": ["Random Forest Classifier", "Imputer.x", "Label Encoder.y"],

}
)
bcp.fit(X, y)

predict_proba = bcp.predict_proba(X_to_predict)
predict_proba

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object

[18]: benign malignant
559 0.925711 0.074289
560 0.939512 0.060488
561 0.991177 0.008823
562 0.010155 0.989845
563 0.000155 0.999845
564 0.000100 0.999900
565 0.000155 0.999845
566 0.011528 0.988472
567 0.000155 0.999845
568 0.994452 0.005548

[19]: # view the current threshold
print("The threshold is {}".format(bcp.threshold))

# view the first few predictions
print(bcp.predict(X_to_predict))

The threshold is None
559 benign
560 benign
561 benign
562 malignant
563 malignant
564 malignant
565 malignant
566 malignant
567 malignant
568 benign
dtype: category

(continues on next page)
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Categories (2, object): ['benign', 'malignant']

Note that the default threshold above is None, which means that the pipeline defaults to using 0.5 as the threshold.

You can manually set the threshold as well:

[20]: # you can manually set the threshold
bcp.threshold = 0.99
# view the threshold
print("The threshold is {}".format(bcp.threshold))

# view the first few predictions
print(bcp.predict(X_to_predict))

The threshold is 0.99
559 benign
560 benign
561 benign
562 benign
563 malignant
564 malignant
565 malignant
566 benign
567 malignant
568 benign
Name: malignant, dtype: category
Categories (2, object): ['benign', 'malignant']

However, the best way to set the threshold is by using the pipeline’s optimize_threshold method. This takes in the
predicted values, as well as the true values and objective to optimize with, and it finds the best threshold to maximize
this objective value.

This method is best used with validation data, since optimizing on training data could lead to overfitting and optimizing
on test data would introduce large biases.

Below walks through threshold tuning using the F1 objective.

[21]: from evalml.objectives import F1

# get predictions for positive class only
predict_proba = predict_proba.iloc[:, -1]
bcp.optimize_threshold(X_to_predict, y.tail(10), predict_proba, F1())

print("The new threshold is {}".format(bcp.threshold))

# view the first few predictions
print(bcp.predict(X_to_predict))

The new threshold is 0.13521817340545206
559 benign
560 benign
561 benign
562 malignant
563 malignant
564 malignant

(continues on next page)
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565 malignant
566 malignant
567 malignant
568 benign
Name: malignant, dtype: category
Categories (2, object): ['benign', 'malignant']

4.2.10 Grabbing rows near the decision boundary

For binary classification problems, you can also look at the rows closest to the decision boundary by using
rows_of_interest. This method returns the indices of interest, which can then be used to obtain the subset of
the data that falls closest to the decision boundary. This can help with further analysis of the model, and can give you
better understanding of what rows the model could be having trouble with.

rows_of_interest takes in an epsilon parameter (defaulted to 0.1), which determines which rows to return. The
rows that are returned are the rows where the probability of it being in the positive class fall between the threshold
+- epsilon range. Increase the epsilon value to get more rows, and decrease it to get fewer rows.

Below is a walkthrough of using rows_of_interest, building off the previous pipeline which is already thresholded.

[22]: from evalml.pipelines.utils import rows_of_interest

indices = rows_of_interest(bcp, X, y, types="all")
X.iloc[indices].head()

[22]: mean radius mean texture mean perimeter mean area mean smoothness \
375 16.17 16.07 106.30 788.5 0.09880
472 14.92 14.93 96.45 686.9 0.08098
191 12.77 21.41 82.02 507.4 0.08749
290 14.41 19.73 96.03 651.0 0.08757
413 14.99 22.11 97.53 693.7 0.08515

mean compactness mean concavity mean concave points mean symmetry \
375 0.14380 0.06651 0.05397 0.1990
472 0.08549 0.05539 0.03221 0.1687
191 0.06601 0.03112 0.02864 0.1694
290 0.16760 0.13620 0.06602 0.1714
413 0.10250 0.06859 0.03876 0.1944

mean fractal dimension ... worst radius worst texture \
375 0.06572 ... 16.97 19.14
472 0.05669 ... 17.18 18.22
191 0.06287 ... 13.75 23.50
290 0.07192 ... 15.77 22.13
413 0.05913 ... 16.76 31.55

worst perimeter worst area worst smoothness worst compactness \
375 113.10 861.5 0.12350 0.25500
472 112.00 906.6 0.10650 0.27910
191 89.04 579.5 0.09388 0.08978
290 101.70 767.3 0.09983 0.24720
413 110.20 867.1 0.10770 0.33450
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worst concavity worst concave points worst symmetry \
375 0.21140 0.12510 0.3153
472 0.31510 0.11470 0.2688
191 0.05186 0.04773 0.2179
290 0.22200 0.10210 0.2272
413 0.31140 0.13080 0.3163

worst fractal dimension
375 0.08960
472 0.08273
191 0.06871
290 0.08799
413 0.09251

[5 rows x 30 columns]

You can see what the probabilities are for these rows to determine how close they are to the new pipeline threshold. X
is used here for brevity.

[23]: pred_proba = bcp.predict_proba(X)
pos_value_proba = pred_proba.iloc[:, -1]
pos_value_proba.iloc[indices].head()

[23]: 375 0.133328
472 0.130808
191 0.128998
290 0.127939
413 0.149718
Name: malignant, dtype: float64

4.2.11 Saving and Loading Pipelines

You can save and load trained or untrained pipeline instances using the Python pickle format, like so:

[24]: import pickle

pipeline_to_pickle = BinaryClassificationPipeline(
["Imputer", "Random Forest Classifier"]

)

with open("pipeline.pkl", "wb") as f:
pickle.dump(pipeline_to_pickle, f)

pickled_pipeline = None
with open("pipeline.pkl", "rb") as f:

pickled_pipeline = pickle.load(f)

assert pickled_pipeline == pipeline_to_pickle
pickled_pipeline.fit(X, y)

[24]: pipeline = BinaryClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X', 'y
→˓'], 'Random Forest Classifier': ['Random Forest Classifier', 'Imputer.x', 'y']},␣
→˓parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_
→˓strategy': 'mean', 'boolean_impute_strategy': 'most_frequent', 'categorical_fill_value
→˓': None, 'numeric_fill_value': None, 'boolean_fill_value': None}, 'Random Forest␣
→˓Classifier':{'n_estimators': 100, 'max_depth': 6, 'n_jobs': -1}}, random_seed=0)

(continues on next page)
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4.2.12 Generate Code

Once you have instantiated a pipeline, you can generate string Python code to recreate this pipeline, which can then be
saved and run elsewhere with EvalML. generate_pipeline_code requires a pipeline instance as the input. It can
also handle custom components, but it won’t return the code required to define the component. Note that any external
libraries used in creating the pipeline instance will also need to be imported to execute the returned code.

Code generation is not yet supported for nonlinear pipelines.

[25]: from evalml.pipelines.utils import generate_pipeline_code
from evalml.pipelines import BinaryClassificationPipeline
import pandas as pd
from evalml.utils import infer_feature_types
from skopt.space import Integer

class MyDropNullColumns(Transformer):
"""Transformer to drop features whose percentage of NaN values exceeds a specified␣

→˓threshold"""

name = "My Drop Null Columns Transformer"
hyperparameter_ranges = {}

def __init__(self, pct_null_threshold=1.0, random_seed=0, **kwargs):
"""Initalizes an transformer to drop features whose percentage of NaN values␣

→˓exceeds a specified threshold.

Args:
pct_null_threshold(float): The percentage of NaN values in an input feature␣

→˓to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop␣

→˓columns with any null values.
If equal to 1.0, will drop columns with all null values. Defaults to 0.

→˓95.
"""
if pct_null_threshold < 0 or pct_null_threshold > 1:

raise ValueError(
"pct_null_threshold must be a float between 0 and 1, inclusive."

)
parameters = {"pct_null_threshold": pct_null_threshold}
parameters.update(kwargs)

self._cols_to_drop = None
super().__init__(

parameters=parameters, component_obj=None, random_seed=random_seed
)

def fit(self, X, y=None):
pct_null_threshold = self.parameters["pct_null_threshold"]
X = infer_feature_types(X)

(continues on next page)
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percent_null = X.isnull().mean()
if pct_null_threshold == 0.0:

null_cols = percent_null[percent_null > 0]
else:

null_cols = percent_null[percent_null >= pct_null_threshold]
self._cols_to_drop = list(null_cols.index)
return self

def transform(self, X, y=None):
"""Transforms data X by dropping columns that exceed the threshold of null␣

→˓values.
Args:

X (pd.DataFrame): Data to transform
y (pd.Series, optional): Targets

Returns:
pd.DataFrame: Transformed X

"""

X = infer_feature_types(X)
return X.drop(columns=self._cols_to_drop)

pipeline_instance = BinaryClassificationPipeline(
[

"Imputer",
MyDropNullColumns,
"DateTime Featurizer",
"Natural Language Featurizer",
"One Hot Encoder",
"Random Forest Classifier",

],
custom_name="Pipeline with Custom Component",
random_seed=20,

)

code = generate_pipeline_code(pipeline_instance)
print(code)

# This string can then be pasted into a separate window and run, although since the␣
→˓pipeline has custom component `MyDropNullColumns`,
# the code for that component must also be included
from evalml.demos import load_fraud

X, y = load_fraud(1000)
exec(code)
pipeline.fit(X, y)

from evalml.pipelines.binary_classification_pipeline import BinaryClassificationPipeline

pipeline = BinaryClassificationPipeline(
component_graph={

"Imputer": ["Imputer", "X", "y"],
(continues on next page)
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"My Drop Null Columns Transformer": [MyDropNullColumns, "Imputer.x", "y"],
"DateTime Featurizer": [

"DateTime Featurizer",
"My Drop Null Columns Transformer.x",
"y",

],
"Natural Language Featurizer": [

"Natural Language Featurizer",
"DateTime Featurizer.x",
"y",

],
"One Hot Encoder": ["One Hot Encoder", "Natural Language Featurizer.x", "y"],
"Random Forest Classifier": [

"Random Forest Classifier",
"One Hot Encoder.x",
"y",

],
},
parameters={

"Imputer": {
"categorical_impute_strategy": "most_frequent",
"numeric_impute_strategy": "mean",
"boolean_impute_strategy": "most_frequent",
"categorical_fill_value": None,
"numeric_fill_value": None,
"boolean_fill_value": None,

},
"My Drop Null Columns Transformer": {"pct_null_threshold": 1.0},
"DateTime Featurizer": {

"features_to_extract": ["year", "month", "day_of_week", "hour"],
"encode_as_categories": False,
"time_index": None,

},
"One Hot Encoder": {

"top_n": 10,
"features_to_encode": None,
"categories": None,
"drop": "if_binary",
"handle_unknown": "ignore",
"handle_missing": "error",

},
"Random Forest Classifier": {"n_estimators": 100, "max_depth": 6, "n_jobs": -1},

},
custom_name="Pipeline with Custom Component",
random_seed=20,

)

Number of Features
Boolean 1
Categorical 6
Numeric 5

(continues on next page)
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Number of training examples: 1000
Targets
False 85.90%
True 14.10%
Name: count, dtype: object

[25]: pipeline = BinaryClassificationPipeline(component_graph={'Imputer': ['Imputer', 'X', 'y
→˓'], 'My Drop Null Columns Transformer': [MyDropNullColumns, 'Imputer.x', 'y'],
→˓'DateTime Featurizer': ['DateTime Featurizer', 'My Drop Null Columns Transformer.x', 'y
→˓'], 'Natural Language Featurizer': ['Natural Language Featurizer', 'DateTime␣
→˓Featurizer.x', 'y'], 'One Hot Encoder': ['One Hot Encoder', 'Natural Language␣
→˓Featurizer.x', 'y'], 'Random Forest Classifier': ['Random Forest Classifier', 'One Hot␣
→˓Encoder.x', 'y']}, parameters={'Imputer':{'categorical_impute_strategy': 'most_frequent
→˓', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_frequent',
→˓'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_value': None}
→˓, 'My Drop Null Columns Transformer':{'pct_null_threshold': 1.0}, 'DateTime Featurizer
→˓':{'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_as_
→˓categories': False, 'time_index': None}, 'One Hot Encoder':{'top_n': 10, 'features_to_
→˓encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore',
→˓'handle_missing': 'error'}, 'Random Forest Classifier':{'n_estimators': 100, 'max_depth
→˓': 6, 'n_jobs': -1}}, custom_name='Pipeline with Custom Component', random_seed=20)

4.3 Component Graphs

EvalML component graphs represent and describe the flow of data in a collection of related components. A component
graph is comprised of nodes representing components, and edges between pairs of nodes representing where the inputs
and outputs of each component should go. It is the backbone of the features offered by the EvalML pipeline, but is
also a powerful data structure on its own. EvalML currently supports component graphs as linear and directed acyclic
graphs (DAG).

4.3.1 Defining a Component Graph

Component graphs can be defined by specifying the dictionary of components and edges that describe the graph.

In this dictionary, each key is a reference name for a component. Each corresponding value is a list, where the first
element is the component itself, and the remaining elements are the input edges that should be connected to that
component. The component as listed in the value can either be the component object itself or its string name.

This stucture is very similar to that of Dask computation graphs.

For example, in the code example below, we have a simple component graph made up of two components: an Imputer
and a Random Forest Classifer. The names used to reference these two components are given by the keys, “My Im-
puter” and “RF Classifier” respectively. Each value in the dictionary is a list where the first element is the component
corresponding to the component name, and the remaining elements are the inputs, e.g. “My Imputer” represents an
Imputer component which has inputs “X” (the original features matrix) and “y” (the original target).

Feature edges are specified as "X" or "{component_name}.x". For example, {"My Component": [MyComponent,
"Imputer.x", ...]} indicates that we should use the feature output of the Imputer as as part of the feature in-
put for MyComponent. Similarly, target edges are specified as "y" or "{component_name}.y". {"My Component
": [MyComponent, "Target Imputer.y", ...]} indicates that we should use the target output of the Target
Imputer as a target input for MyComponent.
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Each component can have a number of feature inputs, but can only have one target input. All input edges must be
explicitly defined.

Using a real example, we define a simple component graph consisting of three nodes: an Imputer (“My Imputer”), an
One-Hot Encoder (“OHE”), and a Random Forest Classifier (“RF Classifier”).

• “My Imputer” takes the original X as a features input, and the original y as the target input

• “OHE” also takes the original X as a features input, and the original y as the target input

• “RF Classifer” takes the concatted feature outputs from “My Imputer” and “OHE” as a features input, and the
original y as the target input.

[1]: from evalml.pipelines import ComponentGraph

component_dict = {
"My Imputer": ["Imputer", "X", "y"],
"OHE": ["One Hot Encoder", "X", "y"],
"RF Classifier": [

"Random Forest Classifier",
"My Imputer.x",
"OHE.x",
"y",

], # takes in multiple feature inputs
}
cg_simple = ComponentGraph(component_dict)

All component graphs must end with one final or terminus node. This can either be a transformer or an estimator.
Below, the component graph is invalid because has two terminus nodes: the “RF Classifier” and the “EN Classifier”.

[2]: # Can't instantiate a component graph with more than one terminus node (here: RF␣
→˓Classifier, EN Classifier)
component_dict = {

"My Imputer": ["Imputer", "X", "y"],
"RF Classifier": ["Random Forest Classifier", "My Imputer.x", "y"],
"EN Classifier": ["Elastic Net Classifier", "My Imputer.x", "y"],

}

Once we have defined a component graph, we can instantiate the graph with specific parameter values for each compo-
nent using .instantiate(parameters). All components in a component graph must be instantiated before fitting,
transforming, or predicting.

Below, we instantiate our graph and set the value of our Imputer’s numeric_impute_strategy to “most_frequent”.

[3]: cg_simple.instantiate({"My Imputer": {"numeric_impute_strategy": "most_frequent"}})

[3]: {'My Imputer': ['Imputer', 'X', 'y'], 'OHE': ['One Hot Encoder', 'X', 'y'], 'RF␣
→˓Classifier': ['Random Forest Classifier', 'My Imputer.x', 'OHE.x', 'y']}
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4.3.2 Components in the Component Graph

You can use .get_component(name) and provide the unique component name to access any component in the com-
ponent graph. Below, we can grab our Imputer component and confirm that numeric_impute_strategy has indeed
been set to “most_frequent”.

[4]: cg_simple.get_component("My Imputer")

[4]: Imputer(categorical_impute_strategy='most_frequent', numeric_impute_strategy='most_
→˓frequent', boolean_impute_strategy='most_frequent', categorical_fill_value=None,␣
→˓numeric_fill_value=None, boolean_fill_value=None)

You can also .get_inputs(name) and provide the unique component name to to retrieve all inputs for that component.

Below, we can grab our “RF Classifier” component and confirm that we use "My Imputer.x" as our features input
and "y" as target input.

[5]: cg_simple.get_inputs("RF Classifier")

[5]: ['My Imputer.x', 'OHE.x', 'y']

4.3.3 Component Graph Computation Order

Upon initalization, each component graph will generate a topological order. We can access this generated order by call-
ing the .compute_order attribute. This attribute is used to determine the order that components should be evaluated
during calls to fit and transform.

[6]: cg_simple.compute_order

[6]: ['My Imputer', 'OHE', 'RF Classifier']

4.3.4 Visualizing Component Graphs

We can get more information about an instantiated component graph by calling .describe(). This method will
pretty-print each of the components in the graph and its parameters.

[7]: # Using a more involved component graph with more complex edges
component_dict = {

"Imputer": ["Imputer", "X", "y"],
"Target Imputer": ["Target Imputer", "X", "y"],
"OneHot_RandomForest": ["One Hot Encoder", "Imputer.x", "Target Imputer.y"],
"OneHot_ElasticNet": ["One Hot Encoder", "Imputer.x", "y"],
"Random Forest": ["Random Forest Classifier", "OneHot_RandomForest.x", "y"],
"Elastic Net": [

"Elastic Net Classifier",
"OneHot_ElasticNet.x",
"Target Imputer.y",

],
"Logistic Regression": [

"Logistic Regression Classifier",
"Random Forest.x",
"Elastic Net.x",
"y",

(continues on next page)
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],
}
cg_with_estimators = ComponentGraph(component_dict)
cg_with_estimators.instantiate({})
cg_with_estimators.describe()

1. Imputer
* categorical_impute_strategy : most_frequent
* numeric_impute_strategy : mean
* boolean_impute_strategy : most_frequent
* categorical_fill_value : None
* numeric_fill_value : None
* boolean_fill_value : None

2. Target Imputer
* impute_strategy : most_frequent
* fill_value : None

3. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

4. One Hot Encoder
* top_n : 10
* features_to_encode : None
* categories : None
* drop : if_binary
* handle_unknown : ignore
* handle_missing : error

5. Random Forest Classifier
* n_estimators : 100
* max_depth : 6
* n_jobs : -1

6. Elastic Net Classifier
* penalty : elasticnet
* C : 1.0
* l1_ratio : 0.15
* n_jobs : -1
* multi_class : auto
* solver : saga

7. Logistic Regression Classifier
* penalty : l2
* C : 1.0
* n_jobs : -1
* multi_class : auto
* solver : lbfgs

We can also visualize a component graph by calling .graph().

[8]: cg_with_estimators.graph()
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[8]:

4.3.5 Component graph methods

Similar to the pipeline structure, we can call fit, transform or predict.

We can also call fit_features which will fit all but the final component and
compute_final_component_features which will transform all but the final component. These two meth-
ods may be useful in cases where you want to understand what transformed features are being passed into the last
component.

[9]: from evalml.demos import load_breast_cancer

X, y = load_breast_cancer()
component_dict = {

"My Imputer": ["Imputer", "X", "y"],
"OHE": ["One Hot Encoder", "My Imputer.x", "y"],

}
cg_with_final_transformer = ComponentGraph(component_dict)
cg_with_final_transformer.instantiate({})
cg_with_final_transformer.fit(X, y)

# We can call `transform` for ComponentGraphs with a final transformer
cg_with_final_transformer.transform(X, y)

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object

[9]: mean radius mean texture mean perimeter mean area mean smoothness \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960
3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030
.. ... ... ... ... ...
564 21.56 22.39 142.00 1479.0 0.11100
565 20.13 28.25 131.20 1261.0 0.09780
566 16.60 28.08 108.30 858.1 0.08455
567 20.60 29.33 140.10 1265.0 0.11780
568 7.76 24.54 47.92 181.0 0.05263

mean compactness mean concavity mean concave points mean symmetry \
0 0.27760 0.30010 0.14710 0.2419
1 0.07864 0.08690 0.07017 0.1812
2 0.15990 0.19740 0.12790 0.2069
3 0.28390 0.24140 0.10520 0.2597
4 0.13280 0.19800 0.10430 0.1809
.. ... ... ... ...

(continues on next page)
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564 0.11590 0.24390 0.13890 0.1726
565 0.10340 0.14400 0.09791 0.1752
566 0.10230 0.09251 0.05302 0.1590
567 0.27700 0.35140 0.15200 0.2397
568 0.04362 0.00000 0.00000 0.1587

mean fractal dimension ... worst radius worst texture \
0 0.07871 ... 25.380 17.33
1 0.05667 ... 24.990 23.41
2 0.05999 ... 23.570 25.53
3 0.09744 ... 14.910 26.50
4 0.05883 ... 22.540 16.67
.. ... ... ... ...
564 0.05623 ... 25.450 26.40
565 0.05533 ... 23.690 38.25
566 0.05648 ... 18.980 34.12
567 0.07016 ... 25.740 39.42
568 0.05884 ... 9.456 30.37

worst perimeter worst area worst smoothness worst compactness \
0 184.60 2019.0 0.16220 0.66560
1 158.80 1956.0 0.12380 0.18660
2 152.50 1709.0 0.14440 0.42450
3 98.87 567.7 0.20980 0.86630
4 152.20 1575.0 0.13740 0.20500
.. ... ... ... ...
564 166.10 2027.0 0.14100 0.21130
565 155.00 1731.0 0.11660 0.19220
566 126.70 1124.0 0.11390 0.30940
567 184.60 1821.0 0.16500 0.86810
568 59.16 268.6 0.08996 0.06444

worst concavity worst concave points worst symmetry \
0 0.7119 0.2654 0.4601
1 0.2416 0.1860 0.2750
2 0.4504 0.2430 0.3613
3 0.6869 0.2575 0.6638
4 0.4000 0.1625 0.2364
.. ... ... ...
564 0.4107 0.2216 0.2060
565 0.3215 0.1628 0.2572
566 0.3403 0.1418 0.2218
567 0.9387 0.2650 0.4087
568 0.0000 0.0000 0.2871

worst fractal dimension
0 0.11890
1 0.08902
2 0.08758
3 0.17300
4 0.07678
.. ...

(continues on next page)

4.3. Component Graphs 161



EvalML Documentation, Release 0.80.0

(continued from previous page)

564 0.07115
565 0.06637
566 0.07820
567 0.12400
568 0.07039

[569 rows x 30 columns]

[10]: cg_with_estimators.fit(X, y)

# We can call `predict` for ComponentGraphs with a final transformer
cg_with_estimators.predict(X)

[10]: 0 malignant
1 malignant
2 malignant
3 malignant
4 malignant

...
564 malignant
565 malignant
566 malignant
567 malignant
568 benign
Length: 569, dtype: category
Categories (2, object): ['benign', 'malignant']

4.4 Components

Components are the lowest level of building blocks in EvalML. Each component represents a fundamental operation
to be applied to data.

All components accept parameters as keyword arguments to their __init__ methods. These parameters can be used
to configure behavior.

Each component class definition must include a human-readable name for the component. Additionally, each compo-
nent class may expose parameters for AutoML search by defining a hyperparameter_ranges attribute containing
the parameters in question.

EvalML splits components into two categories: transformers and estimators.

4.4.1 Transformers

Transformers subclass the Transformer class, and define a fit method to learn information from training data and a
transform method to apply a learned transformation to new data.

For example, an imputer is configured with the desired impute strategy to follow, for instance the mean value. The
imputers fit method would learn the mean from the training data, and the transform method would fill the learned
mean value in for any missing values in new data.

All transformers can execute fit and transform separately or in one step by calling fit_transform. Defining a
custom fit_transform method can facilitate useful performance optimizations in some cases.
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[1]: import numpy as np
import pandas as pd
from evalml.pipelines.components import SimpleImputer

X = pd.DataFrame([[1, 2, 3], [1, np.nan, 3]])
display(X)

0 1 2
0 1 2.0 3
1 1 NaN 3

[2]: import woodwork as ww

imp = SimpleImputer(impute_strategy="mean")

X.ww.init()
X = imp.fit_transform(X)
display(X)

0 1 2
0 1 2.0 3
1 1 2.0 3

Below is a list of all transformers included with EvalML:

[3]: from evalml.pipelines.components.utils import all_components, Estimator, Transformer

for component in all_components():
if issubclass(component, Transformer):

print(f"Transformer: {component.name}")

Transformer: Time Series Regularizer
Transformer: Drop NaN Rows Transformer
Transformer: Replace Nullable Types Transformer
Transformer: Drop Rows Transformer
Transformer: URL Featurizer
Transformer: Email Featurizer
Transformer: Log Transformer
Transformer: STL Decomposer
Transformer: Polynomial Decomposer
Transformer: DFS Transformer
Transformer: Time Series Featurizer
Transformer: Natural Language Featurizer
Transformer: LSA Transformer
Transformer: Drop Null Columns Transformer
Transformer: DateTime Featurizer
Transformer: PCA Transformer
Transformer: Linear Discriminant Analysis Transformer
Transformer: Select Columns By Type Transformer
Transformer: Select Columns Transformer
Transformer: Drop Columns Transformer
Transformer: Oversampler
Transformer: Undersampler
Transformer: Standard Scaler

(continues on next page)
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Transformer: Time Series Imputer
Transformer: Target Imputer
Transformer: Imputer
Transformer: KNN Imputer
Transformer: Per Column Imputer
Transformer: Simple Imputer
Transformer: RFE Selector with RF Regressor
Transformer: RFE Selector with RF Classifier
Transformer: RF Regressor Select From Model
Transformer: RF Classifier Select From Model
Transformer: Ordinal Encoder
Transformer: Label Encoder
Transformer: Target Encoder
Transformer: One Hot Encoder

4.4.2 Estimators

Each estimator wraps an ML algorithm. Estimators subclass the Estimator class, and define a fitmethod to learn in-
formation from training data and a predictmethod for generating predictions from new data. Classification estimators
should also define a predict_proba method for generating predicted probabilities.

Estimator classes each define a model_family attribute indicating what type of model is used.

Here’s an example of using the LogisticRegressionClassifier estimator to fit and predict on a simple dataset:

[4]: from evalml.pipelines.components import LogisticRegressionClassifier

clf = LogisticRegressionClassifier()

X = X
y = [1, 0]

clf.fit(X, y)
clf.predict(X)

[4]: 0 0
1 0
dtype: int64

Below is a list of all estimators included with EvalML:

[5]: from evalml.pipelines.components.utils import all_components, Estimator, Transformer

for component in all_components():
if issubclass(component, Estimator):

print(f"Estimator: {component.name}")

Estimator: Stacked Ensemble Regressor
Estimator: Stacked Ensemble Classifier
Estimator: Vowpal Wabbit Regressor
Estimator: VARMAX Regressor
Estimator: ARIMA Regressor
Estimator: Exponential Smoothing Regressor

(continues on next page)
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Estimator: SVM Regressor
Estimator: Prophet Regressor
Estimator: Multiseries Time Series Baseline Regressor
Estimator: Time Series Baseline Estimator
Estimator: Decision Tree Regressor
Estimator: Baseline Regressor
Estimator: Extra Trees Regressor
Estimator: XGBoost Regressor
Estimator: CatBoost Regressor
Estimator: Random Forest Regressor
Estimator: LightGBM Regressor
Estimator: Linear Regressor
Estimator: Elastic Net Regressor
Estimator: Vowpal Wabbit Multiclass Classifier
Estimator: Vowpal Wabbit Binary Classifier
Estimator: SVM Classifier
Estimator: KNN Classifier
Estimator: Decision Tree Classifier
Estimator: LightGBM Classifier
Estimator: Baseline Classifier
Estimator: Extra Trees Classifier
Estimator: Elastic Net Classifier
Estimator: CatBoost Classifier
Estimator: XGBoost Classifier
Estimator: Random Forest Classifier
Estimator: Logistic Regression Classifier

4.4.3 Defining Custom Components

EvalML allows you to easily create your own custom components by following the steps below.

Custom Transformers

Your transformer must inherit from the correct subclass. In this case Transformer for components that transform data.
Next we will use EvalML’s DropNullColumns as an example.

[6]: from evalml.pipelines.components import Transformer
from evalml.utils import (

infer_feature_types,
)

class DropNullColumns(Transformer):
"""Transformer to drop features whose percentage of NaN values exceeds a specified␣

→˓threshold"""

name = "Drop Null Columns Transformer"
hyperparameter_ranges = {}

def __init__(self, pct_null_threshold=1.0, random_seed=0, **kwargs):
(continues on next page)
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"""Initalizes an transformer to drop features whose percentage of NaN values␣
→˓exceeds a specified threshold.

Args:
pct_null_threshold(float): The percentage of NaN values in an input feature␣

→˓to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop␣

→˓columns with any null values.
If equal to 1.0, will drop columns with all null values. Defaults to 0.

→˓95.
"""
if pct_null_threshold < 0 or pct_null_threshold > 1:

raise ValueError(
"pct_null_threshold must be a float between 0 and 1, inclusive."

)
parameters = {"pct_null_threshold": pct_null_threshold}
parameters.update(kwargs)

self._cols_to_drop = None
super().__init__(

parameters=parameters, component_obj=None, random_seed=random_seed
)

def fit(self, X, y=None):
"""Fits DropNullColumns component to data

Args:
X (pd.DataFrame): The input training data of shape [n_samples, n_features]
y (pd.Series, optional): The target training data of length [n_samples]

Returns:
self

"""
pct_null_threshold = self.parameters["pct_null_threshold"]
X_t = infer_feature_types(X)
percent_null = X_t.isnull().mean()
if pct_null_threshold == 0.0:

null_cols = percent_null[percent_null > 0]
else:

null_cols = percent_null[percent_null >= pct_null_threshold]
self._cols_to_drop = list(null_cols.index)
return self

def transform(self, X, y=None):
"""Transforms data X by dropping columns that exceed the threshold of null␣

→˓values.

Args:
X (pd.DataFrame): Data to transform
y (pd.Series, optional): Ignored.

Returns:

(continues on next page)
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pd.DataFrame: Transformed X
"""
X_t = infer_feature_types(X)
return X_t.drop(self._cols_to_drop)

Required fields

• name: A human-readable name.

• modifies_features: A boolean that specifies whether this component modifies (subsets or transforms) the
features variable during transform.

• modifies_target: A boolean that specifies whether this component modifies (subsets or transforms) the target
variable during transform.

Required methods

Likewise, there are select methods you need to override as Transformer is an abstract base class:

• __init__(): The __init__() method of your transformer will need to call super().__init__() and pass
three parameters in: a parameters dictionary holding the parameters to the component, the component_obj,
and the random_seed value. You can see that component_obj is set to None above and we will discuss
component_obj in depth later on.

• fit(): The fit() method is responsible for fitting your component on training data. It should return the
component object.

• transform(): After fitting a component, the transform() method will take in new data and transform ac-
cordingly. It should return a pandas dataframe with woodwork initialized. Note: a component must call fit()
before transform().

You can also call or override fit_transform() that combines fit() and transform() into one method.

Custom Estimators

Your estimator must inherit from the correct subclass. In this case Estimator for components that predict new target
values. Next we will use EvalML’s BaselineRegressor as an example.

[7]: import numpy as np
import pandas as pd

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes

class BaselineRegressor(Estimator):
"""Regressor that predicts using the specified strategy.

This is useful as a simple baseline regressor to compare with other regressors.
"""

(continues on next page)
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name = "Baseline Regressor"
hyperparameter_ranges = {}
model_family = ModelFamily.BASELINE
supported_problem_types = [

ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,

]

def __init__(self, strategy="mean", random_seed=0, **kwargs):
"""Baseline regressor that uses a simple strategy to make predictions.

Args:
strategy (str): Method used to predict. Valid options are "mean", "median".␣

→˓Defaults to "mean".
random_seed (int): Seed for the random number generator. Defaults to 0.

"""
if strategy not in ["mean", "median"]:

raise ValueError(
"'strategy' parameter must equal either 'mean' or 'median'"

)
parameters = {"strategy": strategy}
parameters.update(kwargs)

self._prediction_value = None
self._num_features = None
super().__init__(

parameters=parameters, component_obj=None, random_seed=random_seed
)

def fit(self, X, y=None):
if y is None:

raise ValueError("Cannot fit Baseline regressor if y is None")
X = infer_feature_types(X)
y = infer_feature_types(y)

if self.parameters["strategy"] == "mean":
self._prediction_value = y.mean()

elif self.parameters["strategy"] == "median":
self._prediction_value = y.median()

self._num_features = X.shape[1]
return self

def predict(self, X):
X = infer_feature_types(X)
predictions = pd.Series([self._prediction_value] * len(X))
return infer_feature_types(predictions)

@property
def feature_importance(self):

"""Returns importance associated with each feature. Since baseline regressors do␣
→˓not use input features to calculate predictions, returns an array of zeroes.

(continues on next page)
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Returns:
np.ndarray (float): An array of zeroes

"""
return np.zeros(self._num_features)

Required fields

• name: A human-readable name.

• model_family - EvalML model_family that this component belongs to

• supported_problem_types - list of EvalML problem_types that this component supports

• modifies_features: A boolean that specifies whether the return value from predict or predict_proba
should be used as features.

• modifies_target: A boolean that specifies whether the return value from predict or predict_proba should
be used as the target variable.

Model families and problem types include:

[8]: from evalml.model_family import ModelFamily
from evalml.problem_types import ProblemTypes

print("Model Families:\n", [m.value for m in ModelFamily])
print("Problem Types:\n", [p.value for p in ProblemTypes])

Model Families:
['k_neighbors', 'random_forest', 'svm', 'xgboost', 'lightgbm', 'linear_model', 'catboost
→˓', 'extra_trees', 'ensemble', 'decision_tree', 'exponential_smoothing', 'arima',
→˓'varmax', 'baseline', 'prophet', 'vowpal_wabbit', 'none']
Problem Types:
['binary', 'multiclass', 'regression', 'time series regression', 'time series binary',
→˓'time series multiclass', 'multiseries time series regression']

Required methods

• __init__() - the __init__() method of your estimator will need to call super().__init__() and pass
three parameters in: a parameters dictionary holding the parameters to the component, the component_obj,
and the random_seed value.

• fit() - the fit() method is responsible for fitting your component on training data.

• predict() - after fitting a component, the predict() method will take in new data and predict new target
values. Note: a component must call fit() before predict().

• feature_importance - feature_importance is a Python property that returns a list of importances associ-
ated with each feature.

If your estimator handles classification problems it also requires an additonal method:

• predict_proba() - this method predicts probability estimates for classification labels
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Components Wrapping Third-Party Objects

The component_obj parameter is used for wrapping third-party objects and using them in component implementation.
If you’re using a component_obj you will need to define __init__() and pass in the relevant object that has also
implemented the required methods mentioned above. However, if the component_obj does not follow EvalML com-
ponent conventions, you may need to override methods as needed. Below is an example of EvalML’s LinearRegressor.

[9]: from sklearn.linear_model import LinearRegression as SKLinearRegression

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes

class LinearRegressor(Estimator):
"""Linear Regressor."""

name = "Linear Regressor"
model_family = ModelFamily.LINEAR_MODEL
supported_problem_types = [ProblemTypes.REGRESSION]

def __init__(
self, fit_intercept=True, normalize=False, n_jobs=-1, random_seed=0, **kwargs

):
parameters = {

"fit_intercept": fit_intercept,
"normalize": normalize,
"n_jobs": n_jobs,

}
parameters.update(kwargs)
linear_regressor = SKLinearRegression(**parameters)
super().__init__(

parameters=parameters,
component_obj=linear_regressor,
random_seed=random_seed,

)

@property
def feature_importance(self):

return self._component_obj.coef_

Hyperparameter Ranges for AutoML

hyperparameter_ranges is a dictionary mapping the parameter name (str) to an allowed range (SkOpt Space) for
that parameter. Both lists and skopt.space.Categorical values are accepted for categorical spaces.

AutoML will perform a search over the allowed ranges for each parameter to select models which produce
optimal performance within those ranges. AutoML gets the allowed ranges for each component from the
component’s hyperparameter_ranges class attribute. Any component parameter you add an entry for in
hyperparameter_ranges will be included in the AutoML search. If parameters are omitted, AutoML will use the
default value in all pipelines.
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4.4.4 Generate Component Code

Once you have a component defined in EvalML, you can generate string Python code to recreate this component, which
can then be saved and run elsewhere with EvalML. generate_component_code requires a component instance as
the input. This method works for custom components as well, although it won’t return the code required to define the
custom component.

[10]: from evalml.pipelines.components import LogisticRegressionClassifier
from evalml.pipelines.components.utils import generate_component_code

lr = LogisticRegressionClassifier(C=5)
code = generate_component_code(lr)
print(code)

from evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier␣
→˓import LogisticRegressionClassifier

logisticRegressionClassifier = LogisticRegressionClassifier(**{'penalty': 'l2', 'C': 5,
→˓'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'})

[11]: # this string can then be copy and pasted into a separate window and executed as python␣
→˓code
exec(code)

[12]: # We can also do this for custom components
from evalml.pipelines.components.utils import generate_component_code

myDropNull = DropNullColumns()
print(generate_component_code(myDropNull))

dropNullColumnsTransformer = DropNullColumns(**{'pct_null_threshold': 1.0})

Expectations for Custom Classification Components

EvalML expects the following from custom classification component implementations:

• Classification targets will range from 0 to n-1 and are integers.

• For classification estimators, the order of predict_proba’s columns must match the order of the target, and the
column names must be integers ranging from 0 to n-1

4.5 Objectives

4.5.1 Overview

One of the key choices to make when training an ML model is what metric to choose by which to measure the efficacy
of the model at learning the signal. Such metrics are useful for comparing how well the trained models generalize to
new similar data.

This choice of metric is a key component of AutoML because it defines the cost function the AutoML search will
seek to optimize. In EvalML, these metrics are called objectives. AutoML will seek to minimize (or maximize) the
objective score as it explores more pipelines and parameters and will use the feedback from scoring pipelines to tune the
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available hyperparameters and continue the search. Therefore, it is critical to have an objective function that represents
how the model will be applied in the intended domain of use.

EvalML supports a variety of objectives from traditional supervised ML including mean squared error for regression
problems and cross entropy or area under the ROC curve for classification problems. EvalML also allows the user to
define a custom objective using their domain expertise, so that AutoML can search for models which provide the most
value for the user’s problem.

Optimization vs Ranking Objectives

There are many common objectives used for evaluating model performance. However, not all of these objectives should
be used to optimize AutoMLSearch. Consider the popular objective recall, which is the number of true positives
divided by the number of true positives and false negatives. If the model has no false negatives, the recall ends up
being a perfect score of 1. During automatic optimization, models can exploit this by predicting the positive label in
every case, making a completely useless but seemingly highly performant model. However, this objective is still useful
when trying to evaluate performance after a model has been trained.

Due to this potential issue, we define two types of objectives: optimization and ranking. Optimization objectives
are those that can be used within AutoMLSearch to train performant models. Ranking objectives can be used after
AutoMLSearch has been run, to rank or otherwise evaluate model performance. These include all of the optimization
metrics, as well as all other important metrics such as recall that are excluded from optimization.

Note that we also define a third class of objectives, non-core objectives, which are domain-specific and require addi-
tional configuration before they can be used.

4.5.2 Optimization Objectives

Use the get_optimization_objectives method to get a list of which objectives can be used for optimization in
AutoMLSearch for each problem type:

[1]: from evalml.objectives import get_optimization_objectives
from evalml.problem_types import ProblemTypes

for objective in get_optimization_objectives(ProblemTypes.BINARY):
print(objective.name)

MCC Binary
Log Loss Binary
Gini
AUC
Precision
F1
Balanced Accuracy Binary
Accuracy Binary
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4.5.3 Ranking Objectives

Use the get_ranking_objectives method to get a list of which objectives are included with EvalML for each prob-
lem type:

[2]: from evalml.objectives import get_ranking_objectives

for objective in get_ranking_objectives(ProblemTypes.BINARY):
print(objective.name)

MCC Binary
Log Loss Binary
Gini
AUC
Recall
Precision
F1
Balanced Accuracy Binary
Accuracy Binary

EvalML defines a base objective class for each problem type: RegressionObjective,
BinaryClassificationObjective and MulticlassClassificationObjective. All EvalML objectives
are a subclass of one of these.

Binary Classification Objectives and Thresholds

All binary classification objectives have a threshold property. Some binary classification objectives like log loss and
AUC are unaffected by the choice of binary classification threshold, because they score based on predicted probabilities
or examine a range of threshold values. These metrics are defined with score_needs_proba set to False. For all
other binary classification objectives, we can compute the optimal binary classification threshold from the predicted
probabilities and the target.

[3]: from evalml.pipelines import BinaryClassificationPipeline
from evalml.demos import load_fraud
from evalml.objectives import F1

X, y = load_fraud(n_rows=100)
X.ww.init(

logical_types={
"provider": "Categorical",
"region": "Categorical",
"currency": "Categorical",
"expiration_date": "Categorical",

}
)
objective = F1()
pipeline = BinaryClassificationPipeline(

component_graph=[
"Imputer",
"DateTime Featurizer",
"One Hot Encoder",
"Random Forest Classifier",

]
(continues on next page)
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)
pipeline.fit(X, y)
print(pipeline.threshold)
print(pipeline.score(X, y, objectives=[objective]))

y_pred_proba = pipeline.predict_proba(X)[True]
pipeline.threshold = objective.optimize_threshold(y_pred_proba, y)
print(pipeline.threshold)
print(pipeline.score(X, y, objectives=[objective]))

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 100
Targets
False 91.00%
True 9.00%
Name: count, dtype: object
None
OrderedDict([('F1', 1.0)])
0.37905689607742854
OrderedDict([('F1', 1.0)])

4.5.4 Custom Objectives

Often times, the objective function is very specific to the use-case or business problem. To get the right objective
to optimize requires thinking through the decisions or actions that will be taken using the model and assigning a
cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a
custom objective function.

Defining a Custom Objective Function

To create a custom objective class, we must define several elements:

• name: The printable name of this objective.

• objective_function: This function takes the predictions, true labels, and an optional reference to the inputs,
and returns a score of how well the model performed.

• greater_is_better: True if a higher objective_function value represents a better solution, and otherwise
False.

• score_needs_proba: Only for classification objectives. True if the objective is intended to function with
predicted probabilities as opposed to predicted values (example: cross entropy for classifiers).

• decision_function: Only for binary classification objectives. This function takes predicted probabilities that
were output from the model and a binary classification threshold, and returns predicted values.

• perfect_score: The score achieved by a perfect model on this objective.
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• expected_range: The expected range of values we want this objective to output, which doesn’t necessarily
have to be equal to the possible range of values. For example, our expected R2 range is from [-1, 1], although
the actual range is (-inf, 1].

Example: Fraud Detection

To give a concrete example, let’s look at how the fraud detection objective function is built.

[4]: from evalml.objectives.binary_classification_objective import (
BinaryClassificationObjective,

)
import pandas as pd

class FraudCost(BinaryClassificationObjective):
"""Score the percentage of money lost of the total transaction amount process due to␣

→˓fraud"""

name = "Fraud Cost"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0

def __init__(
self,
retry_percentage=0.5,
interchange_fee=0.02,
fraud_payout_percentage=1.0,
amount_col="amount",

):
"""Create instance of FraudCost

Args:
retry_percentage (float): What percentage of customers that will retry a␣

→˓transaction if it
is declined. Between 0 and 1. Defaults to .5

interchange_fee (float): How much of each successful transaction you can␣
→˓collect.

Between 0 and 1. Defaults to .02

fraud_payout_percentage (float): Percentage of fraud you will not be able to␣
→˓collect.

Between 0 and 1. Defaults to 1.0

amount_col (str): Name of column in data that contains the amount. Defaults␣
→˓to "amount"

"""
self.retry_percentage = retry_percentage
self.interchange_fee = interchange_fee
self.fraud_payout_percentage = fraud_payout_percentage
self.amount_col = amount_col

(continues on next page)
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def decision_function(self, ypred_proba, threshold=0.0, X=None):
"""Determine if a transaction is fraud given predicted probabilities, threshold,␣

→˓and dataframe with transaction amount

Args:
ypred_proba (pd.Series): Predicted probablities
X (pd.DataFrame): Dataframe containing transaction amount
threshold (float): Dollar threshold to determine if transaction is fraud

Returns:
pd.Series: Series of predicted fraud labels using X and threshold

"""
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)

if not isinstance(ypred_proba, pd.Series):
ypred_proba = pd.Series(ypred_proba)

transformed_probs = ypred_proba.values * X[self.amount_col]
return transformed_probs > threshold

def objective_function(self, y_true, y_predicted, X):
"""Calculate amount lost to fraud per transaction given predictions, true values,

→˓ and dataframe with transaction amount

Args:
y_predicted (pd.Series): predicted fraud labels
y_true (pd.Series): true fraud labels
X (pd.DataFrame): dataframe with transaction amounts

Returns:
float: amount lost to fraud per transaction

"""
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)

if not isinstance(y_predicted, pd.Series):
y_predicted = pd.Series(y_predicted)

if not isinstance(y_true, pd.Series):
y_true = pd.Series(y_true)

# extract transaction using the amount columns in users data
try:

transaction_amount = X[self.amount_col]
except KeyError:

raise ValueError("`{}` is not a valid column in X.".format(self.amount_col))

# amount paid if transaction is fraud
fraud_cost = transaction_amount * self.fraud_payout_percentage

# money made from interchange fees on transaction

(continues on next page)
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interchange_cost = (
transaction_amount * (1 - self.retry_percentage) * self.interchange_fee

)

# calculate cost of missing fraudulent transactions
false_negatives = (y_true & ~y_predicted) * fraud_cost

# calculate money lost from fees
false_positives = (~y_true & y_predicted) * interchange_cost

loss = false_negatives.sum() + false_positives.sum()

loss_per_total_processed = loss / transaction_amount.sum()

return loss_per_total_processed

4.6 Model Understanding

Simply examining a model’s performance metrics is not enough to select a model and promote it for use in a production
setting. While developing an ML algorithm, it is important to understand how the model behaves on the data, to examine
the key factors influencing its predictions and to consider where it may be deficient. Determination of what “success”
may mean for an ML project depends first and foremost on the user’s domain expertise.

EvalML includes a variety of tools for understanding models, from graphing utilities to methods for explaining predic-
tions.

** Graphing methods on Jupyter Notebook and Jupyter Lab require ipywidgets to be installed.

** If graphing on Jupyter Lab, jupyterlab-plotly required. To download this, make sure you have npm installed.

4.6.1 Explaining Feature Influence

The EvalML package offers a variety of methods for understanding which features in a dataset have an impact on the
output of the model. We can investigate this either through feature importance or through permutation importance, and
leverage either in generating more readable explanations.

First, let’s train a pipeline on some data.

[1]: import evalml
from evalml.pipelines import BinaryClassificationPipeline

X, y = evalml.demos.load_breast_cancer()

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
X, y, problem_type="binary", test_size=0.2, random_seed=0

)

pipeline_binary = BinaryClassificationPipeline(
component_graph={

"Label Encoder": ["Label Encoder", "X", "y"],
(continues on next page)
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"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Random Forest Classifier": [

"Random Forest Classifier",
"Imputer.x",
"Label Encoder.y",

],
}

)
pipeline_binary.fit(X_train, y_train)
print(pipeline_binary.score(X_holdout, y_holdout, objectives=["log loss binary"]))

Number of Features
Numeric 30

Number of training examples: 569
Targets
benign 62.74%
malignant 37.26%
Name: count, dtype: object
OrderedDict([('Log Loss Binary', 0.1686746297113362)])

Feature Importance

We can get the importance associated with each feature of the resulting pipeline

[2]: pipeline_binary.feature_importance

[2]: feature importance
0 mean concave points 0.138857
1 worst perimeter 0.137780
2 worst concave points 0.117782
3 worst radius 0.100584
4 mean concavity 0.086402
5 worst area 0.072027
6 mean perimeter 0.046500
7 worst concavity 0.043408
8 mean radius 0.037664
9 mean area 0.033683
10 radius error 0.025036
11 area error 0.019324
12 worst texture 0.014754
13 worst compactness 0.014462
14 mean texture 0.013856
15 worst smoothness 0.013710
16 worst symmetry 0.011395
17 perimeter error 0.010284
18 mean compactness 0.008162
19 mean smoothness 0.008154
20 worst fractal dimension 0.007034
21 fractal dimension error 0.005502
22 compactness error 0.004953
23 smoothness error 0.004728

(continues on next page)
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24 texture error 0.004384
25 symmetry error 0.004250
26 mean fractal dimension 0.004164
27 concavity error 0.004089
28 mean symmetry 0.003997
29 concave points error 0.003076

We can also create a bar plot of the feature importances

[3]: pipeline_binary.graph_feature_importance()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

If we have a linear model, we can also view feature importance by simply inspecting the coefficients of the model.

[4]: from evalml.model_understanding import get_linear_coefficients

pipeline_linear = BinaryClassificationPipeline(
component_graph={

"Label Encoder": ["Label Encoder", "X", "y"],
"Imputer": ["Imputer", "X", "Label Encoder.y"],
"Logistic Regression Classifier": [

"Logistic Regression Classifier",
"Imputer.x",
"Label Encoder.y",

],
}

)
pipeline_linear.fit(X_train, y_train)

get_linear_coefficients(pipeline_linear.estimator, features=X.columns)

[4]: Intercept -0.352325
worst radius -1.841560
mean radius -1.734090
texture error -0.769215
perimeter error -0.301213
radius error -0.078451
mean texture -0.064298
mean perimeter -0.041579
mean area 0.001247
fractal dimension error 0.005983
smoothness error 0.006360
symmetry error 0.019811
mean fractal dimension 0.020884
worst area 0.023366
concave points error 0.023432
compactness error 0.060427
mean smoothness 0.076231
concavity error 0.087974
mean symmetry 0.090586

(continues on next page)
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worst fractal dimension 0.102868
area error 0.114724
worst smoothness 0.131197
mean concave points 0.190348
worst texture 0.251384
worst perimeter 0.284895
worst symmetry 0.285985
mean compactness 0.320826
worst concave points 0.361658
mean concavity 0.439937
worst compactness 0.981815
worst concavity 1.235671
dtype: float64

Permutation Importance

We can also compute and plot the permutation importance of the pipeline.

[5]: from evalml.model_understanding import calculate_permutation_importance

calculate_permutation_importance(
pipeline_binary, X_holdout, y_holdout, "log loss binary"

)

[5]: feature importance
0 worst perimeter 0.063657
1 worst area 0.045759
2 worst radius 0.041926
3 mean concave points 0.029325
4 worst concave points 0.021045
5 worst concavity 0.010105
6 worst texture 0.010044
7 mean texture 0.006178
8 mean symmetry 0.005857
9 mean area 0.004745
10 worst smoothness 0.003190
11 area error 0.003113
12 mean perimeter 0.002478
13 mean fractal dimension 0.001981
14 compactness error 0.001968
15 concavity error 0.001947
16 texture error 0.000291
17 smoothness error -0.000206
18 mean smoothness -0.000745
19 fractal dimension error -0.000835
20 worst compactness -0.002392
21 mean concavity -0.003188
22 mean compactness -0.005377
23 radius error -0.006229
24 mean radius -0.006870
25 worst fractal dimension -0.007415

(continues on next page)

180 Chapter 4. User Guide

https://scikit-learn.org/stable/modules/permutation_importance.html


EvalML Documentation, Release 0.80.0

(continued from previous page)

26 symmetry error -0.008175
27 perimeter error -0.008980
28 concave points error -0.010415
29 worst symmetry -0.018645

[6]: from evalml.model_understanding import graph_permutation_importance

graph_permutation_importance(pipeline_binary, X_holdout, y_holdout, "log loss binary")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Human Readable Importance

We can generate a more human-comprehensible understanding of either the feature or permutation importance by using
readable_explanation(pipeline). This picks out a subset of features that have the highest impact on the output
of the model, sorting them into either “heavily” or “somewhat” influential on the model. These features are selected
either by feature importance or permutation importance with a given objective. If there are any features that actively
decrease the performance of the pipeline, this function highlights those and recommends removal.

Note that permutation importance runs on the original input features, while feature importance runs on the features as
they were passed in to the final estimator, having gone through a number of preprocessing steps. The two methods will
highlight different features as being important, and feature names may vary as well.

[7]: from evalml.model_understanding import readable_explanation

readable_explanation(
pipeline_binary,
X_holdout,
y_holdout,
objective="log loss binary",
importance_method="permutation",

)

Random Forest Classifier: The output as measured by log loss binary is heavily␣
→˓influenced by worst perimeter, and is somewhat influenced by worst area, worst radius,␣
→˓mean concave points, and worst concave points.
The features smoothness error, mean smoothness, fractal dimension error, worst␣
→˓compactness, mean concavity, mean compactness, radius error, mean radius, worst␣
→˓fractal dimension, symmetry error, perimeter error, concave points error, and worst␣
→˓symmetry detracted from model performance. We suggest removing these features.

[8]: readable_explanation(
pipeline_binary, importance_method="feature"

) # feature importance doesn't require X and y

Random Forest Classifier: The output is somewhat influenced by mean concave points,␣
→˓worst perimeter, worst concave points, worst radius, and mean concavity.

We can adjust the number of most important features visible with the max_features argument, or modify the minimum
threshold for “importance” with min_importance_threshold. However, these values will not affect any detrimental
features displayed, as this function always displays all of them.
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4.6.2 Metrics for Model Understanding

Confusion Matrix

For binary or multiclass classification, we can view a confusion matrix of the classifier’s predictions. In the DataFrame
output of confusion_matrix(), the column header represents the predicted labels while row header represents the
actual labels.

[9]: from evalml.model_understanding.metrics import confusion_matrix

y_pred = pipeline_binary.predict(X_holdout)
confusion_matrix(y_holdout, y_pred)

[9]: benign malignant
benign 0.930556 0.069444
malignant 0.023810 0.976190

[10]: from evalml.model_understanding.metrics import graph_confusion_matrix

y_pred = pipeline_binary.predict(X_holdout)
graph_confusion_matrix(y_holdout, y_pred)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Precision-Recall Curve

For binary classification, we can view the precision-recall curve of the pipeline.

[11]: from evalml.model_understanding.metrics import graph_precision_recall_curve

# get the predicted probabilities associated with the "true" label
import woodwork as ww

y_encoded = y_holdout.ww.map({"benign": 0, "malignant": 1})
y_pred_proba = pipeline_binary.predict_proba(X_holdout)["malignant"]
graph_precision_recall_curve(y_encoded, y_pred_proba)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

ROC Curve

For binary and multiclass classification, we can view the Receiver Operating Characteristic (ROC) curve of the pipeline.

[12]: from evalml.model_understanding.metrics import graph_roc_curve

# get the predicted probabilities associated with the "malignant" label
y_pred_proba = pipeline_binary.predict_proba(X_holdout)["malignant"]
graph_roc_curve(y_encoded, y_pred_proba)
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Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

The ROC curve can also be generated for multiclass classification problems. For multiclass problems, the graph will
show a one-vs-many ROC curve for each class.

[13]: from evalml.pipelines import MulticlassClassificationPipeline

X_multi, y_multi = evalml.demos.load_wine()

pipeline_multi = MulticlassClassificationPipeline(
["Simple Imputer", "Random Forest Classifier"]

)
pipeline_multi.fit(X_multi, y_multi)

y_pred_proba = pipeline_multi.predict_proba(X_multi)
graph_roc_curve(y_multi, y_pred_proba)

Number of Features
Numeric 13

Number of training examples: 178
Targets
class_1 39.89%
class_0 33.15%
class_2 26.97%
Name: count, dtype: object

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.6.3 Visualizations

Binary Objective Score vs. Threshold Graph

Some binary classification objectives (objectives that have score_needs_proba set to False) are sensitive to a decision
threshold. For those objectives, we can obtain and graph the scores for thresholds from zero to one, calculated at evenly-
spaced intervals determined by steps.

[14]: from evalml.model_understanding.visualizations import binary_objective_vs_threshold

binary_objective_vs_threshold(pipeline_binary, X_holdout, y_holdout, "f1", steps=10)

[14]: threshold score
0 0.0 0.538462
1 0.1 0.811881
2 0.2 0.891304
3 0.3 0.901099
4 0.4 0.931818
5 0.5 0.931818
6 0.6 0.941176

(continues on next page)
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7 0.7 0.951220
8 0.8 0.936709
9 0.9 0.923077
10 1.0 0.000000

[15]: from evalml.model_understanding.visualizations import (
graph_binary_objective_vs_threshold,

)

graph_binary_objective_vs_threshold(
pipeline_binary, X_holdout, y_holdout, "f1", steps=100

)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Predicted Vs Actual Values Graph for Regression Problems

We can also create a scatterplot comparing predicted vs actual values for regression problems. We can specify an
outlier_threshold to color values differently if the absolute difference between the actual and predicted values are
outside of a given threshold.

[16]: from evalml.model_understanding.visualizations import graph_prediction_vs_actual
from evalml.pipelines import RegressionPipeline

X_regress, y_regress = evalml.demos.load_diabetes()
X_train_reg, X_test_reg, y_train_reg, y_test_reg = evalml.preprocessing.split_data(

X_regress, y_regress, problem_type="regression"
)

pipeline_regress = RegressionPipeline(["One Hot Encoder", "Linear Regressor"])
pipeline_regress.fit(X_train_reg, y_train_reg)

y_pred = pipeline_regress.predict(X_test_reg)
graph_prediction_vs_actual(y_test_reg, y_pred, outlier_threshold=50)

Number of Features
Numeric 10

Number of training examples: 442
Targets
200 1.36%
72 1.36%
90 1.13%
178 1.13%
71 1.13%

...
73 0.23%
222 0.23%
86 0.23%
79 0.23%

(continues on next page)
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57 0.23%
Name: count, Length: 214, dtype: object

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Tree Visualization

Now let’s train a decision tree on some data. We can visualize the structure of the Decision Tree that was fit to that
data, and save it if necessary.

[17]: pipeline_dt = BinaryClassificationPipeline(
["Simple Imputer", "Decision Tree Classifier"]

)
pipeline_dt.fit(X_train, y_train)

[17]: pipeline = BinaryClassificationPipeline(component_graph={'Simple Imputer': ['Simple␣
→˓Imputer', 'X', 'y'], 'Decision Tree Classifier': ['Decision Tree Classifier', 'Simple␣
→˓Imputer.x', 'y']}, parameters={'Simple Imputer':{'impute_strategy': 'most_frequent',
→˓'fill_value': None}, 'Decision Tree Classifier':{'criterion': 'gini', 'max_features':
→˓'sqrt', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0}},␣
→˓random_seed=0)

[18]: from evalml.model_understanding.visualizations import visualize_decision_tree

visualize_decision_tree(
pipeline_dt.estimator, max_depth=2, rotate=False, filled=True, filepath=None

)

[18]:

Confusion Matrix and Thresholds for Binary Classification Pipelines

For binary classification pipelines, EvalML also provides the ability to compare the actual positive and actual negative
histograms, as well as obtaining the confusion matrices and ideal thresholds per objective.

[19]: from evalml.model_understanding import find_confusion_matrix_per_thresholds

df, objective_thresholds = find_confusion_matrix_per_thresholds(
pipeline_binary, X, y, n_bins=10

)
df.head(10)

[19]: true_pos_count true_neg_count true_positives true_negatives \
0.1 1 309 211 309
0.2 0 35 211 344
0.3 0 5 211 349
0.4 0 3 211 352
0.5 0 0 211 352
0.6 3 2 208 354
0.7 2 2 206 356
0.8 9 1 197 357
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0.9 15 0 182 357
1.0 182 0 0 357

false_positives false_negatives data_in_bins
0.1 48 1 [19, 20, 21, 37, 46]
0.2 13 1 [68, 92, 123, 133, 147]
0.3 8 1 [112, 157, 484, 491, 505]
0.4 5 1 [208, 340, 465]
0.5 5 1 []
0.6 3 4 [40, 89, 128, 263, 297]
0.7 1 6 [13, 81, 385, 421]
0.8 0 15 [38, 41, 54, 73, 86]
0.9 0 30 [39, 44, 91, 99, 100]
1.0 0 212 [0, 1, 2, 3, 4]

[20]: objective_thresholds

[20]: {'accuracy': {'objective score': 0.9894551845342706, 'threshold value': 0.4},
'balanced_accuracy': {'objective score': 0.9906387083135141,
'threshold value': 0.4},
'precision': {'objective score': 1.0, 'threshold value': 0.8},
'f1': {'objective score': 0.9859813084112149, 'threshold value': 0.4}}

In the above results, the first dataframe contains the histograms for the actual positive and negative classes, indicated by
true_pos_count and true_neg_count. The columns true_positives, true_negatives, false_positives,
and false_negatives contain the confusion matrix information for the associated threshold, and the data_in_bins
holds a random subset of row indices (both postive and negative) that belong in each bin. The index of the dataframe
represents the associated threshold. For instance, at index 0.1, there is 1 positive and 309 negative rows that fall
between [0.0, 0.1].

The returned objective_thresholds dictionary has the objective measure as the key, and the dictionary value as-
sociated contains both the best objective score and the threshold that results in the associated score.

Visualize high dimensional data in lower space

We can use T-SNE to visualize data with many features on a 2D plot, making it easier to see relationships in your data.

[21]: # Our data is highly dimensional, we can't plot this in a way we understand
print(len(X.columns))

30

[22]: from evalml.model_understanding import graph_t_sne

fig = graph_t_sne(X)
fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html
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4.6.4 Partial Dependence Plots

We can calculate the one-way partial dependence plots for a feature.

[23]: from evalml.model_understanding import partial_dependence

partial_dependence(
pipeline_binary, X_holdout, features="mean radius", grid_resolution=5

)

[23]: feature_values partial_dependence class_label
0 9.69092 0.392453 malignant
1 12.40459 0.395962 malignant
2 15.11826 0.417396 malignant
3 17.83193 0.429542 malignant
4 20.54560 0.429717 malignant

[24]: from evalml.model_understanding import graph_partial_dependence

graph_partial_dependence(
pipeline_binary, X_holdout, features="mean radius", grid_resolution=5

)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

We can also compute the partial dependence for a categorical feature. We will demonstrate this on the fraud dataset.

[25]: X_fraud, y_fraud = evalml.demos.load_fraud(100, verbose=False)
X_fraud.ww.init(

logical_types={
"provider": "Categorical",
"region": "Categorical",
"currency": "Categorical",
"expiration_date": "Categorical",

}
)

fraud_pipeline = BinaryClassificationPipeline(
["DateTime Featurizer", "One Hot Encoder", "Random Forest Classifier"]

)
fraud_pipeline.fit(X_fraud, y_fraud)

graph_partial_dependence(fraud_pipeline, X_fraud, features="provider")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Two-way partial dependence plots are also possible and invoke the same API.

[26]: partial_dependence(
pipeline_binary,
X_holdout,
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features=("worst perimeter", "worst radius"),
grid_resolution=5,

)

[26]: 10.6876 14.404924999999999 18.12225 21.839575 25.5569 \
69.140700 0.279038 0.282898 0.435179 0.435355 0.435355
94.334275 0.304335 0.308194 0.458283 0.458458 0.458458
119.527850 0.464455 0.468314 0.612137 0.616932 0.616932
144.721425 0.483437 0.487297 0.631120 0.635915 0.635915
169.915000 0.483437 0.487297 0.631120 0.635915 0.635915

class_label
69.140700 malignant
94.334275 malignant
119.527850 malignant
144.721425 malignant
169.915000 malignant

[27]: graph_partial_dependence(
pipeline_binary,
X_holdout,
features=("worst perimeter", "worst radius"),
grid_resolution=5,

)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.6.5 Explaining Predictions

We can explain why the model made certain predictions with the explain_predictions function. This can use either
the Shapley Additive Explanations (SHAP) algorithm or the Local Interpretable Model-agnostic Explanations (LIME)
algorithm to identify the top features that explain the predicted value.

This function can explain both classification and regression models - all you need to do is provide the pipeline, the input
features, and a list of rows corresponding to the indices of the input features you want to explain. The function will
return a table that you can print summarizing the top 3 most positive and negative contributing features to the predicted
value.

In the example below, we explain the prediction for the third data point in the data set. We see that the worst concave
points feature increased the estimated probability that the tumor is malignant by 20% while the worst radius feature
decreased the probability the tumor is malignant by 5%.

[28]: from evalml.model_understanding.prediction_explanations import explain_predictions

table = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[3],
top_k_features=6,

(continues on next page)
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include_explainer_values=True,
)
print(table)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 1

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓=============================================================================

worst concavity 0.18 - -0.
→˓02

mean concavity 0.04 - -0.
→˓03

worst area 599.50 - -0.
→˓03

worst radius 14.04 - -0.
→˓05

mean concave points 0.03 - -0.
→˓05

worst perimeter 92.80 - -0.
→˓06

The interpretation of the table is the same for regression problems - but the SHAP value now corresponds to the
change in the estimated value of the dependent variable rather than a change in probability. For multiclass classification
problems, a table will be output for each possible class.

Below is an example of how you would explain three predictions with explain_predictions.

[29]: from evalml.model_understanding.prediction_explanations import explain_predictions

report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=y_holdout,
indices_to_explain=[0, 4, 9],
include_explainer_values=True,
output_format="text",

)
print(report)

Random Forest Classifier w/ Label Encoder + Imputer

(continues on next page)
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{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 3

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

worst perimeter 101.20 - -0.
→˓04

worst concave points 0.06 - -0.
→˓05

mean concave points 0.01 - -0.
→˓05

2 of 3

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓=============================================================================

worst radius 11.94 - -0.
→˓05

worst perimeter 80.78 - -0.
→˓06

mean concave points 0.02 - -0.
→˓06

3 of 3

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

worst concave points 0.10 - -0.
→˓05

worst perimeter 99.21 - -0.
→˓06

mean concave points 0.03 - -0.
→˓08

The above examples used the SHAP algorithm, since that is what explain_predictions uses by default. If you
would like to use LIME instead, you can change that with the algorithm="lime" argument.
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[30]: from evalml.model_understanding.prediction_explanations import explain_predictions

table = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[3],
top_k_features=6,
include_explainer_values=True,
algorithm="lime",

)
print(table)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 1

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==============================================================================

worst radius 14.04 + 0.
→˓06

worst perimeter 92.80 + 0.
→˓06

worst area 599.50 + 0.
→˓05

mean concave points 0.03 + 0.
→˓04

worst concave points 0.12 + 0.
→˓04

worst concavity 0.18 + 0.
→˓03

[31]: from evalml.model_understanding.prediction_explanations import explain_predictions

report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
y=None,
indices_to_explain=[0, 4, 9],
include_explainer_values=True,
output_format="text",
algorithm="lime",
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)
print(report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

1 of 3

Feature Name Feature Value Contribution to Prediction LIME Value
=========================================================================
worst perimeter 101.20 + 0.06
worst radius 15.14 + 0.06
worst area 718.90 + 0.05

2 of 3

Feature Name Feature Value Contribution to Prediction LIME Value
=========================================================================
worst perimeter 80.78 + 0.06
worst radius 11.94 + 0.06
worst area 433.10 + 0.05

3 of 3

Feature Name Feature Value Contribution to Prediction LIME Value
=========================================================================
worst radius 14.42 + 0.06
worst perimeter 99.21 + 0.06
worst area 634.30 + 0.05

Explaining Best and Worst Predictions

When debugging machine learning models, it is often useful to analyze the best and worst predictions the model made.
The explain_predictions_best_worst function can help us with this.

This function will display the output of explain_predictions for the best 2 and worst 2 predictions. By default, the best
and worst predictions are determined by the absolute error for regression problems and cross entropy for classification
problems.

We can specify our own ranking function by passing in a function to the metric parameter. This function will be called
on y_true and y_pred. By convention, lower scores are better.

At the top of each table, we can see the predicted probabilities, target value, error, and row index for that prediction.
For a regression problem, we would see the predicted value instead of predicted probabilities.
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[32]: from evalml.model_understanding.prediction_explanations import (
explain_predictions_best_worst,

)

shap_report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
include_explainer_values=True,
top_k_features=6,
num_to_explain=2,

)

print(shap_report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

Best 1 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 502

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

mean concavity 0.06 - -0.
→˓03

worst area 552.00 - -0.
→˓03

worst concave points 0.08 - -0.
→˓05

worst radius 13.57 - -0.
→˓05

mean concave points 0.03 - -0.
→˓05

worst perimeter 86.67 - -0.
→˓06

Best 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign

(continues on next page)
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Target Value: benign
Cross Entropy: 0.0
Index ID: 52

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

mean concavity 0.02 - -0.
→˓02

worst area 527.20 - -0.
→˓03

worst radius 13.10 - -0.
→˓04

worst concave points 0.06 - -0.
→˓04

mean concave points 0.01 - -0.
→˓05

worst perimeter 83.67 - -0.
→˓06

Worst 1 of 2

Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
Cross Entropy: 1.325
Index ID: 363

Feature Name Feature Value Contribution to Prediction SHAP Value
=========================================================================
worst perimeter 117.20 + 0.13
worst radius 18.13 + 0.12
worst area 1009.00 + 0.11
mean area 838.10 + 0.06
mean radius 16.50 + 0.05

worst concavity 0.17 - -0.05

Worst 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
Cross Entropy: 7.987
Index ID: 135

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

(continues on next page)

194 Chapter 4. User Guide



EvalML Documentation, Release 0.80.0

(continued from previous page)

mean concavity 0.05 - -0.
→˓03

worst area 653.60 - -0.
→˓04

worst concave points 0.09 - -0.
→˓05

worst radius 14.49 - -0.
→˓05

worst perimeter 92.04 - -0.
→˓06

mean concave points 0.03 - -0.
→˓06

[33]: lime_report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
include_explainer_values=True,
top_k_features=6,
num_to_explain=2,
algorithm="lime",

)

print(lime_report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

Best 1 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 502

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==============================================================================

worst radius 13.57 + 0.
→˓06

worst perimeter 86.67 + 0.
→˓06

(continues on next page)
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worst area 552.00 + 0.
→˓05

mean concave points 0.03 + 0.
→˓04

worst concave points 0.08 + 0.
→˓04

worst concavity 0.19 + 0.
→˓03

Best 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
Cross Entropy: 0.0
Index ID: 52

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==============================================================================

worst radius 13.10 + 0.
→˓06

worst perimeter 83.67 + 0.
→˓06

worst area 527.20 + 0.
→˓05

mean concave points 0.01 + 0.
→˓04

worst concave points 0.06 + 0.
→˓04

worst concavity 0.09 + 0.
→˓03

Worst 1 of 2

Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
Cross Entropy: 1.325
Index ID: 363

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==============================================================================

worst concavity 0.17 - -0.
→˓03

worst concave points 0.09 - -0.
→˓04

(continues on next page)
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mean concave points 0.05 - -0.
→˓04

worst area 1009.00 - -0.
→˓05

worst perimeter 117.20 - -0.
→˓06

worst radius 18.13 - -0.
→˓06

Worst 2 of 2

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
Cross Entropy: 7.987
Index ID: 135

Feature Name Feature Value Contribution to Prediction LIME␣
→˓Value

␣
→˓==============================================================================

worst radius 14.49 + 0.
→˓06

worst perimeter 92.04 + 0.
→˓06

worst area 653.60 + 0.
→˓05

mean concave points 0.03 + 0.
→˓04

worst concave points 0.09 + 0.
→˓04

worst concavity 0.22 + 0.
→˓03

We use a custom metric (hinge loss) for selecting the best and worst predictions. See this example:

[34]: import numpy as np

def hinge_loss(y_true, y_pred_proba):
probabilities = np.clip(y_pred_proba.iloc[:, 1], 0.001, 0.999)
y_true[y_true == 0] = -1

return np.clip(
1 - y_true * np.log(probabilities / (1 - probabilities)), a_min=0, a_max=None

)

(continues on next page)
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report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X,
y_true=y,
include_explainer_values=True,
num_to_explain=5,
metric=hinge_loss,

)

print(report)

Random Forest Classifier w/ Label Encoder + Imputer

{'Label Encoder': {'positive_label': None}, 'Imputer': {'categorical_impute_strategy':
→˓'most_frequent', 'numeric_impute_strategy': 'mean', 'boolean_impute_strategy': 'most_
→˓frequent', 'categorical_fill_value': None, 'numeric_fill_value': None, 'boolean_fill_
→˓value': None}, 'Random Forest Classifier': {'n_estimators': 100, 'max_depth': 6, 'n_
→˓jobs': -1}}

Best 1 of 5

Predicted Probabilities: [benign: 0.03, malignant: 0.97]
Predicted Value: malignant
Target Value: malignant
hinge_loss: 0.0
Index ID: 0

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

worst concave points 0.27 + 0.
→˓08

worst perimeter 184.60 + 0.
→˓08

mean concave points 0.15 + 0.
→˓08

Best 2 of 5

Predicted Probabilities: [benign: 0.998, malignant: 0.002]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 388

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

worst concave points 0.08 - -0.
→˓05

(continues on next page)
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mean concave points 0.03 - -0.
→˓06

worst perimeter 79.73 - -0.
→˓07

Best 3 of 5

Predicted Probabilities: [benign: 0.988, malignant: 0.012]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 387

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

worst perimeter 99.66 - -0.
→˓05

worst concave points 0.05 - -0.
→˓05

mean concave points 0.01 - -0.
→˓05

Best 4 of 5

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0
Index ID: 386

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓=============================================================================

worst radius 13.13 - -0.
→˓04

worst perimeter 87.65 - -0.
→˓06

mean concave points 0.03 - -0.
→˓06

Best 5 of 5

Predicted Probabilities: [benign: 0.969, malignant: 0.031]
Predicted Value: benign
Target Value: benign
hinge_loss: 0.0

(continues on next page)
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Index ID: 384

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

worst concave points 0.09 - -0.
→˓04

worst perimeter 96.59 - -0.
→˓05

mean concave points 0.03 - -0.
→˓06

Worst 1 of 5

Predicted Probabilities: [benign: 0.409, malignant: 0.591]
Predicted Value: malignant
Target Value: benign
hinge_loss: 1.369
Index ID: 128

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

mean concave points 0.09 + 0.
→˓10

worst concave points 0.14 + 0.
→˓09

mean concavity 0.11 + 0.
→˓08

Worst 2 of 5

Predicted Probabilities: [benign: 0.39, malignant: 0.61]
Predicted Value: malignant
Target Value: benign
hinge_loss: 1.446
Index ID: 421

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓=============================================================================

mean concave points 0.06 + 0.
→˓08

mean concavity 0.14 + 0.
→˓07

worst perimeter 114.10 + 0.
→˓07

(continues on next page)
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Worst 3 of 5

Predicted Probabilities: [benign: 0.343, malignant: 0.657]
Predicted Value: malignant
Target Value: benign
hinge_loss: 1.652
Index ID: 81

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓==============================================================================

worst concave points 0.17 ++ 0.
→˓15

mean concave points 0.07 + 0.
→˓11

worst compactness 0.48 + 0.
→˓07

Worst 4 of 5

Predicted Probabilities: [benign: 0.266, malignant: 0.734]
Predicted Value: malignant
Target Value: benign
hinge_loss: 2.016
Index ID: 363

Feature Name Feature Value Contribution to Prediction SHAP Value
=========================================================================
worst perimeter 117.20 + 0.13
worst radius 18.13 + 0.12
worst area 1009.00 + 0.11

Worst 5 of 5

Predicted Probabilities: [benign: 1.0, malignant: 0.0]
Predicted Value: benign
Target Value: malignant
hinge_loss: 7.907
Index ID: 135

Feature Name Feature Value Contribution to Prediction SHAP␣
→˓Value

␣
→˓=============================================================================

worst radius 14.49 - -0.
→˓05

worst perimeter 92.04 - -0.
→˓06 (continues on next page)
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mean concave points 0.03 - -0.
→˓06

Changing Output Formats

Instead of getting the prediction explanations as text, you can get the report as a python dictionary or pandas
dataframe. All you have to do is pass output_format="dict" or output_format="dataframe" to either
explain_prediction, explain_predictions, or explain_predictions_best_worst.

Single prediction as a dictionary

[35]: import json

single_prediction_report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
indices_to_explain=[3],
y=y_holdout,
top_k_features=6,
include_explainer_values=True,
output_format="dict",

)
print(json.dumps(single_prediction_report, indent=2))

{
"explanations": [
{
"explanations": [
{
"feature_names": [
"worst concavity",
"mean concavity",
"worst area",
"worst radius",
"mean concave points",
"worst perimeter"

],
"feature_values": [
0.1791,
0.038,
599.5,
14.04,
0.034,
92.8

],
"qualitative_explanation": [
"-",

(continues on next page)
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"-",
"-",
"-",
"-",
"-"

],
"quantitative_explanation": [
-0.023008481104309524,
-0.02621982146725469,
-0.033821592020020774,
-0.04666659740586632,
-0.0541511910494414,
-0.05523688273171911

],
"drill_down": {},
"class_name": "malignant",
"expected_value": 0.3711208791208791

}
]

}
]

}

Single prediction as a dataframe

[36]: single_prediction_report = explain_predictions(
pipeline=pipeline_binary,
input_features=X_holdout,
indices_to_explain=[3],
y=y_holdout,
top_k_features=6,
include_explainer_values=True,
output_format="dataframe",

)
single_prediction_report

[36]: feature_names feature_values qualitative_explanation \
0 worst concavity 0.1791 -
1 mean concavity 0.0380 -
2 worst area 599.5000 -
3 worst radius 14.0400 -
4 mean concave points 0.0340 -
5 worst perimeter 92.8000 -

quantitative_explanation class_name prediction_number
0 -0.023008 malignant 0
1 -0.026220 malignant 0
2 -0.033822 malignant 0
3 -0.046667 malignant 0
4 -0.054151 malignant 0
5 -0.055237 malignant 0
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Best and worst predictions as a dictionary

[37]: report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X,
y_true=y,
num_to_explain=1,
top_k_features=6,
include_explainer_values=True,
output_format="dict",

)
print(json.dumps(report, indent=2))

{
"explanations": [
{
"rank": {
"prefix": "best",
"index": 1

},
"predicted_values": {
"probabilities": {
"benign": 1.0,
"malignant": 0.0

},
"predicted_value": "benign",
"target_value": "benign",
"error_name": "Cross Entropy",
"error_value": 0.0001970443507070075,
"index_id": 475

},
"explanations": [
{
"feature_names": [
"mean concavity",
"worst area",
"worst radius",
"worst concave points",
"worst perimeter",
"mean concave points"

],
"feature_values": [
0.05835,
605.8,
14.09,
0.09783,
93.22,
0.03078

],
"qualitative_explanation": [
"-",
"-",
"-",

(continues on next page)
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"-",
"-",
"-"

],
"quantitative_explanation": [
-0.028481050954786636,
-0.03050522196002462,
-0.042922079201003216,
-0.04429366151003684,
-0.05486784013962313,
-0.05639460900233733

],
"drill_down": {},
"class_name": "malignant",
"expected_value": 0.3711208791208791

}
]

},
{
"rank": {
"prefix": "worst",
"index": 1

},
"predicted_values": {
"probabilities": {
"benign": 1.0,
"malignant": 0.0

},
"predicted_value": "benign",
"target_value": "malignant",
"error_name": "Cross Entropy",
"error_value": 7.986911819330411,
"index_id": 135

},
"explanations": [
{
"feature_names": [
"mean concavity",
"worst area",
"worst concave points",
"worst radius",
"worst perimeter",
"mean concave points"

],
"feature_values": [
0.04711,
653.6,
0.09331,
14.49,
92.04,
0.02704

],

(continues on next page)
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"qualitative_explanation": [
"-",
"-",
"-",
"-",
"-",
"-"

],
"quantitative_explanation": [
-0.029936744551331215,
-0.03748357654576422,
-0.04553126236476177,
-0.0483274199182721,
-0.06039220265366764,
-0.060441902449258976

],
"drill_down": {},
"class_name": "malignant",
"expected_value": 0.3711208791208791

}
]

}
]

}

Best and worst predictions as a dataframe

[38]: report = explain_predictions_best_worst(
pipeline=pipeline_binary,
input_features=X_holdout,
y_true=y_holdout,
num_to_explain=1,
top_k_features=6,
include_explainer_values=True,
output_format="dataframe",

)
report

[38]: feature_names feature_values qualitative_explanation \
0 mean concavity 0.05928 -
1 worst area 552.00000 -
2 worst concave points 0.08411 -
3 worst radius 13.57000 -
4 mean concave points 0.03279 -
5 worst perimeter 86.67000 -
6 mean concavity 0.04711 -
7 worst area 653.60000 -
8 worst concave points 0.09331 -
9 worst radius 14.49000 -
10 worst perimeter 92.04000 -
11 mean concave points 0.02704 -

(continues on next page)
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quantitative_explanation class_name label_benign_probability \
0 -0.029022 malignant 1.0
1 -0.034112 malignant 1.0
2 -0.046896 malignant 1.0
3 -0.046928 malignant 1.0
4 -0.052902 malignant 1.0
5 -0.064320 malignant 1.0
6 -0.029937 malignant 1.0
7 -0.037484 malignant 1.0
8 -0.045531 malignant 1.0
9 -0.048327 malignant 1.0
10 -0.060392 malignant 1.0
11 -0.060442 malignant 1.0

label_malignant_probability predicted_value target_value error_name \
0 0.0 benign benign Cross Entropy
1 0.0 benign benign Cross Entropy
2 0.0 benign benign Cross Entropy
3 0.0 benign benign Cross Entropy
4 0.0 benign benign Cross Entropy
5 0.0 benign benign Cross Entropy
6 0.0 benign malignant Cross Entropy
7 0.0 benign malignant Cross Entropy
8 0.0 benign malignant Cross Entropy
9 0.0 benign malignant Cross Entropy
10 0.0 benign malignant Cross Entropy
11 0.0 benign malignant Cross Entropy

error_value index_id rank prefix
0 0.000197 502 1 best
1 0.000197 502 1 best
2 0.000197 502 1 best
3 0.000197 502 1 best
4 0.000197 502 1 best
5 0.000197 502 1 best
6 7.986912 135 1 worst
7 7.986912 135 1 worst
8 7.986912 135 1 worst
9 7.986912 135 1 worst
10 7.986912 135 1 worst
11 7.986912 135 1 worst
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4.6.6 Force Plots

Force plots can be generated to predict single or multiple rows for binary, multiclass and regression problem types.
These use the SHAP algorithm. Here’s an example of predicting a single row on a binary classification dataset. The
force plots show the predictive power of each of the features in making the negative (“Class: 0”) prediction and the
positive (“Class: 1”) prediction.

[39]: import shap

from evalml.model_understanding.force_plots import graph_force_plot

rows_to_explain = [0] # Should be a list of integer indices of the rows to explain.

results = graph_force_plot(
pipeline_binary,
rows_to_explain=rows_to_explain,
training_data=X_holdout,
y=y_holdout,

)

for result in results:
for cls in result:

print("Class:", cls)
display(result[cls]["plot"])

<IPython.core.display.HTML object>

Class: malignant

<shap.plots._force.AdditiveForceVisualizer at 0x7f170995a640>

Here’s an example of a force plot explaining multiple predictions on a multiclass problem. These plots show the force
plots for each row arranged as consecutive columns that can be ordered by the dropdown above. Clicking the column
indicates which row explanation is underneath.

[40]: rows_to_explain = [
0,
1,
2,
3,
4,

] # Should be a list of integer indices of the rows to explain.

results = graph_force_plot(
pipeline_multi, rows_to_explain=rows_to_explain, training_data=X_multi, y=y_multi

)

for idx, result in enumerate(results):
print("Row:", idx)
for cls in result:

print("Class:", cls)
display(result[cls]["plot"])

<IPython.core.display.HTML object>
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Row: 0
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b8b0>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b9d0>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b190>

Row: 1
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b1f0>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ecf160>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ecfaf0>

Row: 2
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b100>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8bf10>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304340>

Row: 3
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304430>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304400>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304460>

Row: 4
Class: class_0

<shap.plots._force.AdditiveForceVisualizer at 0x7f170a304220>

Class: class_1

<shap.plots._force.AdditiveForceVisualizer at 0x7f1709a8b610>

Class: class_2

<shap.plots._force.AdditiveForceVisualizer at 0x7f16f9ede790>
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4.7 Data Checks

EvalML provides data checks to help guide you in achieving the highest performing model. These utility functions
help deal with problems such as overfitting, abnormal data, and missing data. These data checks can be found un-
der evalml/data_checks. Below we will cover examples for each available data check in EvalML, as well as the
DefaultDataChecks collection of data checks.

4.7.1 Missing Data

Missing data or rows with NaN values provide many challenges for machine learning pipelines. In the worst case,
many algorithms simply will not run with missing data! EvalML pipelines contain imputation components to ensure
that doesn’t happen. Imputation works by approximating missing values with existing values. However, if a column
contains a high number of missing values, a large percentage of the column would be approximated by a small per-
centage. This could potentially create a column without useful information for machine learning pipelines. By using
NullDataCheck, EvalML will alert you to this potential problem by returning the columns that pass the missing values
threshold.

[1]: import numpy as np
import pandas as pd

from evalml.data_checks import NullDataCheck

X = pd.DataFrame(
[[1, 2, 3], [0, 4, np.nan], [1, 4, np.nan], [9, 4, np.nan], [8, 6, np.nan]]

)

null_check = NullDataCheck(pct_null_col_threshold=0.8, pct_null_row_threshold=0.8)
messages = null_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Column(s) '2' are 80.0% or more null

4.7.2 Abnormal Data

EvalML provides a few data checks to check for abnormal data:

• NoVarianceDataCheck

• ClassImbalanceDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck

• IDColumnsDataCheck

• OutliersDataCheck
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• HighVarianceCVDataCheck

• MulticollinearityDataCheck

• UniquenessDataCheck

• TargetDistributionDataCheck

• DateTimeFormatDataCheck

• TimeSeriesParametersDataCheck

• TimeSeriesSplittingDataCheck

Zero Variance

Data with zero variance indicates that all values are identical. If a feature has zero variance, it is not likely to be a useful
feature. Similarly, if the target has zero variance, there is likely something wrong. NoVarianceDataCheck checks if
the target or any feature has only one unique value and alerts you to any such columns.

[2]: from evalml.data_checks import NoVarianceDataCheck

X = pd.DataFrame({"no var col": [0, 0, 0], "good col": [0, 4, 1]})
y = pd.Series([1, 0, 1])
no_variance_data_check = NoVarianceDataCheck()
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

Warning: 'no var col' has 1 unique value.

Note that you can set NaN to count as an unique value, but NoVarianceDataCheck will still return a warning if there
is only one unique non-NaN value in a given column.

[3]: from evalml.data_checks import NoVarianceDataCheck

X = pd.DataFrame(
{

"no var col": [0, 0, 0],
"no var col with nan": [1, np.nan, 1],
"good col": [0, 4, 1],

}
)
y = pd.Series([1, 0, 1])

no_variance_data_check = NoVarianceDataCheck(count_nan_as_value=True)
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])
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Warning: 'no var col' has 1 unique value.
Warning: 'no var col with nan' has two unique values including nulls. Consider encoding␣
→˓the nulls for this column to be useful for machine learning.

Class Imbalance

For classification problems, the distribution of examples across each class can vary. For small variations, this is normal
and expected. However, when the number of examples for each class label is disproportionately biased or skewed
towards a particular class (or classes), it can be difficult for machine learning models to predict well. In addition, having
a low number of examples for a given class could mean that one or more of the CV folds generated for the training data
could only have few or no examples from that class. This may cause the model to only predict the majority class and
ultimately resulting in a poor-performant model.

ClassImbalanceDataCheck checks if the target labels are imbalanced beyond a specified threshold for a certain
number of CV folds. It returns DataCheckError messages for any classes that have less samples than double the
number of CV folds specified (since that indicates the likelihood of having at little to no samples of that class in a given
fold), and DataCheckWarning messages for any classes that fall below the set threshold percentage.

[4]: from evalml.data_checks import ClassImbalanceDataCheck

X = pd.DataFrame([[1, 2, 0, 1], [4, 1, 9, 0], [4, 4, 8, 3], [9, 2, 7, 1]])
y = pd.Series([0, 1, 1, 1, 1])

class_imbalance_check = ClassImbalanceDataCheck(threshold=0.25, num_cv_folds=4)
messages = class_imbalance_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: The following labels fall below 25% of the target: [0]
Warning: The following labels in the target have severe class imbalance because they␣
→˓fall under 25% of the target and have less than 100 samples: [0]
Error: The number of instances of these targets is less than 2 * the number of cross␣
→˓folds = 8 instances: [0, 1]

Target Leakage

Target leakage, also known as data leakage, can occur when you train your model on a dataset that includes information
that should not be available at the time of prediction. This causes the model to score suspiciously well, but perform
poorly in production. TargetLeakageDataCheck checks for features that could potentially be “leaking” information
by calculating the Pearson correlation coefficient between each feature and the target to warn users if there are features
are highly correlated with the target. Currently, only numerical features are considered.

[5]: from evalml.data_checks import TargetLeakageDataCheck

X = pd.DataFrame(
(continues on next page)
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{
"leak": [10, 42, 31, 51, 61] * 5,
"x": [42, 54, 12, 64, 12] * 5,
"y": [12, 5, 13, 74, 24] * 5,

}
)
y = pd.Series([10, 42, 31, 51, 40] * 5)

target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8)
messages = target_leakage_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns 'leak', 'x', 'y' are 80.0% or more correlated with the target

Invalid Target Data

The InvalidTargetDataCheck checks if the target data contains any missing or invalid values. Specifically:

• if any of the target values are missing, a DataCheckError message is returned

• if the specified problem type is a binary classification problem but there is more or less than two unique values
in the target, a DataCheckError message is returned

• if binary classification target classes are numeric values not equal to {0, 1}, a DataCheckError message is
returned because it can cause unpredictable behavior when passed to pipelines

[6]: from evalml.data_checks import InvalidTargetDataCheck

X = pd.DataFrame({})
y = pd.Series([0, 1, None, None])

invalid_target_check = InvalidTargetDataCheck("binary", "Log Loss Binary")
messages = invalid_target_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Input target and features have different lengths
Warning: Input target and features have mismatched indices. Details will include the␣
→˓first 10 mismatched indices.

(continues on next page)
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Error: 2 row(s) (50.0%) of target values are null

ID Columns

ID columns in your dataset provide little to no benefit to a machine learning pipeline as the pipeline cannot extrapolate
useful information from unique identifiers. Thus, IDColumnsDataCheck reminds you if these columns exists. In the
given example, ‘user_number’ and ‘revenue_id’ columns are both identified as potentially being unique identifiers that
should be removed.

[7]: from evalml.data_checks import IDColumnsDataCheck

X = pd.DataFrame(
[[0, 53, 6325, 5], [1, 90, 6325, 10], [2, 90, 18, 20]],
columns=["user_number", "cost", "revenue", "revenue_id"],

)

id_col_check = IDColumnsDataCheck(id_threshold=0.9)
messages = id_col_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns 'user_number', 'revenue_id' are 90.0% or more likely to be an ID column

Primary key columns however, can be useful. Primary key columns are typically the first column in the dataset, have
all unique values, and are either named ID or a name that ends with _id. Though they are ignored from the modeling
process, they can be used as an identifier to query on before or after the modeling process. IDColumnsDataCheck will
also remind you if it finds that the first column of the DataFrame is a primary key. In the given example, user_id is
identified as a primary key, while revenue_id was identified as a regular unique identifier.

[8]: from evalml.data_checks import IDColumnsDataCheck

X = pd.DataFrame(
[[0, 53, 6325, 5], [1, 90, 6325, 10], [2, 90, 18, 20]],
columns=["user_id", "cost", "revenue", "revenue_id"],

)

id_col_check = IDColumnsDataCheck(id_threshold=0.9)
messages = id_col_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

(continues on next page)
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for error in errors:
print("Error:", error["message"])

Warning: The first column 'user_id' is likely to be the primary key
Warning: Columns 'revenue_id' are 90.0% or more likely to be an ID column

Multicollinearity

The MulticollinearityDataCheck data check is used in to detect if are any set of features that are likely to be
multicollinear. Multicollinear features affect the performance of a model, but more importantly, it may greatly impact
model interpretation. EvalML uses mutual information to determine collinearity.

[9]: from evalml.data_checks import MulticollinearityDataCheck

y = pd.Series([1, 0, 2, 3, 4] * 5)
X = pd.DataFrame(

{
"col_1": y,
"col_2": y * 3,
"col_3": ~y,
"col_4": y / 2,
"col_5": y + 1,
"not_collinear": [0, 1, 0, 0, 0] * 5,

}
)

multi_check = MulticollinearityDataCheck(threshold=0.95)
messages = multi_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Columns are likely to be correlated: [('col_1', 'col_2'), ('col_1', 'col_3'), (
→˓'col_1', 'col_4'), ('col_1', 'col_5'), ('col_2', 'col_3'), ('col_2', 'col_4'), ('col_2
→˓', 'col_5'), ('col_3', 'col_4'), ('col_3', 'col_5'), ('col_4', 'col_5')]
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Uniqueness

The UniquenessDataCheck is used to detect columns with either too unique or not unique enough values. For re-
gression type problems, the data is checked for a lower limit of uniqueness. For multiclass type problems, the data is
checked for an upper limit.

[10]: import pandas as pd
from evalml.data_checks import UniquenessDataCheck

X = pd.DataFrame(
{

"most_unique": [float(x) for x in range(10)], # [0,1,2,3,4,5,6,7,8,9]
"more_unique": [x % 5 for x in range(10)], # [0,1,2,3,4,0,1,2,3,4]
"unique": [x % 3 for x in range(10)], # [0,1,2,0,1,2,0,1,2,0]
"less_unique": [x % 2 for x in range(10)], # [0,1,0,1,0,1,0,1,0,1]
"not_unique": [float(1) for x in range(10)],

}
) # [1,1,1,1,1,1,1,1,1,1]

uniqueness_check = UniquenessDataCheck(problem_type="regression", threshold=0.5)
messages = uniqueness_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Input columns 'not_unique' for regression problem type are not unique enough.

Sparsity

The SparsityDataCheck is used to identify features that contain a sparsity of values.

[11]: from evalml.data_checks import SparsityDataCheck

X = pd.DataFrame(
{

"most_sparse": [float(x) for x in range(10)], # [0,1,2,3,4,5,6,7,8,9]
"more_sparse": [x % 5 for x in range(10)], # [0,1,2,3,4,0,1,2,3,4]
"sparse": [x % 3 for x in range(10)], # [0,1,2,0,1,2,0,1,2,0]
"less_sparse": [x % 2 for x in range(10)], # [0,1,0,1,0,1,0,1,0,1]
"not_sparse": [float(1) for x in range(10)],

}
) # [1,1,1,1,1,1,1,1,1,1]

sparsity_check = SparsityDataCheck(
problem_type="multiclass", threshold=0.4, unique_count_threshold=3

)
(continues on next page)
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messages = sparsity_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Input columns ('most_sparse', 'more_sparse', 'sparse') for multiclass problem␣
→˓type are too sparse.

Outliers

Outliers are observations that differ significantly from other observations in the same sample. Many machine learning
pipelines suffer in performance if outliers are not dropped from the training set as they are not representative of the
data. OutliersDataCheck() uses IQR to notify you if a sample can be considered an outlier.

Below we generate a random dataset with some outliers.

[12]: data = np.tile(np.arange(10) * 0.01, (100, 10))
X = pd.DataFrame(data=data)

# generate some outliers in columns 3, 25, 55, and 72
X.iloc[0, 3] = -10000
X.iloc[3, 25] = 10000
X.iloc[5, 55] = 10000
X.iloc[10, 72] = -10000

We then utilize OutliersDataCheck() to rediscover these outliers.

[13]: from evalml.data_checks import OutliersDataCheck

outliers_check = OutliersDataCheck()
messages = outliers_check.validate(X)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Column(s) '3', '25', '55', '72' are likely to have outlier data.
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Target Distribution

Target data can come in a variety of distributions, such as Gaussian or Lognormal. When we work with machine
learning models, we feed data into an estimator that learns from the training data provided. Sometimes the data can
be significantly spread out with a long tail or outliers, which could lead to a lognormal distribution. This can cause
machine learning model performance to suffer.

To help the estimators better understand the underlying relationships in the data between the features and the target, we
can use the TargetDistributionDataCheck to identify such a distribution.

[14]: from scipy.stats import lognorm
from evalml.data_checks import TargetDistributionDataCheck

data = np.tile(np.arange(10) * 0.01, (100, 10))
X = pd.DataFrame(data=data)
y = pd.Series(lognorm.rvs(s=0.4, loc=1, scale=1, size=100))

target_dist_check = TargetDistributionDataCheck()
messages = target_dist_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Warning: Target may have a lognormal distribution.

Datetime Format

Datetime information is a necessary component of time series problems, but sometimes the data we deal with may
contain flaws that make it impossible for time series models to work with them. For example, in order to identify a
frequency in the datetime information there has to be equal interval spacing between data points i.e. January 1, 2021,
January 3, 2021, January 5, 2021, . . . etc which are separated by two days. If instead there are random jumps in the
datetime data i.e. January 1, 2021, January 3, 2021, January 12, 2021, then a frequency can’t be inferred. Another com-
mon issue with time series models are that they can’t handle datetime information that isn’t properly sorted. Datetime
values that aren’t monotonically increasing (sorted in ascending order) will encounter this issue and their frequency
cannot be inferred.

To make it easy to verify that the datetime column you’re working with is properly spaced and sorted, we can leverage
the DatetimeFormatDataCheck. When initializing the data check, pass in the name of the column that contains your
datetime information (or pass in “index” if it’s found in either your X or y indices).

[15]: from evalml.data_checks import DateTimeFormatDataCheck

X = pd.DataFrame(
pd.date_range("January 1, 2021", periods=8, freq="2D"), columns=["dates"]

)
y = pd.Series([1, 2, 4, 2, 1, 2, 3, 1])

# Replaces the last entry with January 16th instead of January 15th
(continues on next page)
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# so that the data is no longer evenly spaced.
X.iloc[7] = "January 16, 2021"

datetime_format_check = DateTimeFormatDataCheck(datetime_column="dates")
messages = datetime_format_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

print("--------------------------------")

# Reverses the order of the index datetime values to be decreasing.
X = X[::-1]
messages = datetime_format_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Error: Column 'dates' has datetime values that do not align with the inferred frequency.
Error: A frequency was detected in column 'dates', but there are faulty datetime values␣
→˓that need to be addressed.
--------------------------------
Error: Datetime values must be sorted in ascending order.
Error: No frequency could be detected in column 'dates', possibly due to uneven␣
→˓intervals or too many duplicate/missing values.

Time Series Parameters

In order to support time series problem types in AutoML, certain conditions have to be met. - The parameters gap,
max_delay, forecast_horizon, and time_index have to be passed in to problem_configuration. - The values
of gap, max_delay, forecast_horizon have to be appropriate for the size of the data.

For point 2 above, this means that the window size (as defined by gap + max_delay + forecast_horizon) has to be
less than the number of observations in the data divided by the number of splits + 1. For example, with 100 observations
and 3 splits, the split size would be 25. This means that the window size has to be less than 25.

[16]: from evalml.data_checks import TimeSeriesParametersDataCheck

X = pd.DataFrame(pd.date_range("1/1/21", periods=100), columns=["dates"])
y = pd.Series([i % 2 for i in range(100)])

(continues on next page)
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problem_config = {
"gap": 1,
"max_delay": 23,
"forecast_horizon": 1,
"time_index": "dates",

}

# With 3 splits, the split size will be 25 (100/3+1)
# Since gap + max_delay + forecast_horizon is 25, this will
# throw an error for window size.
ts_params_data_check = TimeSeriesParametersDataCheck(

problem_configuration=problem_config, n_splits=3
)
messages = ts_params_data_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Time Series Splitting

Due to the nature of time series data, splitting cannot involve shuffling and has to be done in a sequential manner. This
means splitting the data into n_splits + 1 different sections and increasing the size of the training data by the split
size every iteration while keeping the test size equal to the split size.

For every split in the data, the training and validation segments must contain target data that has an example of every
class found in the entire target set for time series binary and time series multiclass problems. The reason for this is that
many classification machine learning models run into issues if they’re trained on data that doesn’t contain an instance
of a class but then the model is expected to be able to predict for it. For example, with 3 splits and a split size of 25,
this means that every training/validation split: (0:25)/(25:50), (0:50)/(50:75), (0:75)/(75:100) must contain at least one
instance of all unique target classes in the training and validation set. - At least one instance of both classes in a time
series binary problem. - At least one instance of all classes in a time series multiclass problem.

[17]: from evalml.data_checks import TimeSeriesSplittingDataCheck

X = None
y = pd.Series([0 if i < 50 else i % 2 for i in range(100)])

ts_splitting_check = TimeSeriesSplittingDataCheck("time series binary", 3)
messages = ts_splitting_check.validate(X, y)

errors = [message for message in messages if message["level"] == "error"]
warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
(continues on next page)
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print("Warning:", warning["message"])

for error in errors:
print("Error:", error["message"])

Error: Time Series Binary and Time Series Multiclass problem types require every␣
→˓training and validation split to have at least one instance of all the target classes.␣
→˓The following splits are invalid: [1, 2]

4.7.3 Data Check Messages

Each data check’s validate method returns a list of DataCheckMessage objects indicating warnings or errors found;
warnings are stored as a DataCheckWarning object and errors are stored as a DataCheckError object. You can filter
the messages returned by a data check by checking for the type of message returned. Below, NoVarianceDataCheck
returns a list containing a DataCheckWarning and a DataCheckError message. We can determine which is which
by checking the type of each message.

[18]: from evalml.data_checks import NoVarianceDataCheck, DataCheckWarning

X = pd.DataFrame(
{

"no var col": [0, 0, 0],
"no var col with nan": [1, np.nan, 1],
"good col": [0, 4, 1],

}
)
y = pd.Series([1, 0, 1])

no_variance_data_check = NoVarianceDataCheck(count_nan_as_value=True)
messages = no_variance_data_check.validate(X, y)

warnings = [message for message in messages if message["level"] == "warning"]

for warning in warnings:
print("Warning:", warning["message"])

Warning: 'no var col' has 1 unique value.
Warning: 'no var col with nan' has two unique values including nulls. Consider encoding␣
→˓the nulls for this column to be useful for machine learning.

4.7.4 Writing Your Own Data Check

If you would prefer to write your own data check, you can do so by extending the DataCheck class and implementing
the validate(self, X, y) class method. Below, we’ve created a new DataCheck, ZeroVarianceDataCheck,
which is similar to NoVarianceDataCheck defined in EvalML. The validate(self, X, y) method should return
a dictionary with ‘warnings’ and ‘errors’ as keys mapping to list of warnings and errors, respectively.

[19]: from evalml.data_checks import DataCheck

class ZeroVarianceDataCheck(DataCheck):
(continues on next page)
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def validate(self, X, y):
messages = []
if not isinstance(X, pd.DataFrame):

X = pd.DataFrame(X)
warning_msg = "Column '{}' has zero variance"
messages.extend(

[
DataCheckError(warning_msg.format(column), self.name)
for column in X.columns
if len(X[column].unique()) == 1

]
)
return messages

4.7.5 Defining Collections of Data Checks

For convenience, EvalML provides a DataChecks class to represent a collection of data checks. We will go over
DefaultDataChecks (API reference), a collection defined to check for some of the most common data issues.

Default Data Checks

DefaultDataChecks is a collection of data checks defined to check for some of the most common data issues. They
include:

• NullDataCheck

• IDColumnsDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck

• TargetDistributionDataCheck (for regression problem types)

• ClassImbalanceDataCheck (for classification problem types)

• NoVarianceDataCheck

• DateTimeFormatDataCheck (for time series problem types)

• TimeSeriesParametersDataCheck (for time series problem types)

• TimeSeriesSplittingDataCheck (for time series classification problem types)

4.7.6 Writing Your Own Collection of Data Checks

If you would prefer to create your own collection of data checks, you could either write your own data checks class
by extending the DataChecks class and setting the self.data_checks attribute to the list of DataCheck classes or
objects, or you could pass that list of data checks to the constructor of the DataChecks class. Below, we create two
identical collections of data checks using the two different methods.

[20]: # Create a subclass of `DataChecks`
from evalml.data_checks import (

DataChecks,
(continues on next page)
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NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
ClassImbalanceDataCheck,
TargetLeakageDataCheck,

)
from evalml.problem_types import ProblemTypes, handle_problem_types

class MyCustomDataChecks(DataChecks):
data_checks = [

NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
TargetLeakageDataCheck,

]

def __init__(self, problem_type, objective):
"""
A collection of basic data checks.
Args:

problem_type (str): The problem type that is being validated. Can be␣
→˓regression, binary, or multiclass.

"""
if handle_problem_types(problem_type) == ProblemTypes.REGRESSION:

super().__init__(
self.data_checks,
data_check_params={

"InvalidTargetDataCheck": {
"problem_type": problem_type,
"objective": objective,

}
},

)
else:

super().__init__(
self.data_checks + [ClassImbalanceDataCheck],
data_check_params={

"InvalidTargetDataCheck": {
"problem_type": problem_type,
"objective": objective,

}
},

)

custom_data_checks = MyCustomDataChecks(
problem_type=ProblemTypes.REGRESSION, objective="R2"

)
for data_check in custom_data_checks.data_checks:

print(data_check.name)
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NullDataCheck
InvalidTargetDataCheck
NoVarianceDataCheck
TargetLeakageDataCheck

[21]: # Pass list of data checks to the `data_checks` parameter of DataChecks
same_custom_data_checks = DataChecks(

data_checks=[
NullDataCheck,
InvalidTargetDataCheck,
NoVarianceDataCheck,
TargetLeakageDataCheck,

],
data_check_params={

"InvalidTargetDataCheck": {
"problem_type": ProblemTypes.REGRESSION,
"objective": "R2",

}
},

)
for data_check in custom_data_checks.data_checks:

print(data_check.name)

NullDataCheck
InvalidTargetDataCheck
NoVarianceDataCheck
TargetLeakageDataCheck

4.8 Understanding Data Check Actions

EvalML streamlines the creation and implementation of machine learning models for tabular data. One of the many
features it offers is data checks, which help determine the health of our data before we train a model on it. These data
checks have associated actions with them and will be shown in this notebook. In our default data checks, we have the
following checks:

• NullDataCheck: Checks whether the rows or columns are null or highly null

• IDColumnsDataCheck: Checks for columns that could be ID columns

• TargetLeakageDataCheck: Checks if any of the input features have high association with the targets

• InvalidTargetDataCheck: Checks if there are null or other invalid values in the target

• NoVarianceDataCheck: Checks if either the target or any features have no variance

EvalML has additional data checks that can be seen here, with usage examples here. Below, we will walk through usage
of EvalML’s default data checks and actions.

First, we import the necessary requirements to demonstrate these checks.

[1]: import woodwork as ww
import pandas as pd
from evalml import AutoMLSearch
from evalml.demos import load_fraud
from evalml.preprocessing import split_data
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Let’s look at the input feature data. EvalML uses the Woodwork library to represent this data. The demo data that
EvalML returns is a Woodwork DataTable and DataColumn.

[2]: X, y = load_fraud(n_rows=1500)
X.head()

Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 1500
Targets
False 86.60%
True 13.40%
Name: count, dtype: object

[2]: card_id store_id datetime amount currency customer_present \
id
0 32261 8516 2019-01-01 00:12:26 24900 CUC True
1 16434 8516 2019-01-01 09:42:03 15789 MYR False
2 23468 8516 2019-04-17 08:17:01 1883 AUD False
3 14364 8516 2019-01-30 11:54:30 82120 KRW True
4 29407 8516 2019-05-01 17:59:36 25745 MUR True

expiration_date provider lat lng region \
id
0 08/24 Mastercard 38.58894 -89.99038 Fairview Heights
1 11/21 Discover 38.58894 -89.99038 Fairview Heights
2 09/27 Discover 38.58894 -89.99038 Fairview Heights
3 09/20 JCB 16 digit 38.58894 -89.99038 Fairview Heights
4 09/22 American Express 38.58894 -89.99038 Fairview Heights

country
id
0 US
1 US
2 US
3 US
4 US

4.8.1 Adding noise and unclean data

This data is already clean and compatible with EvalML’s AutoMLSearch. In order to demonstrate EvalML default data
checks, we will add the following:

• A column of mostly null values (<0.5% non-null)

• A column with low/no variance

• A row of null values

• A missing target value

We will add the first two columns to the whole dataset and we will only add the last two to the training data. Note:
these only represent some of the scenarios that EvalML default data checks can catch.
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[3]: # add a column with no variance in the data
X["no_variance"] = [1 for _ in range(X.shape[0])]

# add a column with >99.5% null values
X["mostly_nulls"] = [None] * (X.shape[0] - 5) + [i for i in range(5)]

# since we changed the data, let's reinitialize the woodwork datatable
X.ww.init()
# let's split some training and validation data
X_train, X_valid, y_train, y_valid = split_data(X, y, problem_type="binary")

[4]: # make row 1 all nan values
X_train.iloc[1] = [None] * X_train.shape[1]

# make one of the target values null
y_train[990] = None

X_train.ww.init()
y_train = ww.init_series(y_train, logical_type="Categorical")
# Let's take another look at the new X_train data
X_train

[4]: card_id store_id datetime amount currency \
id
872 15492 2868 2019-08-03 02:50:04 80719 HNL
1477 <NA> <NA> NaT <NA> NaN
158 22440 6813 2019-07-12 11:07:25 1849 SEK
808 8096 8096 2019-06-11 21:33:36 41358 MOP
336 33270 1529 2019-03-23 21:44:00 32594 CUC
... ... ... ... ... ...
339 8484 5358 2019-01-10 07:47:28 89503 GMD
1383 17565 3929 2019-01-15 01:11:02 14264 DKK
893 108 44 2019-05-17 00:53:39 93218 SLL
385 29983 152 2019-06-09 06:50:29 41105 RWF
1074 26197 4927 2019-05-22 15:57:27 50481 MNT

customer_present expiration_date provider lat lng \
id
872 True 08/27 American Express 5.47090 100.24529
1477 <NA> NaN NaN NaN NaN
158 True 09/20 American Express 26.26490 81.54855
808 True 04/29 VISA 13 digit 59.37722 28.19028
336 False 04/22 Mastercard 51.39323 0.47713
... ... ... ... ... ...
339 False 11/24 Maestro 47.30997 8.52462
1383 True 06/20 VISA 13 digit 50.72043 11.34046
893 True 12/24 JCB 16 digit 15.72892 120.57224
385 False 07/20 JCB 16 digit -6.80000 39.25000
1074 False 05/26 JCB 15 digit 41.00510 -73.78458

region country no_variance mostly_nulls
id
872 Batu Feringgi MY 1 <NA>

(continues on next page)
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1477 NaN NaN <NA> <NA>
158 Jais IN 1 <NA>
808 Narva EE 1 <NA>
336 Strood GB 1 <NA>
... ... ... ... ...
339 Adliswil CH 1 <NA>
1383 Rudolstadt DE 1 <NA>
893 Burgos PH 1 <NA>
385 Magomeni TZ 1 <NA>
1074 Scarsdale US 1 <NA>

[1200 rows x 14 columns]

If we call AutoMLSearch.search() on this data, the search will fail due to the columns and issues we’ve added above.
Note: we use a try/except here to catch the resulting ValueError that AutoMLSearch raises.

[5]: automl = AutoMLSearch(X_train=X_train, y_train=y_train, problem_type="binary")
try:

automl.search()
except ValueError as e:

# to make the error message more distinct
print("=" * 80, "\n")
print("Search errored out! Message received is: {}".format(e))
print("=" * 80, "\n")

================================================================================

Search errored out! Message received is: Input y contains NaN.
================================================================================

We can use the search_iterative() function provided in EvalML to determine what potential health issues our
data has. We can see that this search_iterative function is a public method available through evalml.automl and is
different from the search function of the AutoMLSearch class in EvalML. This search_iterative() function allows
us to run the default data checks on the data, and, if there are no errors, automatically runs AutoMLSearch.search().

[6]: from evalml.automl import search_iterative

automl, messages = search_iterative(X_train, y_train, problem_type="binary")
automl, messages

[6]: (None,
[{'message': '1 out of 1200 rows are 95.0% or more null',
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': None,
'rows': [1477],
'pct_null_cols': id
1477 1.0
dtype: float64},
'code': 'HIGHLY_NULL_ROWS',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'NullDataCheck',

(continues on next page)
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'metadata': {'columns': None, 'rows': [1477]},
'parameters': {}}]},

{'message': "Column(s) 'mostly_nulls' are 95.0% or more null",
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': ['mostly_nulls'],
'rows': None,
'pct_null_rows': {'mostly_nulls': 0.9966666666666667}},
'code': 'HIGHLY_NULL_COLS',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NullDataCheck',
'metadata': {'columns': ['mostly_nulls'], 'rows': None},
'parameters': {}}]},

{'message': '1 row(s) (0.08333333333333334%) of target values are null',
'data_check_name': 'InvalidTargetDataCheck',
'level': 'error',
'details': {'columns': None,
'rows': [990],
'num_null_rows': 1,
'pct_null_rows': 0.08333333333333334},
'code': 'TARGET_HAS_NULL',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'InvalidTargetDataCheck',
'metadata': {'columns': None, 'rows': [990], 'is_target': True},
'parameters': {}}]},

{'message': "'no_variance' has 1 unique value.",
'data_check_name': 'NoVarianceDataCheck',
'level': 'warning',
'details': {'columns': ['no_variance'], 'rows': None},
'code': 'NO_VARIANCE',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NoVarianceDataCheck',
'metadata': {'columns': ['no_variance'], 'rows': None},
'parameters': {}}]}])

The return value of the search_iterative function above is a tuple. The first element is the AutoMLSearch object
if it runs (and None otherwise), and the second element is a dictionary of potential warnings and errors that the default
data checks find on the passed-in X and y data. In this dictionary, warnings are suggestions that the data checks give
that can useful to address to make the search better but will not break AutoMLSearch. On the flip side, errors indicate
issues that will break AutoMLSearch and need to be addressed by the user.

Above, we can see that there were errors so search did not automatically run.
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4.8.2 Addressing warnings and errors

We can automatically address the warnings and errors returned by search_iterative by using
make_pipeline_from_data_check_output, a utility method that creates a pipeline that will automatically
clean up our data. We just need to pass this method the messages from running DataCheck.validate() and our
problem type.

[7]: from evalml.pipelines.utils import make_pipeline_from_data_check_output

actions_pipeline = make_pipeline_from_data_check_output("binary", messages)
actions_pipeline.fit(X_train, y_train)
X_train_cleaned, y_train_cleaned = actions_pipeline.transform(X_train, y_train)
print(

"The new length of X_train is {} and y_train is {}".format(
len(X_train_cleaned), len(X_train_cleaned)

)
)

The new length of X_train is 1198 and y_train is 1198

Now, we can run search_iterative to completion.

[8]: results_cleaned = search_iterative(
X_train_cleaned, y_train_cleaned, problem_type="binary"

)

Note that this time, we get an AutoMLSearch object returned to us as the first element of the tuple. We can use and
inspect the AutoMLSearch object as needed.

[9]: automl_object = results_cleaned[0]
automl_object.rankings

[9]: id pipeline_name search_order \
0 1 Random Forest Classifier w/ Label Encoder + Da... 1
1 0 Mode Baseline Binary Classification Pipeline 0

ranking_score mean_cv_score standard_deviation_cv_score \
0 0.238873 0.238873 0.016718
1 4.843912 4.843912 0.049015

percent_better_than_baseline high_variance_cv \
0 95.06859 False
1 0.00000 False

parameters
0 {'Label Encoder': {'positive_label': None}, 'D...
1 {'Label Encoder': {'positive_label': None}, 'B...

If we check the second element in the tuple, we can see that there are no longer any warnings or errors detected!

[10]: data_check_results = results_cleaned[1]
data_check_results

[10]: []
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4.8.3 Only addressing DataCheck errors

Previously, we used make_pipeline_from_actions to address all of the warnings and errors returned by
search_iterative. We will now show how we can also manually address errors to allow AutoMLSearch to run,
and how ignoring warnings will come at the expense of performance.

We can print out the errors first to make it easier to read, and then we’ll create new features and targets from the original
training data.

[11]: errors = [message for message in messages if message["level"] == "error"]
errors

[11]: [{'message': '1 row(s) (0.08333333333333334%) of target values are null',
'data_check_name': 'InvalidTargetDataCheck',
'level': 'error',
'details': {'columns': None,
'rows': [990],
'num_null_rows': 1,
'pct_null_rows': 0.08333333333333334},
'code': 'TARGET_HAS_NULL',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'InvalidTargetDataCheck',
'metadata': {'columns': None, 'rows': [990], 'is_target': True},
'parameters': {}}]}]

[12]: # copy the DataTables to new variables
X_train_no_errors = X_train.copy()
y_train_no_errors = y_train.copy()

# We address the errors by looking at the resulting dictionary errors listed

# let's address the `TARGET_HAS_NULL` error
y_train_no_errors.fillna(False, inplace=True)

# let's reinitialize the Woodwork DataTable
X_train_no_errors.ww.init()
X_train_no_errors.head()

[12]: card_id store_id datetime amount currency \
id
872 15492 2868 2019-08-03 02:50:04 80719 HNL
1477 <NA> <NA> NaT <NA> NaN
158 22440 6813 2019-07-12 11:07:25 1849 SEK
808 8096 8096 2019-06-11 21:33:36 41358 MOP
336 33270 1529 2019-03-23 21:44:00 32594 CUC

customer_present expiration_date provider lat lng \
id
872 True 08/27 American Express 5.47090 100.24529
1477 <NA> NaN NaN NaN NaN
158 True 09/20 American Express 26.26490 81.54855
808 True 04/29 VISA 13 digit 59.37722 28.19028
336 False 04/22 Mastercard 51.39323 0.47713

region country no_variance mostly_nulls
(continues on next page)
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id
872 Batu Feringgi MY 1 <NA>
1477 NaN NaN <NA> <NA>
158 Jais IN 1 <NA>
808 Narva EE 1 <NA>
336 Strood GB 1 <NA>

We can now run search on X_train_no_errors and y_train_no_errors. Note that the search here doesn’t fail since
we addressed the errors, but there will still exist warnings in the returned tuple. This search allows the mostly_nulls
column to remain in the features during search.

[13]: results_no_errors = search_iterative(
X_train_no_errors, y_train_no_errors, problem_type="binary"

)
results_no_errors

[13]: (<evalml.automl.automl_search.AutoMLSearch at 0x7f3a41b18340>,
[{'message': '1 out of 1200 rows are 95.0% or more null',
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': None,
'rows': [1477],
'pct_null_cols': id
1477 1.0
dtype: float64},
'code': 'HIGHLY_NULL_ROWS',
'action_options': [{'code': 'DROP_ROWS',
'data_check_name': 'NullDataCheck',
'metadata': {'columns': None, 'rows': [1477]},
'parameters': {}}]},

{'message': "Column(s) 'mostly_nulls' are 95.0% or more null",
'data_check_name': 'NullDataCheck',
'level': 'warning',
'details': {'columns': ['mostly_nulls'],
'rows': None,
'pct_null_rows': {'mostly_nulls': 0.9966666666666667}},
'code': 'HIGHLY_NULL_COLS',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NullDataCheck',
'metadata': {'columns': ['mostly_nulls'], 'rows': None},
'parameters': {}}]},

{'message': "'no_variance' has 1 unique value.",
'data_check_name': 'NoVarianceDataCheck',
'level': 'warning',
'details': {'columns': ['no_variance'], 'rows': None},
'code': 'NO_VARIANCE',
'action_options': [{'code': 'DROP_COL',
'data_check_name': 'NoVarianceDataCheck',
'metadata': {'columns': ['no_variance'], 'rows': None},
'parameters': {}}]}])
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4.9 Utilities

4.9.1 Configuring Logging

EvalML uses the standard Python logging package. Default logging behavior prints WARNING level logs and above
(ERROR and CRITICAL) to stdout. To configure different behavior, please refer to the Python logging documentation.

To see up-to-date feedback as AutoMLSearch runs, use the argument verbose=True when instantiating the object.
This will temporarily set up a logging object to print INFO level logs and above to stdout, as well as display a graph of
the best score over pipeline iterations.

4.9.2 System Information

EvalML provides a command-line interface (CLI) tool prints the version of EvalML and core dependencies installed,
as well as some basic system information. To use this tool, just run evalml info in your shell or terminal. This could
be useful for debugging purposes or tracking down any version-related issues.

[1]: !evalml info

/usr/bin/sh: 1: evalml: not found

4.10 AutoMLSearch for time series problems

In this guide, we’ll show how you can use EvalML to perform an automated search of machine learning pipelines for
time series problems. Time series support is still being actively developed in EvalML so expect this page to improve
over time.

4.10.1 But first, what is a time series?

A time series is a series of measurements taken at different moments in time (Wikipedia). The main difference between
a time series dataset and a normal dataset is that the rows of a time series dataset are ordered chronologically, where the
relative time between rows is significant. This relationship between the rows does not exist in non-time series datasets.
In a non-time-series dataset, you can shuffle the rows and the dataset still has the same meaning. If you shuffle the rows
of a time series dataset, the relationship between the rows is completely different!

4.10.2 What does AutoMLSearch for time series do?

In a machine learning setting, we are usually interested in using past values of the time series to predict future values.
That is what EvalML’s time series functionality is built to do.
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4.10.3 Loading the data

In this guide, we work with daily minimum temperature recordings from Melbourne, Austrailia from the beginning of
1981 to end of 1990.

We start by loading the temperature data into two splits. The first split will be a training split consisting of data from
1981 to end of 1989. This is the data we’ll use to find the best pipeline with AutoML. The second split will be a testing
split consisting of data from 1990. This is the split we’ll use to evaluate how well our pipeline generalizes on unseen
data.

[2]: import pandas as pd
from evalml.demos import load_weather

X, y = load_weather()

Number of Features
Categorical 1

Number of training examples: 3650
Targets
10.0 1.40%
11.0 1.40%
13.0 1.32%
12.5 1.21%
10.5 1.21%

...
0.2 0.03%
24.0 0.03%
25.2 0.03%
22.7 0.03%
21.6 0.03%
Name: count, Length: 229, dtype: object

[3]: train_dates, test_dates = X.Date < "1990-01-01", X.Date >= "1990-01-01"
X_train, y_train = X.ww.loc[train_dates], y.ww.loc[train_dates]
X_test, y_test = X.ww.loc[test_dates], y.ww.loc[test_dates]

Visualizing the training set

[4]: import plotly.graph_objects as go

[5]: data = [
go.Scatter(

x=X_train["Date"],
y=y_train,
mode="lines+markers",
name="Temperature (C)",
line=dict(color="#1f77b4"),

)
]
# Let plotly pick the best date format.
layout = go.Layout(

(continues on next page)
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title={"text": "Min Daily Temperature, Melbourne 1980-1989"},
xaxis={"title": "Time"},
yaxis={"title": "Temperature (C)"},

)

go.Figure(data=data, layout=layout)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.4 Fixing the data

Sometimes, the datasets we work with do not have perfectly consistent DateTime columns. We can use the
TimeSeriesRegularizer and TimeSeriesImputer to correct any discrepancies in our data in a time-series spe-
cific way.

To show an example of this, let’s create some discrepancies in our training data. We’ll also add a couple of extra
columns in the X DataFrame to highlight more of the options with these tools.

[6]: X["Categorical"] = [str(i % 4) for i in range(len(X))]
X["Categorical"] = X["Categorical"].astype("category")
X["Numeric"] = [i for i in range(len(X))]

# Re-split the data since we modified X
X_train, y_train = X.loc[train_dates], y.ww.loc[train_dates]
X_test, y_test = X.loc[test_dates], y.ww.loc[test_dates]

[7]: X_train["Date"][500] = None
X_train["Date"][1042] = None
X_train["Date"][1043] = None
X_train["Date"][231] = pd.Timestamp("1981-08-19")

X_train.drop(1209, inplace=True)
X_train.drop(398, inplace=True)
y_train.drop(1209, inplace=True)
y_train.drop(398, inplace=True)

With these changes, there are now NaN values in the training data that our models won’t be able to recognize, and there
is no longer a clear frequency between the dates.

[8]: print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in date column: {X_train['Date'].isna().any()}")
print(

f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
→˓train['Numeric'].isna().any()}"
)
print(f"NaNs in target data: {y_train.isna().any()}")

Inferred frequency: None
NaNs in date column: True

(continues on next page)
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NaNs in other training data columns: False
NaNs in target data: False

Time Series Regularizer

We can use the TimeSeriesRegularizer component to restore the missing and NaN DateTime values we’ve created
in our data. This component is designed to infer the proper frequency using Woodwork’s “infer_frequency” function
and generate a new DataFrame that follows it. In order to maintain as much original information from the input data
as possible, all rows with completely correct times are ported over into this new DataFrame. If there are any rows that
have the same timestamp as another, these will be dropped. The first occurrence of a date or time maintains priority.
If there are any values that don’t quite line up with the inferred frequency they will be shifted to any closely missing
datetimes, or dropped if there are none nearby.

[9]: from evalml.pipelines.components import TimeSeriesRegularizer

regularizer = TimeSeriesRegularizer(time_index="Date")
X_train, y_train = regularizer.fit_transform(X_train, y_train)

Now we can see that pandas has successfully inferred the frequency of the training data, and there are no more null
values within X_train. However, by adding values that were dropped before, we have created NaN values within the
target data, as well as the other columns in our training data.

[10]: print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in training data: {X_train['Date'].isna().any()}")
print(

f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
→˓train['Numeric'].isna().any()}"
)
print(f"NaNs in target data: {y_train.isna().any()}")

Inferred frequency: D
NaNs in training data: False
NaNs in other training data columns: True
NaNs in target data: True

Time Series Imputer

We could easily use the Imputer and TargetImputer components to fill in the missing gaps in our X and y
data. However, these tools are not built for time series problems. Their supported imputation strategies of “mean”,
“most_frequent”, or similar are all static. They don’t account for the passing of time, and how neighboring data points
may have more predictive power than simply taking the average. The TimeSeriesImputer solves this problem by
offering three different imputation strategies: - “forwards_fill”: fills in any NaN values with the same value as found
in the previous non-NaN cell. - “backwards_fill”: fills in any NaN values with the same value as found in the next
non-NaN cell. - “interpolate”: (numeric columns only) fills in any NaN values by linearly interpolating the values of
the previous and next non-NaN cells.

[11]: from evalml.pipelines.components import TimeSeriesImputer

ts_imputer = TimeSeriesImputer(
categorical_impute_strategy="forwards_fill",
numeric_impute_strategy="backwards_fill",

(continues on next page)
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target_impute_strategy="interpolate",
)
X_train, y_train = ts_imputer.fit_transform(X_train, y_train)

Now, finally, we have a DataFrame that’s back in order without flaws, which we can use for running AutoMLSearch
and running models without issue.

[12]: print(f"Inferred frequency: {pd.infer_freq(X_train['Date'])}")
print(f"NaNs in training data: {X_train['Date'].isna().any()}")
print(

f"NaNs in other training data columns: {X_train['Categorical'].isna().any() or X_
→˓train['Numeric'].isna().any()}"
)
print(f"NaNs in target data: {y_train.isna().any()}")

Inferred frequency: D
NaNs in training data: False
NaNs in other training data columns: False
NaNs in target data: False

4.10.5 Trending and Seasonality Decomposition

Decomposing a target signal into a trend and/or a cyclical signal is a common pre-processing step for time series
modeling. Having an understanding of the presence or absence of these component signals can provide additional
insight and decomposing the signal into these constituent components can enable non-time-series aware estimators to
perform better while attempting to model this data. We have two unique decomposers, the PolynomialDecompser
and the STLDecomposer.

Let’s first take a look at a year’s worth of the weather dataset.

[13]: import matplotlib.pyplot as plt

length = 365
X_train_time = X_train.set_index("Date").asfreq(pd.infer_freq(X_train["Date"]))
y_train_time = y_train.set_axis(X_train["Date"]).asfreq(pd.infer_freq(X_train["Date"]))
plt.plot(y_train_time[0:length], "bo")
plt.show()
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With the knowledge that this is a weather dataset and the data itself is daily weather data, we can assume that the
seasonal data will have a period of approximately 365 data points. Let’s build and fit decomposers to detrend and
deseasonalize this data.

Polynomial Decomposer

[14]: from evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer import␣
→˓(

PolynomialDecomposer,
)

pdc = PolynomialDecomposer(degree=1, period=365)
X_t, y_t = pdc.fit_transform(X_train_time, y_train_time)

plt.plot(y_train_time, "bo", label="Signal")
plt.plot(y_t, "rx", label="Detrended/Deseasonalized Signal")
plt.legend()
plt.show()
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The result is the residual signal, with the trend and seasonality removed. If we want to look at what the component
identified as the trend and seasonality, we can call the plot_decomposition() function.

[15]: res = pdc.plot_decomposition(X_train_time, y_train_time)
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It is desirable to enhance the decomposer component with a guess at the period of the seasonal aspect of the signal
before decomposing it. To do that, we can use the determine_periodicity(X, y) function of the Decomposer
class.

[16]: period = pdc.determine_periodicity(X_train_time, y_train_time)
print(period)

351

The PolynomialDecomposer class, if not explicitly set in the constructor, will set its period parameter based on a
statsmodels function freq_to_period that considers the frequency of the datetime data. This will give a reasonable
guess as to what the frequency could be. For example, if the PolynomialDecomposer object is fit with period not
explicitly set, it will take on a default value of 7, which is good for daily data signals that have a known seasonal
component period that is weekly.

In this case where the seasonal period is not known beforehand, the set_period() convenience function will look at
the target data, determine a better guess for the period and set the Decomposer object appropriately.

[17]: pdc = PolynomialDecomposer()
pdc.fit(X_train_time, y_train_time)
assert pdc.period == 7
pdc.set_period(X_train_time, y_train_time)
assert 350 < pdc.period < 370
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STLDecomposer

The STLDecomposer runs on statsmodels’ implementation of STL decomposition. Let’s take a look at how STL
decomposes the weather dataset.

[18]: from evalml.pipelines.components import STLDecomposer

stl = STLDecomposer()
X_t, y_t = stl.fit_transform(X_train_time, y_train_time)

res = stl.plot_decomposition(X_train_time, y_train_time)

This doesn’t look nearly as good as the PolynomialDecomposer did. This is because STL decomposition performs
best when the data has a small seasonal period, generally less than 14 time units. The weather dataset’s seasonal period
of ~365 days does not work as well since STL extracted a shorter term seasonality for decomposition.

We can generate some synthetic data that better highlights where STL performs well. For this example, we’ll generate
monthly data with an annual seasonal period.

[19]: import random
import numpy as np
from datetime import datetime
from sklearn.preprocessing import minmax_scale

(continues on next page)
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def generate_synthetic_data(
period=12,
num_periods=25,
scale=10,
seasonal_scale=2,
trend_degree=1,
freq_str="M",

):
freq = 2 * np.pi / period
x = np.arange(0, period * num_periods, 1)
dts = pd.date_range(datetime.today(), periods=len(x), freq=freq_str)
X = pd.DataFrame({"x": x})
X = X.set_index(dts)

if trend_degree == 1:
y_trend = pd.Series(scale * minmax_scale(x + 2))

elif trend_degree == 2:
y_trend = pd.Series(scale * minmax_scale(x**2))

elif trend_degree == 3:
y_trend = pd.Series(scale * minmax_scale((x - 5) ** 3 + x**2))

y_seasonal = pd.Series(seasonal_scale * np.sin(freq * x))
y_random = pd.Series(np.random.normal(0, 1, len(X)))
y = y_trend + y_seasonal + y_random
return X, y

X_stl, y_stl = generate_synthetic_data()

Let’s see how the STLDecomposer does at decomposing this data.

[20]: stl = STLDecomposer()
X_t_stl, y_t_stl = stl.fit_transform(X_stl, y_stl)

res = stl.plot_decomposition(X_stl, y_stl)
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On top of decomposing this type of data well, the statsmodels implementation of STL automatically determines the
seasonal period of the data, which is saved during fit time for this component.

[21]: stl = STLDecomposer()
assert stl.period == None
stl.fit(X_stl, y_stl)
print(stl.period)

12

4.10.6 Running AutoMLSearch

AutoMLSearch for time series problems works very similarly to the other problem types with the exception that users
need to pass in a new parameter called problem_configuration.

The problem_configuration is a dictionary specifying the following values:

• forecast_horizon: The number of time periods we are trying to forecast. In this example, we’re interested in
predicting weather for the next 7 days, so the value is 7.

• gap: The number of time periods between the end of the training set and the start of the test set. For example, in
our case we are interested in predicting the weather for the next 7 days with the data as it is “today”, so the gap
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is 0. However, if we had to predict the weather for next Monday-Sunday with the data as it was on the previous
Friday, the gap would be 2 (Saturday and Sunday separate Monday from Friday). It is important to select a value
that matches the realistic delay between the forecast date and the most recently avaliable data that can be used to
make that forecast.

• max_delay: The maximum number of rows to look in the past from the current row in order to compute features.
In our example, we’ll say we can use the previous week’s weather to predict the current week’s.

• time_index: The column of the training dataset that contains the date corresponding to each observation. While
only some of the models we run during time series searches require the time_index, we require it to be passed
in to top level search so that the parameter can reach the models that need it.

Note that the values of these parameters must be in the same units as the training/testing data.

Visualization of forecast horizon and gap

[22]: from evalml.automl import AutoMLSearch

problem_config = {"gap": 0, "max_delay": 7, "forecast_horizon": 7, "time_index": "Date"}

automl = AutoMLSearch(
X_train,
y_train,
problem_type="time series regression",
max_batches=1,
problem_configuration=problem_config,
automl_algorithm="iterative",
allowed_model_families=[

"xgboost",
"random_forest",
"linear_model",
"extra_trees",

],
)

[23]: automl.search()
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[23]: {1: {'Elastic Net Regressor w/ Imputer + Time Series Featurizer + STL Decomposer +␣
→˓DateTime Featurizer + One Hot Encoder + Drop NaN Rows Transformer + Standard Scaler':␣
→˓15.156692504882812,
'Elastic Net Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One␣

→˓Hot Encoder + Drop NaN Rows Transformer + Standard Scaler': 3.712909460067749,
'XGBoost Regressor w/ Imputer + Time Series Featurizer + STL Decomposer + DateTime␣

→˓Featurizer + One Hot Encoder': 17.164578199386597,
'XGBoost Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One Hot␣

→˓Encoder': 5.957250356674194,
'Random Forest Regressor w/ Imputer + Time Series Featurizer + STL Decomposer +␣

→˓DateTime Featurizer + One Hot Encoder + Drop NaN Rows Transformer': 18.46796202659607,
'Random Forest Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer +␣

→˓One Hot Encoder + Drop NaN Rows Transformer': 6.976490497589111,
'Extra Trees Regressor w/ Imputer + Time Series Featurizer + STL Decomposer + DateTime␣

→˓Featurizer + One Hot Encoder + Drop NaN Rows Transformer': 15.023889780044556,
'Extra Trees Regressor w/ Imputer + Time Series Featurizer + DateTime Featurizer + One␣

→˓Hot Encoder + Drop NaN Rows Transformer': 3.5976009368896484,
'Total time of batch': 86.87056303024292}}

4.10.7 Understanding what happened under the hood

This is great, AutoMLSearch is able to find a pipeline that scores an R2 value of 0.44 compared to a baseline pipeline
that is only able to score 0.07. But how did it do that?

Data Splitting

EvalML uses rolling origin cross validation for time series problems. Basically, we take successive cuts of the training
data while keeping the validation set size fixed at forecast_horizon number of time units. Note that the splits are
not separated by gap number of units. This is because we need access to all the data to generate features for every row
of the validation set. However, the feature engineering done by our pipelines respects the gap value. This is explained
more in the feature engineering section.
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Baseline Pipeline

The most naive thing we can do in a time series problem is use the most recently available observation to predict the
next observation. In our example, this means we’ll use the measurement from 7 days ago as the prediction for the
current date.

[24]: import pandas as pd

baseline = automl.get_pipeline(0)
baseline.fit(X_train, y_train)
naive_baseline_preds = baseline.predict_in_sample(

X_test, y_test, objective=None, X_train=X_train, y_train=y_train
)
expected_preds = pd.Series(

pd.concat([y_train.iloc[-7:], y_test]).shift(7).iloc[7:], name="target"
)
pd.testing.assert_series_equal(expected_preds, naive_baseline_preds)

Feature Engineering

EvalML uses the values of gap, forecast_horizon, and max_delay to calculate a “window” of allowed dates that
can be used for engineering the features of each row in the validation/test set. The formula for computing the bounds
of the window is:

[t - (max_delay + forecast_horizon + gap), t - (forecast_horizon + gap)]

As an example, this is what the features for the first five days of August would look like in our current problem:
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The estimator then takes these features to generate predictions:

Feature engineering components for time series

For an example of a time-series feature engineering component see TimeSeriesFeaturizer

4.10.8 Evaluate best pipeline on test data

Now that we have covered the mechanics of how EvalML runs AutoMLSearch for time series pipelines, we can compare
the performance on the test set of the best pipeline found during search and the baseline pipeline.

[25]: pl = automl.best_pipeline

pl.fit(X_train, y_train)

best_pipeline_score = pl.score(X_test, y_test, ["MedianAE"], X_train, y_train)[
"MedianAE"

]
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[26]: best_pipeline_score

[26]: 1.903458595275879

[27]: baseline = automl.get_pipeline(0)
baseline.fit(X_train, y_train)
naive_baseline_score = baseline.score(X_test, y_test, ["MedianAE"], X_train, y_train)[

"MedianAE"
]

[28]: naive_baseline_score

[28]: 2.3

The pipeline found by AutoMLSearch has a 31% improvement over the naive forecast!

[29]: automl.objective.calculate_percent_difference(best_pipeline_score, naive_baseline_score)

[29]: 17.240930640179172

4.10.9 Visualize the predictions over time

[30]: from evalml.model_understanding import graph_prediction_vs_actual_over_time

fig = graph_prediction_vs_actual_over_time(
pl, X_test, y_test, X_train, y_train, dates=X_test["Date"]

)
fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.10 Predicting on unseen data

You’ll notice that in the code snippets here, we use the predict_in_sample pipeline method as opposed to the usual
predict method. What’s the difference?

• predict_in_sample is used when the target value is known on the dates we are predicting on. This is true in
cross validation. This method has an expected y parameter so that we can compute features using previous target
values for all of the observations on the holdout set.

• predict is used when the target value is not known, e.g. the test dataset. The y parameter is not expected as
only the target is observed in the training set. The test dataset must be separated by gap units from the training
dataset. For the moment, the test set size must be less than or equal to forecast_horizon.

Here is an example of these two methods in action:
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predict_in_sample

[31]: pl.predict_in_sample(X_test, y_test, objective=None, X_train=X_train, y_train=y_train)

[31]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833

...
3647 13.354449
3648 13.750842
3649 13.747188
3650 14.131168
3651 12.356060
Name: target, Length: 365, dtype: float64

predict

[32]: pl.predict(X_test, objective=None, X_train=X_train, y_train=y_train)

[32]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833

...
3647 13.228288
3648 13.290761
3649 13.062471
3650 13.233994
3651 14.117554
Name: target, Length: 365, dtype: float64

4.10.11 Validating the holdout data

Before we predict on our holdout data, it is important to validate that it meets the requirements we summarized in the
second point above in Predicting on unseen data. We can call on validate_holdout_datasets in order to verify
the two requirements:

1. The holdout data is separated by gap units from the training dataset. This is determined by the time_index
column, not the index e.g. if your datetime frequency for the column “Date” is 2 days with a gap of 3, then the
holdout data must start 2 days x 3 = 6 days after the training data.

2. The length of the holdout data must be less than or equal to the forecast_horizon.

[33]: from evalml.utils.gen_utils import validate_holdout_datasets

# Holdout dataset has 365 observations
validation_results = validate_holdout_datasets(X_test, X_train, problem_config)
assert not validation_results.is_valid
# Holdout dataset has 7 observations

(continues on next page)
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validation_results = validate_holdout_datasets(
X_test.iloc[: pl.forecast_horizon], X_train, problem_config

)
assert validation_results.is_valid

predict – Test set size matches forecast horizon

[34]: pl.predict(
X_test.iloc[: pl.forecast_horizon], objective=None, X_train=X_train, y_train=y_train

)

[34]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833
3292 11.532094
3293 12.126741
Name: target, dtype: float64

predict – Test set size is less than forecast horizon

[35]: pl.predict(
X_test.iloc[: pl.forecast_horizon - 2],
objective=None,
X_train=X_train,
y_train=y_train,

)

[35]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142
3291 11.636833
Name: target, dtype: float64

predict – Test set size index starts at 0

[36]: pl.predict(
X_test.iloc[: pl.forecast_horizon].reset_index(drop=True),
objective=None,
X_train=X_train,
y_train=y_train,

)

[36]: 3287 12.007137
3288 12.502100
3289 12.578979
3290 11.418142

(continues on next page)
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3291 11.636833
3292 11.532094
3293 12.126741
Name: target, dtype: float64

4.10.12 Prediction Intervals

Getting Prediction Intervals

While predictions that are generated by EvalML pipelines aim to be accurate as possible, it is very rarely the case that
future results are the exact same values as predicted. Prediction intervals can help to contextualize a prediction by
showing the range a future prediction is expected to fall within a certain likelihood.

Given the preprocessed (transformed, ready for prediction) features, the corresponding predictions, and a fitted EvalML
estimator, the prediction intervals for this set of predictions is generated by calling get_prediction_intervals()
on the pipeline’s estimator. Here, we use the fitted estimator in our trained EvalML pipeline to generate the prediction
intervals:

[37]: X_trans = pl.transform_all_but_final(X_test, y_test)
y_pred = pl.predict(X_test, objective=None, X_train=X_train, y_train=y_train)
pl.estimator.get_prediction_intervals(X=X_trans, y=y_pred)

[37]: {'0.95_lower': 3287 16.468615
3288 16.504353
3289 16.688278
3290 16.811346
3291 16.942591

...
3647 12.070903
3648 12.418325
3649 12.379229
3650 12.787175
3651 11.024206
Length: 365, dtype: float64,
'0.95_upper': 3287 17.256910
3288 17.292648
3289 17.476574
3290 17.599642
3291 17.730886

...
3647 14.637996
3648 15.083359
3649 15.115146
3650 15.475162
3651 13.687914
Length: 365, dtype: float64}

By default, prediction intervals are calculated for the 95% upper and lower bound. In the above example, 95% of the
time, a prediction sometime in the future will fall in this range.

To generate prediction intervals for a custom value, use the coverage parameter. In the example below, the 80%
interval range is calculated below:

250 Chapter 4. User Guide



EvalML Documentation, Release 0.80.0

[38]: pl.estimator.get_prediction_intervals(X=X_trans, y=y_pred, coverage=[0.8])

[38]: {'0.8_lower': 3287 16.605043
3288 16.640781
3289 16.824707
3290 16.947775
3291 17.079019

...
3647 12.515183
3648 12.879556
3649 12.852728
3650 13.252378
3651 11.485208
Length: 365, dtype: float64,
'0.8_upper': 3287 17.120482
3288 17.156220
3289 17.340145
3290 17.463213
3291 17.594458

...
3647 14.193715
3648 14.622128
3649 14.641648
3650 15.009959
3651 13.226912
Length: 365, dtype: float64}

4.10.13 Forecasting Future Data

Unlike standard pipelines, time series pipelines are able to generate predictions out to the future. The number of
predictions out in the future is dependent on the forecast_horizon parameter set in the problem configuration of an
AutoML search.

To show that it is possible to generate brand new predictions in the future, the entire weather dataset (including the
holdout set) will be used. The code block below refit the pipeline on the entire dataset and generates a forecast.

[39]: X.ww.init()
y.ww.init()

pl.fit(X, y)
X_forecast_dates = pl.get_forecast_period(X=X).to_frame()
y_forecast = pl.get_forecast_predictions(X=X, y=y)
display("Forecast Dates:", X_forecast_dates)
display("Forecast Predictions:", y_forecast)

'Forecast Dates:'

Date
3652 1991-01-01
3653 1991-01-02
3654 1991-01-03
3655 1991-01-04
3656 1991-01-05

(continues on next page)
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3657 1991-01-06
3658 1991-01-07

'Forecast Predictions:'

3652 12.260047
3653 10.095071
3654 11.425120
3655 12.398380
3656 12.176962
3657 12.155176
3658 12.144207
Name: Temp, dtype: float64

Using these forecasted values, it is possible to generate the prediction intervals for each forecasted point.

[40]: res = pl.get_prediction_intervals(
X=pd.DataFrame(X_forecast_dates), y=y_forecast, X_train=X, y_train=y

)
display(res)

{'0.95_lower': 3652 8.390696
3653 4.622983
3654 4.723208
3655 4.659679
3656 3.524831
3657 2.677241
3658 1.906867
Name: 0.95_lower, dtype: float64,
'0.95_upper': 3652 16.129398
3653 15.567159
3654 18.127032
3655 20.137082
3656 20.829093
3657 21.633111
3658 22.381547
Name: 0.95_upper, dtype: float64}

[41]: y_lower = res["0.95_lower"]
y_upper = res["0.95_upper"]

Using the forecasted predictions and corresponding prediction intervals, we can plot this data. For this plot, only the
last 31 days of data will be used so that the forecasted data is visible.

[42]: X_before = X[-31:]
y_before = y[-31:]

[43]: fig = go.Figure(
[

# Plot last 31 days of training data
go.Scatter(x=X_before["Date"], y=y_before, name="Training Data", mode="lines"),
# Plot forecast data
go.Scatter(

(continues on next page)
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x=X_forecast_dates["Date"], y=y_forecast, name="Forecast Data", mode="lines"
),
# Plot prediction intervals
go.Scatter(

x=pd.concat([X_forecast_dates["Date"], X_forecast_dates["Date"][::-1]]),
y=pd.concat([y_upper, y_lower[::-1]]),
fill="toself",
fillcolor="rgba(255,0,0,0.2)",
line=dict(color="rgba(255,0,0,0.2)"),
name="Forecast Prediction Intervals",
showlegend=True,

),
],
layout={

"title": "Plot of Last Two Weeks of Data + Forecast Data With Prediction␣
→˓Intervals",

"xaxis": dict(title="Date"),
"yaxis": dict(title="Temperature (C)"),

},
)
fig.show()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4.10.14 Forecasting into the future

Our previous examples have shown using a pipeline to predict on data we had at training time. However, we can also
use EvalML time series pipelines to forecast dates into the future as long we provide data that meets the requirements
of Predicting on unseen data as well.

To help figure out the dates we need in X_train to forecast dates into the future - we’ve provided
dates_needed_for_prediction and dates_needed_for_prediction_range.

[44]: forecast_date = pd.Timestamp("1991-01-07")
beginning_date, end_date = pl.dates_needed_for_prediction(forecast_date)

print("Dates needed:")
print(f"{beginning_date.strftime('%Y-%m-%d %X')} to {end_date.strftime('%Y-%m-%d %X')}")

Dates needed:
1990-12-23 00:00:00 to 1991-01-06 00:00:00

We can see how the dates are valid by generating some future dates and features with the above date range.

[45]: import random

dates = pd.date_range(
beginning_date,
end_date,
freq=pl.frequency.split("-")[0],

(continues on next page)
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)

X_train_forecast = pd.DataFrame(index=[i + 1 for i in range(len(dates))])
categorical_feature = pd.Series(

[random.randint(0, 3) for i in range(len(dates))], index=X_train_forecast.index
)
numeric_feature = pd.Series(

[i + 1 for i in range(len(dates))], index=X_train_forecast.index
)

X_train_forecast["Date"] = pd.Series(dates.values, index=X_train_forecast.index)
X_train_forecast["Categorical"] = pd.Series(

categorical_feature.values, index=X_train_forecast.index
)
X_train_forecast["Numeric"] = pd.Series(

numeric_feature.values, index=X_train_forecast.index
)
X_train_forecast.ww.init(

logical_types={"Categorical": "categorical", "Numeric": "integer"}
)

y_train_forecast = pd.Series(
X_train_forecast["Numeric"].values, index=X_train_forecast.index

)

[46]: X_test_forecast = pd.DataFrame(
{"Date": [forecast_date], "Categorical": [3], "Numeric": [53862]}

)

. . . and we succesfully have our prediction!

[47]: pl.predict(X_test_forecast, X_train=X_train_forecast, y_train=y_train_forecast)

[47]: 16 10.465612
Name: Temp, dtype: float64

[48]: forecast_start = pd.Timestamp("1991-01-07")
forecast_end = pd.Timestamp("1991-01-14")

dates = pl.dates_needed_for_prediction_range(forecast_start, forecast_end)
print("Dates needed:")
print(f"{dates[0].strftime('%Y-%m-%d %X')} to {dates[1].strftime('%Y-%m-%d %X')}")

Dates needed:
1990-12-23 00:00:00 to 1991-01-13 00:00:00
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4.10.15 Known-in-advance features

In time series problems, the goal is to predict an unknown value of a data series corresponding to a future moment in
time. Since the state of the world is not known in the future, we create features from data in the past since those values
are known when we go make our prediction.

However, there are some features corresponding to dates in the future that can be known with certainty, either because
they can be derived from the forecast date or because the feature can be controlled by the modeler. This includes
features such as if the date is a US Holiday, or the location of a store in a sales dataset. With these sorts of features, we
don’t need to include them in our time-series specific preprocessing steps (such as Time Series Featurization).

To handle these features, EvalML will split them into a separate path through the component graph, bypassing the
unnecessary preprocessing steps. Let’s take a look at what that looks like, using some synthetic data.

[50]: X = pd.DataFrame(
{"features": range(101, 601), "date": pd.date_range("2010-10-01", periods=500)}

)
y = pd.Series(range(500))

X.ww.init()
X.ww["bool_feature"] = (

pd.Series([True, False]).sample(n=X.shape[0], replace=True).reset_index(drop=True)
)
X.ww["cat_feature"] = (

pd.Series(["a", "b", "c"]).sample(n=X.shape[0], replace=True).reset_index(drop=True)
)

automl = AutoMLSearch(
X,
y,
problem_type="time series regression",
problem_configuration={

"max_delay": 5,
"gap": 3,
"forecast_horizon": 2,
"time_index": "date",
"known_in_advance": ["bool_feature", "cat_feature"],

},
)
automl.search()

19:43:56 - cmdstanpy - INFO - Chain [1] start processing
19:43:56 - cmdstanpy - INFO - Chain [1] done processing
19:43:56 - cmdstanpy - INFO - Chain [1] start processing
19:43:56 - cmdstanpy - INFO - Chain [1] done processing
19:43:57 - cmdstanpy - INFO - Chain [1] start processing
19:43:57 - cmdstanpy - INFO - Chain [1] done processing

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000209 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 1997
[LightGBM] [Info] Number of data points in the train set: 494, number of used features:␣
→˓19
[LightGBM] [Info] Start training from score 246.500000

(continues on next page)
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[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000180 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 2006
[LightGBM] [Info] Number of data points in the train set: 496, number of used features:␣
→˓19
[LightGBM] [Info] Start training from score 247.500000
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.000204 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 2015
[LightGBM] [Info] Number of data points in the train set: 498, number of used features:␣
→˓19 (continues on next page)
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[LightGBM] [Info] Start training from score 248.500000
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[50]: {1: {'Random Forest Regressor w/ Select Columns Transformer + Imputer + Time Series␣
→˓Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot␣
→˓Encoder + Drop NaN Rows Transformer': 2.265831708908081,
'Total time of batch': 2.411851406097412},

2: {'ARIMA Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣
→˓Select Columns Transformer + Imputer + One Hot Encoder': 38.40943789482117,
'Exponential Smoothing Regressor w/ Select Columns Transformer + Imputer + Time Series␣

→˓Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot␣
→˓Encoder': 1.1225345134735107,
'Prophet Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣

→˓Select Columns Transformer + Imputer + One Hot Encoder': 1.579469919204712,
'Extra Trees Regressor w/ Select Columns Transformer + Imputer + Time Series␣

→˓Featurizer + DateTime Featurizer + Select Columns Transformer + Imputer + One Hot␣
→˓Encoder + Drop NaN Rows Transformer': 1.5910940170288086,
'XGBoost Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣

→˓DateTime Featurizer + Select Columns Transformer + Imputer + One Hot Encoder': 1.
→˓9004225730895996,
'LightGBM Regressor w/ Select Columns Transformer + Imputer + Time Series Featurizer +␣

→˓DateTime Featurizer + Select Columns Transformer + Imputer + One Hot Encoder': 1.
→˓3942763805389404,
'Elastic Net Regressor w/ Select Columns Transformer + Imputer + Time Series␣

→˓Featurizer + DateTime Featurizer + Standard Scaler + Select Columns Transformer +␣
→˓Imputer + One Hot Encoder + Standard Scaler + Drop NaN Rows Transformer': 1.
→˓7085111141204834,
'Total time of batch': 48.71627402305603}}

[51]: pipeline = automl.best_pipeline
pipeline.graph()

4.10. AutoMLSearch for time series problems 257



EvalML Documentation, Release 0.80.0

[51]:

4.11 FAQ

4.11.1 Q: What is the difference between EvalML and other AutoML libraries?

EvalML optimizes machine learning pipelines on custom practical objectives instead of vague machine learning loss
functions so that it will find the best pipelines for your specific needs. Furthermore, EvalML pipelines are able to take
in all kinds of data (missing values, categorical, etc.) as long as the data are in a single table. EvalML also allows
you to build your own pipelines with existing or custom components so you can have more control over the AutoML
process. Moreover, EvalML also provides you with support in the form of data checks to ensure that you are aware of
potential issues your data may cause with machine learning algorithms.

4.11.2 Q: How does EvalML handle missing values?

EvalML contains imputation components in its pipelines so that missing values are taken care of. EvalML optimizes
over different types of imputation to search for the best possible pipeline. You can find more information about com-
ponents here and in the API reference here.

4.11.3 Q: How does EvalML handle categorical encoding?

EvalML provides a one-hot-encoding component in its pipelines for categorical variables. EvalML plans to support
other encoders in the future.

4.11.4 Q: How does EvalML handle feature selection?

EvalML currently utilizes scikit-learn’s SelectFromModel with a Random Forest classifier/regressor to handle feature
selection. EvalML plans on supporting more feature selectors in the future. You can find more information in the API
reference here.

4.11.5 Q: How is feature importance calculated?

Feature importance depends on the estimator used. Variable coefficients are used for regression-based estimators (Lo-
gistic Regression and Linear Regression) and Gini importance is used for tree-based estimators (Random Forest and
XGBoost).

4.11.6 Q: How does hyperparameter tuning work?

EvalML tunes hyperparameters for its pipelines through Bayesian optimization. In the future we plan to support more
optimization techniques such as random search.
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4.11.7 Q: Can I create my own objective metric?

Yes you can! You can create your own custom objective so that EvalML optimizes the best model for your needs.

4.11.8 Q: How does EvalML avoid overfitting?

EvalML provides data checks to combat overfitting. Such data checks include detecting label leakage, unstable
pipelines, hold-out datasets and cross validation. EvalML defaults to using Stratified K-Fold cross-validation for clas-
sification problems and K-Fold cross-validation for regression problems but allows you to utilize your own cross-
validation methods as well.

4.11.9 Q: Can I create my own pipeline for EvalML?

Yes! EvalML allows you to create custom pipelines using modular components. This allows you to customize EvalML
pipelines for your own needs or for AutoML.

4.11.10 Q: Does EvalML work with X algorithm?

EvalML is constantly improving and adding new components and will allow your own algorithms to be used as com-
ponents in our pipelines.
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5.1 Demo Datasets

load_breast_cancer Load breast cancer dataset. Binary classification prob-
lem.

load_churn Load churn dataset, which can be used for binary classi-
fication problems.

load_diabetes Load diabetes dataset. Used for regression problem.
load_fraud Load credit card fraud dataset.
load_weather Load the Australian daily-min-termperatures weather

dataset.
load_wine Load wine dataset. Multiclass problem.

5.2 Preprocessing

5.2.1 Preprocessing Utils

Utilities to preprocess data before using evalml.

load_data Load features and target from file.
number_of_features Get the number of features of each specific dtype in a

DataFrame.
split_data Split data into train and test sets.
target_distribution Get the target distributions.

5.2.2 Data Splitters

NoSplit Does not split the training data into training and valida-
tion sets.

KFold Wrapper class for sklearn's KFold splitter.
StratifiedKFold Wrapper class for sklearn's Stratified KFold splitter.
TrainingValidationSplit Split the training data into training and validation sets.
TimeSeriesSplit Rolling Origin Cross Validation for time series prob-

lems.
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5.3 Exceptions

AutoMLSearchException Exception raised when all pipelines in an automl batch
return a score of NaN for the primary objective.

ComponentNotYetFittedError An exception to be raised when pre-
dict/predict_proba/transform is called on a component
without fitting first.

DataCheckInitError Exception raised when a data check can't initialize with
the parameters given.

MethodPropertyNotFoundError Exception to raise when a class is does not have an ex-
pected method or property.

MissingComponentError An exception raised when a component is not found in
all_components().

NoPositiveLabelException Exception when a particular classification label for the
'positive' class cannot be found in the column index or
unique values.

ObjectiveCreationError Exception when get_objective tries to instantiate an ob-
jective and required args are not provided.

ObjectiveNotFoundError Exception to raise when specified objective does not ex-
ist.

PartialDependenceError Exception raised for all errors that partial dependence
can raise.

PipelineError Exception raised for errors that can be raised when ap-
plying a pipeline.

PipelineNotFoundError An exception raised when a particular pipeline is not
found in automl search results.

PipelineNotYetFittedError An exception to be raised when pre-
dict/predict_proba/transform is called on a pipeline
without fitting first.

PipelineScoreError An exception raised when a pipeline errors while scoring
any objective in a list of objectives.

5.3.1 Warnings

NullsInColumnWarning Warning thrown when there are null values in the column
of interest.

ParameterNotUsedWarning Warning thrown when a pipeline parameter isn't used in
a defined pipeline's component graph during initializa-
tion.
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5.3.2 Error Codes

PartialDependenceErrorCode Enum identifying the type of error encountered in partial
dependence.

PipelineErrorCodeEnum Enum identifying the type of error encountered while
applying a pipeline.

ValidationErrorCode Enum identifying the type of error encountered in hold-
out validation.

5.4 AutoML

5.4.1 AutoML Search Interface

AutoMLSearch Automated Pipeline search.

5.4.2 AutoML Utils

get_default_primary_search_objective Get the default primary search objective for a problem
type.

get_threshold_tuning_info Determine for a given automl config and pipeline what
the threshold tuning objective should be and whether or
not training data should be further split to achieve proper
threshold tuning.

make_data_splitter Given the training data and ML problem parameters,
compute a data splitting method to use during AutoML
search.

resplit_training_data Further split the training data for a given pipeline. This
is needed for binary pipelines in order to properly tune
the threshold.

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.
tune_binary_threshold Tunes the threshold of a binary pipeline to the X and y

thresholding data.

5.4.3 AutoML Algorithm Classes

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

IterativeAlgorithm An automl algorithm which first fits a base round of
pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.
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5.4.4 AutoML Callbacks

log_error_callback Logs the exception thrown as an error.
raise_error_callback Raises the exception thrown by the AutoMLSearch ob-

ject.
silent_error_callback No-op.

5.4.5 AutoML Engines

CFEngine The concurrent.futures (CF) engine.
DaskEngine The dask engine.
EngineBase Base class for EvalML engines.
SequentialEngine The default engine for the AutoML search.

5.5 Pipelines

5.5.1 Pipeline Base Classes

BinaryClassificationPipeline Pipeline subclass for all binary classification pipelines.
ClassificationPipeline Pipeline subclass for all classification pipelines.
MulticlassClassificationPipeline Pipeline subclass for all multiclass classification

pipelines.
PipelineBase Machine learning pipeline.
RegressionPipeline Pipeline subclass for all regression pipelines.
TimeSeriesBinaryClassificationPipeline Pipeline base class for time series binary classification

problems.
TimeSeriesClassificationPipeline Pipeline base class for time series classification prob-

lems.
TimeSeriesMulticlassClassificationPipeline Pipeline base class for time series multiclass classifica-

tion problems.
TimeSeriesRegressionPipeline Pipeline base class for time series regression problems.
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5.5.2 Pipeline Utils

get_actions_from_option_defaults Returns a list of actions based on the defaults parameters
of each option in the input DataCheckActionOption list.

generate_pipeline_code Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

generate_pipeline_example Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

make_pipeline Given input data, target data, an estimator class and the
problem type, generates a pipeline class with a prepro-
cessing chain which was recommended based on the in-
puts. The pipeline will be a subclass of the appropriate
pipeline base class for the specified problem_type.

make_pipeline_from_actions Creates a pipeline of components to address the input
DataCheckAction list.

make_pipeline_from_data_check_output Creates a pipeline of components to address warnings
and errors output from running data checks. Uses all
default suggestions.

rows_of_interest Get the row indices of the data that are closest to the
threshold. Works only for binary classification problems
and pipelines.

5.6 Component Graphs

ComponentGraph Component graph for a pipeline as a directed acyclic
graph (DAG).

5.7 Components

5.7.1 Component Base Classes

Components represent a step in a pipeline.

ComponentBase Base class for all components.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

Estimator A component that fits and predicts given data.
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5.7.2 Component Utils

allowed_model_families List the model types allowed for a particular problem
type.

estimator_unable_to_handle_nans If True, provided estimator class is unable to handle NaN
values as an input.

generate_component_code Creates and returns a string that contains the Python im-
ports and code required for running the EvalML compo-
nent.

get_estimators Returns the estimators allowed for a particular problem
type.

handle_component_class Standardizes input from a string name to a Component-
Base subclass if necessary.

make_balancing_dictionary Makes dictionary for oversampler components. Find ra-
tio of each class to the majority. If the ratio is smaller
than the sampling_ratio, we want to oversample, other-
wise, we don't want to sample at all, and we leave the
data as is.

5.7.3 Transformers

Transformers are components that take in data as input and output transformed data.

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

DFSTransformer Featuretools DFS component that generates features for
the input features.

DropColumns Drops specified columns in input data.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
EmailFeaturizer Transformer that can automatically extract features from

emails.
Imputer Imputes missing data according to a specified imputation

strategy.
LabelEncoder A transformer that encodes target labels using values be-

tween 0 and num_classes - 1.
LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-

criminant Analysis.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

continues on next page
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Table 1 – continued from previous page
Oversampler SMOTE Oversampler component. Will automatically

select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

ReplaceNullableTypes Transformer to replace features with the new nullable
dtypes with a dtype that is compatible in EvalML.

RFClassifierRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Classifier.

RFClassifierSelectFromModel Selects top features based on importance weights using
a Random Forest classifier.

RFRegressorRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Regressor.

RFRegressorSelectFromModel Selects top features based on importance weights using
a Random Forest regressor.

SelectByType Selects columns by specified Woodwork logical type or
semantic tag in input data.

SelectColumns Selects specified columns in input data.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TargetImputer Imputes missing target data according to a specified im-

putation strategy.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Undersampler Initializes an undersampling transformer to downsample

the majority classes in the dataset.
URLFeaturizer Transformer that can automatically extract features from

URL.
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5.7.4 Estimators

Classifiers

Classifiers are components that output a predicted class label.

BaselineClassifier Classifier that predicts using the specified strategy.
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeClassifier Decision Tree Classifier.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ExtraTreesClassifier Extra Trees Classifier.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LogisticRegressionClassifier Logistic Regression Classifier.
RandomForestClassifier Random Forest Classifier.
StackedEnsembleClassifier Stacked Ensemble Classifier.
SVMClassifier Support Vector Machine Classifier.
VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
XGBoostClassifier XGBoost Classifier.

Regressors

Regressors are components that output a predicted target value.
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ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineRegressor Baseline regressor that uses a simple strategy to make
predictions. This is useful as a simple baseline regressor
to compare with other regressors.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeRegressor Decision Tree Regressor.
ElasticNetRegressor Elastic Net Regressor.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesRegressor Extra Trees Regressor.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestRegressor Random Forest Regressor.
StackedEnsembleRegressor Stacked Ensemble Regressor.
SVMRegressor Support Vector Machine Regressor.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostRegressor XGBoost Regressor.
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5.8 Model Understanding

5.8.1 Metrics

binary_objective_vs_threshold Computes objective score as a function of potential bi-
nary classification decision thresholds for a fitted binary
classification pipeline.

calculate_permutation_importance Calculates permutation importance for features.
calculate_permutation_importance_one_column Calculates permutation importance for one column in

the original dataframe.
confusion_matrix Confusion matrix for binary and multiclass classifica-

tion.
find_confusion_matrix_per_thresholds Gets the confusion matrix and histogram bins for each

threshold as well as the best threshold per objective.
Only works with Binary Classification Pipelines.

get_linear_coefficients Returns a dataframe showing the features with the great-
est predictive power for a linear model.

get_prediction_vs_actual_data Combines y_true and y_pred into a single
dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

get_prediction_vs_actual_over_time_data Get the data needed for the predic-
tion_vs_actual_over_time plot.

normalize_confusion_matrix Normalizes a confusion matrix.
partial_dependence Calculates one or two-way partial dependence.
precision_recall_curve Given labels and binary classifier predicted proba-

bilities, compute and return the data representing a
precision-recall curve.

roc_curve Given labels and classifier predicted probabilities, com-
pute and return the data representing a Receiver Operat-
ing Characteristic (ROC) curve. Works with binary or
multiclass problems.

t_sne Get the transformed output after fitting X to the embed-
ded space using t-SNE.

get_influential_features Finds the most influential features as well as any detri-
mental features from a dataframe of feature importances.

readable_explanation Outputs a human-readable explanation of trained
pipeline behavior.
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5.8.2 Visualization Methods

graph_binary_objective_vs_threshold Generates a plot graphing objective score vs. decision
thresholds for a fitted binary classification pipeline.

graph_confusion_matrix Generate and display a confusion matrix plot.
graph_partial_dependence Create an one-way or two-way partial dependence plot.
graph_permutation_importance Generate a bar graph of the pipeline's permutation im-

portance.
graph_precision_recall_curve Generate and display a precision-recall plot.
graph_prediction_vs_actual Generate a scatter plot comparing the true and predicted

values. Used for regression plotting.
graph_prediction_vs_actual_over_time Plot the target values and predictions against time on the

x-axis.
graph_roc_curve Generate and display a Receiver Operating Characteris-

tic (ROC) plot for binary and multiclass classification
problems.

graph_t_sne Plot high dimensional data into lower dimensional space
using t-SNE.

5.8.3 Prediction Explanations

explain_predictions Creates a report summarizing the top contributing fea-
tures for each data point in the input features.

explain_predictions_best_worst Creates a report summarizing the top contributing fea-
tures for the best and worst points in the dataset as mea-
sured by error to true labels.

5.9 Objectives

5.9.1 Objective Base Classes

ObjectiveBase Base class for all objectives.
BinaryClassificationObjective Base class for all binary classification objectives.
MulticlassClassificationObjective Base class for all multiclass classification objectives.
RegressionObjective Base class for all regression objectives.
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5.9.2 Domain-Specific Objectives

CostBenefitMatrix Score using a cost-benefit matrix. Scores quantify the
benefits of a given value, so greater numeric scores rep-
resents a better score. Costs and scores can be negative,
indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score
represents loss of cash flow.

FraudCost Score the percentage of money lost of the total transac-
tion amount process due to fraud.

LeadScoring Lead scoring.
SensitivityLowAlert Sensitivity at Low Alert Rates.
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5.9.3 Classification Objectives

AccuracyBinary Accuracy score for binary classification.
AccuracyMulticlass Accuracy score for multiclass classification.
AUC AUC score for binary classification.
AUCMacro AUC score for multiclass classification using macro av-

eraging.
AUCMicro AUC score for multiclass classification using micro av-

eraging.
AUCWeighted AUC Score for multiclass classification using weighted

averaging.
Gini Gini coefficient for binary classification.
BalancedAccuracyBinary Balanced accuracy score for binary classification.
BalancedAccuracyMulticlass Balanced accuracy score for multiclass classification.
F1 F1 score for binary classification.
F1Micro F1 score for multiclass classification using micro aver-

aging.
F1Macro F1 score for multiclass classification using macro aver-

aging.
F1Weighted F1 score for multiclass classification using weighted av-

eraging.
LogLossBinary Log Loss for binary classification.
LogLossMulticlass Log Loss for multiclass classification.
MCCBinary Matthews correlation coefficient for binary classifica-

tion.
MCCMulticlass Matthews correlation coefficient for multiclass classifi-

cation.
Precision Precision score for binary classification.
PrecisionMicro Precision score for multiclass classification using micro

averaging.
PrecisionMacro Precision score for multiclass classification using

macro-averaging.
PrecisionWeighted Precision score for multiclass classification using

weighted averaging.
Recall Recall score for binary classification.
RecallMicro Recall score for multiclass classification using micro av-

eraging.
RecallMacro Recall score for multiclass classification using macro av-

eraging.
RecallWeighted Recall score for multiclass classification using weighted

averaging.
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5.9.4 Regression Objectives

ExpVariance Explained variance score for regression.
MAE Mean absolute error for regression.
MASE Mean absolute scaled error for time series regression.
MAPE Mean absolute percentage error for time series regres-

sion. Scaled by 100 to return a percentage.
SMAPE Symmetric mean absolute percentage error for time se-

ries regression. Scaled by 100 to return a percentage.
MSE Mean squared error for regression.
MeanSquaredLogError Mean squared log error for regression.
MedianAE Median absolute error for regression.
MaxError Maximum residual error for regression.
R2 Coefficient of determination for regression.
RootMeanSquaredError Root mean squared error for regression.
RootMeanSquaredLogError Root mean squared log error for regression.

5.9.5 Objective Utils

get_all_objective_names Get a list of the names of all objectives.
get_core_objectives Returns all core objective instances associated with the

given problem type.
get_core_objective_names Get a list of all valid core objectives.
get_default_recommendation_objectives Get the default recommendation score metrics for the

given problem type.
get_non_core_objectives Get non-core objective classes.
get_objective Returns the Objective class corresponding to a given ob-

jective name.
get_optimization_objectives Get objectives for optimization.
get_ranking_objectives Get objectives for pipeline rankings.
normalize_objectives Converts objectives from a [0, inf) scale to [0, 1] given

a max and min for each objective.
organize_objectives Generate objectives to consider, with optional modifica-

tions to the defaults.
ranking_only_objectives Get ranking-only objective classes.
recommendation_score Computes a recommendation score for a model given

scores for a group of objectives.
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5.10 Problem Types

detect_problem_type Determine the type of problem is being solved based on
the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

handle_problem_types Handles problem_type by either returning the Problem-
Types or converting from a str.

is_binary Determines if the provided problem_type is a binary
classification problem type.

is_classification Determines if the provided problem_type is a classifica-
tion problem type.

is_multiclass Determines if the provided problem_type is a multiclass
classification problem type.

is_regression Determines if the provided problem_type is a regression
problem type.

is_time_series Determines if the provided problem_type is a time series
problem type.

ProblemTypes Enum defining the supported types of machine learning
problems.

5.11 Model Family

handle_model_family Handles model_family by either returning the Mod-
elFamily or converting from a string.

ModelFamily Enum for family of machine learning models.

5.12 Tuners

Tuner Base Tuner class.
SKOptTuner Bayesian Optimizer.
GridSearchTuner Grid Search Optimizer, which generates all of the possi-

ble points to search for using a grid.
RandomSearchTuner Random Search Optimizer.
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5.13 Data Checks

5.13.1 Data Check Classes

ClassImbalanceDataCheck Check if any of the target labels are imbalanced, or if the
number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

DateTimeFormatDataCheck Check if the datetime column has equally spaced inter-
vals and is monotonically increasing or decreasing in or-
der to be supported by time series estimators.

IDColumnsDataCheck Check if any of the features are likely to be ID columns.
InvalidTargetDataCheck Check if the target data is considered invalid.
MulticollinearityDataCheck Check if any set features are likely to be multicollinear.
NoVarianceDataCheck Check if the target or any of the features have no vari-

ance.
NullDataCheck Check if there are any highly-null numerical, boolean,

categorical, natural language, and unknown columns
and rows in the input.

OutliersDataCheck Checks if there are any outliers in input data by using
IQR to determine score anomalies.

SparsityDataCheck Check if there are any columns with sparsely populated
values in the input.

TargetDistributionDataCheck Check if the target data contains certain distributions that
may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when
the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

TargetLeakageDataCheck Check if any of the features are highly correlated with the
target by using mutual information, Pearson correlation,
and other correlation metrics.

TimeSeriesParametersDataCheck Checks whether the time series parameters are compati-
ble with data splitting.

TimeSeriesSplittingDataCheck Checks whether the time series target data is compatible
with splitting.

UniquenessDataCheck Check if there are any columns in the input that are ei-
ther too unique for classification problems or not unique
enough for regression problems.

DataCheck Base class for all data checks.
DataChecks A collection of data checks.
DefaultDataChecks A collection of basic data checks that is used by AutoML

by default.
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5.13.2 Data Check Messages

DataCheckMessage Base class for a message returned by a DataCheck,
tagged by name.

DataCheckError DataCheckMessage subclass for errors returned by data
checks.

DataCheckWarning DataCheckMessage subclass for warnings returned by
data checks.

5.13.3 Data Check Message Types

DataCheckMessageType Enum for type of data check message: WARNING or
ERROR.

5.13.4 Data Check Message Codes

DataCheckMessageCode Enum for data check message code.

5.13.5 Data Check Actions

DataCheckAction A recommended action returned by a DataCheck.
DataCheckActionCode Enum for data check action code.
DataCheckActionOption A recommended action option returned by a DataCheck.
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5.14 Utils

5.14.1 General Utils

convert_to_seconds Converts a string describing a length of time to its length
in seconds.

downcast_nullable_types Downcasts IntegerNullable, BooleanNullable types to
Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

drop_rows_with_nans Drop rows that have any NaNs in all dataframes or series.
get_importable_subclasses Get importable subclasses of a base class. Used to

list all of our estimators, transformers, components and
pipelines dynamically.

get_logger Get the logger with the associated name.
get_time_index Determines the column in the given data that should be

used as the time index.
import_or_raise Attempts to import the requested library by name. If the

import fails, raises an ImportError or warning.
infer_feature_types Create a Woodwork structure from the given list, pan-

das, or numpy input, with specified types for columns.
If a column's type is not specified, it will be inferred by
Woodwork.

is_all_numeric Checks if the given DataFrame contains only numeric
values.

get_random_state Generates a numpy.random.RandomState instance using
seed.

get_random_seed Given a numpy.random.RandomState object, generate
an int representing a seed value for another random num-
ber generator. Or, if given an int, return that int.

pad_with_nans Pad the beginning num_to_pad rows with nans.
safe_repr Convert the given value into a string that can safely be

used for repr.
save_plot Saves fig to filepath if specified, or to a default location

if not.

Evalml

EvalML.

Subpackages

Automl

AutoMLSearch and related modules.
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Subpackages

automl_algorithm

AutoML algorithms that power EvalML.

Submodules

automl_algorithm

Base class for the AutoML algorithms which power EvalML.

Module Contents

Classes Summary

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

Exceptions Summary

Contents

class evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithm(allowed_pipelines=None,
al-
lowed_model_families=None,
ex-
cluded_model_families=None,
al-
lowed_component_graphs=None,
search_parameters=None,
tuner_class=None,
text_in_ensembling=False,
random_seed=0,
n_jobs=- 1)

Base class for the AutoML algorithms which power EvalML.

This class represents an automated machine learning (AutoML) algorithm. It encapsulates the decision-making
logic behind an automl search, by both deciding which pipelines to evaluate next and by deciding what set of
parameters to configure the pipeline with.

To use this interface, you must define a next_batch method which returns the next group of pipelines to evaluate
on the training data. That method may access state and results recorded from the previous batches, although that
information is not tracked in a general way in this base class. Overriding add_result is a convenient way to record
pipeline evaluation info if necessary.

Parameters
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• allowed_pipelines (list(class)) – A list of PipelineBase subclasses indicating the
pipelines allowed in the search. The default of None indicates all pipelines for this problem
type are allowed.

• search_parameters (dict) – Search parameter ranges specified for pipelines to iterate
over.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Methods

add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

Raises PipelineNotFoundError – If pipeline is not allowed in search.

property batch_number(self )
Returns the number of batches which have been recommended so far.

property default_max_batches(self )
Returns the number of max batches AutoMLSearch should run by default.

abstract next_batch(self )
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

abstract num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.
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Return type int

property pipeline_number(self )
Returns the number of pipelines which have been recommended so far.

exception evalml.automl.automl_algorithm.automl_algorithm.AutoMLAlgorithmException

Exception raised when an error is encountered during the computation of the automl algorithm.

default_algorithm

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.

Module Contents

Classes Summary

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

Contents

class evalml.automl.automl_algorithm.default_algorithm.DefaultAlgorithm(X, y, problem_type,
sampler_name, al-
lowed_model_families=None,
ex-
cluded_model_families=None,
tuner_class=None,
random_seed=0,
search_parameters=None,
n_jobs=1,
text_in_ensembling=False,
top_n=3,
ensembling=False,
num_long_explore_pipelines=50,
num_long_pipelines_per_batch=10,
al-
low_long_running_models=False,
features=None,
run_feature_selection=True,
verbose=False, ex-
clude_featurizers=None)

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.

1. Naive pipelines:
a. run baseline with default preprocessing pipeline

b. run naive linear model with default preprocessing pipeline

c. run basic RF pipeline with default preprocessing pipeline

2. Naive pipelines with feature selection
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a. subsequent pipelines will use the selected features with a SelectedColumns transformer

At this point we have a single pipeline candidate for preprocessing and feature selection

3. Pipelines with preprocessing components:
a. scan rest of estimators (our current batch 1).

4. First ensembling run

Fast mode ends here. Begin long mode.

6. Run top 3 estimators:
a. Generate 50 random parameter sets. Run all 150 in one batch

7. Second ensembling run

8. Repeat these indefinitely until stopping criterion is met:
a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one

batch

b. Run ensembling

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• top_n (int) – top n number of pipelines to use for long mode.

• num_long_explore_pipelines (int) – number of pipelines to explore for each top n
pipeline at the start of long mode.

• num_long_pipelines_per_batch (int) – number of pipelines per batch for each top n
pipeline through long mode.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.
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• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature has not been computed yet.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from the
pipelines built by DefaultAlgorithm. Valid options are “DatetimeFeaturizer”, “EmailFeatur-
izer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. For default
algorithm, this only applies to estimators in the non-naive batches.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

Methods

add_result Register results from evaluating a pipeline. In batch
number 2, the selected column names from the fea-
ture selector are taken to be used in a column selec-
tor. Information regarding the best pipeline is up-
dated here as well.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline. In batch number 2, the selected column names from the feature
selector are taken to be used in a column selector. Information regarding the best pipeline is updated here
as well.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.
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• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

property batch_number(self )
Returns the number of batches which have been recommended so far.

property default_max_batches(self )
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self )
Get the next batch of pipelines to evaluate.

Returns a list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list(PipelineBase)

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self )
Returns the number of pipelines which have been recommended so far.

iterative_algorithm

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of parameter
tuning on each pipeline in order of performance.

Module Contents

Classes Summary

IterativeAlgorithm An automl algorithm which first fits a base round of
pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

Contents
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class evalml.automl.automl_algorithm.iterative_algorithm.IterativeAlgorithm(X, y,
problem_type,
sam-
pler_name=None,
al-
lowed_model_families=None,
ex-
cluded_model_families=None,
al-
lowed_component_graphs=None,
max_batches=None,
max_iterations=None,
tuner_class=None,
random_seed=0,
pipelines_per_batch=5,
n_jobs=- 1, num-
ber_features=None,
ensem-
bling=False,
text_in_ensembling=False,
search_parameters=None,
_estima-
tor_family_order=None,
al-
low_long_running_models=False,
features=None,
verbose=False,
ex-
clude_featurizers=None)

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of performance.

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing. Defaults to None.

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: [ComponentGraph(. . . )] }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.
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e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• max_batches (int) – The maximum number of batches to be evaluated. Used to determine
ensembling. Defaults to None.

• max_iterations (int) – The maximum number of iterations to be evaluated. Used to
determine ensembling. Defaults to None.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• pipelines_per_batch (int) – The number of pipelines to be evaluated in each batch,
after the first batch. Defaults to 5.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to None.

• number_features (int) – The number of columns in the input features. Defaults to None.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. Defaults to False.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• _estimator_family_order (list(ModelFamily) or None) – specify the sort order
for the first batch. Defaults to None, which uses _ESTIMATOR_FAMILY_ORDER.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature itself is not in input.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by IterativeAlgorithm. Valid options are “DatetimeFeaturizer”, “Email-
Featurizer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

Methods
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add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

Raises ValueError – If default parameters are not in the acceptable hyperparameter ranges.

property batch_number(self )
Returns the number of batches which have been recommended so far.

property default_max_batches(self )
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self )
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

Raises AutoMLAlgorithmException – If no results were reported from the first batch.

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self )
Returns the number of pipelines which have been recommended so far.
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Package Contents

Classes Summary

AutoMLAlgorithm Base class for the AutoML algorithms which power
EvalML.

DefaultAlgorithm An automl algorithm that consists of two modes: fast
and long, where fast is a subset of long.

IterativeAlgorithm An automl algorithm which first fits a base round of
pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of perfor-
mance.

Exceptions Summary

Contents

class evalml.automl.automl_algorithm.AutoMLAlgorithm(allowed_pipelines=None,
allowed_model_families=None,
excluded_model_families=None,
allowed_component_graphs=None,
search_parameters=None, tuner_class=None,
text_in_ensembling=False, random_seed=0,
n_jobs=- 1)

Base class for the AutoML algorithms which power EvalML.

This class represents an automated machine learning (AutoML) algorithm. It encapsulates the decision-making
logic behind an automl search, by both deciding which pipelines to evaluate next and by deciding what set of
parameters to configure the pipeline with.

To use this interface, you must define a next_batch method which returns the next group of pipelines to evaluate
on the training data. That method may access state and results recorded from the previous batches, although that
information is not tracked in a general way in this base class. Overriding add_result is a convenient way to record
pipeline evaluation info if necessary.

Parameters
• allowed_pipelines (list(class)) – A list of PipelineBase subclasses indicating the

pipelines allowed in the search. The default of None indicates all pipelines for this problem
type are allowed.

• search_parameters (dict) – Search parameter ranges specified for pipelines to iterate
over.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Methods

add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

Raises PipelineNotFoundError – If pipeline is not allowed in search.

property batch_number(self )
Returns the number of batches which have been recommended so far.

property default_max_batches(self )
Returns the number of max batches AutoMLSearch should run by default.

abstract next_batch(self )
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

abstract num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self )
Returns the number of pipelines which have been recommended so far.

exception evalml.automl.automl_algorithm.AutoMLAlgorithmException

Exception raised when an error is encountered during the computation of the automl algorithm.
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class evalml.automl.automl_algorithm.DefaultAlgorithm(X, y, problem_type, sampler_name,
allowed_model_families=None,
excluded_model_families=None,
tuner_class=None, random_seed=0,
search_parameters=None, n_jobs=1,
text_in_ensembling=False, top_n=3,
ensembling=False,
num_long_explore_pipelines=50,
num_long_pipelines_per_batch=10,
allow_long_running_models=False,
features=None, run_feature_selection=True,
verbose=False, exclude_featurizers=None)

An automl algorithm that consists of two modes: fast and long, where fast is a subset of long.

1. Naive pipelines:
a. run baseline with default preprocessing pipeline

b. run naive linear model with default preprocessing pipeline

c. run basic RF pipeline with default preprocessing pipeline

2. Naive pipelines with feature selection
a. subsequent pipelines will use the selected features with a SelectedColumns transformer

At this point we have a single pipeline candidate for preprocessing and feature selection

3. Pipelines with preprocessing components:
a. scan rest of estimators (our current batch 1).

4. First ensembling run

Fast mode ends here. Begin long mode.

6. Run top 3 estimators:
a. Generate 50 random parameter sets. Run all 150 in one batch

7. Second ensembling run

8. Repeat these indefinitely until stopping criterion is met:
a. For each of the previous top 3 estimators, sample 10 parameters from the tuner. Run all 30 in one

batch

b. Run ensembling

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• top_n (int) – top n number of pipelines to use for long mode.

• num_long_explore_pipelines (int) – number of pipelines to explore for each top n
pipeline at the start of long mode.

• num_long_pipelines_per_batch (int) – number of pipelines per batch for each top n
pipeline through long mode.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature has not been computed yet.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from the
pipelines built by DefaultAlgorithm. Valid options are “DatetimeFeaturizer”, “EmailFeatur-
izer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. For default
algorithm, this only applies to estimators in the non-naive batches.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

Methods
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add_result Register results from evaluating a pipeline. In batch
number 2, the selected column names from the fea-
ture selector are taken to be used in a column selec-
tor. Information regarding the best pipeline is up-
dated here as well.

batch_number Returns the number of batches which have been rec-
ommended so far.

default_max_batches Returns the number of max batches AutoMLSearch
should run by default.

next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline. In batch number 2, the selected column names from the feature
selector are taken to be used in a column selector. Information regarding the best pipeline is updated here
as well.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.

• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

property batch_number(self )
Returns the number of batches which have been recommended so far.

property default_max_batches(self )
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self )
Get the next batch of pipelines to evaluate.

Returns a list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list(PipelineBase)

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self )
Returns the number of pipelines which have been recommended so far.
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class evalml.automl.automl_algorithm.IterativeAlgorithm(X, y, problem_type, sampler_name=None,
allowed_model_families=None,
excluded_model_families=None,
allowed_component_graphs=None,
max_batches=None, max_iterations=None,
tuner_class=None, random_seed=0,
pipelines_per_batch=5, n_jobs=- 1,
number_features=None,
ensembling=False,
text_in_ensembling=False,
search_parameters=None,
_estimator_family_order=None,
allow_long_running_models=False,
features=None, verbose=False,
exclude_featurizers=None)

An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of
parameter tuning on each pipeline in order of performance.

Parameters
• X (pd.DataFrame) – Training data.

• y (pd.Series) – Target data.

• problem_type (ProblemType) – Problem type associated with training data.

• sampler_name (BaseSampler) – Sampler to use for preprocessing. Defaults to None.

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: [ComponentGraph(. . . )] }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• max_batches (int) – The maximum number of batches to be evaluated. Used to determine
ensembling. Defaults to None.

• max_iterations (int) – The maximum number of iterations to be evaluated. Used to
determine ensembling. Defaults to None.

• tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline.
The default of None indicates the SKOptTuner will be used.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• pipelines_per_batch (int) – The number of pipelines to be evaluated in each batch,
after the first batch. Defaults to 5.
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• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to None.

• number_features (int) – The number of columns in the input features. Defaults to None.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. Defaults to False.

• text_in_ensembling (boolean) – If True and ensembling is True, then n_jobs will be set
to 1 to avoid downstream sklearn stacking issues related to nltk. Defaults to False.

• search_parameters (dict or None) – Pipeline-level parameters and custom hyperpa-
rameter ranges specified for pipelines to iterate over. Hyperparameter ranges must be passed
in as skopt.space objects. Defaults to None.

• _estimator_family_order (list(ModelFamily) or None) – specify the sort order
for the first batch. Defaults to None, which uses _ESTIMATOR_FAMILY_ORDER.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• features (list) – List of features to run DFS on in AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the input and if
the feature itself is not in input.

• verbose (boolean) – Whether or not to display logging information regarding pipeline
building. Defaults to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by IterativeAlgorithm. Valid options are “DatetimeFeaturizer”, “Email-
Featurizer”, “URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

Methods

add_result Register results from evaluating a pipeline.
batch_number Returns the number of batches which have been rec-

ommended so far.
default_max_batches Returns the number of max batches AutoMLSearch

should run by default.
next_batch Get the next batch of pipelines to evaluate.
num_pipelines_per_batch Return the number of pipelines in the nth batch.
pipeline_number Returns the number of pipelines which have been rec-

ommended so far.

add_result(self, score_to_minimize, pipeline, trained_pipeline_results, cached_data=None)
Register results from evaluating a pipeline.

Parameters
• score_to_minimize (float) – The score obtained by this pipeline on the primary ob-

jective, converted so that lower values indicate better pipelines.

• pipeline (PipelineBase) – The trained pipeline object which was used to compute the
score.

• trained_pipeline_results (dict) – Results from training a pipeline.
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• cached_data (dict) – A dictionary of cached data, where the keys are the model fam-
ily. Expected to be of format {model_family: {hash1: trained_component_graph, hash2:
trained_component_graph. . . }. . . }. Defaults to None.

Raises ValueError – If default parameters are not in the acceptable hyperparameter ranges.

property batch_number(self )
Returns the number of batches which have been recommended so far.

property default_max_batches(self )
Returns the number of max batches AutoMLSearch should run by default.

next_batch(self )
Get the next batch of pipelines to evaluate.

Returns A list of instances of PipelineBase subclasses, ready to be trained and evaluated.

Return type list[PipelineBase]

Raises AutoMLAlgorithmException – If no results were reported from the first batch.

num_pipelines_per_batch(self, batch_number)
Return the number of pipelines in the nth batch.

Parameters batch_number (int) – which batch to calculate the number of pipelines for.

Returns number of pipelines in the given batch.

Return type int

property pipeline_number(self )
Returns the number of pipelines which have been recommended so far.

engine

EvalML Engine classes used to evaluate pipelines in AutoMLSearch.

Submodules

cf_engine

Custom CFClient API to match Dask’s CFClient and allow context management.

Module Contents

Classes Summary

CFClient Custom CFClient API to match Dask's CFClient and al-
low context management.

CFComputation A Future-like wrapper around jobs created by the
CFEngine.

CFEngine The concurrent.futures (CF) engine.
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Contents

class evalml.automl.engine.cf_engine.CFClient(pool)
Custom CFClient API to match Dask’s CFClient and allow context management.

Parameters pool (cf.ThreadPoolExecutor or cf.ProcessPoolExecutor) – The resource
pool to execute the futures work on.

Methods

close Closes the underlying Executor.
is_closed Property that determines whether the Engine's

Client's resources are closed.
submit Pass through to imitate Dask's Client API.

close(self )
Closes the underlying Executor.

property is_closed(self )
Property that determines whether the Engine’s Client’s resources are closed.

submit(self, *args, **kwargs)
Pass through to imitate Dask’s Client API.

class evalml.automl.engine.cf_engine.CFComputation(future)
A Future-like wrapper around jobs created by the CFEngine.

Parameters future (cf.Future) – The concurrent.futures.Future that is desired to be executed.

Methods

cancel Cancel the current computation.
done Returns whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.
is_cancelled Returns whether computation was cancelled.

cancel(self )
Cancel the current computation.

Returns
False if the call is currently being executed or finished running and cannot be cancelled.

True if the call can be canceled.

Return type bool

done(self )
Returns whether the computation is done.

get_result(self )
Gets the computation result. Will block until the computation is finished.

Raises
• Exception – If computation fails. Returns traceback.

• cf.TimeoutError – If computation takes longer than default timeout time.
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• cf.CancelledError – If computation was canceled before completing.

Returns The result of the requested job.

property is_cancelled(self )
Returns whether computation was cancelled.

class evalml.automl.engine.cf_engine.CFEngine(client=None)
The concurrent.futures (CF) engine.

Parameters client (None or CFClient) – If None, creates a threaded pool for processing. De-
faults to None.

Methods

close Function to properly shutdown the Engine's Client's
resources.

is_closed Property that determines whether the Engine's
Client's resources are shutdown.

setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self )
Function to properly shutdown the Engine’s Client’s resources.

property is_closed(self )
Property that determines whether the Engine’s Client’s resources are shutdown.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters
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• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – Objectives to score on.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool.

Return type CFComputation

submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

dask_engine

A Future-like wrapper around jobs created by the DaskEngine.

Module Contents

Classes Summary

DaskComputation A Future-like wrapper around jobs created by the
DaskEngine.

DaskEngine The dask engine.
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Contents

class evalml.automl.engine.dask_engine.DaskComputation(dask_future)
A Future-like wrapper around jobs created by the DaskEngine.

Parameters dask_future (callable) – Computation to do.

Methods

cancel Cancel the current computation.
done Returns whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.
is_cancelled Returns whether computation was cancelled.

cancel(self )
Cancel the current computation.

done(self )
Returns whether the computation is done.

get_result(self )
Gets the computation result. Will block until the computation is finished.

Raises Exception – If computation fails. Returns traceback.

Returns Computation results.

property is_cancelled(self )
Returns whether computation was cancelled.

class evalml.automl.engine.dask_engine.DaskEngine(cluster=None)
The dask engine.

Parameters cluster (None or dd.Client) – If None, creates a local, threaded Dask client for
processing. Defaults to None.

Methods

close Closes the underlying cluster.
is_closed Property that determines whether the Engine's

Client's resources are shutdown.
send_data_to_cluster Send data to the cluster.
setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self )
Closes the underlying cluster.

property is_closed(self )
Property that determines whether the Engine’s Client’s resources are shutdown.
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send_data_to_cluster(self, X, y)
Send data to the cluster.

The implementation uses caching so the data is only sent once. This follows dask best practices.

Parameters
• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns The modeling data.

Return type dask.Future

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation
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submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

engine_base

Base class for EvalML engines.

Module Contents

Classes Summary

EngineBase Base class for EvalML engines.
EngineComputation Wrapper around the result of a (possibly asynchronous)

engine computation.
JobLogger Mimic the behavior of a python logging.Logger but

stores all messages rather than actually logging them.

Functions

evaluate_pipeline Function submitted to the submit_evaluation_job engine
method.

score_pipeline Wrap around pipeline.score method to make it easy to
score pipelines with dask.

train_and_score_pipeline Given a pipeline, config and data, train and score the
pipeline and return the CV or TV scores.

train_pipeline Train a pipeline and tune the threshold if necessary.
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Contents

class evalml.automl.engine.engine_base.EngineBase

Base class for EvalML engines.

Methods

setup_job_log Set up logger for job.
submit_evaluation_job Submit job for pipeline evaluation during Au-

toMLSearch.
submit_scoring_job Submit job for pipeline scoring.
submit_training_job Submit job for pipeline training.

static setup_job_log()

Set up logger for job.

abstract submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None,
y_holdout=None)

Submit job for pipeline evaluation during AutoMLSearch.

abstract submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None,
y_train=None)

Submit job for pipeline scoring.

abstract submit_training_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit job for pipeline training.

class evalml.automl.engine.engine_base.EngineComputation

Wrapper around the result of a (possibly asynchronous) engine computation.

Methods

cancel Cancel the computation.
done Whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.

abstract cancel(self )
Cancel the computation.

abstract done(self )
Whether the computation is done.

abstract get_result(self )
Gets the computation result. Will block until the computation is finished.

Raises Exception: If computation fails. Returns traceback.

evalml.automl.engine.engine_base.evaluate_pipeline(pipeline, automl_config, X, y, logger,
X_holdout=None, y_holdout=None)

Function submitted to the submit_evaluation_job engine method.

Parameters
• pipeline (PipelineBase) – The pipeline to score.
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• automl_config (AutoMLConfig) – The AutoMLSearch object, used to access config and
the error callback.

• X (pd.DataFrame) – Training features.

• y (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.

Return type tuple of three items

class evalml.automl.engine.engine_base.JobLogger

Mimic the behavior of a python logging.Logger but stores all messages rather than actually logging them.

This is used during engine jobs so that log messages are recorded after the job completes. This is desired so that
all of the messages for a single job are grouped together in the log.

Methods

debug Store message at the debug level.
error Store message at the error level.
info Store message at the info level.
warning Store message at the warning level.
write_to_logger Write all the messages to the logger, first in, first out

(FIFO) order.

debug(self, msg)
Store message at the debug level.

error(self, msg)
Store message at the error level.

info(self, msg)
Store message at the info level.

warning(self, msg)
Store message at the warning level.

write_to_logger(self, logger)
Write all the messages to the logger, first in, first out (FIFO) order.

evalml.automl.engine.engine_base.score_pipeline(pipeline, X, y, objectives, X_train=None,
y_train=None, X_schema=None, y_schema=None)

Wrap around pipeline.score method to make it easy to score pipelines with dask.

Parameters
• pipeline (PipelineBase) – The pipeline to score.

• X (pd.DataFrame) – Features to score on.

• y (pd.Series) – Target used to calculate scores.
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• objectives (list[ObjectiveBase]) – List of objectives to score on.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• X_schema (ww.TableSchema) – Schema for features. Defaults to None.

• y_schema (ww.ColumnSchema) – Schema for columns. Defaults to None.

Returns Dictionary object containing pipeline scores.

Return type dict

evalml.automl.engine.engine_base.train_and_score_pipeline(pipeline, automl_config, full_X_train,
full_y_train, logger, X_holdout=None,
y_holdout=None)

Given a pipeline, config and data, train and score the pipeline and return the CV or TV scores.

Parameters
• pipeline (PipelineBase) – The pipeline to score.

• automl_config (AutoMLSearch ) – The AutoMLSearch object, used to access config and
the error callback.

• full_X_train (pd.DataFrame) – Training features.

• full_y_train (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Raises Exception – If there are missing target values in the training set after data split.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.

Return type tuple of three items

evalml.automl.engine.engine_base.train_pipeline(pipeline, X, y, automl_config, schema=True,
get_hashes=False)

Train a pipeline and tune the threshold if necessary.

Parameters
• pipeline (PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Features to train on.

• y (pd.Series) – Target to train on.

• automl_config (AutoMLSearch ) – The AutoMLSearch object, used to access config and
the error callback.

• schema (bool) – Whether to use the schemas for X and y. Defaults to True.

• get_hashes (bool) – Whether to return the hashes of the data used to train (and potentially
threshold). Defaults to False
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Returns A trained pipeline instance. hash (optional): The hash of the input data indices, only re-
turned when get_hashes is True.

Return type pipeline (PipelineBase)

sequential_engine

A Future-like api for jobs created by the SequentialEngine, an Engine that sequentially computes the submitted jobs.

Module Contents

Classes Summary

SequentialComputation A Future-like api for jobs created by the Sequen-
tialEngine, an Engine that sequentially computes the
submitted jobs.

SequentialEngine The default engine for the AutoML search.

Contents

class evalml.automl.engine.sequential_engine.SequentialComputation(work, **kwargs)
A Future-like api for jobs created by the SequentialEngine, an Engine that sequentially computes the submitted
jobs.

In order to separate the engine from the AutoMLSearch loop, we need the sequential computations to behave the
same way as concurrent computations from AutoMLSearch’s point-of-view. One way to do this is by delaying
the computation in the sequential engine until get_result is called. Since AutoMLSearch will call get_result only
when the computation is “done”, by always returning True in done() we make sure that get_result is called in the
order that the jobs are submitted. So the computations happen sequentially!

Parameters work (callable) – Computation that should be done by the engine.

Methods

cancel Cancel the current computation.
done Whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.

cancel(self )
Cancel the current computation.

done(self )
Whether the computation is done.

Returns Always returns True.

Return type bool

get_result(self )
Gets the computation result. Will block until the computation is finished.

Raises Exception – If computation fails. Returns traceback.
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Returns Computation results.

class evalml.automl.engine.sequential_engine.SequentialEngine

The default engine for the AutoML search.

Trains and scores pipelines locally and sequentially.

Methods

close No-op.
setup_job_log Set up logger for job.
submit_evaluation_job Submit a job to evaluate a pipeline.
submit_scoring_job Submit a job to score a pipeline.
submit_training_job Submit a job to train a pipeline.

close(self )
No-op.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit a job to evaluate a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns Computation result.

Return type SequentialComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Submit a job to score a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns Computation result.

Return type SequentialComputation
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submit_training_job(self, automl_config, pipeline, X, y)
Submit a job to train a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns Computation result.

Return type SequentialComputation

Package Contents

Classes Summary

CFEngine The concurrent.futures (CF) engine.
DaskEngine The dask engine.
EngineBase Base class for EvalML engines.
EngineComputation Wrapper around the result of a (possibly asynchronous)

engine computation.
SequentialEngine The default engine for the AutoML search.

Functions

evaluate_pipeline Function submitted to the submit_evaluation_job engine
method.

train_and_score_pipeline Given a pipeline, config and data, train and score the
pipeline and return the CV or TV scores.

train_pipeline Train a pipeline and tune the threshold if necessary.

Contents

class evalml.automl.engine.CFEngine(client=None)
The concurrent.futures (CF) engine.

Parameters client (None or CFClient) – If None, creates a threaded pool for processing. De-
faults to None.

Methods
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close Function to properly shutdown the Engine's Client's
resources.

is_closed Property that determines whether the Engine's
Client's resources are shutdown.

setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self )
Function to properly shutdown the Engine’s Client’s resources.

property is_closed(self )
Property that determines whether the Engine’s Client’s resources are shutdown.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – Objectives to score on.

Returns
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An object wrapping a reference to a future-like computation occurring in the resource
pool.

Return type CFComputation

submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns
An object wrapping a reference to a future-like computation occurring in the resource

pool

Return type CFComputation

class evalml.automl.engine.DaskEngine(cluster=None)
The dask engine.

Parameters cluster (None or dd.Client) – If None, creates a local, threaded Dask client for
processing. Defaults to None.

Methods

close Closes the underlying cluster.
is_closed Property that determines whether the Engine's

Client's resources are shutdown.
send_data_to_cluster Send data to the cluster.
setup_job_log Set up logger for job.
submit_evaluation_job Send evaluation job to cluster.
submit_scoring_job Send scoring job to cluster.
submit_training_job Send training job to cluster.

close(self )
Closes the underlying cluster.

property is_closed(self )
Property that determines whether the Engine’s Client’s resources are shutdown.

send_data_to_cluster(self, X, y)
Send data to the cluster.

The implementation uses caching so the data is only sent once. This follows dask best practices.

Parameters
• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns The modeling data.

Return type dask.Future

5.14. Utils 309



EvalML Documentation, Release 0.80.0

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Send evaluation job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Send scoring job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns
An object wrapping a reference to a future-like computation occurring in the dask clus-

ter.

Return type DaskComputation

submit_training_job(self, automl_config, pipeline, X, y)
Send training job to cluster.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns
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An object wrapping a reference to a future-like computation occurring in the dask clus-
ter.

Return type DaskComputation

class evalml.automl.engine.EngineBase

Base class for EvalML engines.

Methods

setup_job_log Set up logger for job.
submit_evaluation_job Submit job for pipeline evaluation during Au-

toMLSearch.
submit_scoring_job Submit job for pipeline scoring.
submit_training_job Submit job for pipeline training.

static setup_job_log()

Set up logger for job.

abstract submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None,
y_holdout=None)

Submit job for pipeline evaluation during AutoMLSearch.

abstract submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None,
y_train=None)

Submit job for pipeline scoring.

abstract submit_training_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit job for pipeline training.

class evalml.automl.engine.EngineComputation

Wrapper around the result of a (possibly asynchronous) engine computation.

Methods

cancel Cancel the computation.
done Whether the computation is done.
get_result Gets the computation result. Will block until the

computation is finished.

abstract cancel(self )
Cancel the computation.

abstract done(self )
Whether the computation is done.

abstract get_result(self )
Gets the computation result. Will block until the computation is finished.

Raises Exception: If computation fails. Returns traceback.

evalml.automl.engine.evaluate_pipeline(pipeline, automl_config, X, y, logger, X_holdout=None,
y_holdout=None)

Function submitted to the submit_evaluation_job engine method.

Parameters
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• pipeline (PipelineBase) – The pipeline to score.

• automl_config (AutoMLConfig) – The AutoMLSearch object, used to access config and
the error callback.

• X (pd.DataFrame) – Training features.

• y (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.

Return type tuple of three items

class evalml.automl.engine.SequentialEngine

The default engine for the AutoML search.

Trains and scores pipelines locally and sequentially.

Methods

close No-op.
setup_job_log Set up logger for job.
submit_evaluation_job Submit a job to evaluate a pipeline.
submit_scoring_job Submit a job to score a pipeline.
submit_training_job Submit a job to train a pipeline.

close(self )
No-op.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit a job to evaluate a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns Computation result.

Return type SequentialComputation
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submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Submit a job to score a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns Computation result.

Return type SequentialComputation

submit_training_job(self, automl_config, pipeline, X, y)
Submit a job to train a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns Computation result.

Return type SequentialComputation

evalml.automl.engine.train_and_score_pipeline(pipeline, automl_config, full_X_train, full_y_train,
logger, X_holdout=None, y_holdout=None)

Given a pipeline, config and data, train and score the pipeline and return the CV or TV scores.

Parameters
• pipeline (PipelineBase) – The pipeline to score.

• automl_config (AutoMLSearch ) – The AutoMLSearch object, used to access config and
the error callback.

• full_X_train (pd.DataFrame) – Training features.

• full_y_train (pd.Series) – Training target.

• logger – Logger object to write to.

• X_holdout (pd.DataFrame) – Holdout set features.

• y_holdout (pd.DataFrame) – Holdout set target.

Raises Exception – If there are missing target values in the training set after data split.

Returns
First - A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.

Second - The pipeline class we trained and scored. Third - the job logger instance with all
the recorded messages.
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Return type tuple of three items

evalml.automl.engine.train_pipeline(pipeline, X, y, automl_config, schema=True, get_hashes=False)
Train a pipeline and tune the threshold if necessary.

Parameters
• pipeline (PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Features to train on.

• y (pd.Series) – Target to train on.

• automl_config (AutoMLSearch ) – The AutoMLSearch object, used to access config and
the error callback.

• schema (bool) – Whether to use the schemas for X and y. Defaults to True.

• get_hashes (bool) – Whether to return the hashes of the data used to train (and potentially
threshold). Defaults to False

Returns A trained pipeline instance. hash (optional): The hash of the input data indices, only re-
turned when get_hashes is True.

Return type pipeline (PipelineBase)

Submodules

automl_search

EvalML’s core AutoML object.

Module Contents

Classes Summary

AutoMLSearch Automated Pipeline search.

Functions

build_engine_from_str Function that converts a convenience string for an paral-
lel engine type and returns an instance of that engine.

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.
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Contents

class evalml.automl.automl_search.AutoMLSearch(X_train=None, y_train=None, X_holdout=None,
y_holdout=None, problem_type=None,
objective='auto', max_iterations=None,
max_time=None, patience=None, tolerance=None,
data_splitter=None,
allowed_component_graphs=None,
allowed_model_families=None,
excluded_model_families=None, features=None,
run_feature_selection=True,
start_iteration_callback=None,
add_result_callback=None, error_callback=None,
additional_objectives=None,
alternate_thresholding_objective='F1',
random_seed=0, n_jobs=- 1, tuner_class=None,
optimize_thresholds=True, ensembling=False,
max_batches=None, problem_configuration=None,
train_best_pipeline=True, search_parameters=None,
sampler_method='auto',
sampler_balanced_ratio=0.25,
allow_long_running_models=False,
_pipelines_per_batch=5, automl_algorithm='default',
engine='sequential', verbose=False, timing=False,
exclude_featurizers=None, holdout_set_size=0,
use_recommendation=False,
include_recommendation=None,
exclude_recommendation=None)

Automated Pipeline search.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• X_holdout (pd.DataFrame) – The input holdout data of shape [n_samples, n_features].

• y_holdout (pd.Series) – The target holdout data of length [n_samples].

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• max_iterations (int) – Maximum number of iterations to search. If max_iterations and
max_time is not set, then max_iterations will default to max_iterations of 5.

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.
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• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: ComponentGraph(. . . ) }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored. For default algorithm, this
only applies to estimators in the non-naive batches.

• features (list) – List of features to run DFS on AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the search input
and if the feature itself is not in search input. If features is an empty list, the DFS Transformer
will not be included in pipelines.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm, setting is no-op for iterative algorithm.

• data_splitter (sklearn.model_selection.BaseCrossValidator) – Data splitting
method to use. Defaults to StratifiedKFold.

• tuner_class – The tuner class to use. Defaults to SKOptTuner.

• optimize_thresholds (bool) – Whether or not to optimize the binary pipeline threshold.
Defaults to True.

• start_iteration_callback (callable) – Function called before each pipeline training
iteration. Callback function takes three positional parameters: The pipeline instance and the
AutoMLSearch object.

• add_result_callback (callable) – Function called after each pipeline training iteration.
Callback function takes three positional parameters: A dictionary containing the training
results for the new pipeline, an untrained_pipeline containing the parameters used during
training, and the AutoMLSearch object.

• error_callback (callable) – Function called when search() errors and raises an Excep-
tion. Callback function takes three positional parameters: the Exception raised, the trace-
back, and the AutoMLSearch object. Must also accepts kwargs, so AutoMLSearch is able
to pass along other appropriate parameters by default. Defaults to None, which will call
log_error_callback.

• additional_objectives (list) – Custom set of objectives to score on. Will override
default objectives for problem type if not empty.

• alternate_thresholding_objective (str) – The objective to use for thresholding bi-
nary classification pipelines if the main objective provided isn’t tuneable. Defaults to F1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. If the number of unique pipelines to search over per
batch is one, ensembling will not run. Defaults to False.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, forecast_horizon, and max_delay variables. For multiseries time series problems, the
values passed in should also include the name of a series_id column.

• train_best_pipeline (boolean) – Whether or not to train the best pipeline before re-
turning it. Defaults to True.

• search_parameters (dict) – A dict of the hyperparameter ranges or pipeline parame-
ters used to iterate over during search. Keys should consist of the component names and
values should specify a singular value/list for pipeline parameters, or skopt.Space for hy-
perparameter ranges. In the example below, the Imputer parameters would be passed to the
hyperparameter ranges, and the Label Encoder parameters would be used as the component
parameter.

e.g. search_parameters = { ‘Imputer’ [{ ‘numeric_impute_strategy’: Categori-
cal([‘most_frequent’, ‘median’]) },] ’Label Encoder’: {‘positive_label’: True} }

• sampler_method (str) – The data sampling component to use in the pipelines if the prob-
lem type is classification and the target balance is smaller than the sampler_balanced_ratio.
Either ‘auto’, which will use our preferred sampler for the data, ‘Undersampler’, ‘Oversam-
pler’, or None. Defaults to ‘auto’.

• sampler_balanced_ratio (float) – The minority:majority class ratio that we consider
balanced, so a 1:4 ratio would be equal to 0.25. If the class balance is larger than this provided
value, then we will not add a sampler since the data is then considered balanced. Overrides
the sampler_ratio of the samplers. Defaults to 0.25.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• _ensembling_split_size (float) – The amount of the training data we’ll set aside for
training ensemble metalearners. Only used when ensembling is True. Must be between 0
and 1, exclusive. Defaults to 0.2

• _pipelines_per_batch (int) – The number of pipelines to train for every batch after the
first one. The first batch will train a baseline pipline + one of each pipeline family allowed
in the search.

• automl_algorithm (str) – The automl algorithm to use. Currently the two choices are
‘iterative’ and ‘default’. Defaults to default.

• engine (EngineBase or str) – The engine instance used to evaluate pipelines. Dask or
concurrent.futures engines can also be chosen by providing a string from the list [“sequen-
tial”, “cf_threaded”, “cf_process”, “dask_threaded”, “dask_process”]. If a parallel engine is
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selected this way, the maximum amount of parallelism, as determined by the engine, will be
used. Defaults to “sequential”.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by search. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”,
“URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

• holdout_set_size (float) – The size of the holdout set that AutoML search will take for
datasets larger than 500 rows. If set to 0, holdout set will not be taken regardless of number
of rows. Must be between 0 and 1, exclusive. Defaults to 0.1.

• use_recommendation (bool) – Whether or not to use a recommendation score to rank
pipelines instead of optimization objective. Defaults to False.

• include_recommendation (list[str]) – A list of objectives to include beyond the de-
faults in the recommendation score. Defaults to None.

• exclude_recommendation (list[str]) – A list of objectives to exclude from the defaults
in the recommendation score. Defaults to None.

Methods
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add_to_rankings Fits and evaluates a given pipeline then adds the re-
sults to the automl rankings with the requirement that
automl search has been run.

best_pipeline Returns a trained instance of the best pipeline
and parameters found during automl search. If
train_best_pipeline is set to False, returns an un-
trained pipeline instance.

close_engine Function to explicitly close the engine, client, parallel
resources.

describe_pipeline Describe a pipeline.
full_rankings Returns a pandas.DataFrame with scoring results

from all pipelines searched.
get_ensembler_input_pipelines Returns a list of input pipeline IDs given an ensem-

bler pipeline ID.
get_pipeline Given the ID of a pipeline training result, returns an

untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during
automl search.

get_recommendation_score_breakdown Reports the scores for the objectives used in the given
pipeline's recommendation score calculation.

get_recommendation_scores Calculates recommendation scores for all pipelines in
the search results.

load Loads AutoML object at file path.
plot Return an instance of the plot with the latest scores.
rankings Returns a pandas.DataFrame with scoring results

from the highest-scoring set of parameters used with
each pipeline.

results Class that allows access to a copy of the results from
automl_search.

save Saves AutoML object at file path.
score_pipelines Score a list of pipelines on the given holdout data.
search Find the best pipeline for the data set.
train_pipelines Train a list of pipelines on the training data.

add_to_rankings(self, pipeline)
Fits and evaluates a given pipeline then adds the results to the automl rankings with the requirement that
automl search has been run.

Parameters pipeline (PipelineBase) – pipeline to train and evaluate.

property best_pipeline(self )
Returns a trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Returns A trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Return type PipelineBase

Raises PipelineNotFoundError – If this is called before .search() is called.

close_engine(self )
Function to explicitly close the engine, client, parallel resources.
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describe_pipeline(self, pipeline_id, return_dict=False)
Describe a pipeline.

Parameters
• pipeline_id (int) – pipeline to describe

• return_dict (bool) – If True, return dictionary of information about pipeline. Defaults
to False.

Returns Description of specified pipeline. Includes information such as type of pipeline compo-
nents, problem, training time, cross validation, etc.

Raises PipelineNotFoundError – If pipeline_id is not a valid ID.

property full_rankings(self )
Returns a pandas.DataFrame with scoring results from all pipelines searched.

get_ensembler_input_pipelines(self, ensemble_pipeline_id)
Returns a list of input pipeline IDs given an ensembler pipeline ID.

Parameters ensemble_pipeline_id (id) – Ensemble pipeline ID to get input pipeline IDs
from.

Returns A list of ensemble input pipeline IDs.

Return type list[int]

Raises ValueError – If ensemble_pipeline_id does not correspond to a valid ensemble pipeline
ID.

get_pipeline(self, pipeline_id)
Given the ID of a pipeline training result, returns an untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during automl search.

Parameters pipeline_id (int) – Pipeline to retrieve.

Returns Untrained pipeline instance associated with the provided ID.

Return type PipelineBase

Raises PipelineNotFoundError – if pipeline_id is not a valid ID.

get_recommendation_score_breakdown(self, pipeline_id)
Reports the scores for the objectives used in the given pipeline’s recommendation score calculation.

Note that these scores are reported in their raw form, not scaled to be between 0 and 1.

Parameters pipeline_id (int) – The id of the pipeline to get the recommendation score break-
down for.

Returns A dictionary of the scores for each objective used in the recommendation score calcu-
lation.

Return type dict

get_recommendation_scores(self, priority=None, custom_weights=None, use_pipeline_names=False)
Calculates recommendation scores for all pipelines in the search results.

Parameters
• priority (str) – An optional name of a priority objective that should be given heavier

weight (of 0.5) than the other objectives contributing to the score. Defaults to None, where
all objectives are weighted equally.
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• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. Should not be used at the same time as priori-
tized_objective. Defaults to None.

• use_pipeline_names (bool) – Whether or not to return the pipeline names instead of
ids as the keys to the recommendation score dictionary. Defaults to False.

Returns A dictionary mapping pipeline IDs to recommendation scores

static load(file_path, pickle_type='cloudpickle')
Loads AutoML object at file path.

Parameters
• file_path (str) – Location to find file to load

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use. Currently
not used since the standard pickle library can handle cloudpickles.

Returns AutoSearchBase object

property plot(self )
Return an instance of the plot with the latest scores.

property rankings(self )
Returns a pandas.DataFrame with scoring results from the highest-scoring set of parameters used with each
pipeline.

property results(self )
Class that allows access to a copy of the results from automl_search.

Returns
Dictionary containing pipeline_results, a dict with results from each pipeline, and

search_order, a list describing the order the pipelines were searched.

Return type dict

save(self, file_path, pickle_type='cloudpickle', pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves AutoML object at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use.

• pickle_protocol (int) – The pickle data stream format.

Raises ValueError – If pickle_type is not “pickle” or “cloudpickle”.

score_pipelines(self, pipelines, X_holdout, y_holdout, objectives)
Score a list of pipelines on the given holdout data.

Parameters
• pipelines (list[PipelineBase]) – List of pipelines to train.

• X_holdout (pd.DataFrame) – Holdout features.

• y_holdout (pd.Series) – Holdout targets for scoring.

• objectives (list[str], list[ObjectiveBase]) – Objectives used for scoring.
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Returns Dictionary keyed by pipeline name that maps to a dictionary of scores. Note that the any
pipelines that error out during scoring will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type dict[str, Dict[str, float]]

search(self, interactive_plot=True)
Find the best pipeline for the data set.

Parameters interactive_plot (boolean, True) – Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Raises AutoMLSearchException – If all pipelines in the current AutoML batch produced a
score of np.nan on the primary objective.

Returns Dictionary keyed by batch number that maps to the timings for pipelines run in that
batch, as well as the total time for each batch. Pipelines within a batch are labeled by pipeline
name.

Return type Dict[int, Dict[str, Timestamp]]

train_pipelines(self, pipelines)
Train a list of pipelines on the training data.

This can be helpful for training pipelines once the search is complete.

Parameters pipelines (list[PipelineBase]) – List of pipelines to train.

Returns Dictionary keyed by pipeline name that maps to the fitted pipeline. Note that the any
pipelines that error out during training will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type Dict[str, PipelineBase]

evalml.automl.automl_search.build_engine_from_str(engine_str)
Function that converts a convenience string for an parallel engine type and returns an instance of that engine.

Parameters engine_str (str) – String representing the requested engine.

Returns Instance of the requested engine.

Return type (EngineBase)

Raises ValueError – If engine_str is not a valid engine.

evalml.automl.automl_search.search(X_train=None, y_train=None, problem_type=None, objective='auto',
mode='fast', max_time=None, patience=None, tolerance=None,
problem_configuration=None, n_splits=3, verbose=False,
timing=False)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.
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• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• mode (str) – mode for DefaultAlgorithm. There are two modes: fast and long, where fast
is a subset of long. Please look at DefaultAlgorithm for more details.

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

Returns The automl search object containing pipelines and rankings, and the results from running
the data checks. If the data check results contain errors, automl search will not be run and an
automl search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If search configuration is not valid.

evalml.automl.automl_search.search_iterative(X_train=None, y_train=None, problem_type=None,
objective='auto', problem_configuration=None,
n_splits=3, timing=False, **kwargs)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.
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• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• **kwargs – Other keyword arguments which are provided will be passed to AutoMLSearch.

Returns the automl search object containing pipelines and rankings, and the results from running the
data checks. If the data check results contain errors, automl search will not be run and an automl
search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If the search configuration is invalid.

callbacks

Callbacks available to pass to AutoML.

Module Contents

Functions

log_error_callback Logs the exception thrown as an error.
raise_error_callback Raises the exception thrown by the AutoMLSearch ob-

ject.
silent_error_callback No-op.

Attributes Summary

logger
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evalml.automl.callbacks.log_error_callback(exception, traceback, automl, **kwargs)
Logs the exception thrown as an error.

Will not throw. This is the default behavior for AutoMLSearch.

Parameters
• exception – Exception to log.

• traceback – Exception traceback to log.

• automl – AutoMLSearch object.

• **kwargs – Other relevant keyword arguments to log.

evalml.automl.callbacks.logger

evalml.automl.callbacks.raise_error_callback(exception, traceback, automl, **kwargs)
Raises the exception thrown by the AutoMLSearch object.

Also logs the exception as an error.

Parameters
• exception – Exception to log and raise.

• traceback – Exception traceback to log.

• automl – AutoMLSearch object.

• **kwargs – Other relevant keyword arguments to log.

Raises exception – Raises the input exception.

evalml.automl.callbacks.silent_error_callback(exception, traceback, automl, **kwargs)
No-op.

pipeline_search_plots

Plots displayed during pipeline search.

Module Contents

Classes Summary

PipelineSearchPlots Plots for the AutoMLSearch class during search.
SearchIterationPlot Search iteration plot.

5.14. Utils 325



EvalML Documentation, Release 0.80.0

Contents

class evalml.automl.pipeline_search_plots.PipelineSearchPlots(results, objective)
Plots for the AutoMLSearch class during search.

Parameters
• results (dict) – Dictionary of current results.

• objective (ObjectiveBase) – Objective that AutoML is optimizing for.

Methods

search_iteration_plot Shows a plot of the best score at each iteration using
data gathered during training.

search_iteration_plot(self, interactive_plot=False)
Shows a plot of the best score at each iteration using data gathered during training.

Parameters interactive_plot (bool) – Whether or not to show an interactive plot. Defaults
to False.

Returns plot

Raises ValueError – If engine_str is not a valid engine.

class evalml.automl.pipeline_search_plots.SearchIterationPlot(results, objective)
Search iteration plot.

Parameters
• results (dict) – Dictionary of current results.

• objective (ObjectiveBase) – Objective that AutoML is optimizing for.

Methods

update Update the search plot.

update(self, results, objective)
Update the search plot.

progress

Progress abstraction holding stopping criteria and progress information.

Module Contents

Classes Summary

Progress Progress object holding stopping criteria and progress
information.
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class evalml.automl.progress.Progress(max_time=None, max_batches=None, max_iterations=None,
patience=None, tolerance=None, automl_algorithm=None,
objective=None, verbose=False)

Progress object holding stopping criteria and progress information.

Parameters
• max_time (int) – Maximum time to search for pipelines.

• max_iterations (int) – Maximum number of iterations to search.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• patience (int) – Number of iterations without improvement to stop search early.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping.

• automl_algorithm (str) – The automl algorithm to use. Used to calculate iterations if
max_batches is selected as stopping criteria.

• objective (str, ObjectiveBase) – The objective used in search.

• verbose (boolean) – Whether or not to log out stopping information.

Methods

elapsed Return time elapsed using the start time and current
time.

return_progress Return information about current and end state of
each stopping criteria in order of priority.

should_continue Given AutoML Results, return whether or not the
search should continue.

start_timing Sets start time to current time.

elapsed(self )
Return time elapsed using the start time and current time.

return_progress(self )
Return information about current and end state of each stopping criteria in order of priority.

Returns list of dictionaries containing information of each stopping criteria.

Return type List[Dict[str, unit]]

should_continue(self, results, interrupted=False, mid_batch=False)
Given AutoML Results, return whether or not the search should continue.

Parameters
• results (dict) – AutoMLSearch results.

• interrupted (bool) – whether AutoMLSearch was given an keyboard interrupt. Defaults
to False.

• mid_batch (bool) – whether this method was called while in the middle of a batch or not.
Defaults to False.
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Returns True if search should continue, False otherwise.

Return type bool

start_timing(self )
Sets start time to current time.

utils

Utilities useful in AutoML.

Module Contents

Functions

check_all_pipeline_names_unique Checks whether all the pipeline names are unique.
get_best_sampler_for_data Returns the name of the sampler component to use for

AutoMLSearch.
get_default_primary_search_objective Get the default primary search objective for a problem

type.
get_pipelines_from_component_graphs Returns created pipelines from passed component

graphs based on the specified problem type.
get_threshold_tuning_info Determine for a given automl config and pipeline what

the threshold tuning objective should be and whether or
not training data should be further split to achieve proper
threshold tuning.

make_data_splitter Given the training data and ML problem parameters,
compute a data splitting method to use during AutoML
search.

resplit_training_data Further split the training data for a given pipeline. This
is needed for binary pipelines in order to properly tune
the threshold.

tune_binary_threshold Tunes the threshold of a binary pipeline to the X and y
thresholding data.

Attributes Summary

AutoMLConfig
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evalml.automl.utils.AutoMLConfig

evalml.automl.utils.check_all_pipeline_names_unique(pipelines)
Checks whether all the pipeline names are unique.

Parameters pipelines (list[PipelineBase]) – List of pipelines to check if all names are
unique.

Raises ValueError – If any pipeline names are duplicated.

evalml.automl.utils.get_best_sampler_for_data(X, y, sampler_method, sampler_balanced_ratio)
Returns the name of the sampler component to use for AutoMLSearch.

Parameters
• X (pd.DataFrame) – The input feature data

• y (pd.Series) – The input target data

• sampler_method (str) – The sampler_type argument passed to AutoMLSearch

• sampler_balanced_ratio (float) – The ratio of min:majority targets that we would con-
sider balanced, or should balance the classes to.

Returns The string name of the sampling component to use, or None if no sampler is necessary

Return type str, None

evalml.automl.utils.get_default_primary_search_objective(problem_type)
Get the default primary search objective for a problem type.

Parameters problem_type (str or ProblemType) – Problem type of interest.

Returns primary objective instance for the problem type.

Return type ObjectiveBase

evalml.automl.utils.get_pipelines_from_component_graphs(component_graphs_dict, problem_type,
parameters=None, random_seed=0)

Returns created pipelines from passed component graphs based on the specified problem type.

Parameters
• component_graphs_dict (dict) – The dict of component graphs.

• problem_type (str or ProblemType) – The problem type for which pipelines will be
created.

• parameters (dict) – Pipeline-level parameters that should be passed to the proposed
pipelines. Defaults to None.

• random_seed (int) – Random seed. Defaults to 0.

Returns List of pipelines made from the passed component graphs.

Return type list

evalml.automl.utils.get_threshold_tuning_info(automl_config, pipeline)
Determine for a given automl config and pipeline what the threshold tuning objective should be and whether or
not training data should be further split to achieve proper threshold tuning.

Can also be used after automl search has been performed to determine whether the full training data was used to
train the pipeline.
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Parameters
• automl_config (AutoMLConfig) – The AutoMLSearch’s config object. Used to determine

threshold tuning objective and whether data needs resplitting.

• pipeline (Pipeline) – The pipeline instance to Threshold.

Returns threshold_tuning_objective, data_needs_resplitting (str, bool)

evalml.automl.utils.make_data_splitter(X, y, problem_type, problem_configuration=None, n_splits=3,
shuffle=True, random_seed=0)

Given the training data and ML problem parameters, compute a data splitting method to use during AutoML
search.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

• problem_type (ProblemType) – The type of machine learning problem.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, and max_delay variables. Defaults to None.

• n_splits (int, None) – The number of CV splits, if applicable. Defaults to 3.

• shuffle (bool) – Whether or not to shuffle the data before splitting, if applicable. Defaults
to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Data splitting method.

Return type sklearn.model_selection.BaseCrossValidator

Raises ValueError – If problem_configuration is not given for a time-series problem.

evalml.automl.utils.resplit_training_data(pipeline, X_train, y_train)
Further split the training data for a given pipeline. This is needed for binary pipelines in order to properly tune
the threshold.

Can be used after automl search has been performed to recreate the data that was used to train a pipeline.

Parameters
• pipeline (PipelineBase) – the pipeline whose training data we are splitting

• X_train (pd.DataFrame or np.ndarray) – training data of shape [n_samples,
n_features]

• y_train (pd.Series, or np.ndarray) – training target data of length [n_samples]

Returns Feature and target data each split into train and threshold tuning sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.automl.utils.tune_binary_threshold(pipeline, objective, problem_type, X_threshold_tuning,
y_threshold_tuning, X=None, y=None)

Tunes the threshold of a binary pipeline to the X and y thresholding data.

Parameters
• pipeline (Pipeline) – Pipeline instance to threshold.
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• objective (ObjectiveBase) – The objective we want to tune with. If not tuneable and
best_pipeline is True, will use F1.

• problem_type (ProblemType) – The problem type of the pipeline.

• X_threshold_tuning (pd.DataFrame) – Features to which the pipeline will be tuned.

• y_threshold_tuning (pd.Series) – Target data to which the pipeline will be tuned.

• X (pd.DataFrame) – Features to which the pipeline will be trained (used for time series
binary). Defaults to None.

• y (pd.Series) – Target to which the pipeline will be trained (used for time series binary).
Defaults to None.

Package Contents

Classes Summary

AutoMLSearch Automated Pipeline search.
EngineBase Base class for EvalML engines.
Progress Progress object holding stopping criteria and progress

information.
SequentialEngine The default engine for the AutoML search.

Functions

get_default_primary_search_objective Get the default primary search objective for a problem
type.

get_threshold_tuning_info Determine for a given automl config and pipeline what
the threshold tuning objective should be and whether or
not training data should be further split to achieve proper
threshold tuning.

make_data_splitter Given the training data and ML problem parameters,
compute a data splitting method to use during AutoML
search.

resplit_training_data Further split the training data for a given pipeline. This
is needed for binary pipelines in order to properly tune
the threshold.

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.
tune_binary_threshold Tunes the threshold of a binary pipeline to the X and y

thresholding data.
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class evalml.automl.AutoMLSearch(X_train=None, y_train=None, X_holdout=None, y_holdout=None,
problem_type=None, objective='auto', max_iterations=None,
max_time=None, patience=None, tolerance=None, data_splitter=None,
allowed_component_graphs=None, allowed_model_families=None,
excluded_model_families=None, features=None,
run_feature_selection=True, start_iteration_callback=None,
add_result_callback=None, error_callback=None,
additional_objectives=None, alternate_thresholding_objective='F1',
random_seed=0, n_jobs=- 1, tuner_class=None,
optimize_thresholds=True, ensembling=False, max_batches=None,
problem_configuration=None, train_best_pipeline=True,
search_parameters=None, sampler_method='auto',
sampler_balanced_ratio=0.25, allow_long_running_models=False,
_pipelines_per_batch=5, automl_algorithm='default',
engine='sequential', verbose=False, timing=False,
exclude_featurizers=None, holdout_set_size=0,
use_recommendation=False, include_recommendation=None,
exclude_recommendation=None)

Automated Pipeline search.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• X_holdout (pd.DataFrame) – The input holdout data of shape [n_samples, n_features].

• y_holdout (pd.Series) – The target holdout data of length [n_samples].

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• max_iterations (int) – Maximum number of iterations to search. If max_iterations and
max_time is not set, then max_iterations will default to max_iterations of 5.

• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: ComponentGraph(. . . ) }
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The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored. For default algorithm, this
only applies to estimators in the non-naive batches.

• features (list) – List of features to run DFS on AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the search input
and if the feature itself is not in search input. If features is an empty list, the DFS Transformer
will not be included in pipelines.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm, setting is no-op for iterative algorithm.

• data_splitter (sklearn.model_selection.BaseCrossValidator) – Data splitting
method to use. Defaults to StratifiedKFold.

• tuner_class – The tuner class to use. Defaults to SKOptTuner.

• optimize_thresholds (bool) – Whether or not to optimize the binary pipeline threshold.
Defaults to True.

• start_iteration_callback (callable) – Function called before each pipeline training
iteration. Callback function takes three positional parameters: The pipeline instance and the
AutoMLSearch object.

• add_result_callback (callable) – Function called after each pipeline training iteration.
Callback function takes three positional parameters: A dictionary containing the training
results for the new pipeline, an untrained_pipeline containing the parameters used during
training, and the AutoMLSearch object.

• error_callback (callable) – Function called when search() errors and raises an Excep-
tion. Callback function takes three positional parameters: the Exception raised, the trace-
back, and the AutoMLSearch object. Must also accepts kwargs, so AutoMLSearch is able
to pass along other appropriate parameters by default. Defaults to None, which will call
log_error_callback.

• additional_objectives (list) – Custom set of objectives to score on. Will override
default objectives for problem type if not empty.

• alternate_thresholding_objective (str) – The objective to use for thresholding bi-
nary classification pipelines if the main objective provided isn’t tuneable. Defaults to F1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. If the number of unique pipelines to search over per
batch is one, ensembling will not run. Defaults to False.
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• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, forecast_horizon, and max_delay variables. For multiseries time series problems, the
values passed in should also include the name of a series_id column.

• train_best_pipeline (boolean) – Whether or not to train the best pipeline before re-
turning it. Defaults to True.

• search_parameters (dict) – A dict of the hyperparameter ranges or pipeline parame-
ters used to iterate over during search. Keys should consist of the component names and
values should specify a singular value/list for pipeline parameters, or skopt.Space for hy-
perparameter ranges. In the example below, the Imputer parameters would be passed to the
hyperparameter ranges, and the Label Encoder parameters would be used as the component
parameter.

e.g. search_parameters = { ‘Imputer’ [{ ‘numeric_impute_strategy’: Categori-
cal([‘most_frequent’, ‘median’]) },] ’Label Encoder’: {‘positive_label’: True} }

• sampler_method (str) – The data sampling component to use in the pipelines if the prob-
lem type is classification and the target balance is smaller than the sampler_balanced_ratio.
Either ‘auto’, which will use our preferred sampler for the data, ‘Undersampler’, ‘Oversam-
pler’, or None. Defaults to ‘auto’.

• sampler_balanced_ratio (float) – The minority:majority class ratio that we consider
balanced, so a 1:4 ratio would be equal to 0.25. If the class balance is larger than this provided
value, then we will not add a sampler since the data is then considered balanced. Overrides
the sampler_ratio of the samplers. Defaults to 0.25.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• _ensembling_split_size (float) – The amount of the training data we’ll set aside for
training ensemble metalearners. Only used when ensembling is True. Must be between 0
and 1, exclusive. Defaults to 0.2

• _pipelines_per_batch (int) – The number of pipelines to train for every batch after the
first one. The first batch will train a baseline pipline + one of each pipeline family allowed
in the search.

• automl_algorithm (str) – The automl algorithm to use. Currently the two choices are
‘iterative’ and ‘default’. Defaults to default.

• engine (EngineBase or str) – The engine instance used to evaluate pipelines. Dask or
concurrent.futures engines can also be chosen by providing a string from the list [“sequen-
tial”, “cf_threaded”, “cf_process”, “dask_threaded”, “dask_process”]. If a parallel engine is
selected this way, the maximum amount of parallelism, as determined by the engine, will be
used. Defaults to “sequential”.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.
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• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by search. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”,
“URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

• holdout_set_size (float) – The size of the holdout set that AutoML search will take for
datasets larger than 500 rows. If set to 0, holdout set will not be taken regardless of number
of rows. Must be between 0 and 1, exclusive. Defaults to 0.1.

• use_recommendation (bool) – Whether or not to use a recommendation score to rank
pipelines instead of optimization objective. Defaults to False.

• include_recommendation (list[str]) – A list of objectives to include beyond the de-
faults in the recommendation score. Defaults to None.

• exclude_recommendation (list[str]) – A list of objectives to exclude from the defaults
in the recommendation score. Defaults to None.

Methods

add_to_rankings Fits and evaluates a given pipeline then adds the re-
sults to the automl rankings with the requirement that
automl search has been run.

best_pipeline Returns a trained instance of the best pipeline
and parameters found during automl search. If
train_best_pipeline is set to False, returns an un-
trained pipeline instance.

close_engine Function to explicitly close the engine, client, parallel
resources.

describe_pipeline Describe a pipeline.
full_rankings Returns a pandas.DataFrame with scoring results

from all pipelines searched.
get_ensembler_input_pipelines Returns a list of input pipeline IDs given an ensem-

bler pipeline ID.
get_pipeline Given the ID of a pipeline training result, returns an

untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during
automl search.

get_recommendation_score_breakdown Reports the scores for the objectives used in the given
pipeline's recommendation score calculation.

get_recommendation_scores Calculates recommendation scores for all pipelines in
the search results.

load Loads AutoML object at file path.
plot Return an instance of the plot with the latest scores.
rankings Returns a pandas.DataFrame with scoring results

from the highest-scoring set of parameters used with
each pipeline.

results Class that allows access to a copy of the results from
automl_search.

save Saves AutoML object at file path.
score_pipelines Score a list of pipelines on the given holdout data.
search Find the best pipeline for the data set.
train_pipelines Train a list of pipelines on the training data.
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add_to_rankings(self, pipeline)
Fits and evaluates a given pipeline then adds the results to the automl rankings with the requirement that
automl search has been run.

Parameters pipeline (PipelineBase) – pipeline to train and evaluate.

property best_pipeline(self )
Returns a trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Returns A trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Return type PipelineBase

Raises PipelineNotFoundError – If this is called before .search() is called.

close_engine(self )
Function to explicitly close the engine, client, parallel resources.

describe_pipeline(self, pipeline_id, return_dict=False)
Describe a pipeline.

Parameters
• pipeline_id (int) – pipeline to describe

• return_dict (bool) – If True, return dictionary of information about pipeline. Defaults
to False.

Returns Description of specified pipeline. Includes information such as type of pipeline compo-
nents, problem, training time, cross validation, etc.

Raises PipelineNotFoundError – If pipeline_id is not a valid ID.

property full_rankings(self )
Returns a pandas.DataFrame with scoring results from all pipelines searched.

get_ensembler_input_pipelines(self, ensemble_pipeline_id)
Returns a list of input pipeline IDs given an ensembler pipeline ID.

Parameters ensemble_pipeline_id (id) – Ensemble pipeline ID to get input pipeline IDs
from.

Returns A list of ensemble input pipeline IDs.

Return type list[int]

Raises ValueError – If ensemble_pipeline_id does not correspond to a valid ensemble pipeline
ID.

get_pipeline(self, pipeline_id)
Given the ID of a pipeline training result, returns an untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during automl search.

Parameters pipeline_id (int) – Pipeline to retrieve.

Returns Untrained pipeline instance associated with the provided ID.

Return type PipelineBase

Raises PipelineNotFoundError – if pipeline_id is not a valid ID.

336 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

get_recommendation_score_breakdown(self, pipeline_id)
Reports the scores for the objectives used in the given pipeline’s recommendation score calculation.

Note that these scores are reported in their raw form, not scaled to be between 0 and 1.

Parameters pipeline_id (int) – The id of the pipeline to get the recommendation score break-
down for.

Returns A dictionary of the scores for each objective used in the recommendation score calcu-
lation.

Return type dict

get_recommendation_scores(self, priority=None, custom_weights=None, use_pipeline_names=False)
Calculates recommendation scores for all pipelines in the search results.

Parameters
• priority (str) – An optional name of a priority objective that should be given heavier

weight (of 0.5) than the other objectives contributing to the score. Defaults to None, where
all objectives are weighted equally.

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. Should not be used at the same time as priori-
tized_objective. Defaults to None.

• use_pipeline_names (bool) – Whether or not to return the pipeline names instead of
ids as the keys to the recommendation score dictionary. Defaults to False.

Returns A dictionary mapping pipeline IDs to recommendation scores

static load(file_path, pickle_type='cloudpickle')
Loads AutoML object at file path.

Parameters
• file_path (str) – Location to find file to load

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use. Currently
not used since the standard pickle library can handle cloudpickles.

Returns AutoSearchBase object

property plot(self )
Return an instance of the plot with the latest scores.

property rankings(self )
Returns a pandas.DataFrame with scoring results from the highest-scoring set of parameters used with each
pipeline.

property results(self )
Class that allows access to a copy of the results from automl_search.

Returns
Dictionary containing pipeline_results, a dict with results from each pipeline, and

search_order, a list describing the order the pipelines were searched.

Return type dict

save(self, file_path, pickle_type='cloudpickle', pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves AutoML object at file path.

Parameters
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• file_path (str) – Location to save file.

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use.

• pickle_protocol (int) – The pickle data stream format.

Raises ValueError – If pickle_type is not “pickle” or “cloudpickle”.

score_pipelines(self, pipelines, X_holdout, y_holdout, objectives)
Score a list of pipelines on the given holdout data.

Parameters
• pipelines (list[PipelineBase]) – List of pipelines to train.

• X_holdout (pd.DataFrame) – Holdout features.

• y_holdout (pd.Series) – Holdout targets for scoring.

• objectives (list[str], list[ObjectiveBase]) – Objectives used for scoring.

Returns Dictionary keyed by pipeline name that maps to a dictionary of scores. Note that the any
pipelines that error out during scoring will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type dict[str, Dict[str, float]]

search(self, interactive_plot=True)
Find the best pipeline for the data set.

Parameters interactive_plot (boolean, True) – Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Raises AutoMLSearchException – If all pipelines in the current AutoML batch produced a
score of np.nan on the primary objective.

Returns Dictionary keyed by batch number that maps to the timings for pipelines run in that
batch, as well as the total time for each batch. Pipelines within a batch are labeled by pipeline
name.

Return type Dict[int, Dict[str, Timestamp]]

train_pipelines(self, pipelines)
Train a list of pipelines on the training data.

This can be helpful for training pipelines once the search is complete.

Parameters pipelines (list[PipelineBase]) – List of pipelines to train.

Returns Dictionary keyed by pipeline name that maps to the fitted pipeline. Note that the any
pipelines that error out during training will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type Dict[str, PipelineBase]

class evalml.automl.EngineBase

Base class for EvalML engines.

Methods
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setup_job_log Set up logger for job.
submit_evaluation_job Submit job for pipeline evaluation during Au-

toMLSearch.
submit_scoring_job Submit job for pipeline scoring.
submit_training_job Submit job for pipeline training.

static setup_job_log()

Set up logger for job.

abstract submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None,
y_holdout=None)

Submit job for pipeline evaluation during AutoMLSearch.

abstract submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None,
y_train=None)

Submit job for pipeline scoring.

abstract submit_training_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit job for pipeline training.

evalml.automl.get_default_primary_search_objective(problem_type)
Get the default primary search objective for a problem type.

Parameters problem_type (str or ProblemType) – Problem type of interest.

Returns primary objective instance for the problem type.

Return type ObjectiveBase

evalml.automl.get_threshold_tuning_info(automl_config, pipeline)
Determine for a given automl config and pipeline what the threshold tuning objective should be and whether or
not training data should be further split to achieve proper threshold tuning.

Can also be used after automl search has been performed to determine whether the full training data was used to
train the pipeline.

Parameters
• automl_config (AutoMLConfig) – The AutoMLSearch’s config object. Used to determine

threshold tuning objective and whether data needs resplitting.

• pipeline (Pipeline) – The pipeline instance to Threshold.

Returns threshold_tuning_objective, data_needs_resplitting (str, bool)

evalml.automl.make_data_splitter(X, y, problem_type, problem_configuration=None, n_splits=3,
shuffle=True, random_seed=0)

Given the training data and ML problem parameters, compute a data splitting method to use during AutoML
search.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

• problem_type (ProblemType) – The type of machine learning problem.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, and max_delay variables. Defaults to None.
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• n_splits (int, None) – The number of CV splits, if applicable. Defaults to 3.

• shuffle (bool) – Whether or not to shuffle the data before splitting, if applicable. Defaults
to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Data splitting method.

Return type sklearn.model_selection.BaseCrossValidator

Raises ValueError – If problem_configuration is not given for a time-series problem.

class evalml.automl.Progress(max_time=None, max_batches=None, max_iterations=None, patience=None,
tolerance=None, automl_algorithm=None, objective=None, verbose=False)

Progress object holding stopping criteria and progress information.

Parameters
• max_time (int) – Maximum time to search for pipelines.

• max_iterations (int) – Maximum number of iterations to search.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• patience (int) – Number of iterations without improvement to stop search early.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping.

• automl_algorithm (str) – The automl algorithm to use. Used to calculate iterations if
max_batches is selected as stopping criteria.

• objective (str, ObjectiveBase) – The objective used in search.

• verbose (boolean) – Whether or not to log out stopping information.

Methods

elapsed Return time elapsed using the start time and current
time.

return_progress Return information about current and end state of
each stopping criteria in order of priority.

should_continue Given AutoML Results, return whether or not the
search should continue.

start_timing Sets start time to current time.

elapsed(self )
Return time elapsed using the start time and current time.

return_progress(self )
Return information about current and end state of each stopping criteria in order of priority.

Returns list of dictionaries containing information of each stopping criteria.

Return type List[Dict[str, unit]]

should_continue(self, results, interrupted=False, mid_batch=False)
Given AutoML Results, return whether or not the search should continue.

Parameters
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• results (dict) – AutoMLSearch results.

• interrupted (bool) – whether AutoMLSearch was given an keyboard interrupt. Defaults
to False.

• mid_batch (bool) – whether this method was called while in the middle of a batch or not.
Defaults to False.

Returns True if search should continue, False otherwise.

Return type bool

start_timing(self )
Sets start time to current time.

evalml.automl.resplit_training_data(pipeline, X_train, y_train)
Further split the training data for a given pipeline. This is needed for binary pipelines in order to properly tune
the threshold.

Can be used after automl search has been performed to recreate the data that was used to train a pipeline.

Parameters
• pipeline (PipelineBase) – the pipeline whose training data we are splitting

• X_train (pd.DataFrame or np.ndarray) – training data of shape [n_samples,
n_features]

• y_train (pd.Series, or np.ndarray) – training target data of length [n_samples]

Returns Feature and target data each split into train and threshold tuning sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.automl.search(X_train=None, y_train=None, problem_type=None, objective='auto', mode='fast',
max_time=None, patience=None, tolerance=None, problem_configuration=None,
n_splits=3, verbose=False, timing=False)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• mode (str) – mode for DefaultAlgorithm. There are two modes: fast and long, where fast
is a subset of long. Please look at DefaultAlgorithm for more details.
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• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

Returns The automl search object containing pipelines and rankings, and the results from running
the data checks. If the data check results contain errors, automl search will not be run and an
automl search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If search configuration is not valid.

evalml.automl.search_iterative(X_train=None, y_train=None, problem_type=None, objective='auto',
problem_configuration=None, n_splits=3, timing=False, **kwargs)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.
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• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• **kwargs – Other keyword arguments which are provided will be passed to AutoMLSearch.

Returns the automl search object containing pipelines and rankings, and the results from running the
data checks. If the data check results contain errors, automl search will not be run and an automl
search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If the search configuration is invalid.

class evalml.automl.SequentialEngine

The default engine for the AutoML search.

Trains and scores pipelines locally and sequentially.

Methods

close No-op.
setup_job_log Set up logger for job.
submit_evaluation_job Submit a job to evaluate a pipeline.
submit_scoring_job Submit a job to score a pipeline.
submit_training_job Submit a job to train a pipeline.

close(self )
No-op.

static setup_job_log()

Set up logger for job.

submit_evaluation_job(self, automl_config, pipeline, X, y, X_holdout=None, y_holdout=None)
Submit a job to evaluate a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

• X_holdout (pd.Series) – Holdout input data for holdout scoring.

• y_holdout (pd.Series) – Holdout target data for holdout scoring.

Returns Computation result.

Return type SequentialComputation

submit_scoring_job(self, automl_config, pipeline, X, y, objectives, X_train=None, y_train=None)
Submit a job to score a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to train.

• X (pd.DataFrame) – Input data for modeling.
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• y (pd.Series) – Target data for modeling.

• X_train (pd.DataFrame) – Training features. Used for feature engineering in time series.

• y_train (pd.Series) – Training target. Used for feature engineering in time series.

• objectives (list[ObjectiveBase]) – List of objectives to score on.

Returns Computation result.

Return type SequentialComputation

submit_training_job(self, automl_config, pipeline, X, y)
Submit a job to train a pipeline.

Parameters
• automl_config – Structure containing data passed from AutoMLSearch instance.

• pipeline (pipeline.PipelineBase) – Pipeline to evaluate.

• X (pd.DataFrame) – Input data for modeling.

• y (pd.Series) – Target data for modeling.

Returns Computation result.

Return type SequentialComputation

evalml.automl.tune_binary_threshold(pipeline, objective, problem_type, X_threshold_tuning,
y_threshold_tuning, X=None, y=None)

Tunes the threshold of a binary pipeline to the X and y thresholding data.

Parameters
• pipeline (Pipeline) – Pipeline instance to threshold.

• objective (ObjectiveBase) – The objective we want to tune with. If not tuneable and
best_pipeline is True, will use F1.

• problem_type (ProblemType) – The problem type of the pipeline.

• X_threshold_tuning (pd.DataFrame) – Features to which the pipeline will be tuned.

• y_threshold_tuning (pd.Series) – Target data to which the pipeline will be tuned.

• X (pd.DataFrame) – Features to which the pipeline will be trained (used for time series
binary). Defaults to None.

• y (pd.Series) – Target to which the pipeline will be trained (used for time series binary).
Defaults to None.

Data Checks

Data checks.
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Submodules

class_imbalance_data_check

Data check that checks if any of the target labels are imbalanced, or if the number of values for each target are below 2
times the number of CV folds.

Use for classification problems.

Module Contents

Classes Summary

ClassImbalanceDataCheck Check if any of the target labels are imbalanced, or if the
number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

Contents

class evalml.data_checks.class_imbalance_data_check.ClassImbalanceDataCheck(threshold=0.1,
min_samples=100,
num_cv_folds=3,
test_size=None)

Check if any of the target labels are imbalanced, or if the number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

Parameters
• threshold (float) – The minimum threshold allowed for class imbalance before a warning

is raised. This threshold is calculated by comparing the number of samples in each class to
the sum of samples in that class and the majority class. For example, a multiclass case with
[900, 900, 100] samples per classes 0, 1, and 2, respectively, would have a 0.10 threshold for
class 2 (100 / (900 + 100)). Defaults to 0.10.

• min_samples (int) – The minimum number of samples per accepted class. If the minority
class is both below the threshold and min_samples, then we consider this severely imbal-
anced. Must be greater than 0. Defaults to 100.

• num_cv_folds (int) – The number of cross-validation folds. Must be positive. Choose 0
to ignore this warning. Defaults to 3.

• test_size (None, float, int) – Percentage of test set size. Used to calculate class
imbalance prior to splitting the data into training and validation/test sets.

Raises
• ValueError – If threshold is not within 0 and 0.5

• ValueError – If min_samples is not greater than 0

• ValueError – If number of cv folds is negative

• ValueError – If test_size is not between 0 and 1
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Methods

name Return a name describing the data check.
validate Check if any target labels are imbalanced beyond a

threshold for binary and multiclass problems.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if any target labels are imbalanced beyond a threshold for binary and multiclass problems.

Ignores NaN values in target labels if they appear.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.

• y (pd.Series, np.ndarray) – Target labels to check for imbalanced data.

Returns
Dictionary with DataCheckWarnings if imbalance in classes is less than the threshold,

and DataCheckErrors if the number of values for each target is below 2 * num_cv_folds.

Return type dict

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame()
>>> y = pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

In this binary example, the target class 0 is present in fewer than 10% (threshold=0.10) of instances, and
fewer than 2 * the number of cross folds (2 * 3 = 6). Therefore, both a warning and an error are returned
as part of the Class Imbalance Data Check. In addition, if a target is present with fewer than min_samples
occurrences (default is 100) and is under the threshold, a severe class imbalance warning will be raised.

>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.10)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The number of instances of these targets is less than 2␣
→˓* the number of cross folds = 6 instances: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "error",
... "code": "CLASS_IMBALANCE_BELOW_FOLDS",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels fall below 10% of the target: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",

(continues on next page)
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(continued from previous page)

... "details": {"target_values": [0], "rows": None, "columns": None},

... "action_options": []

... },

... {

... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 10% of the target and have less than 100␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
... ]

In this multiclass example, the target class 0 is present in fewer than 30% of observations, however with 1
cv fold, the minimum number of instances required is 2 * 1 = 2. Therefore a warning, but not an error, is
raised.

>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, min_samples=5, num_
→˓cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The following labels fall below 30% of the target: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 30% of the target and have less than 5␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
... ]
...
>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, num_cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == []
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data_check

Base class for all data checks.

Module Contents

Classes Summary

DataCheck Base class for all data checks.

Contents

class evalml.data_checks.data_check.DataCheck

Base class for all data checks.

Data checks are a set of heuristics used to determine if there are problems with input data.

Methods

name Return a name describing the data check.
validate Inspect and validate the input data, runs any neces-

sary calculations or algorithms, and returns a list of
warnings and errors if applicable.

name(cls)
Return a name describing the data check.

abstract validate(self, X, y=None)
Inspect and validate the input data, runs any necessary calculations or algorithms, and returns a list of
warnings and errors if applicable.

Parameters
• X (pd.DataFrame) – The input data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target data of length [n_samples]

Returns Dictionary of DataCheckError and DataCheckWarning messages

Return type dict (DataCheckMessage)

data_check_action

Recommended action returned by a DataCheck.
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Module Contents

Classes Summary

DataCheckAction A recommended action returned by a DataCheck.

Contents

class evalml.data_checks.data_check_action.DataCheckAction(action_code, data_check_name,
metadata=None)

A recommended action returned by a DataCheck.

Parameters
• action_code (str, DataCheckActionCode) – Action code associated with the action.

• data_check_name (str) – Name of data check.

• metadata (dict, optional) – Additional useful information associated with the action.
Defaults to None.

Methods

convert_dict_to_action Convert a dictionary into a DataCheckAction.
to_dict Return a dictionary form of the data check action.

static convert_dict_to_action(action_dict)
Convert a dictionary into a DataCheckAction.

Parameters action_dict – Dictionary to convert into action. Should have keys “code”,
“data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckAction object from the input dictionary.

to_dict(self )
Return a dictionary form of the data check action.

data_check_action_code

Enum for data check action code.
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Module Contents

Classes Summary

DataCheckActionCode Enum for data check action code.

Contents

class evalml.data_checks.data_check_action_code.DataCheckActionCode

Enum for data check action code.

Attributes

DROP_COL Action code for dropping a column.
DROP_ROWS Action code for dropping rows.
IM-
PUTE_COL

Action code for imputing a column.

REGULAR-
IZE_AND_IMPUTE_DATASET

Action code for regularizing and imputing all features and target time series data.

SET_FIRST_COL_IDAction code for setting the first column as an id column.
TRANS-
FORM_TARGET

Action code for transforming the target data.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

data_check_action_option

Recommended action returned by a DataCheck.

Module Contents

Classes Summary

DataCheckActionOption A recommended action option returned by a DataCheck.
DCAOParameterAllowedValuesType Enum for data check action option parameter allowed

values type.
DCAOParameterType Enum for data check action option parameter type.
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Contents

class evalml.data_checks.data_check_action_option.DataCheckActionOption(action_code,
data_check_name,
parameters=None,
metadata=None)

A recommended action option returned by a DataCheck.

It contains an action code that indicates what the action should be, a data check name that indicates
what data check was used to generate the action, and parameters and metadata which can be used to
further refine the action.

Parameters
• action_code (DataCheckActionCode) – Action code associated with the action option.

• data_check_name (str) – Name of the data check that produced this option.

• parameters (dict) – Parameters associated with the action option. Defaults to None.

• metadata (dict, optional) – Additional useful information associated with the action
option. Defaults to None.

Examples

>>> parameters = {
... "global_parameter_name": {
... "parameter_type": "global",
... "type": "float",
... "default_value": 0.0,
... },
... "column_parameter_name": {
... "parameter_type": "column",
... "columns": {
... "a": {
... "impute_strategy": {
... "categories": ["mean", "most_frequent"],
... "type": "category",
... "default_value": "mean",
... },
... "constant_fill_value": {"type": "float", "default_value": 0},
... },
... },
... },
... }
>>> data_check_action = DataCheckActionOption(DataCheckActionCode.DROP_COL, None,␣
→˓metadata={}, parameters=parameters)

Methods

convert_dict_to_option Convert a dictionary into a DataCheckActionOption.
get_action_from_defaults Returns an action based on the defaults parameters.
to_dict Return a dictionary form of the data check action op-

tion.
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static convert_dict_to_option(action_dict)
Convert a dictionary into a DataCheckActionOption.

Parameters action_dict – Dictionary to convert into an action option. Should have keys
“code”, “data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckActionOption object from the input dictionary.

get_action_from_defaults(self )
Returns an action based on the defaults parameters.

Returns An based on the defaults parameters the option.

Return type DataCheckAction

to_dict(self )
Return a dictionary form of the data check action option.

class evalml.data_checks.data_check_action_option.DCAOParameterAllowedValuesType

Enum for data check action option parameter allowed values type.

Attributes

CATEGOR-
ICAL

Categorical allowed values type. Parameters that have a set of allowed values.

NUMERI-
CAL

Numerical allowed values type. Parameters that have a range of allowed values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

class evalml.data_checks.data_check_action_option.DCAOParameterType

Enum for data check action option parameter type.

Attributes

COLUMN Column parameter type. Parameters that apply to a specific column in the data set.
GLOBAL Global parameter type. Parameters that apply to the entire data set.

Methods
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all_parameter_types Get a list of all defined parameter types.
handle_dcao_parameter_type Handles the data check action option parameter type

by either returning the DCAOParameterType enum or
converting from a str.

name The name of the Enum member.
value The value of the Enum member.

all_parameter_types(cls)
Get a list of all defined parameter types.

Returns List of all defined parameter types.

Return type list(DCAOParameterType)

static handle_dcao_parameter_type(dcao_parameter_type)
Handles the data check action option parameter type by either returning the DCAOParameterType enum or
converting from a str.

Parameters dcao_parameter_type (str or DCAOParameterType) – Data check action op-
tion parameter type that needs to be handled.

Returns DCAOParameterType enum

Raises
• KeyError – If input is not a valid DCAOParameterType enum value.

• ValueError – If input is not a string or DCAOParameterType object.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

data_check_message

Messages returned by a DataCheck, tagged by name.

Module Contents

Classes Summary

DataCheckError DataCheckMessage subclass for errors returned by data
checks.

DataCheckMessage Base class for a message returned by a DataCheck,
tagged by name.

DataCheckWarning DataCheckMessage subclass for warnings returned by
data checks.
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Contents

class evalml.data_checks.data_check_message.DataCheckError(message, data_check_name,
message_code=None, details=None,
action_options=None)

DataCheckMessage subclass for errors returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.ERROR

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self )
Return a dictionary form of the data check message.

class evalml.data_checks.data_check_message.DataCheckMessage(message, data_check_name,
message_code=None, details=None,
action_options=None)

Base class for a message returned by a DataCheck, tagged by name.

Parameters
• message (str) – Message string.

• data_check_name (str) – Name of the associated data check.

• message_code (DataCheckMessageCode, optional) – Message code associated with
the message. Defaults to None.

• details (dict, optional) – Additional useful information associated with the message.
Defaults to None.

• action_options (list, optional) – A list of `DataCheckActionOption`s associated
with the message. Defaults to None.

Attributes

mes-
sage_type

None

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self )
Return a dictionary form of the data check message.

class evalml.data_checks.data_check_message.DataCheckWarning(message, data_check_name,
message_code=None, details=None,
action_options=None)
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DataCheckMessage subclass for warnings returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.WARNING

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self )
Return a dictionary form of the data check message.

data_check_message_code

Enum for data check message code.

Module Contents

Classes Summary

DataCheckMessageCode Enum for data check message code.

Contents

class evalml.data_checks.data_check_message_code.DataCheckMessageCode

Enum for data check message code.

Attributes

CLASS_IMBALANCE_BELOW_FOLDSMessage code for when the number of values for each target is below 2 * number of CV folds.
CLASS_IMBALANCE_BELOW_THRESHOLDMessage code for when balance in classes is less than the threshold.
CLASS_IMBALANCE_SEVEREMessage code for when balance in classes is less than the threshold and minimum class is

less than minimum number of accepted samples.
COLS_WITH_NULLMessage code for columns with null values.
DATE-
TIME_HAS_MISALIGNED_VALUES

Message code for when datetime information has values that are not aligned with the inferred
frequency.

DATE-
TIME_HAS_NAN

Message code for when input datetime columns contain NaN values.

DATE-
TIME_HAS_REDUNDANT_ROW

Message code for when datetime information has more than one row per datetime.

DATE-
TIME_HAS_UNEVEN_INTERVALS

Message code for when the datetime values have uneven intervals.

DATE-
TIME_INFORMATION_NOT_FOUND

Message code for when datetime information can not be found or is in an unaccepted format.

continues on next page
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Table 2 – continued from previous page
DATE-
TIME_IS_MISSING_VALUES

Message code for when datetime feature has values missing between the start and end dates.

DATE-
TIME_IS_NOT_MONOTONIC

Message code for when the datetime values are not monotonically increasing.

DATE-
TIME_NO_FREQUENCY_INFERRED

Message code for when no frequency can be inferred in the datetime values through Wood-
work’s infer_frequency.

HAS_ID_COLUMNMessage code for data that has ID columns.
HAS_ID_FIRST_COLUMNMessage code for data that has an ID column as the first column.
HAS_OUTLIERSMessage code for when outliers are detected.
HIGH_VARIANCEMessage code for when high variance is detected for cross-validation.
HIGHLY_NULL_COLSMessage code for highly null columns.
HIGHLY_NULL_ROWSMessage code for highly null rows.
IS_MULTICOLLINEARMessage code for when data is potentially multicollinear.
MIS-
MATCHED_INDICES

Message code for when input target and features have mismatched indices.

MIS-
MATCHED_INDICES_ORDER

Message code for when input target and features have mismatched indices order. The two
inputs have the same index values, but shuffled.

MIS-
MATCHED_LENGTHS

Message code for when input target and features have different lengths.

NATU-
RAL_LANGUAGE_HAS_NAN

Message code for when input natural language columns contain NaN values.

NO_VARIANCEMessage code for when data has no variance (1 unique value).
NO_VARIANCE_WITH_NULLMessage code for when data has one unique value and NaN values.
NO_VARIANCE_ZERO_UNIQUEMessage code for when data has no variance (0 unique value)
NOT_UNIQUE_ENOUGHMessage code for when data does not possess enough unique values.
TAR-
GET_BINARY_NOT_TWO_UNIQUE_VALUES

Message code for target data for a binary classification problem that does not have two unique
values.

TAR-
GET_HAS_NULL

Message code for target data that has null values.

TAR-
GET_INCOMPATIBLE_OBJECTIVE

Message code for target data that has incompatible values for the specified objective

TAR-
GET_IS_EMPTY_OR_FULLY_NULL

Message code for target data that is empty or has all null values.

TAR-
GET_IS_NONE

Message code for when target is None.

TAR-
GET_LEAKAGE

Message code for when target leakage is detected.

TAR-
GET_LOGNORMAL_DISTRIBUTION

Message code for target data with a lognormal distribution.

TAR-
GET_MULTICLASS_HIGH_UNIQUE_CLASS

Message code for target data for a multi classification problem that has an abnormally large
number of unique classes relative to the number of target values.

TAR-
GET_MULTICLASS_NOT_ENOUGH_CLASSES

Message code for target data for a multi classification problem that does not have more than
two unique classes.

TAR-
GET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS

Message code for target data for a multi classification problem that does not have two exam-
ples per class.

TAR-
GET_UNSUPPORTED_PROBLEM_TYPE

Message code for target data that is being checked against an unsupported problem type.

TAR-
GET_UNSUPPORTED_TYPE

Message code for target data that is of an unsupported type.

TAR-
GET_UNSUPPORTED_TYPE_REGRESSION

Message code for target data that is incompatible with regression

continues on next page
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Table 2 – continued from previous page
TIME-
SERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT

Message code when the time series parameters are too large for the smallest data split.

TIME-
SERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT

Message code when any training and validation split of the time series target doesn’t contain
all classes.

TOO_SPARSE Message code for when multiclass data has values that are too sparsely populated.
TOO_UNIQUEMessage code for when data possesses too many unique values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

data_check_message_type

Enum for type of data check message.

Module Contents

Classes Summary

DataCheckMessageType Enum for type of data check message: WARNING or
ERROR.

Contents

class evalml.data_checks.data_check_message_type.DataCheckMessageType

Enum for type of data check message: WARNING or ERROR.

Attributes

ERROR Error message returned by a data check.
WARNING Warning message returned by a data check.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.
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value(self )
The value of the Enum member.

data_checks

A collection of data checks.

Module Contents

Classes Summary

DataChecks A collection of data checks.

Contents

class evalml.data_checks.data_checks.DataChecks(data_checks=None, data_check_params=None)
A collection of data checks.

Parameters
• data_checks (list (DataCheck)) – List of DataCheck objects.

• data_check_params (dict) – Parameters for passed DataCheck objects.

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

datetime_format_data_check

Data check that checks if the datetime column has equally spaced intervals and is monotonically increasing or decreasing
in order to be supported by time series estimators.
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Module Contents

Classes Summary

DateTimeFormatDataCheck Check if the datetime column has equally spaced inter-
vals and is monotonically increasing or decreasing in or-
der to be supported by time series estimators.

Contents

class evalml.data_checks.datetime_format_data_check.DateTimeFormatDataCheck(datetime_column='index',
nan_duplicate_threshold=0.75)

Check if the datetime column has equally spaced intervals and is monotonically increasing or decreasing in order
to be supported by time series estimators.

Parameters
• datetime_column (str, int) – The name of the datetime column. If the datetime values

are in the index, then pass “index”.

• nan_duplicate_threshold (float) – The percentage of values in the datetime_column
that must not be duplicate or nan before DATETIME_NO_FREQUENCY_INFERRED is re-
turned instead of DATETIME_HAS_UNEVEN_INTERVALS. For example, if this is set to
0.80, then only 20% of the values in datetime_column can be duplicate or nan. Defaults to
0.75.

Methods

name Return a name describing the data check.
validate Checks if the target data has equal intervals and is

monotonically increasing.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Checks if the target data has equal intervals and is monotonically increasing.

Will return a DataCheckError if the data is not a datetime type, is not increasing, has redundant or missing
row(s), contains invalid (NaN or None) values, or has values that don’t align with the assumed frequency.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Target data.

Returns List with DataCheckErrors if unequal intervals are found in the datetime column.

Return type dict (DataCheckError)
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Examples

>>> import pandas as pd

The column ‘dates’ has a set of two dates with daily frequency, two dates with hourly frequency, and two
dates with monthly frequency.

>>> X = pd.DataFrame(pd.date_range("2015-01-01", periods=2).append(pd.date_
→˓range("2015-01-08", periods=2, freq="H").append(pd.date_range("2016-03-02",␣
→˓periods=2, freq="M"))), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "No frequency could be detected in column 'dates',␣
→˓possibly due to uneven intervals or too many duplicate/missing values.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_NO_FREQUENCY_INFERRED",
... "details": {"columns": None, "rows": None},
... "action_options": []
... }
... ]

The column “dates” has a gap in the values, which implies there are many dates missing.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-31", periods=50)), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has datetime values missing between␣
→˓start and end date.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_IS_MISSING_VALUES",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',

(continues on next page)
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(continued from previous page)

... 'metadata': {

... 'columns': None,

... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'dates',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

... ]

... }

... ]

The column “dates” has a repeat of the date 2021-01-09 appended to the end, which is considered redundant
and will raise an error.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-09", periods=1)), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has more than one row with the same␣
→˓datetime value.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_REDUNDANT_ROW",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',

(continues on next page)
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(continued from previous page)

... 'metadata': {

... 'columns': None,

... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'dates',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

... ]

... }

... ]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,

(continues on next page)
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(continued from previous page)

... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'Weeks',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

... ]

... }

... ]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None

(continues on next page)
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(continued from previous page)

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'Weeks',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

... ]

... }

... ]

The column “Weeks” passed integers instead of datetime data, which will raise an error.

>>> X = pd.DataFrame([1, 2, 3, 4], columns=["Weeks"])
>>> y = pd.Series([0] * 4)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Datetime information could not be found in the data, or␣
→˓was not in a supported datetime format.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_INFORMATION_NOT_FOUND",
... "action_options": []
... }
... ]

Converting that same integer data to datetime, however, is valid.

>>> X = pd.DataFrame(pd.to_datetime([1, 2, 3, 4]), columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=10),␣
→˓columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

While the data passed in is of datetime type, time series requires the datetime information in date-
time_column to be monotonically increasing (ascending).

>>> X = X.iloc[::-1]
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [

(continues on next page)
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(continued from previous page)

... {

... "message": "Datetime values must be sorted in ascending order.",

... "data_check_name": "DateTimeFormatDataCheck",

... "level": "error",

... "details": {"columns": None, "rows": None},

... "code": "DATETIME_IS_NOT_MONOTONIC",

... "action_options": []

... }

... ]

The first value in the column “index” is replaced with NaT, which will raise an error in this data check.

>>> dates = [["2-1-21", "3-1-21"],
... ["2-2-21", "3-2-21"],
... ["2-3-21", "3-3-21"],
... ["2-4-21", "3-4-21"],
... ["2-5-21", "3-5-21"],
... ["2-6-21", "3-6-21"],
... ["2-7-21", "3-7-21"],
... ["2-8-21", "3-8-21"],
... ["2-9-21", "3-9-21"],
... ["2-10-21", "3-10-21"],
... ["2-11-21", "3-11-21"],
... ["2-12-21", "3-12-21"]]
>>> dates[0][0] = None
>>> df = pd.DataFrame(dates, columns=["days", "days2"])
>>> ww_payload = infer_frequency(pd.to_datetime(df["days"]), debug=True, window_
→˓length=5, threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="days")
>>> assert datetime_format_dc.validate(df, y) == [
... {
... "message": "Input datetime column 'days' contains NaN values.␣
→˓Please impute NaN values or drop these rows.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_NAN",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'days', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,

(continues on next page)
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... 'is_target': True,

... 'rows': None

... },

... 'parameters': {

... 'time_index': {

... 'default_value': 'days',

... 'parameter_type': 'global',

... 'type': 'str'

... },

... 'frequency_payload': {

... 'default_value': ww_payload,

... 'parameter_type': 'global',

... 'type': 'tuple'

... }

... }

... }

... ]

... }

... ]

...

default_data_checks

A default set of data checks that can be used for a variety of datasets.

Module Contents

Classes Summary

DefaultDataChecks A collection of basic data checks that is used by AutoML
by default.

Contents

class evalml.data_checks.default_data_checks.DefaultDataChecks(problem_type, objective,
n_splits=3,
problem_configuration=None)

A collection of basic data checks that is used by AutoML by default.

Includes:

• NullDataCheck

• HighlyNullRowsDataCheck

• IDColumnsDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck
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• NoVarianceDataCheck

• ClassImbalanceDataCheck (for classification problem types)

• TargetDistributionDataCheck (for regression problem types)

• DateTimeFormatDataCheck (for time series problem types)

• ‘TimeSeriesParametersDataCheck’ (for time series problem types)

• TimeSeriesSplittingDataCheck (for time series classification problem types)

Parameters
• problem_type (str) – The problem type that is being validated. Can be regression, binary,

or multiclass.

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_splits (int) – The number of splits as determined by the data splitter being used. De-
faults to 3.

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index,

• gap –

• forecast_horizon –

• max_delay. (and) –

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

id_columns_data_check

Data check that checks if any of the features are likely to be ID columns.
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Module Contents

Classes Summary

IDColumnsDataCheck Check if any of the features are likely to be ID columns.

Contents

class evalml.data_checks.id_columns_data_check.IDColumnsDataCheck(id_threshold=1.0,
exclude_time_index=True)

Check if any of the features are likely to be ID columns.

Parameters
• id_threshold (float) – The probability threshold to be considered an ID column. De-

faults to 1.0.

• exclude_time_index (bool) – If True, the column set as the time index will not be in-
cluded in the data check. Default is True.

Methods

name Return a name describing the data check.
validate Check if any of the features are likely to be ID

columns. Currently performs a number of simple
checks.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.

Checks performed are:

• column name is “id”

• column name ends in “_id”

• column contains all unique values (and is categorical / integer type)

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series) – The target. Defaults to None. Ignored.

Returns A dictionary of features with column name or index and their probability of being ID
columns

Return type dict
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Examples

>>> import pandas as pd

Columns that end in “_id” and are completely unique are likely to be ID columns.

>>> df = pd.DataFrame({
... "profits": [25, 15, 15, 31, 19],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'customer_id' are 100.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
... ]
... }
... ]

Columns named “ID” with all unique values will also be identified as ID columns.

>>> df = df.rename(columns={"customer_id": "ID"})
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'ID' are 100.0% or more likely to be an ID␣
→˓column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["ID"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["ID"], "rows": None}
... }
... ]
... }
... ]
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Despite being all unique, “Country_Rank” will not be identified as an ID column as id_threshold is set to
1.0 by default and its name doesn’t indicate that it’s an ID.

>>> df = pd.DataFrame({
... "humidity": ["high", "very high", "low", "low", "high"],
... "Country_Rank": [1, 2, 3, 4, 5],
... "Sales": ["very high", "high", "high", "medium", "very low"]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == []

However lowering the threshold will cause this column to be identified as an ID.

>>> id_col_check = IDColumnsDataCheck()
>>> id_col_check = IDColumnsDataCheck(id_threshold=0.95)
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'Country_Rank' are 95.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "details": {"columns": ["Country_Rank"], "rows": None},
... "code": "HAS_ID_COLUMN",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["Country_Rank"], "rows": None}
... }
... ]
... }
... ]

If the first column of the dataframe has all unique values and is named either ‘ID’ or a name that ends with
‘_id’, it is probably the primary key. The other ID columns should be dropped.

>>> df = pd.DataFrame({
... "sales_id": [0, 1, 2, 3, 4],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "The first column 'sales_id' is likely to be the primary␣
→˓key",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_FIRST_COLUMN",
... "details": {"columns": ["sales_id"], "rows": None},
... "action_options": [

(continues on next page)
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... {

... "code": "SET_FIRST_COL_ID",

... "data_check_name": "IDColumnsDataCheck",

... "parameters": {},

... "metadata": {"columns": ["sales_id"], "rows": None}

... }

... ]

... },

... {

... "message": "Columns 'customer_id' are 100.0% or more likely to be an␣
→˓ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
... ]
... }
... ]

invalid_target_data_check

Data check that checks if the target data contains missing or invalid values.

Module Contents

Classes Summary

InvalidTargetDataCheck Check if the target data is considered invalid.

Contents

class evalml.data_checks.invalid_target_data_check.InvalidTargetDataCheck(problem_type,
objective,
n_unique=100,
null_strategy='drop')

Check if the target data is considered invalid.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.
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• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_unique (int) – Number of unique target values to store when problem type is binary and
target incorrectly has more than 2 unique values. Non-negative integer. If None, stores all
unique values. Defaults to 100.

• null_strategy (str) – The type of action option that should be returned if the target is
partially null. The options are impute and drop (default). impute - Will return a DataCheck-
ActionOption for imputing the target column. drop - Will return a DataCheckActionOption
for dropping the null rows in the target column.

Attributes

multi-
class_continuous_threshold

0.05

Methods

name Return a name describing the data check.
validate Check if the target data is considered invalid. If the

input features argument is not None, it will be used
to check that the target and features have the same
dimensions and indices.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data is considered invalid. If the input features argument is not None, it will be used to
check that the target and features have the same dimensions and indices.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.

• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters
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• X (pd.DataFrame, np.ndarray) – Features. If not None, will be used to check that the
target and features have the same dimensions and indices.

• y (pd.Series, np.ndarray) – Target data to check for invalid values.

Returns List with DataCheckErrors if any invalid values are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Target values must be integers, doubles, or booleans.

>>> X = pd.DataFrame({"col": [1, 2, 3, 1]})
>>> y = pd.Series(["cat_1", "cat_2", "cat_1", "cat_2"])
>>> target_check = InvalidTargetDataCheck("regression", "R2", null_strategy=
→˓"impute")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is unsupported Unknown type. Valid Woodwork␣
→˓logical types include: integer, double, boolean, age, age_fractional, integer_
→˓nullable, boolean_nullable, age_nullable",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"unknown"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []
... },
... {
... "message": "Target data type should be numeric for regression type␣
→˓problems.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_UNSUPPORTED_TYPE_REGRESSION",
... "action_options": []
... }
... ]

The target cannot have null values.

>>> y = pd.Series([None, pd.NA, pd.NaT, None])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is either empty or fully null.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_IS_EMPTY_OR_FULLY_NULL",
... "action_options": []
... }

(continues on next page)
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... ]

...

...
>>> y = pd.Series([1, None, 3, None])
>>> assert target_check.validate(None, y) == [
... {
... "message": "2 row(s) (50.0%) of target values are null",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {
... "columns": None,
... "rows": [1, 3],
... "num_null_rows": 2,
... "pct_null_rows": 50.0
... },
... "code": "TARGET_HAS_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "InvalidTargetDataCheck",
... "parameters": {
... "impute_strategy": {
... "parameter_type": "global",
... "type": "category",
... "categories": ["mean", "most_frequent"],
... "default_value": "mean"
... }
... },
... "metadata": {"columns": None, "rows": None, "is_target":␣
→˓True},
... }
... ],
... }
... ]

If the target values don’t match the problem type passed, an error will be raised. In this instance, only two
values exist in the target column, but multiclass has been passed as the problem type.

>>> X = pd.DataFrame([i for i in range(50)])
>>> y = pd.Series([i%2 for i in range(50)])
>>> target_check = InvalidTargetDataCheck("multiclass", "Log Loss Multiclass")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target has two or less classes, which is too few for␣
→˓multiclass problems. Consider changing to binary.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "num_classes": 2},
... "code": "TARGET_MULTICLASS_NOT_ENOUGH_CLASSES",
... "action_options": []
... }
... ]
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If the length of X and y differ, a warning will be raised. A warning will also be raised for indices that don”t
match.

>>> target_check = InvalidTargetDataCheck("regression", "R2")
>>> X = pd.DataFrame([i for i in range(5)])
>>> y = pd.Series([1, 2, 4, 3], index=[1, 2, 4, 3])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Input target and features have different lengths",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",
... "details": {"columns": None, "rows": None, "features_length": 5,
→˓"target_length": 4},
... "code": "MISMATCHED_LENGTHS",
... "action_options": []
... },
... {
... "message": "Input target and features have mismatched indices.␣
→˓Details will include the first 10 mismatched indices.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",
... "details": {
... "columns": None,
... "rows": None,
... "indices_not_in_features": [],
... "indices_not_in_target": [0]
... },
... "code": "MISMATCHED_INDICES",
... "action_options": []
... }
... ]

multicollinearity_data_check

Data check to check if any set features are likely to be multicollinear.

Module Contents

Classes Summary

MulticollinearityDataCheck Check if any set features are likely to be multicollinear.
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Contents

class evalml.data_checks.multicollinearity_data_check.MulticollinearityDataCheck(threshold=0.9)
Check if any set features are likely to be multicollinear.

Parameters threshold (float) – The threshold to be considered. Defaults to 0.9.

Methods

name Return a name describing the data check.
validate Check if any set of features are likely to be multi-

collinear.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any set of features are likely to be multicollinear.

Parameters
• X (pd.DataFrame) – The input features to check.

• y (pd.Series) – The target. Ignored.

Returns dict with a DataCheckWarning if there are any potentially multicollinear columns.

Return type dict

Example

>>> import pandas as pd

Columns in X that are highly correlated with each other will be identified using mutual information.

>>> col = pd.Series([1, 0, 2, 3, 4] * 15)
>>> X = pd.DataFrame({"col_1": col, "col_2": col * 3})
>>> y = pd.Series([1, 0, 0, 1, 0] * 15)
...
>>> multicollinearity_check = MulticollinearityDataCheck(threshold=1.0)
>>> assert multicollinearity_check.validate(X, y) == [
... {
... "message": "Columns are likely to be correlated: [('col_1', 'col_2
→˓')]",
... "data_check_name": "MulticollinearityDataCheck",
... "level": "warning",
... "code": "IS_MULTICOLLINEAR",
... "details": {"columns": [("col_1", "col_2")], "rows": None},
... "action_options": []
... }
... ]
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no_variance_data_check

Data check that checks if the target or any of the features have no variance.

Module Contents

Classes Summary

NoVarianceDataCheck Check if the target or any of the features have no vari-
ance.

Contents

class evalml.data_checks.no_variance_data_check.NoVarianceDataCheck(count_nan_as_value=False)
Check if the target or any of the features have no variance.

Parameters count_nan_as_value (bool) – If True, missing values will be counted as their own
unique value. Additionally, if true, will return a DataCheckWarning instead of an error if the
feature has mostly missing data and only one unique value. Defaults to False.

Methods

name Return a name describing the data check.
validate Check if the target or any of the features have no vari-

ance (1 unique value).

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the target or any of the features have no variance (1 unique value).

Parameters
• X (pd.DataFrame, np.ndarray) – The input features.

• y (pd.Series, np.ndarray) – Optional, the target data.

Returns A dict of warnings/errors corresponding to features or target with no variance.

Return type dict

Examples

>>> import pandas as pd

Columns or target data that have only one unique value will raise an error.

>>> X = pd.DataFrame([2, 2, 2, 2, 2, 2, 2, 2], columns=["First_Column"])
>>> y = pd.Series([1, 1, 1, 1, 1, 1, 1, 1])
...

(continues on next page)
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>>> novar_dc = NoVarianceDataCheck()
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NoVarianceDataCheck",
... "parameters": {},
... "metadata": {"columns": ["First_Column"], "rows": None}
... },
... ]
... },
... {
... "message": "Y has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": []
... }
... ]

By default, NaNs will not be counted as distinct values. In the first example, there are still two distinct
values besides None. In the second, there are no distinct values as the target is entirely null.

>>> X["First_Column"] = [2, 2, 2, 3, 3, 3, None, None]
>>> y = pd.Series([1, 1, 1, 2, 2, 2, None, None])
>>> assert novar_dc.validate(X, y) == []
...
...
>>> y = pd.Series([None] * 7)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "Y has 0 unique values.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE_ZERO_UNIQUE",
... "action_options":[]
... }
... ]

As None is not considered a distinct value by default, there is only one unique value in X and y.

>>> X["First_Column"] = [2, 2, 2, 2, None, None, None, None]
>>> y = pd.Series([1, 1, 1, 1, None, None, None, None])
>>> assert novar_dc.validate(X, y) == [

(continues on next page)
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... {

... "message": "'First_Column' has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["First_Column"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": [

... {

... "code": "DROP_COL",

... "data_check_name": "NoVarianceDataCheck",

... "parameters": {},

... "metadata": {"columns": ["First_Column"], "rows": None}

... },

... ]

... },

... {

... "message": "Y has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": []

... }

... ]

If count_nan_as_value is set to True, then NaNs are counted as unique values. In the event that there is
an adequate number of unique values only because count_nan_as_value is set to True, a warning will be
raised so the user can encode these values.

>>> novar_dc = NoVarianceDataCheck(count_nan_as_value=True)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has two unique values including nulls.␣
→˓Consider encoding the nulls for this column to be useful for machine learning.
→˓",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE_WITH_NULL",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NoVarianceDataCheck",
... "parameters": {},
... "metadata": {"columns": ["First_Column"], "rows": None}
... },
... ]
... },
... {
... "message": "Y has two unique values including nulls. Consider␣
→˓encoding the nulls for this column to be useful for machine learning.",
... "data_check_name": "NoVarianceDataCheck",

(continues on next page)

5.14. Utils 379



EvalML Documentation, Release 0.80.0

(continued from previous page)

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE_WITH_NULL",

... "action_options": []

... }

... ]

null_data_check

Data check that checks if there are any highly-null columns and rows in the input.

Module Contents

Classes Summary

NullDataCheck Check if there are any highly-null numerical, boolean,
categorical, natural language, and unknown columns
and rows in the input.

Contents

class evalml.data_checks.null_data_check.NullDataCheck(pct_null_col_threshold=0.95,
pct_moderately_null_col_threshold=0.2,
pct_null_row_threshold=0.95)

Check if there are any highly-null numerical, boolean, categorical, natural language, and unknown columns and
rows in the input.

Parameters
• pct_null_col_threshold (float) – If the percentage of NaN values in an input feature

exceeds this amount, that column will be considered highly-null. Defaults to 0.95.

• pct_moderately_null_col_threshold (float) – If the percentage of NaN values
in an input feature exceeds this amount but is less than the percentage specified in
pct_null_col_threshold, that column will be considered moderately-null. Defaults to 0.20.

• pct_null_row_threshold (float) – If the percentage of NaN values in an input row
exceeds this amount, that row will be considered highly-null. Defaults to 0.95.

Methods

get_null_column_information Finds columns that are considered highly null (per-
centage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and
dictionary mapping column name to null indices.

get_null_row_information Finds rows that are considered highly null (percent-
age null is greater than threshold).

name Return a name describing the data check.
validate Check if there are any highly-null columns or rows in

the input.
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static get_null_column_information(X, pct_null_col_threshold=0.0)
Finds columns that are considered highly null (percentage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and dictionary mapping column name to null indices.

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null columns.

• pct_null_col_threshold (float) – Percentage threshold for a column to be considered
null. Defaults to 0.0.

Returns Tuple containing: dictionary mapping column name to its null percentage and dictionary
mapping column name to null indices in that column.

Return type tuple

static get_null_row_information(X, pct_null_row_threshold=0.0)
Finds rows that are considered highly null (percentage null is greater than threshold).

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null rows.

• pct_null_row_threshold (float) – Percentage threshold for a row to be considered
null. Defaults to 0.0.

Returns Series containing the percentage null for each row.

Return type pd.Series

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if there are any highly-null columns or rows in the input.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckWarning if there are any highly-null columns or rows.

Return type dict

Examples

>>> import pandas as pd
...
>>> class SeriesWrap():
... def __init__(self, series):
... self.series = series
...
... def __eq__(self, series_2):
... return all(self.series.eq(series_2.series))

With pct_null_col_threshold set to 0.50, any column that has 50% or more of its observations set to
null will be included in the warning, as well as the percentage of null values identified (“all_null”: 1.0,
“lots_of_null”: 0.8).
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>>> df = pd.DataFrame({
... "all_null": [None, pd.NA, None, None, None],
... "lots_of_null": [None, None, None, None, 5],
... "few_null": [1, 2, None, 2, 3],
... "no_null": [1, 2, 3, 4, 5]
... })
...
>>> highly_null_dc = NullDataCheck(pct_null_col_threshold=0.50)
>>> assert highly_null_dc.validate(df) == [
... {
... "message": "Column(s) 'all_null', 'lots_of_null' are 50.0% or more␣
→˓null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": ["all_null", "lots_of_null"],
... "rows": None,
... "pct_null_rows": {"all_null": 1.0, "lots_of_null": 0.8}
... },
... "code": "HIGHLY_NULL_COLS",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NullDataCheck",
... "parameters": {},
... "metadata": {"columns": ["all_null", "lots_of_null"], "rows
→˓": None}
... }
... ]
... },
... {
... "message": "Column(s) 'few_null' have between 20.0% and 50.0% null␣
→˓values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["few_null"], "rows": None, "is_
→˓target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "few_null": {
... "impute_strategy": {"categories": ["mean",
→˓"most_frequent"], "type": "category", "default_value": "mean"}
... }
... }
... }

(continues on next page)

382 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

(continued from previous page)

... }

... }

... ]

... }

... ]

With pct_null_row_threshold set to 0.50, any row with 50% or more of its respective column values set to
null will included in the warning, as well as the offending rows (“rows”: [0, 1, 2, 3]). Since the default
value for pct_null_col_threshold is 0.95, “all_null” is also included in the warnings since the percentage of
null values in that row is over 95%. Since the default value for pct_moderately_null_col_threshold is 0.20,
“few_null” is included as a “moderately null” column as it has a null column percentage of 20%.

>>> highly_null_dc = NullDataCheck(pct_null_row_threshold=0.50)
>>> validation_messages = highly_null_dc.validate(df)
>>> validation_messages[0]["details"]["pct_null_cols"] = SeriesWrap(validation_
→˓messages[0]["details"]["pct_null_cols"])
>>> highly_null_rows = SeriesWrap(pd.Series([0.5, 0.5, 0.75, 0.5]))
>>> assert validation_messages == [
... {
... "message": "4 out of 5 rows are 50.0% or more null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": None,
... "rows": [0, 1, 2, 3],
... "pct_null_cols": highly_null_rows
... },
... "code": "HIGHLY_NULL_ROWS",
... "action_options": [
... {
... "code": "DROP_ROWS",
... "data_check_name": "NullDataCheck",
... "parameters": {},
... "metadata": {"columns": None, "rows": [0, 1, 2, 3]}
... }
... ]
... },
... {
... "message": "Column(s) 'all_null' are 95.0% or more null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": ["all_null"],
... "rows": None,
... "pct_null_rows": {"all_null": 1.0}
... },
... "code": "HIGHLY_NULL_COLS",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["all_null"], "rows": None},

(continues on next page)
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... "parameters": {}

... }

... ]

... },

... {

... "message": "Column(s) 'lots_of_null', 'few_null' have between 20.0%␣
→˓and 95.0% null values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["lots_of_null", "few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["lots_of_null", "few_null"], "rows":
→˓ None, "is_target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "lots_of_null": {"impute_strategy": {"categories
→˓": ["mean", "most_frequent"], "type": "category", "default_value": "mean"}},
... "few_null": {"impute_strategy": {"categories": [
→˓"mean", "most_frequent"], "type": "category", "default_value": "mean"}}
... }
... }
... }
... }
... ]
... }
... ]

outliers_data_check

Data check that checks if there are any outliers in input data by using IQR to determine score anomalies.

Module Contents

Classes Summary

OutliersDataCheck Checks if there are any outliers in input data by using
IQR to determine score anomalies.
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Contents

class evalml.data_checks.outliers_data_check.OutliersDataCheck

Checks if there are any outliers in input data by using IQR to determine score anomalies.

Columns with score anomalies are considered to contain outliers.

Methods

get_boxplot_data Returns box plot information for the given data.
name Return a name describing the data check.
validate Check if there are any outliers in a dataframe by using

IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

static get_boxplot_data(data_)
Returns box plot information for the given data.

Parameters data (pd.Series, np.ndarray) – Input data.

Returns A payload of box plot statistics.

Return type dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
>>> box_plot_data = OutliersDataCheck.get_boxplot_data(df["z"])
>>> box_plot_data["score"] = round(box_plot_data["score"], 2)
>>> assert box_plot_data == {
... "score": 0.89,
... "pct_outliers": 0.2,
... "values": {"q1": -4.0,
... "median": -3.0,
... "q3": -2.0,
... "low_bound": -7.0,
... "high_bound": -1.0,
... "low_values": [-1201],
... "high_values": [],
... "low_indices": [3],
... "high_indices": []}
... }

name(cls)
Return a name describing the data check.
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validate(self, X, y=None)
Check if there are any outliers in a dataframe by using IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

Parameters
• X (pd.DataFrame, np.ndarray) – Input features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns A dictionary with warnings if any columns have outliers.

Return type dict

Examples

>>> import pandas as pd

The column “z” has an outlier so a warning is added to alert the user of its location.

>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
...
>>> outliers_check = OutliersDataCheck()
>>> assert outliers_check.validate(df) == [
... {
... "message": "Column(s) 'z' are likely to have outlier data.",
... "data_check_name": "OutliersDataCheck",
... "level": "warning",
... "code": "HAS_OUTLIERS",
... "details": {"columns": ["z"], "rows": [3], "column_indices": {"z":␣
→˓[3]}},
... "action_options": [
... {
... "code": "DROP_ROWS",
... "data_check_name": "OutliersDataCheck",
... "parameters": {},
... "metadata": {"rows": [3], "columns": None}
... }
... ]
... }
... ]
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sparsity_data_check

Data check that checks if there are any columns with sparsely populated values in the input.

Module Contents

Classes Summary

SparsityDataCheck Check if there are any columns with sparsely populated
values in the input.

Attributes Summary

warning_too_unique

Contents

class evalml.data_checks.sparsity_data_check.SparsityDataCheck(problem_type, threshold,
unique_count_threshold=10)

Check if there are any columns with sparsely populated values in the input.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

‘multiclass’ or ‘time series multiclass’ is the only accepted problem type.

• threshold (float) – The threshold value, or percentage of each column’s unique values,
below which, a column exhibits sparsity. Should be between 0 and 1.

• unique_count_threshold (int) – The minimum number of times a unique value has to
be present in a column to not be considered “sparse.” Defaults to 10.

Methods

name Return a name describing the data check.
sparsity_score Calculate a sparsity score for the given value counts

by calculating the percentage of unique values that
exceed the count_threshold.

validate Calculate what percentage of each column's unique
values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class
instance.

name(cls)
Return a name describing the data check.

static sparsity_score(col, count_threshold=10)
Calculate a sparsity score for the given value counts by calculating the percentage of unique values that
exceed the count_threshold.
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Parameters
• col (pd.Series) – Feature values.

• count_threshold (int) – The number of instances below which a value is considered
sparse. Default is 10.

Returns Sparsity score, or the percentage of the unique values that exceed count_threshold.

Return type (float)

validate(self, X, y=None)
Calculate what percentage of each column’s unique values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class instance.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored.

Returns dict with a DataCheckWarning if there are any sparse columns.

Return type dict

Examples

>>> import pandas as pd

For multiclass problems, if a column doesn’t have enough representation from unique values, it will be
considered sparse.

>>> df = pd.DataFrame({
... "sparse": [float(x) for x in range(100)],
... "not_sparse": [float(1) for x in range(100)]
... })
...
>>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=0.5,
→˓ unique_count_threshold=10)
>>> assert sparsity_check.validate(df) == [
... {
... "message": "Input columns ('sparse') for multiclass problem type␣
→˓are too sparse.",
... "data_check_name": "SparsityDataCheck",
... "level": "warning",
... "code": "TOO_SPARSE",
... "details": {
... "columns": ["sparse"],
... "sparsity_score": {"sparse": 0.0},
... "rows": None
... },
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "SparsityDataCheck",
... "parameters": {},
... "metadata": {"columns": ["sparse"], "rows": None}

(continues on next page)
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... }

... ]

... }

... ]

. . . >>> df[“sparse”] = [float(x % 10) for x in range(100)] >>> sparsity_check = Sparsi-
tyDataCheck(problem_type=”multiclass”, threshold=1, unique_count_threshold=5) >>> assert spar-
sity_check.validate(df) == [] . . . >>> sparse_array = pd.Series([1, 1, 1, 2, 2, 3] * 3) >>> assert Sparsi-
tyDataCheck.sparsity_score(sparse_array, count_threshold=5) == 0.6666666666666666

evalml.data_checks.sparsity_data_check.warning_too_unique = Input columns ({}) for {}
problem type are too sparse.

target_distribution_data_check

Data check that checks if the target data contains certain distributions that may need to be transformed prior training to
improve model performance.

Module Contents

Classes Summary

TargetDistributionDataCheck Check if the target data contains certain distributions that
may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when
the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

Contents

class evalml.data_checks.target_distribution_data_check.TargetDistributionDataCheck

Check if the target data contains certain distributions that may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

Methods

name Return a name describing the data check.
validate Check if the target data has a certain distribution.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data has a certain distribution.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.
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• y (pd.Series, np.ndarray) – Target data to check for underlying distributions.

Returns List with DataCheckErrors if certain distributions are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Targets that exhibit a lognormal distribution will raise a warning for the user to transform the target.

>>> y = [0.946, 0.972, 1.154, 0.954, 0.969, 1.222, 1.038, 0.999, 0.973, 0.897]
>>> target_check = TargetDistributionDataCheck()
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target may have a lognormal distribution.",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "warning",
... "code": "TARGET_LOGNORMAL_DISTRIBUTION",
... "details": {"normalization_method": "shapiro", "statistic": 0.8, "p-
→˓value": 0.045, "columns": None, "rows": None},
... "action_options": [
... {
... "code": "TRANSFORM_TARGET",
... "data_check_name": "TargetDistributionDataCheck",
... "parameters": {},
... "metadata": {
... "transformation_strategy": "lognormal",
... "is_target": True,
... "columns": None,
... "rows": None
... }
... }
... ]
... }
... ]
...
>>> y = pd.Series([1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5])
>>> assert target_check.validate(None, y) == []
...
...
>>> y = pd.Series(pd.date_range("1/1/21", periods=10))
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target is unsupported datetime type. Valid Woodwork␣
→˓logical types include: integer, double, age, age_fractional",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"datetime"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []

(continues on next page)
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... }

... ]

target_leakage_data_check

Data check that checks if any of the features are highly correlated with the target by using mutual information or Pearson
correlation.

Module Contents

Classes Summary

TargetLeakageDataCheck Check if any of the features are highly correlated with the
target by using mutual information, Pearson correlation,
and other correlation metrics.

Contents

class evalml.data_checks.target_leakage_data_check.TargetLeakageDataCheck(pct_corr_threshold=0.95,
method='all')

Check if any of the features are highly correlated with the target by using mutual information, Pearson correlation,
and other correlation metrics.

If method=’mutual_info’, this data check uses mutual information and supports all target and feature types. Other
correlation metrics only support binary with numeric and boolean dtypes. This method will return a value in
[-1, 1] if other correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.
Correlation metrics available can be found in Woodwork’s dependence_dict method.

Parameters
• pct_corr_threshold (float) – The correlation threshold to be considered leakage. De-

faults to 0.95.

• method (string) – The method to determine correlation. Use ‘all’ or ‘max’ for the max-
imum correlation, or for specific correlation metrics, use their name (ie ‘mutual_info’ for
mutual information, ‘pearson’ for Pearson correlation, etc). possible methods can be found
in Woodwork’s config, under correlation_metrics. Defaults to ‘all’.

Methods

name Return a name describing the data check.
validate Check if any of the features are highly correlated with

the target by using mutual information, Pearson cor-
relation, and/or Spearman correlation.

name(cls)
Return a name describing the data check.
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validate(self, X, y)
Check if any of the features are highly correlated with the target by using mutual information, Pearson
correlation, and/or Spearman correlation.

If method=’mutual_info’ or ‘method=’max’, supports all target and feature types. Other correlation metrics
only support binary with numeric and boolean dtypes. This method will return a value in [-1, 1] if other
correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series, np.ndarray) – The target data.

Returns dict with a DataCheckWarning if target leakage is detected.

Return type dict (DataCheckWarning)

Examples

>>> import pandas as pd

Any columns that are strongly correlated with the target will raise a warning. This could be indicative of
data leakage.

>>> X = pd.DataFrame({
... "leak": [10, 42, 31, 51, 61] * 15,
... "x": [42, 54, 12, 64, 12] * 15,
... "y": [13, 5, 13, 74, 24] * 15,
... })
>>> y = pd.Series([10, 42, 31, 51, 40] * 15)
...
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Column 'leak' is 95.0% or more correlated with the␣
→˓target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "code": "TARGET_LEAKAGE",
... "details": {"columns": ["leak"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak"], "rows": None}
... }
... ]
... }
... ]

The default method can be changed to pearson from mutual_info.
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>>> X["x"] = y / 2
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8,␣
→˓method="pearson")
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Columns 'leak', 'x' are 80.0% or more correlated with␣
→˓the target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "details": {"columns": ["leak", "x"], "rows": None},
... "code": "TARGET_LEAKAGE",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak", "x"], "rows": None}
... }
... ]
... }
... ]

ts_parameters_data_check

Data check that checks whether the time series parameters are compatible with the data size.

Module Contents

Classes Summary

TimeSeriesParametersDataCheck Checks whether the time series parameters are compati-
ble with data splitting.

Contents

class evalml.data_checks.ts_parameters_data_check.TimeSeriesParametersDataCheck(problem_configuration,
n_splits)

Checks whether the time series parameters are compatible with data splitting.

If gap + max_delay + forecast_horizon > X.shape[0] // (n_splits + 1)

then the feature engineering window is larger than the smallest split. This will cause the pipeline to create features
from data that does not exist, which will cause errors.

Parameters
• problem_configuration (dict) – Dict containing problem_configuration parameters.

• n_splits (int) – Number of time series splits.
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Methods

name Return a name describing the data check.
validate Check if the time series parameters are compatible

with data splitting.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the time series parameters are compatible with data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckError if parameters are too big for the split sizes.

Return type dict

Examples

>>> import pandas as pd

The time series parameters have to be compatible with the data passed. If the window size (gap + max_delay
+ forecast_horizon) is greater than or equal to the split size, then an error will be raised.

>>> X = pd.DataFrame({
... "dates": pd.date_range("1/1/21", periods=100),
... "first": [i for i in range(100)],
... })
>>> y = pd.Series([i for i in range(100)])
...
>>> problem_config = {"gap": 7, "max_delay": 2, "forecast_horizon": 12, "time_
→˓index": "dates"}
>>> ts_parameters_check = TimeSeriesParametersDataCheck(problem_
→˓configuration=problem_config, n_splits=7)
>>> assert ts_parameters_check.validate(X, y) == [
... {
... "message": "Since the data has 100 observations, n_splits=7, and a␣
→˓forecast horizon of 12, the smallest "
... "split would have 16 observations. Since 21 (gap + max_
→˓delay + forecast_horizon)"
... " >= 16, then at least one of the splits would be empty␣
→˓by the time it reaches "
... "the pipeline. Please use a smaller number of splits,␣
→˓reduce one or more these "
... "parameters, or collect more data.",
... "data_check_name": "TimeSeriesParametersDataCheck",
... "level": "error",
... "code": "TIMESERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT",
... "details": {

(continues on next page)
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... "columns": None,

... "rows": None,

... "max_window_size": 21,

... "min_split_size": 16,

... "n_obs": 100,

... "n_splits": 7

... },

... "action_options": []

... }

... ]

ts_splitting_data_check

Data check that checks whether the time series training and validation splits have adequate class representation.

Module Contents

Classes Summary

TimeSeriesSplittingDataCheck Checks whether the time series target data is compatible
with splitting.

Contents

class evalml.data_checks.ts_splitting_data_check.TimeSeriesSplittingDataCheck(problem_type,
n_splits)

Checks whether the time series target data is compatible with splitting.

If the target data in the training and validation of every split doesn’t have representation from all classes (for time
series classification problems) this will prevent the estimators from training on all potential outcomes which will
cause errors during prediction.

Parameters
• problem_type (str or ProblemTypes) – Problem type.

• n_splits (int) – Number of time series splits.

Methods

name Return a name describing the data check.
validate Check if the training and validation targets are com-

patible with time series data splitting.

name(cls)
Return a name describing the data check.
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validate(self, X, y)
Check if the training and validation targets are compatible with time series data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Ignored. Features.

• y (pd.Series, np.ndarray) – Target data.

Returns dict with a DataCheckError if splitting would result in inadequate class representation.

Return type dict

Example

>>> import pandas as pd

Passing n_splits as 3 means that the data will be segmented into 4 parts to be iterated over for training
and validation splits. The first split results in training indices of [0:25] and validation indices of [25:50].
The training indices of the first split result in only one unique value (0). The third split results in training
indices of [0:75] and validation indices of [75:100]. The validation indices of the third split result in only
one unique value (1).

>>> X = None
>>> y = pd.Series([0 if i < 45 else i % 2 if i < 55 else 1 for i in range(100)])
>>> ts_splitting_check = TimeSeriesSplittingDataCheck("time series binary", 3)
>>> assert ts_splitting_check.validate(X, y) == [
... {
... "message": "Time Series Binary and Time Series Multiclass problem "
... "types require every training and validation split to "
... "have at least one instance of all the target classes. "
... "The following splits are invalid: [1, 3]",
... "data_check_name": "TimeSeriesSplittingDataCheck",
... "level": "error",
... "details": {
... "columns": None, "rows": None,
... "invalid_splits": {
... 1: {"Training": [0, 25]},
... 3: {"Validation": [75, 100]}
... }
... },
... "code": "TIMESERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT",
... "action_options": []
... }
... ]
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uniqueness_data_check

Data check that checks if there are any columns in the input that are either too unique for classification problems or not
unique enough for regression problems.

Module Contents

Classes Summary

UniquenessDataCheck Check if there are any columns in the input that are ei-
ther too unique for classification problems or not unique
enough for regression problems.

Attributes Summary

warning_not_unique_enough

warning_too_unique

Contents

class evalml.data_checks.uniqueness_data_check.UniquenessDataCheck(problem_type,
threshold=0.5)

Check if there are any columns in the input that are either too unique for classification problems or not unique
enough for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• threshold (float) – The threshold to set as an upper bound on uniqueness for classification
type problems or lower bound on for regression type problems. Defaults to 0.50.

Methods

name Return a name describing the data check.
uniqueness_score Calculate a uniqueness score for the provided field.

NaN values are not considered as unique values in
the calculation.

validate Check if there are any columns in the input that are
too unique in the case of classification problems or
not unique enough in the case of regression problems.

name(cls)
Return a name describing the data check.
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static uniqueness_score(col, drop_na=True)
Calculate a uniqueness score for the provided field. NaN values are not considered as unique values in the
calculation.

Based on the Herfindahl-Hirschman Index.

Parameters
• col (pd.Series) – Feature values.

• drop_na (bool) – Whether to drop null values when computing the uniqueness score.
Defaults to True.

Returns Uniqueness score.

Return type (float)

validate(self, X, y=None)
Check if there are any columns in the input that are too unique in the case of classification problems or not
unique enough in the case of regression problems.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns
dict with a DataCheckWarning if there are any too unique or not unique enough

columns.

Return type dict

Examples

>>> import pandas as pd

Because the problem type is regression, the column “regression_not_unique_enough” raises a warning for
having just one value.

>>> df = pd.DataFrame({
... "regression_unique_enough": [float(x) for x in range(100)],
... "regression_not_unique_enough": [float(1) for x in range(100)]
... })
...
>>> uniqueness_check = UniquenessDataCheck(problem_type="regression",␣
→˓threshold=0.8)
>>> assert uniqueness_check.validate(df) == [
... {
... "message": "Input columns 'regression_not_unique_enough' for␣
→˓regression problem type are not unique enough.",
... "data_check_name": "UniquenessDataCheck",
... "level": "warning",
... "code": "NOT_UNIQUE_ENOUGH",
... "details": {"columns": ["regression_not_unique_enough"],
→˓"uniqueness_score": {"regression_not_unique_enough": 0.0}, "rows": None},
... "action_options": [

(continues on next page)
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(continued from previous page)

... {

... "code": "DROP_COL",

... "parameters": {},

... "data_check_name": "UniquenessDataCheck",

... "metadata": {"columns": ["regression_not_unique_enough"],
→˓"rows": None}
... }
... ]
... }
... ]

For multiclass, the column “regression_unique_enough” has too many unique values and will raise an
appropriate warning. >>> y = pd.Series([1, 1, 1, 2, 2, 3, 3, 3]) >>> uniqueness_check = Unique-
nessDataCheck(problem_type=”multiclass”, threshold=0.8) >>> assert uniqueness_check.validate(df) ==
[ . . . { . . . “message”: “Input columns ‘regression_unique_enough’ for multiclass problem type are too
unique.”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “level”: “warning”, . . . “details”: {
. . . “columns”: [“regression_unique_enough”], . . . “rows”: None, . . . “uniqueness_score”: {“regres-
sion_unique_enough”: 0.99} . . . }, . . . “code”: “TOO_UNIQUE”, . . . “action_options”: [ . . . { . . .
“code”: “DROP_COL”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “parameters”: {}, . . .
“metadata”: {“columns”: [“regression_unique_enough”], “rows”: None} . . . } . . . ] . . . } . . . ] . . .
>>> assert UniquenessDataCheck.uniqueness_score(y) == 0.65625

evalml.data_checks.uniqueness_data_check.warning_not_unique_enough = Input columns {} for
{} problem type are not unique enough.

evalml.data_checks.uniqueness_data_check.warning_too_unique = Input columns {} for {}
problem type are too unique.

utils

Utility methods for the data checks in EvalML.

Module Contents

Functions

handle_data_check_action_code Handles data check action codes by either returning the
DataCheckActionCode or converting from a str.

Contents

evalml.data_checks.utils.handle_data_check_action_code(action_code)
Handles data check action codes by either returning the DataCheckActionCode or converting from a str.

Parameters action_code (str or DataCheckActionCode) – Data check action code that needs
to be handled.

Returns DataCheckActionCode enum

Raises
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• KeyError – If input is not a valid DataCheckActionCode enum value.

• ValueError – If input is not a string or DatCheckActionCode object.

Examples

>>> assert handle_data_check_action_code("drop_col") == DataCheckActionCode.DROP_COL
>>> assert handle_data_check_action_code("DROP_ROWS") == DataCheckActionCode.DROP_
→˓ROWS
>>> assert handle_data_check_action_code("Impute_col") == DataCheckActionCode.
→˓IMPUTE_COL

Package Contents
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Classes Summary

ClassImbalanceDataCheck Check if any of the target labels are imbalanced, or if the
number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

DataCheck Base class for all data checks.
DataCheckAction A recommended action returned by a DataCheck.
DataCheckActionCode Enum for data check action code.
DataCheckActionOption A recommended action option returned by a DataCheck.
DataCheckError DataCheckMessage subclass for errors returned by data

checks.
DataCheckMessage Base class for a message returned by a DataCheck,

tagged by name.
DataCheckMessageCode Enum for data check message code.
DataCheckMessageType Enum for type of data check message: WARNING or

ERROR.
DataChecks A collection of data checks.
DataCheckWarning DataCheckMessage subclass for warnings returned by

data checks.
DateTimeFormatDataCheck Check if the datetime column has equally spaced inter-

vals and is monotonically increasing or decreasing in or-
der to be supported by time series estimators.

DCAOParameterAllowedValuesType Enum for data check action option parameter allowed
values type.

DCAOParameterType Enum for data check action option parameter type.
DefaultDataChecks A collection of basic data checks that is used by AutoML

by default.
IDColumnsDataCheck Check if any of the features are likely to be ID columns.
InvalidTargetDataCheck Check if the target data is considered invalid.
MulticollinearityDataCheck Check if any set features are likely to be multicollinear.
NoVarianceDataCheck Check if the target or any of the features have no vari-

ance.
NullDataCheck Check if there are any highly-null numerical, boolean,

categorical, natural language, and unknown columns
and rows in the input.

OutliersDataCheck Checks if there are any outliers in input data by using
IQR to determine score anomalies.

SparsityDataCheck Check if there are any columns with sparsely populated
values in the input.

TargetDistributionDataCheck Check if the target data contains certain distributions that
may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when
the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

TargetLeakageDataCheck Check if any of the features are highly correlated with the
target by using mutual information, Pearson correlation,
and other correlation metrics.

TimeSeriesParametersDataCheck Checks whether the time series parameters are compati-
ble with data splitting.

TimeSeriesSplittingDataCheck Checks whether the time series target data is compatible
with splitting.

UniquenessDataCheck Check if there are any columns in the input that are ei-
ther too unique for classification problems or not unique
enough for regression problems.
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Contents

class evalml.data_checks.ClassImbalanceDataCheck(threshold=0.1, min_samples=100, num_cv_folds=3,
test_size=None)

Check if any of the target labels are imbalanced, or if the number of values for each target are below 2 times the
number of CV folds. Use for classification problems.

Parameters
• threshold (float) – The minimum threshold allowed for class imbalance before a warning

is raised. This threshold is calculated by comparing the number of samples in each class to
the sum of samples in that class and the majority class. For example, a multiclass case with
[900, 900, 100] samples per classes 0, 1, and 2, respectively, would have a 0.10 threshold for
class 2 (100 / (900 + 100)). Defaults to 0.10.

• min_samples (int) – The minimum number of samples per accepted class. If the minority
class is both below the threshold and min_samples, then we consider this severely imbal-
anced. Must be greater than 0. Defaults to 100.

• num_cv_folds (int) – The number of cross-validation folds. Must be positive. Choose 0
to ignore this warning. Defaults to 3.

• test_size (None, float, int) – Percentage of test set size. Used to calculate class
imbalance prior to splitting the data into training and validation/test sets.

Raises
• ValueError – If threshold is not within 0 and 0.5

• ValueError – If min_samples is not greater than 0

• ValueError – If number of cv folds is negative

• ValueError – If test_size is not between 0 and 1

Methods

name Return a name describing the data check.
validate Check if any target labels are imbalanced beyond a

threshold for binary and multiclass problems.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if any target labels are imbalanced beyond a threshold for binary and multiclass problems.

Ignores NaN values in target labels if they appear.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.

• y (pd.Series, np.ndarray) – Target labels to check for imbalanced data.

Returns
Dictionary with DataCheckWarnings if imbalance in classes is less than the threshold,

and DataCheckErrors if the number of values for each target is below 2 * num_cv_folds.

Return type dict
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Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame()
>>> y = pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

In this binary example, the target class 0 is present in fewer than 10% (threshold=0.10) of instances, and
fewer than 2 * the number of cross folds (2 * 3 = 6). Therefore, both a warning and an error are returned
as part of the Class Imbalance Data Check. In addition, if a target is present with fewer than min_samples
occurrences (default is 100) and is under the threshold, a severe class imbalance warning will be raised.

>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.10)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The number of instances of these targets is less than 2␣
→˓* the number of cross folds = 6 instances: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "error",
... "code": "CLASS_IMBALANCE_BELOW_FOLDS",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels fall below 10% of the target: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... },
... {
... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 10% of the target and have less than 100␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
... ]

In this multiclass example, the target class 0 is present in fewer than 30% of observations, however with 1
cv fold, the minimum number of instances required is 2 * 1 = 2. Therefore a warning, but not an error, is
raised.

>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, min_samples=5, num_
→˓cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == [
... {
... "message": "The following labels fall below 30% of the target: [0]",

(continues on next page)

5.14. Utils 403



EvalML Documentation, Release 0.80.0

(continued from previous page)

... "data_check_name": "ClassImbalanceDataCheck",

... "level": "warning",

... "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",

... "details": {"target_values": [0], "rows": None, "columns": None},

... "action_options": []

... },

... {

... "message": "The following labels in the target have severe class␣
→˓imbalance because they fall under 30% of the target and have less than 5␣
→˓samples: [0]",
... "data_check_name": "ClassImbalanceDataCheck",
... "level": "warning",
... "code": "CLASS_IMBALANCE_SEVERE",
... "details": {"target_values": [0], "rows": None, "columns": None},
... "action_options": []
... }
... ]
...
>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, num_cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == []

class evalml.data_checks.DataCheck

Base class for all data checks.

Data checks are a set of heuristics used to determine if there are problems with input data.

Methods

name Return a name describing the data check.
validate Inspect and validate the input data, runs any neces-

sary calculations or algorithms, and returns a list of
warnings and errors if applicable.

name(cls)
Return a name describing the data check.

abstract validate(self, X, y=None)
Inspect and validate the input data, runs any necessary calculations or algorithms, and returns a list of
warnings and errors if applicable.

Parameters
• X (pd.DataFrame) – The input data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target data of length [n_samples]

Returns Dictionary of DataCheckError and DataCheckWarning messages

Return type dict (DataCheckMessage)

class evalml.data_checks.DataCheckAction(action_code, data_check_name, metadata=None)
A recommended action returned by a DataCheck.

Parameters
• action_code (str, DataCheckActionCode) – Action code associated with the action.
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• data_check_name (str) – Name of data check.

• metadata (dict, optional) – Additional useful information associated with the action.
Defaults to None.

Methods

convert_dict_to_action Convert a dictionary into a DataCheckAction.
to_dict Return a dictionary form of the data check action.

static convert_dict_to_action(action_dict)
Convert a dictionary into a DataCheckAction.

Parameters action_dict – Dictionary to convert into action. Should have keys “code”,
“data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckAction object from the input dictionary.

to_dict(self )
Return a dictionary form of the data check action.

class evalml.data_checks.DataCheckActionCode

Enum for data check action code.

Attributes

DROP_COL Action code for dropping a column.
DROP_ROWS Action code for dropping rows.
IM-
PUTE_COL

Action code for imputing a column.

REGULAR-
IZE_AND_IMPUTE_DATASET

Action code for regularizing and imputing all features and target time series data.

SET_FIRST_COL_IDAction code for setting the first column as an id column.
TRANS-
FORM_TARGET

Action code for transforming the target data.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

class evalml.data_checks.DataCheckActionOption(action_code, data_check_name, parameters=None,
metadata=None)

A recommended action option returned by a DataCheck.

It contains an action code that indicates what the action should be, a data check name that indicates
what data check was used to generate the action, and parameters and metadata which can be used to
further refine the action.
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Parameters
• action_code (DataCheckActionCode) – Action code associated with the action option.

• data_check_name (str) – Name of the data check that produced this option.

• parameters (dict) – Parameters associated with the action option. Defaults to None.

• metadata (dict, optional) – Additional useful information associated with the action
option. Defaults to None.

Examples

>>> parameters = {
... "global_parameter_name": {
... "parameter_type": "global",
... "type": "float",
... "default_value": 0.0,
... },
... "column_parameter_name": {
... "parameter_type": "column",
... "columns": {
... "a": {
... "impute_strategy": {
... "categories": ["mean", "most_frequent"],
... "type": "category",
... "default_value": "mean",
... },
... "constant_fill_value": {"type": "float", "default_value": 0},
... },
... },
... },
... }
>>> data_check_action = DataCheckActionOption(DataCheckActionCode.DROP_COL, None,␣
→˓metadata={}, parameters=parameters)

Methods

convert_dict_to_option Convert a dictionary into a DataCheckActionOption.
get_action_from_defaults Returns an action based on the defaults parameters.
to_dict Return a dictionary form of the data check action op-

tion.

static convert_dict_to_option(action_dict)
Convert a dictionary into a DataCheckActionOption.

Parameters action_dict – Dictionary to convert into an action option. Should have keys
“code”, “data_check_name”, and “metadata”.

Raises ValueError – If input dictionary does not have keys code and metadata and if the meta-
data dictionary does not have keys columns and rows.

Returns DataCheckActionOption object from the input dictionary.

get_action_from_defaults(self )
Returns an action based on the defaults parameters.
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Returns An based on the defaults parameters the option.

Return type DataCheckAction

to_dict(self )
Return a dictionary form of the data check action option.

class evalml.data_checks.DataCheckError(message, data_check_name, message_code=None,
details=None, action_options=None)

DataCheckMessage subclass for errors returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.ERROR

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self )
Return a dictionary form of the data check message.

class evalml.data_checks.DataCheckMessage(message, data_check_name, message_code=None,
details=None, action_options=None)

Base class for a message returned by a DataCheck, tagged by name.

Parameters
• message (str) – Message string.

• data_check_name (str) – Name of the associated data check.

• message_code (DataCheckMessageCode, optional) – Message code associated with
the message. Defaults to None.

• details (dict, optional) – Additional useful information associated with the message.
Defaults to None.

• action_options (list, optional) – A list of `DataCheckActionOption`s associated
with the message. Defaults to None.

Attributes

mes-
sage_type

None

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self )
Return a dictionary form of the data check message.

5.14. Utils 407



EvalML Documentation, Release 0.80.0

class evalml.data_checks.DataCheckMessageCode

Enum for data check message code.

Attributes

CLASS_IMBALANCE_BELOW_FOLDSMessage code for when the number of values for each target is below 2 * number of CV folds.
CLASS_IMBALANCE_BELOW_THRESHOLDMessage code for when balance in classes is less than the threshold.
CLASS_IMBALANCE_SEVEREMessage code for when balance in classes is less than the threshold and minimum class is

less than minimum number of accepted samples.
COLS_WITH_NULLMessage code for columns with null values.
DATE-
TIME_HAS_MISALIGNED_VALUES

Message code for when datetime information has values that are not aligned with the inferred
frequency.

DATE-
TIME_HAS_NAN

Message code for when input datetime columns contain NaN values.

DATE-
TIME_HAS_REDUNDANT_ROW

Message code for when datetime information has more than one row per datetime.

DATE-
TIME_HAS_UNEVEN_INTERVALS

Message code for when the datetime values have uneven intervals.

DATE-
TIME_INFORMATION_NOT_FOUND

Message code for when datetime information can not be found or is in an unaccepted format.

DATE-
TIME_IS_MISSING_VALUES

Message code for when datetime feature has values missing between the start and end dates.

DATE-
TIME_IS_NOT_MONOTONIC

Message code for when the datetime values are not monotonically increasing.

DATE-
TIME_NO_FREQUENCY_INFERRED

Message code for when no frequency can be inferred in the datetime values through Wood-
work’s infer_frequency.

HAS_ID_COLUMNMessage code for data that has ID columns.
HAS_ID_FIRST_COLUMNMessage code for data that has an ID column as the first column.
HAS_OUTLIERSMessage code for when outliers are detected.
HIGH_VARIANCEMessage code for when high variance is detected for cross-validation.
HIGHLY_NULL_COLSMessage code for highly null columns.
HIGHLY_NULL_ROWSMessage code for highly null rows.
IS_MULTICOLLINEARMessage code for when data is potentially multicollinear.
MIS-
MATCHED_INDICES

Message code for when input target and features have mismatched indices.

MIS-
MATCHED_INDICES_ORDER

Message code for when input target and features have mismatched indices order. The two
inputs have the same index values, but shuffled.

MIS-
MATCHED_LENGTHS

Message code for when input target and features have different lengths.

NATU-
RAL_LANGUAGE_HAS_NAN

Message code for when input natural language columns contain NaN values.

NO_VARIANCEMessage code for when data has no variance (1 unique value).
NO_VARIANCE_WITH_NULLMessage code for when data has one unique value and NaN values.
NO_VARIANCE_ZERO_UNIQUEMessage code for when data has no variance (0 unique value)
NOT_UNIQUE_ENOUGHMessage code for when data does not possess enough unique values.
TAR-
GET_BINARY_NOT_TWO_UNIQUE_VALUES

Message code for target data for a binary classification problem that does not have two unique
values.

TAR-
GET_HAS_NULL

Message code for target data that has null values.

TAR-
GET_INCOMPATIBLE_OBJECTIVE

Message code for target data that has incompatible values for the specified objective

continues on next page
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Table 3 – continued from previous page
TAR-
GET_IS_EMPTY_OR_FULLY_NULL

Message code for target data that is empty or has all null values.

TAR-
GET_IS_NONE

Message code for when target is None.

TAR-
GET_LEAKAGE

Message code for when target leakage is detected.

TAR-
GET_LOGNORMAL_DISTRIBUTION

Message code for target data with a lognormal distribution.

TAR-
GET_MULTICLASS_HIGH_UNIQUE_CLASS

Message code for target data for a multi classification problem that has an abnormally large
number of unique classes relative to the number of target values.

TAR-
GET_MULTICLASS_NOT_ENOUGH_CLASSES

Message code for target data for a multi classification problem that does not have more than
two unique classes.

TAR-
GET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS

Message code for target data for a multi classification problem that does not have two exam-
ples per class.

TAR-
GET_UNSUPPORTED_PROBLEM_TYPE

Message code for target data that is being checked against an unsupported problem type.

TAR-
GET_UNSUPPORTED_TYPE

Message code for target data that is of an unsupported type.

TAR-
GET_UNSUPPORTED_TYPE_REGRESSION

Message code for target data that is incompatible with regression

TIME-
SERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT

Message code when the time series parameters are too large for the smallest data split.

TIME-
SERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT

Message code when any training and validation split of the time series target doesn’t contain
all classes.

TOO_SPARSE Message code for when multiclass data has values that are too sparsely populated.
TOO_UNIQUEMessage code for when data possesses too many unique values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

class evalml.data_checks.DataCheckMessageType

Enum for type of data check message: WARNING or ERROR.

Attributes

ERROR Error message returned by a data check.
WARNING Warning message returned by a data check.

Methods

name The name of the Enum member.
value The value of the Enum member.
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name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

class evalml.data_checks.DataChecks(data_checks=None, data_check_params=None)
A collection of data checks.

Parameters
• data_checks (list (DataCheck)) – List of DataCheck objects.

• data_check_params (dict) – Parameters for passed DataCheck objects.

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

class evalml.data_checks.DataCheckWarning(message, data_check_name, message_code=None,
details=None, action_options=None)

DataCheckMessage subclass for warnings returned by data checks.

Attributes

mes-
sage_type

DataCheckMessageType.WARNING

Methods

to_dict Return a dictionary form of the data check message.

to_dict(self )
Return a dictionary form of the data check message.

class evalml.data_checks.DateTimeFormatDataCheck(datetime_column='index',
nan_duplicate_threshold=0.75)

Check if the datetime column has equally spaced intervals and is monotonically increasing or decreasing in order
to be supported by time series estimators.

Parameters
• datetime_column (str, int) – The name of the datetime column. If the datetime values

are in the index, then pass “index”.
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• nan_duplicate_threshold (float) – The percentage of values in the datetime_column
that must not be duplicate or nan before DATETIME_NO_FREQUENCY_INFERRED is re-
turned instead of DATETIME_HAS_UNEVEN_INTERVALS. For example, if this is set to
0.80, then only 20% of the values in datetime_column can be duplicate or nan. Defaults to
0.75.

Methods

name Return a name describing the data check.
validate Checks if the target data has equal intervals and is

monotonically increasing.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Checks if the target data has equal intervals and is monotonically increasing.

Will return a DataCheckError if the data is not a datetime type, is not increasing, has redundant or missing
row(s), contains invalid (NaN or None) values, or has values that don’t align with the assumed frequency.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Target data.

Returns List with DataCheckErrors if unequal intervals are found in the datetime column.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

The column ‘dates’ has a set of two dates with daily frequency, two dates with hourly frequency, and two
dates with monthly frequency.

>>> X = pd.DataFrame(pd.date_range("2015-01-01", periods=2).append(pd.date_
→˓range("2015-01-08", periods=2, freq="H").append(pd.date_range("2016-03-02",␣
→˓periods=2, freq="M"))), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "No frequency could be detected in column 'dates',␣
→˓possibly due to uneven intervals or too many duplicate/missing values.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_NO_FREQUENCY_INFERRED",
... "details": {"columns": None, "rows": None},
... "action_options": []
... }
... ]

The column “dates” has a gap in the values, which implies there are many dates missing.
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>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-31", periods=50)), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has datetime values missing between␣
→˓start and end date.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_IS_MISSING_VALUES",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'dates',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
... ]
... }
... ]

The column “dates” has a repeat of the date 2021-01-09 appended to the end, which is considered redundant
and will raise an error.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_
→˓range("2021-01-09", periods=1)), columns=["dates"]) (continues on next page)
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>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> ww_payload = infer_frequency(X["dates"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'dates' has more than one row with the same␣
→˓datetime value.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_REDUNDANT_ROW",
... "details": {"columns": None, "rows": None},
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'dates', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'dates',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
... ]
... }
... ]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8) (continues on next page)
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>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'Weeks',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
... ]
... }
... ]

The column “Weeks” has a date that does not follow the weekly pattern, which is considered misaligned.

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=12).
→˓append(pd.date_range("2021-03-22", periods=1)), columns=["Weeks"])
>>> ww_payload = infer_frequency(X["Weeks"], debug=True, window_length=5,␣
→˓threshold=0.8)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [

(continues on next page)

414 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

(continued from previous page)

... {

... "message": "Column 'Weeks' has datetime values that do not align␣
→˓with the inferred frequency.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_MISALIGNED_VALUES",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'Weeks', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'Weeks',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
... ]
... }
... ]

The column “Weeks” passed integers instead of datetime data, which will raise an error.

>>> X = pd.DataFrame([1, 2, 3, 4], columns=["Weeks"])
>>> y = pd.Series([0] * 4)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Datetime information could not be found in the data, or␣
→˓was not in a supported datetime format.",
... "data_check_name": "DateTimeFormatDataCheck",

(continues on next page)
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... "level": "error",

... "details": {"columns": None, "rows": None},

... "code": "DATETIME_INFORMATION_NOT_FOUND",

... "action_options": []

... }

... ]

Converting that same integer data to datetime, however, is valid.

>>> X = pd.DataFrame(pd.to_datetime([1, 2, 3, 4]), columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq="W", periods=10),␣
→˓columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == []

While the data passed in is of datetime type, time series requires the datetime information in date-
time_column to be monotonically increasing (ascending).

>>> X = X.iloc[::-1]
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == [
... {
... "message": "Datetime values must be sorted in ascending order.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_IS_NOT_MONOTONIC",
... "action_options": []
... }
... ]

The first value in the column “index” is replaced with NaT, which will raise an error in this data check.

>>> dates = [["2-1-21", "3-1-21"],
... ["2-2-21", "3-2-21"],
... ["2-3-21", "3-3-21"],
... ["2-4-21", "3-4-21"],
... ["2-5-21", "3-5-21"],
... ["2-6-21", "3-6-21"],
... ["2-7-21", "3-7-21"],
... ["2-8-21", "3-8-21"],
... ["2-9-21", "3-9-21"],
... ["2-10-21", "3-10-21"],
... ["2-11-21", "3-11-21"],
... ["2-12-21", "3-12-21"]]
>>> dates[0][0] = None
>>> df = pd.DataFrame(dates, columns=["days", "days2"])
>>> ww_payload = infer_frequency(pd.to_datetime(df["days"]), debug=True, window_
→˓length=5, threshold=0.8)

(continues on next page)
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>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="days")
>>> assert datetime_format_dc.validate(df, y) == [
... {
... "message": "Input datetime column 'days' contains NaN values.␣
→˓Please impute NaN values or drop these rows.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "DATETIME_HAS_NAN",
... "action_options": []
... },
... {
... "message": "A frequency was detected in column 'days', but there␣
→˓are faulty datetime values that need to be addressed.",
... "data_check_name": "DateTimeFormatDataCheck",
... "level": "error",
... "code": "DATETIME_HAS_UNEVEN_INTERVALS",
... "details": {'columns': None, 'rows': None},
... "action_options": [
... {
... 'code': 'REGULARIZE_AND_IMPUTE_DATASET',
... 'data_check_name': 'DateTimeFormatDataCheck',
... 'metadata': {
... 'columns': None,
... 'is_target': True,
... 'rows': None
... },
... 'parameters': {
... 'time_index': {
... 'default_value': 'days',
... 'parameter_type': 'global',
... 'type': 'str'
... },
... 'frequency_payload': {
... 'default_value': ww_payload,
... 'parameter_type': 'global',
... 'type': 'tuple'
... }
... }
... }
... ]
... }
... ]
...

class evalml.data_checks.DCAOParameterAllowedValuesType

Enum for data check action option parameter allowed values type.

Attributes
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CATEGOR-
ICAL

Categorical allowed values type. Parameters that have a set of allowed values.

NUMERI-
CAL

Numerical allowed values type. Parameters that have a range of allowed values.

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

class evalml.data_checks.DCAOParameterType

Enum for data check action option parameter type.

Attributes

COLUMN Column parameter type. Parameters that apply to a specific column in the data set.
GLOBAL Global parameter type. Parameters that apply to the entire data set.

Methods

all_parameter_types Get a list of all defined parameter types.
handle_dcao_parameter_type Handles the data check action option parameter type

by either returning the DCAOParameterType enum or
converting from a str.

name The name of the Enum member.
value The value of the Enum member.

all_parameter_types(cls)
Get a list of all defined parameter types.

Returns List of all defined parameter types.

Return type list(DCAOParameterType)

static handle_dcao_parameter_type(dcao_parameter_type)
Handles the data check action option parameter type by either returning the DCAOParameterType enum or
converting from a str.

Parameters dcao_parameter_type (str or DCAOParameterType) – Data check action op-
tion parameter type that needs to be handled.

Returns DCAOParameterType enum

Raises
• KeyError – If input is not a valid DCAOParameterType enum value.

• ValueError – If input is not a string or DCAOParameterType object.
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name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

class evalml.data_checks.DefaultDataChecks(problem_type, objective, n_splits=3,
problem_configuration=None)

A collection of basic data checks that is used by AutoML by default.

Includes:

• NullDataCheck

• HighlyNullRowsDataCheck

• IDColumnsDataCheck

• TargetLeakageDataCheck

• InvalidTargetDataCheck

• NoVarianceDataCheck

• ClassImbalanceDataCheck (for classification problem types)

• TargetDistributionDataCheck (for regression problem types)

• DateTimeFormatDataCheck (for time series problem types)

• ‘TimeSeriesParametersDataCheck’ (for time series problem types)

• TimeSeriesSplittingDataCheck (for time series classification problem types)

Parameters
• problem_type (str) – The problem type that is being validated. Can be regression, binary,

or multiclass.

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_splits (int) – The number of splits as determined by the data splitter being used. De-
faults to 3.

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index,

• gap –

• forecast_horizon –

• max_delay. (and) –

Methods

validate Inspect and validate the input data against data checks
and returns a list of warnings and errors if applicable.

validate(self, X, y=None)
Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
• X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]
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• y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns Dictionary containing DataCheckMessage objects

Return type dict

class evalml.data_checks.IDColumnsDataCheck(id_threshold=1.0, exclude_time_index=True)
Check if any of the features are likely to be ID columns.

Parameters
• id_threshold (float) – The probability threshold to be considered an ID column. De-

faults to 1.0.

• exclude_time_index (bool) – If True, the column set as the time index will not be in-
cluded in the data check. Default is True.

Methods

name Return a name describing the data check.
validate Check if any of the features are likely to be ID

columns. Currently performs a number of simple
checks.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.

Checks performed are:

• column name is “id”

• column name ends in “_id”

• column contains all unique values (and is categorical / integer type)

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series) – The target. Defaults to None. Ignored.

Returns A dictionary of features with column name or index and their probability of being ID
columns

Return type dict

Examples

>>> import pandas as pd

Columns that end in “_id” and are completely unique are likely to be ID columns.

>>> df = pd.DataFrame({
... "profits": [25, 15, 15, 31, 19],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]

(continues on next page)
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... })

...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'customer_id' are 100.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
... ]
... }
... ]

Columns named “ID” with all unique values will also be identified as ID columns.

>>> df = df.rename(columns={"customer_id": "ID"})
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'ID' are 100.0% or more likely to be an ID␣
→˓column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["ID"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["ID"], "rows": None}
... }
... ]
... }
... ]

Despite being all unique, “Country_Rank” will not be identified as an ID column as id_threshold is set to
1.0 by default and its name doesn’t indicate that it’s an ID.

>>> df = pd.DataFrame({
... "humidity": ["high", "very high", "low", "low", "high"],
... "Country_Rank": [1, 2, 3, 4, 5],
... "Sales": ["very high", "high", "high", "medium", "very low"]

(continues on next page)
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... })

...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == []

However lowering the threshold will cause this column to be identified as an ID.

>>> id_col_check = IDColumnsDataCheck()
>>> id_col_check = IDColumnsDataCheck(id_threshold=0.95)
>>> assert id_col_check.validate(df) == [
... {
... "message": "Columns 'Country_Rank' are 95.0% or more likely to be␣
→˓an ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "details": {"columns": ["Country_Rank"], "rows": None},
... "code": "HAS_ID_COLUMN",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["Country_Rank"], "rows": None}
... }
... ]
... }
... ]

If the first column of the dataframe has all unique values and is named either ‘ID’ or a name that ends with
‘_id’, it is probably the primary key. The other ID columns should be dropped.

>>> df = pd.DataFrame({
... "sales_id": [0, 1, 2, 3, 4],
... "customer_id": [123, 124, 125, 126, 127],
... "Sales": [10, 42, 31, 51, 61]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == [
... {
... "message": "The first column 'sales_id' is likely to be the primary␣
→˓key",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_FIRST_COLUMN",
... "details": {"columns": ["sales_id"], "rows": None},
... "action_options": [
... {
... "code": "SET_FIRST_COL_ID",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["sales_id"], "rows": None}

(continues on next page)
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... }

... ]

... },

... {

... "message": "Columns 'customer_id' are 100.0% or more likely to be an␣
→˓ID column",
... "data_check_name": "IDColumnsDataCheck",
... "level": "warning",
... "code": "HAS_ID_COLUMN",
... "details": {"columns": ["customer_id"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "IDColumnsDataCheck",
... "parameters": {},
... "metadata": {"columns": ["customer_id"], "rows": None}
... }
... ]
... }
... ]

class evalml.data_checks.InvalidTargetDataCheck(problem_type, objective, n_unique=100,
null_strategy='drop')

Check if the target data is considered invalid.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.

• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• objective (str or ObjectiveBase) – Name or instance of the objective class.

• n_unique (int) – Number of unique target values to store when problem type is binary and
target incorrectly has more than 2 unique values. Non-negative integer. If None, stores all
unique values. Defaults to 100.

• null_strategy (str) – The type of action option that should be returned if the target is
partially null. The options are impute and drop (default). impute - Will return a DataCheck-
ActionOption for imputing the target column. drop - Will return a DataCheckActionOption
for dropping the null rows in the target column.

Attributes
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multi-
class_continuous_threshold

0.05

Methods

name Return a name describing the data check.
validate Check if the target data is considered invalid. If the

input features argument is not None, it will be used
to check that the target and features have the same
dimensions and indices.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data is considered invalid. If the input features argument is not None, it will be used to
check that the target and features have the same dimensions and indices.

Target data is considered invalid if:
• Target is None.

• Target has NaN or None values.

• Target is of an unsupported Woodwork logical type.

• Target and features have different lengths or indices.

• Target does not have enough instances of a class in a classification problem.

• Target does not contain numeric data for regression problems.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. If not None, will be used to check that the

target and features have the same dimensions and indices.

• y (pd.Series, np.ndarray) – Target data to check for invalid values.

Returns List with DataCheckErrors if any invalid values are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Target values must be integers, doubles, or booleans.

>>> X = pd.DataFrame({"col": [1, 2, 3, 1]})
>>> y = pd.Series(["cat_1", "cat_2", "cat_1", "cat_2"])
>>> target_check = InvalidTargetDataCheck("regression", "R2", null_strategy=
→˓"impute")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is unsupported Unknown type. Valid Woodwork␣
→˓logical types include: integer, double, boolean, age, age_fractional, integer_
→˓nullable, boolean_nullable, age_nullable", (continues on next page)
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... "data_check_name": "InvalidTargetDataCheck",

... "level": "error",

... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"unknown"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []
... },
... {
... "message": "Target data type should be numeric for regression type␣
→˓problems.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_UNSUPPORTED_TYPE_REGRESSION",
... "action_options": []
... }
... ]

The target cannot have null values.

>>> y = pd.Series([None, pd.NA, pd.NaT, None])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target is either empty or fully null.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None},
... "code": "TARGET_IS_EMPTY_OR_FULLY_NULL",
... "action_options": []
... }
... ]
...
...
>>> y = pd.Series([1, None, 3, None])
>>> assert target_check.validate(None, y) == [
... {
... "message": "2 row(s) (50.0%) of target values are null",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {
... "columns": None,
... "rows": [1, 3],
... "num_null_rows": 2,
... "pct_null_rows": 50.0
... },
... "code": "TARGET_HAS_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "InvalidTargetDataCheck",
... "parameters": {
... "impute_strategy": {

(continues on next page)
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... "parameter_type": "global",

... "type": "category",

... "categories": ["mean", "most_frequent"],

... "default_value": "mean"

... }

... },

... "metadata": {"columns": None, "rows": None, "is_target":␣
→˓True},
... }
... ],
... }
... ]

If the target values don’t match the problem type passed, an error will be raised. In this instance, only two
values exist in the target column, but multiclass has been passed as the problem type.

>>> X = pd.DataFrame([i for i in range(50)])
>>> y = pd.Series([i%2 for i in range(50)])
>>> target_check = InvalidTargetDataCheck("multiclass", "Log Loss Multiclass")
>>> assert target_check.validate(X, y) == [
... {
... "message": "Target has two or less classes, which is too few for␣
→˓multiclass problems. Consider changing to binary.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "num_classes": 2},
... "code": "TARGET_MULTICLASS_NOT_ENOUGH_CLASSES",
... "action_options": []
... }
... ]

If the length of X and y differ, a warning will be raised. A warning will also be raised for indices that don”t
match.

>>> target_check = InvalidTargetDataCheck("regression", "R2")
>>> X = pd.DataFrame([i for i in range(5)])
>>> y = pd.Series([1, 2, 4, 3], index=[1, 2, 4, 3])
>>> assert target_check.validate(X, y) == [
... {
... "message": "Input target and features have different lengths",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",
... "details": {"columns": None, "rows": None, "features_length": 5,
→˓"target_length": 4},
... "code": "MISMATCHED_LENGTHS",
... "action_options": []
... },
... {
... "message": "Input target and features have mismatched indices.␣
→˓Details will include the first 10 mismatched indices.",
... "data_check_name": "InvalidTargetDataCheck",
... "level": "warning",

(continues on next page)
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... "details": {

... "columns": None,

... "rows": None,

... "indices_not_in_features": [],

... "indices_not_in_target": [0]

... },

... "code": "MISMATCHED_INDICES",

... "action_options": []

... }

... ]

class evalml.data_checks.MulticollinearityDataCheck(threshold=0.9)
Check if any set features are likely to be multicollinear.

Parameters threshold (float) – The threshold to be considered. Defaults to 0.9.

Methods

name Return a name describing the data check.
validate Check if any set of features are likely to be multi-

collinear.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if any set of features are likely to be multicollinear.

Parameters
• X (pd.DataFrame) – The input features to check.

• y (pd.Series) – The target. Ignored.

Returns dict with a DataCheckWarning if there are any potentially multicollinear columns.

Return type dict

Example

>>> import pandas as pd

Columns in X that are highly correlated with each other will be identified using mutual information.

>>> col = pd.Series([1, 0, 2, 3, 4] * 15)
>>> X = pd.DataFrame({"col_1": col, "col_2": col * 3})
>>> y = pd.Series([1, 0, 0, 1, 0] * 15)
...
>>> multicollinearity_check = MulticollinearityDataCheck(threshold=1.0)
>>> assert multicollinearity_check.validate(X, y) == [
... {
... "message": "Columns are likely to be correlated: [('col_1', 'col_2
→˓')]",
... "data_check_name": "MulticollinearityDataCheck",

(continues on next page)
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... "level": "warning",

... "code": "IS_MULTICOLLINEAR",

... "details": {"columns": [("col_1", "col_2")], "rows": None},

... "action_options": []

... }

... ]

class evalml.data_checks.NoVarianceDataCheck(count_nan_as_value=False)
Check if the target or any of the features have no variance.

Parameters count_nan_as_value (bool) – If True, missing values will be counted as their own
unique value. Additionally, if true, will return a DataCheckWarning instead of an error if the
feature has mostly missing data and only one unique value. Defaults to False.

Methods

name Return a name describing the data check.
validate Check if the target or any of the features have no vari-

ance (1 unique value).

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the target or any of the features have no variance (1 unique value).

Parameters
• X (pd.DataFrame, np.ndarray) – The input features.

• y (pd.Series, np.ndarray) – Optional, the target data.

Returns A dict of warnings/errors corresponding to features or target with no variance.

Return type dict

Examples

>>> import pandas as pd

Columns or target data that have only one unique value will raise an error.

>>> X = pd.DataFrame([2, 2, 2, 2, 2, 2, 2, 2], columns=["First_Column"])
>>> y = pd.Series([1, 1, 1, 1, 1, 1, 1, 1])
...
>>> novar_dc = NoVarianceDataCheck()
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": [

(continues on next page)
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... {

... "code": "DROP_COL",

... "data_check_name": "NoVarianceDataCheck",

... "parameters": {},

... "metadata": {"columns": ["First_Column"], "rows": None}

... },

... ]

... },

... {

... "message": "Y has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": []

... }

... ]

By default, NaNs will not be counted as distinct values. In the first example, there are still two distinct
values besides None. In the second, there are no distinct values as the target is entirely null.

>>> X["First_Column"] = [2, 2, 2, 3, 3, 3, None, None]
>>> y = pd.Series([1, 1, 1, 2, 2, 2, None, None])
>>> assert novar_dc.validate(X, y) == []
...
...
>>> y = pd.Series([None] * 7)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "Y has 0 unique values.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE_ZERO_UNIQUE",
... "action_options":[]
... }
... ]

As None is not considered a distinct value by default, there is only one unique value in X and y.

>>> X["First_Column"] = [2, 2, 2, 2, None, None, None, None]
>>> y = pd.Series([1, 1, 1, 1, None, None, None, None])
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has 1 unique value.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE",
... "action_options": [
... {
... "code": "DROP_COL",

(continues on next page)
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... "data_check_name": "NoVarianceDataCheck",

... "parameters": {},

... "metadata": {"columns": ["First_Column"], "rows": None}

... },

... ]

... },

... {

... "message": "Y has 1 unique value.",

... "data_check_name": "NoVarianceDataCheck",

... "level": "warning",

... "details": {"columns": ["Y"], "rows": None},

... "code": "NO_VARIANCE",

... "action_options": []

... }

... ]

If count_nan_as_value is set to True, then NaNs are counted as unique values. In the event that there is
an adequate number of unique values only because count_nan_as_value is set to True, a warning will be
raised so the user can encode these values.

>>> novar_dc = NoVarianceDataCheck(count_nan_as_value=True)
>>> assert novar_dc.validate(X, y) == [
... {
... "message": "'First_Column' has two unique values including nulls.␣
→˓Consider encoding the nulls for this column to be useful for machine learning.
→˓",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["First_Column"], "rows": None},
... "code": "NO_VARIANCE_WITH_NULL",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NoVarianceDataCheck",
... "parameters": {},
... "metadata": {"columns": ["First_Column"], "rows": None}
... },
... ]
... },
... {
... "message": "Y has two unique values including nulls. Consider␣
→˓encoding the nulls for this column to be useful for machine learning.",
... "data_check_name": "NoVarianceDataCheck",
... "level": "warning",
... "details": {"columns": ["Y"], "rows": None},
... "code": "NO_VARIANCE_WITH_NULL",
... "action_options": []
... }
... ]

class evalml.data_checks.NullDataCheck(pct_null_col_threshold=0.95,
pct_moderately_null_col_threshold=0.2,
pct_null_row_threshold=0.95)

430 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Check if there are any highly-null numerical, boolean, categorical, natural language, and unknown columns and
rows in the input.

Parameters
• pct_null_col_threshold (float) – If the percentage of NaN values in an input feature

exceeds this amount, that column will be considered highly-null. Defaults to 0.95.

• pct_moderately_null_col_threshold (float) – If the percentage of NaN values
in an input feature exceeds this amount but is less than the percentage specified in
pct_null_col_threshold, that column will be considered moderately-null. Defaults to 0.20.

• pct_null_row_threshold (float) – If the percentage of NaN values in an input row
exceeds this amount, that row will be considered highly-null. Defaults to 0.95.

Methods

get_null_column_information Finds columns that are considered highly null (per-
centage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and
dictionary mapping column name to null indices.

get_null_row_information Finds rows that are considered highly null (percent-
age null is greater than threshold).

name Return a name describing the data check.
validate Check if there are any highly-null columns or rows in

the input.

static get_null_column_information(X, pct_null_col_threshold=0.0)
Finds columns that are considered highly null (percentage null is greater than threshold) and returns dic-
tionary mapping column name to percentage null and dictionary mapping column name to null indices.

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null columns.

• pct_null_col_threshold (float) – Percentage threshold for a column to be considered
null. Defaults to 0.0.

Returns Tuple containing: dictionary mapping column name to its null percentage and dictionary
mapping column name to null indices in that column.

Return type tuple

static get_null_row_information(X, pct_null_row_threshold=0.0)
Finds rows that are considered highly null (percentage null is greater than threshold).

Parameters
• X (pd.DataFrame) – DataFrame to check for highly null rows.

• pct_null_row_threshold (float) – Percentage threshold for a row to be considered
null. Defaults to 0.0.

Returns Series containing the percentage null for each row.

Return type pd.Series

name(cls)
Return a name describing the data check.
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validate(self, X, y=None)
Check if there are any highly-null columns or rows in the input.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckWarning if there are any highly-null columns or rows.

Return type dict

Examples

>>> import pandas as pd
...
>>> class SeriesWrap():
... def __init__(self, series):
... self.series = series
...
... def __eq__(self, series_2):
... return all(self.series.eq(series_2.series))

With pct_null_col_threshold set to 0.50, any column that has 50% or more of its observations set to
null will be included in the warning, as well as the percentage of null values identified (“all_null”: 1.0,
“lots_of_null”: 0.8).

>>> df = pd.DataFrame({
... "all_null": [None, pd.NA, None, None, None],
... "lots_of_null": [None, None, None, None, 5],
... "few_null": [1, 2, None, 2, 3],
... "no_null": [1, 2, 3, 4, 5]
... })
...
>>> highly_null_dc = NullDataCheck(pct_null_col_threshold=0.50)
>>> assert highly_null_dc.validate(df) == [
... {
... "message": "Column(s) 'all_null', 'lots_of_null' are 50.0% or more␣
→˓null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": ["all_null", "lots_of_null"],
... "rows": None,
... "pct_null_rows": {"all_null": 1.0, "lots_of_null": 0.8}
... },
... "code": "HIGHLY_NULL_COLS",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "NullDataCheck",
... "parameters": {},
... "metadata": {"columns": ["all_null", "lots_of_null"], "rows
→˓": None}

(continues on next page)
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... }

... ]

... },

... {

... "message": "Column(s) 'few_null' have between 20.0% and 50.0% null␣
→˓values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["few_null"], "rows": None, "is_
→˓target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "few_null": {
... "impute_strategy": {"categories": ["mean",
→˓"most_frequent"], "type": "category", "default_value": "mean"}
... }
... }
... }
... }
... }
... ]
... }
... ]

With pct_null_row_threshold set to 0.50, any row with 50% or more of its respective column values set to
null will included in the warning, as well as the offending rows (“rows”: [0, 1, 2, 3]). Since the default
value for pct_null_col_threshold is 0.95, “all_null” is also included in the warnings since the percentage of
null values in that row is over 95%. Since the default value for pct_moderately_null_col_threshold is 0.20,
“few_null” is included as a “moderately null” column as it has a null column percentage of 20%.

>>> highly_null_dc = NullDataCheck(pct_null_row_threshold=0.50)
>>> validation_messages = highly_null_dc.validate(df)
>>> validation_messages[0]["details"]["pct_null_cols"] = SeriesWrap(validation_
→˓messages[0]["details"]["pct_null_cols"])
>>> highly_null_rows = SeriesWrap(pd.Series([0.5, 0.5, 0.75, 0.5]))
>>> assert validation_messages == [
... {
... "message": "4 out of 5 rows are 50.0% or more null",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {
... "columns": None,
... "rows": [0, 1, 2, 3],
... "pct_null_cols": highly_null_rows

(continues on next page)
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... },

... "code": "HIGHLY_NULL_ROWS",

... "action_options": [

... {

... "code": "DROP_ROWS",

... "data_check_name": "NullDataCheck",

... "parameters": {},

... "metadata": {"columns": None, "rows": [0, 1, 2, 3]}

... }

... ]

... },

... {

... "message": "Column(s) 'all_null' are 95.0% or more null",

... "data_check_name": "NullDataCheck",

... "level": "warning",

... "details": {

... "columns": ["all_null"],

... "rows": None,

... "pct_null_rows": {"all_null": 1.0}

... },

... "code": "HIGHLY_NULL_COLS",

... "action_options": [

... {

... "code": "DROP_COL",

... "data_check_name": "NullDataCheck",

... "metadata": {"columns": ["all_null"], "rows": None},

... "parameters": {}

... }

... ]

... },

... {

... "message": "Column(s) 'lots_of_null', 'few_null' have between 20.0%␣
→˓and 95.0% null values",
... "data_check_name": "NullDataCheck",
... "level": "warning",
... "details": {"columns": ["lots_of_null", "few_null"], "rows": None},
... "code": "COLS_WITH_NULL",
... "action_options": [
... {
... "code": "IMPUTE_COL",
... "data_check_name": "NullDataCheck",
... "metadata": {"columns": ["lots_of_null", "few_null"], "rows":
→˓ None, "is_target": False},
... "parameters": {
... "impute_strategies": {
... "parameter_type": "column",
... "columns": {
... "lots_of_null": {"impute_strategy": {"categories
→˓": ["mean", "most_frequent"], "type": "category", "default_value": "mean"}},
... "few_null": {"impute_strategy": {"categories": [
→˓"mean", "most_frequent"], "type": "category", "default_value": "mean"}}
... }

(continues on next page)
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... }

... }

... }

... ]

... }

... ]

class evalml.data_checks.OutliersDataCheck

Checks if there are any outliers in input data by using IQR to determine score anomalies.

Columns with score anomalies are considered to contain outliers.

Methods

get_boxplot_data Returns box plot information for the given data.
name Return a name describing the data check.
validate Check if there are any outliers in a dataframe by using

IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

static get_boxplot_data(data_)
Returns box plot information for the given data.

Parameters data (pd.Series, np.ndarray) – Input data.

Returns A payload of box plot statistics.

Return type dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
>>> box_plot_data = OutliersDataCheck.get_boxplot_data(df["z"])
>>> box_plot_data["score"] = round(box_plot_data["score"], 2)
>>> assert box_plot_data == {
... "score": 0.89,
... "pct_outliers": 0.2,
... "values": {"q1": -4.0,
... "median": -3.0,
... "q3": -2.0,
... "low_bound": -7.0,
... "high_bound": -1.0,
... "low_values": [-1201],
... "high_values": [],
... "low_indices": [3],
... "high_indices": []}
... }
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name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if there are any outliers in a dataframe by using IQR to determine column anomalies. Column with
anomalies are considered to contain outliers.

Parameters
• X (pd.DataFrame, np.ndarray) – Input features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns A dictionary with warnings if any columns have outliers.

Return type dict

Examples

>>> import pandas as pd

The column “z” has an outlier so a warning is added to alert the user of its location.

>>> df = pd.DataFrame({
... "x": [1, 2, 3, 4, 5],
... "y": [6, 7, 8, 9, 10],
... "z": [-1, -2, -3, -1201, -4]
... })
...
>>> outliers_check = OutliersDataCheck()
>>> assert outliers_check.validate(df) == [
... {
... "message": "Column(s) 'z' are likely to have outlier data.",
... "data_check_name": "OutliersDataCheck",
... "level": "warning",
... "code": "HAS_OUTLIERS",
... "details": {"columns": ["z"], "rows": [3], "column_indices": {"z":␣
→˓[3]}},
... "action_options": [
... {
... "code": "DROP_ROWS",
... "data_check_name": "OutliersDataCheck",
... "parameters": {},
... "metadata": {"rows": [3], "columns": None}
... }
... ]
... }
... ]

class evalml.data_checks.SparsityDataCheck(problem_type, threshold, unique_count_threshold=10)
Check if there are any columns with sparsely populated values in the input.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

‘multiclass’ or ‘time series multiclass’ is the only accepted problem type.
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• threshold (float) – The threshold value, or percentage of each column’s unique values,
below which, a column exhibits sparsity. Should be between 0 and 1.

• unique_count_threshold (int) – The minimum number of times a unique value has to
be present in a column to not be considered “sparse.” Defaults to 10.

Methods

name Return a name describing the data check.
sparsity_score Calculate a sparsity score for the given value counts

by calculating the percentage of unique values that
exceed the count_threshold.

validate Calculate what percentage of each column's unique
values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class
instance.

name(cls)
Return a name describing the data check.

static sparsity_score(col, count_threshold=10)
Calculate a sparsity score for the given value counts by calculating the percentage of unique values that
exceed the count_threshold.

Parameters
• col (pd.Series) – Feature values.

• count_threshold (int) – The number of instances below which a value is considered
sparse. Default is 10.

Returns Sparsity score, or the percentage of the unique values that exceed count_threshold.

Return type (float)

validate(self, X, y=None)
Calculate what percentage of each column’s unique values exceed the count threshold and compare that
percentage to the sparsity threshold stored in the class instance.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored.

Returns dict with a DataCheckWarning if there are any sparse columns.

Return type dict

Examples

>>> import pandas as pd

For multiclass problems, if a column doesn’t have enough representation from unique values, it will be
considered sparse.
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>>> df = pd.DataFrame({
... "sparse": [float(x) for x in range(100)],
... "not_sparse": [float(1) for x in range(100)]
... })
...
>>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=0.5,
→˓ unique_count_threshold=10)
>>> assert sparsity_check.validate(df) == [
... {
... "message": "Input columns ('sparse') for multiclass problem type␣
→˓are too sparse.",
... "data_check_name": "SparsityDataCheck",
... "level": "warning",
... "code": "TOO_SPARSE",
... "details": {
... "columns": ["sparse"],
... "sparsity_score": {"sparse": 0.0},
... "rows": None
... },
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "SparsityDataCheck",
... "parameters": {},
... "metadata": {"columns": ["sparse"], "rows": None}
... }
... ]
... }
... ]

. . . >>> df[“sparse”] = [float(x % 10) for x in range(100)] >>> sparsity_check = Sparsi-
tyDataCheck(problem_type=”multiclass”, threshold=1, unique_count_threshold=5) >>> assert spar-
sity_check.validate(df) == [] . . . >>> sparse_array = pd.Series([1, 1, 1, 2, 2, 3] * 3) >>> assert Sparsi-
tyDataCheck.sparsity_score(sparse_array, count_threshold=5) == 0.6666666666666666

class evalml.data_checks.TargetDistributionDataCheck

Check if the target data contains certain distributions that may need to be transformed prior training to improve
model performance. Uses the Shapiro-Wilks test when the dataset is <=5000 samples, otherwise uses Jarque-
Bera.

Methods

name Return a name describing the data check.
validate Check if the target data has a certain distribution.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the target data has a certain distribution.

Parameters
• X (pd.DataFrame, np.ndarray) – Features. Ignored.
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• y (pd.Series, np.ndarray) – Target data to check for underlying distributions.

Returns List with DataCheckErrors if certain distributions are found in the target data.

Return type dict (DataCheckError)

Examples

>>> import pandas as pd

Targets that exhibit a lognormal distribution will raise a warning for the user to transform the target.

>>> y = [0.946, 0.972, 1.154, 0.954, 0.969, 1.222, 1.038, 0.999, 0.973, 0.897]
>>> target_check = TargetDistributionDataCheck()
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target may have a lognormal distribution.",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "warning",
... "code": "TARGET_LOGNORMAL_DISTRIBUTION",
... "details": {"normalization_method": "shapiro", "statistic": 0.8, "p-
→˓value": 0.045, "columns": None, "rows": None},
... "action_options": [
... {
... "code": "TRANSFORM_TARGET",
... "data_check_name": "TargetDistributionDataCheck",
... "parameters": {},
... "metadata": {
... "transformation_strategy": "lognormal",
... "is_target": True,
... "columns": None,
... "rows": None
... }
... }
... ]
... }
... ]
...
>>> y = pd.Series([1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5])
>>> assert target_check.validate(None, y) == []
...
...
>>> y = pd.Series(pd.date_range("1/1/21", periods=10))
>>> assert target_check.validate(None, y) == [
... {
... "message": "Target is unsupported datetime type. Valid Woodwork␣
→˓logical types include: integer, double, age, age_fractional",
... "data_check_name": "TargetDistributionDataCheck",
... "level": "error",
... "details": {"columns": None, "rows": None, "unsupported_type":
→˓"datetime"},
... "code": "TARGET_UNSUPPORTED_TYPE",
... "action_options": []

(continues on next page)
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... }

... ]

class evalml.data_checks.TargetLeakageDataCheck(pct_corr_threshold=0.95, method='all')
Check if any of the features are highly correlated with the target by using mutual information, Pearson correlation,
and other correlation metrics.

If method=’mutual_info’, this data check uses mutual information and supports all target and feature types. Other
correlation metrics only support binary with numeric and boolean dtypes. This method will return a value in
[-1, 1] if other correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.
Correlation metrics available can be found in Woodwork’s dependence_dict method.

Parameters
• pct_corr_threshold (float) – The correlation threshold to be considered leakage. De-

faults to 0.95.

• method (string) – The method to determine correlation. Use ‘all’ or ‘max’ for the max-
imum correlation, or for specific correlation metrics, use their name (ie ‘mutual_info’ for
mutual information, ‘pearson’ for Pearson correlation, etc). possible methods can be found
in Woodwork’s config, under correlation_metrics. Defaults to ‘all’.

Methods

name Return a name describing the data check.
validate Check if any of the features are highly correlated with

the target by using mutual information, Pearson cor-
relation, and/or Spearman correlation.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if any of the features are highly correlated with the target by using mutual information, Pearson
correlation, and/or Spearman correlation.

If method=’mutual_info’ or ‘method=’max’, supports all target and feature types. Other correlation metrics
only support binary with numeric and boolean dtypes. This method will return a value in [-1, 1] if other
correlation metrics are selected and will returns a value in [0, 1] if mutual information is selected.

Parameters
• X (pd.DataFrame, np.ndarray) – The input features to check.

• y (pd.Series, np.ndarray) – The target data.

Returns dict with a DataCheckWarning if target leakage is detected.

Return type dict (DataCheckWarning)
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Examples

>>> import pandas as pd

Any columns that are strongly correlated with the target will raise a warning. This could be indicative of
data leakage.

>>> X = pd.DataFrame({
... "leak": [10, 42, 31, 51, 61] * 15,
... "x": [42, 54, 12, 64, 12] * 15,
... "y": [13, 5, 13, 74, 24] * 15,
... })
>>> y = pd.Series([10, 42, 31, 51, 40] * 15)
...
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Column 'leak' is 95.0% or more correlated with the␣
→˓target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "code": "TARGET_LEAKAGE",
... "details": {"columns": ["leak"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak"], "rows": None}
... }
... ]
... }
... ]

The default method can be changed to pearson from mutual_info.

>>> X["x"] = y / 2
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8,␣
→˓method="pearson")
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Columns 'leak', 'x' are 80.0% or more correlated with␣
→˓the target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "details": {"columns": ["leak", "x"], "rows": None},
... "code": "TARGET_LEAKAGE",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak", "x"], "rows": None}

(continues on next page)
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... }

... ]

... }

... ]

class evalml.data_checks.TimeSeriesParametersDataCheck(problem_configuration, n_splits)
Checks whether the time series parameters are compatible with data splitting.

If gap + max_delay + forecast_horizon > X.shape[0] // (n_splits + 1)

then the feature engineering window is larger than the smallest split. This will cause the pipeline to create features
from data that does not exist, which will cause errors.

Parameters
• problem_configuration (dict) – Dict containing problem_configuration parameters.

• n_splits (int) – Number of time series splits.

Methods

name Return a name describing the data check.
validate Check if the time series parameters are compatible

with data splitting.

name(cls)
Return a name describing the data check.

validate(self, X, y=None)
Check if the time series parameters are compatible with data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns dict with a DataCheckError if parameters are too big for the split sizes.

Return type dict

Examples

>>> import pandas as pd

The time series parameters have to be compatible with the data passed. If the window size (gap + max_delay
+ forecast_horizon) is greater than or equal to the split size, then an error will be raised.

>>> X = pd.DataFrame({
... "dates": pd.date_range("1/1/21", periods=100),
... "first": [i for i in range(100)],
... })
>>> y = pd.Series([i for i in range(100)])
...
>>> problem_config = {"gap": 7, "max_delay": 2, "forecast_horizon": 12, "time_
→˓index": "dates"}

(continues on next page)
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>>> ts_parameters_check = TimeSeriesParametersDataCheck(problem_
→˓configuration=problem_config, n_splits=7)
>>> assert ts_parameters_check.validate(X, y) == [
... {
... "message": "Since the data has 100 observations, n_splits=7, and a␣
→˓forecast horizon of 12, the smallest "
... "split would have 16 observations. Since 21 (gap + max_
→˓delay + forecast_horizon)"
... " >= 16, then at least one of the splits would be empty␣
→˓by the time it reaches "
... "the pipeline. Please use a smaller number of splits,␣
→˓reduce one or more these "
... "parameters, or collect more data.",
... "data_check_name": "TimeSeriesParametersDataCheck",
... "level": "error",
... "code": "TIMESERIES_PARAMETERS_NOT_COMPATIBLE_WITH_SPLIT",
... "details": {
... "columns": None,
... "rows": None,
... "max_window_size": 21,
... "min_split_size": 16,
... "n_obs": 100,
... "n_splits": 7
... },
... "action_options": []
... }
... ]

class evalml.data_checks.TimeSeriesSplittingDataCheck(problem_type, n_splits)
Checks whether the time series target data is compatible with splitting.

If the target data in the training and validation of every split doesn’t have representation from all classes (for time
series classification problems) this will prevent the estimators from training on all potential outcomes which will
cause errors during prediction.

Parameters
• problem_type (str or ProblemTypes) – Problem type.

• n_splits (int) – Number of time series splits.

Methods

name Return a name describing the data check.
validate Check if the training and validation targets are com-

patible with time series data splitting.

name(cls)
Return a name describing the data check.

validate(self, X, y)
Check if the training and validation targets are compatible with time series data splitting.

Parameters
• X (pd.DataFrame, np.ndarray) – Ignored. Features.
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• y (pd.Series, np.ndarray) – Target data.

Returns dict with a DataCheckError if splitting would result in inadequate class representation.

Return type dict

Example

>>> import pandas as pd

Passing n_splits as 3 means that the data will be segmented into 4 parts to be iterated over for training
and validation splits. The first split results in training indices of [0:25] and validation indices of [25:50].
The training indices of the first split result in only one unique value (0). The third split results in training
indices of [0:75] and validation indices of [75:100]. The validation indices of the third split result in only
one unique value (1).

>>> X = None
>>> y = pd.Series([0 if i < 45 else i % 2 if i < 55 else 1 for i in range(100)])
>>> ts_splitting_check = TimeSeriesSplittingDataCheck("time series binary", 3)
>>> assert ts_splitting_check.validate(X, y) == [
... {
... "message": "Time Series Binary and Time Series Multiclass problem "
... "types require every training and validation split to "
... "have at least one instance of all the target classes. "
... "The following splits are invalid: [1, 3]",
... "data_check_name": "TimeSeriesSplittingDataCheck",
... "level": "error",
... "details": {
... "columns": None, "rows": None,
... "invalid_splits": {
... 1: {"Training": [0, 25]},
... 3: {"Validation": [75, 100]}
... }
... },
... "code": "TIMESERIES_TARGET_NOT_COMPATIBLE_WITH_SPLIT",
... "action_options": []
... }
... ]

class evalml.data_checks.UniquenessDataCheck(problem_type, threshold=0.5)
Check if there are any columns in the input that are either too unique for classification problems or not unique
enough for regression problems.

Parameters
• problem_type (str or ProblemTypes) – The specific problem type to data check for.

e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

• threshold (float) – The threshold to set as an upper bound on uniqueness for classification
type problems or lower bound on for regression type problems. Defaults to 0.50.

Methods
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name Return a name describing the data check.
uniqueness_score Calculate a uniqueness score for the provided field.

NaN values are not considered as unique values in
the calculation.

validate Check if there are any columns in the input that are
too unique in the case of classification problems or
not unique enough in the case of regression problems.

name(cls)
Return a name describing the data check.

static uniqueness_score(col, drop_na=True)
Calculate a uniqueness score for the provided field. NaN values are not considered as unique values in the
calculation.

Based on the Herfindahl-Hirschman Index.

Parameters
• col (pd.Series) – Feature values.

• drop_na (bool) – Whether to drop null values when computing the uniqueness score.
Defaults to True.

Returns Uniqueness score.

Return type (float)

validate(self, X, y=None)
Check if there are any columns in the input that are too unique in the case of classification problems or not
unique enough in the case of regression problems.

Parameters
• X (pd.DataFrame, np.ndarray) – Features.

• y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns
dict with a DataCheckWarning if there are any too unique or not unique enough

columns.

Return type dict

Examples

>>> import pandas as pd

Because the problem type is regression, the column “regression_not_unique_enough” raises a warning for
having just one value.

>>> df = pd.DataFrame({
... "regression_unique_enough": [float(x) for x in range(100)],
... "regression_not_unique_enough": [float(1) for x in range(100)]
... })
...
>>> uniqueness_check = UniquenessDataCheck(problem_type="regression",␣
→˓threshold=0.8) (continues on next page)
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>>> assert uniqueness_check.validate(df) == [
... {
... "message": "Input columns 'regression_not_unique_enough' for␣
→˓regression problem type are not unique enough.",
... "data_check_name": "UniquenessDataCheck",
... "level": "warning",
... "code": "NOT_UNIQUE_ENOUGH",
... "details": {"columns": ["regression_not_unique_enough"],
→˓"uniqueness_score": {"regression_not_unique_enough": 0.0}, "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "parameters": {},
... "data_check_name": "UniquenessDataCheck",
... "metadata": {"columns": ["regression_not_unique_enough"],
→˓"rows": None}
... }
... ]
... }
... ]

For multiclass, the column “regression_unique_enough” has too many unique values and will raise an
appropriate warning. >>> y = pd.Series([1, 1, 1, 2, 2, 3, 3, 3]) >>> uniqueness_check = Unique-
nessDataCheck(problem_type=”multiclass”, threshold=0.8) >>> assert uniqueness_check.validate(df) ==
[ . . . { . . . “message”: “Input columns ‘regression_unique_enough’ for multiclass problem type are too
unique.”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “level”: “warning”, . . . “details”: {
. . . “columns”: [“regression_unique_enough”], . . . “rows”: None, . . . “uniqueness_score”: {“regres-
sion_unique_enough”: 0.99} . . . }, . . . “code”: “TOO_UNIQUE”, . . . “action_options”: [ . . . { . . .
“code”: “DROP_COL”, . . . “data_check_name”: “UniquenessDataCheck”, . . . “parameters”: {}, . . .
“metadata”: {“columns”: [“regression_unique_enough”], “rows”: None} . . . } . . . ] . . . } . . . ] . . .
>>> assert UniquenessDataCheck.uniqueness_score(y) == 0.65625

Demos

Demo datasets.
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Submodules

breast_cancer

Load the breast cancer dataset, which can be used for binary classification problems.

Module Contents

Functions

load_breast_cancer Load breast cancer dataset. Binary classification prob-
lem.

Contents

evalml.demos.breast_cancer.load_breast_cancer()

Load breast cancer dataset. Binary classification problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

churn

Load the churn dataset, which can be used for binary classification problems.

Module Contents

Functions

load_churn Load churn dataset, which can be used for binary classi-
fication problems.

Contents

evalml.demos.churn.load_churn(n_rows=None, verbose=True)
Load churn dataset, which can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)
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diabetes

Load the diabetes dataset, which can be used for regression problems.

Module Contents

Functions

load_diabetes Load diabetes dataset. Used for regression problem.

Contents

evalml.demos.diabetes.load_diabetes()

Load diabetes dataset. Used for regression problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

fraud

Load the credit card fraud dataset, which can be used for binary classification problems.

Module Contents

Functions

load_fraud Load credit card fraud dataset.

Contents

evalml.demos.fraud.load_fraud(n_rows=None, verbose=True)
Load credit card fraud dataset.

The fraud dataset can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)
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weather

The Australian daily-min-termperatures weather dataset.

Module Contents

Functions

load_weather Load the Australian daily-min-termperatures weather
dataset.

Contents

evalml.demos.weather.load_weather()

Load the Australian daily-min-termperatures weather dataset.

Returns X and y

Return type (pd.Dataframe, pd.Series)

wine

Load and return the wine dataset, which can be used for multiclass classification problems.

Module Contents

Functions

load_wine Load wine dataset. Multiclass problem.

Contents

evalml.demos.wine.load_wine()

Load wine dataset. Multiclass problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)
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Package Contents

Functions

load_breast_cancer Load breast cancer dataset. Binary classification prob-
lem.

load_churn Load churn dataset, which can be used for binary classi-
fication problems.

load_diabetes Load diabetes dataset. Used for regression problem.
load_fraud Load credit card fraud dataset.
load_weather Load the Australian daily-min-termperatures weather

dataset.
load_wine Load wine dataset. Multiclass problem.

Contents

evalml.demos.load_breast_cancer()

Load breast cancer dataset. Binary classification problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_churn(n_rows=None, verbose=True)
Load churn dataset, which can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_diabetes()

Load diabetes dataset. Used for regression problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_fraud(n_rows=None, verbose=True)
Load credit card fraud dataset.

The fraud dataset can be used for binary classification problems.

Parameters
• n_rows (int) – Number of rows from the dataset to return

• verbose (bool) – Whether to print information about features and labels

Returns X and y

Return type (pd.Dataframe, pd.Series)
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evalml.demos.load_weather()

Load the Australian daily-min-termperatures weather dataset.

Returns X and y

Return type (pd.Dataframe, pd.Series)

evalml.demos.load_wine()

Load wine dataset. Multiclass problem.

Returns X and y

Return type (pd.Dataframe, pd.Series)

Exceptions

Exceptions used in EvalML.

Submodules

exceptions

Exceptions used in EvalML.

Module Contents

Classes Summary

PartialDependenceErrorCode Enum identifying the type of error encountered in partial
dependence.

PipelineErrorCodeEnum Enum identifying the type of error encountered while
applying a pipeline.

ValidationErrorCode Enum identifying the type of error encountered in hold-
out validation.

Exceptions Summary

Contents

exception evalml.exceptions.exceptions.AutoMLSearchException

Exception raised when all pipelines in an automl batch return a score of NaN for the primary objective.

exception evalml.exceptions.exceptions.ComponentNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a component without fitting first.

exception evalml.exceptions.exceptions.DataCheckInitError

Exception raised when a data check can’t initialize with the parameters given.
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exception evalml.exceptions.exceptions.MethodPropertyNotFoundError

Exception to raise when a class is does not have an expected method or property.

exception evalml.exceptions.exceptions.MissingComponentError

An exception raised when a component is not found in all_components().

exception evalml.exceptions.exceptions.NoPositiveLabelException

Exception when a particular classification label for the ‘positive’ class cannot be found in the column index or
unique values.

exception evalml.exceptions.exceptions.NullsInColumnWarning

Warning thrown when there are null values in the column of interest.

exception evalml.exceptions.exceptions.ObjectiveCreationError

Exception when get_objective tries to instantiate an objective and required args are not provided.

exception evalml.exceptions.exceptions.ObjectiveNotFoundError

Exception to raise when specified objective does not exist.

exception evalml.exceptions.exceptions.ParameterNotUsedWarning(components)
Warning thrown when a pipeline parameter isn’t used in a defined pipeline’s component graph during initializa-
tion.

exception evalml.exceptions.exceptions.PartialDependenceError(message, code)
Exception raised for all errors that partial dependence can raise.

Parameters
• message (str) – descriptive error message

• code (PartialDependenceErrorCode) – code for speicific error

class evalml.exceptions.exceptions.PartialDependenceErrorCode

Enum identifying the type of error encountered in partial dependence.

Attributes

ALL_OTHER_ERRORSall_other_errors
COM-
PUTED_PERCENTILES_TOO_CLOSE

computed_percentiles_too_close

FEA-
TURE_IS_ALL_NANS

feature_is_all_nans

FEA-
TURE_IS_MOSTLY_ONE_VALUE

feature_is_mostly_one_value

FEA-
TURES_ARGUMENT_INCORRECT_TYPES

features_argument_incorrect_types

ICE_PLOT_REQUESTED_FOR_TWO_WAY_PLOTice_plot_requested_for_two_way_partial_dependence_plot
IN-
VALID_CLASS_LABEL

invalid_class_label_requested_for_plot

IN-
VALID_FEATURE_TYPE

invalid_feature_type

PIPELINE_IS_BASELINEpipeline_is_baseline
TOO_MANY_FEATUREStoo_many_features
TWO_WAY_REQUESTED_FOR_DATEStwo_way_requested_for_dates
UNFIT-
TED_PIPELINE

unfitted_pipeline
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Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

exception evalml.exceptions.exceptions.PipelineError(message, code, details=None)
Exception raised for errors that can be raised when applying a pipeline.

Parameters
• message (str) – descriptive error message

• code (PipelineErrorCodeEnum) – code for specific error

• details (dict) – additional details for error

class evalml.exceptions.exceptions.PipelineErrorCodeEnum

Enum identifying the type of error encountered while applying a pipeline.

Attributes

PRE-
DICT_INPUT_SCHEMA_UNEQUAL

predict_input_schema_unequal

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

exception evalml.exceptions.exceptions.PipelineNotFoundError

An exception raised when a particular pipeline is not found in automl search results.

exception evalml.exceptions.exceptions.PipelineNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a pipeline without fitting first.

exception evalml.exceptions.exceptions.PipelineScoreError(exceptions, scored_successfully)
An exception raised when a pipeline errors while scoring any objective in a list of objectives.

Parameters
• exceptions (dict) – A dictionary mapping an objective name (str) to a tuple of the form

(exception, traceback). All of the objectives that errored will be stored here.

• scored_successfully (dict) – A dictionary mapping an objective name (str) to a score
value. All of the objectives that did not error will be stored here.
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class evalml.exceptions.exceptions.ValidationErrorCode

Enum identifying the type of error encountered in holdout validation.

Attributes

IN-
VALID_HOLDOUT_GAP_SEPARATION

invalid_holdout_gap_separation

IN-
VALID_HOLDOUT_LENGTH

invalid_holdout_length

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

Package Contents

Classes Summary

PartialDependenceErrorCode Enum identifying the type of error encountered in partial
dependence.

PipelineErrorCodeEnum Enum identifying the type of error encountered while
applying a pipeline.

ValidationErrorCode Enum identifying the type of error encountered in hold-
out validation.

Exceptions Summary

Contents

exception evalml.exceptions.AutoMLSearchException

Exception raised when all pipelines in an automl batch return a score of NaN for the primary objective.

exception evalml.exceptions.ComponentNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a component without fitting first.

exception evalml.exceptions.DataCheckInitError

Exception raised when a data check can’t initialize with the parameters given.

exception evalml.exceptions.MethodPropertyNotFoundError

Exception to raise when a class is does not have an expected method or property.
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exception evalml.exceptions.MissingComponentError

An exception raised when a component is not found in all_components().

exception evalml.exceptions.NoPositiveLabelException

Exception when a particular classification label for the ‘positive’ class cannot be found in the column index or
unique values.

exception evalml.exceptions.NullsInColumnWarning

Warning thrown when there are null values in the column of interest.

exception evalml.exceptions.ObjectiveCreationError

Exception when get_objective tries to instantiate an objective and required args are not provided.

exception evalml.exceptions.ObjectiveNotFoundError

Exception to raise when specified objective does not exist.

exception evalml.exceptions.ParameterNotUsedWarning(components)
Warning thrown when a pipeline parameter isn’t used in a defined pipeline’s component graph during initializa-
tion.

exception evalml.exceptions.PartialDependenceError(message, code)
Exception raised for all errors that partial dependence can raise.

Parameters
• message (str) – descriptive error message

• code (PartialDependenceErrorCode) – code for speicific error

class evalml.exceptions.PartialDependenceErrorCode

Enum identifying the type of error encountered in partial dependence.

Attributes

ALL_OTHER_ERRORSall_other_errors
COM-
PUTED_PERCENTILES_TOO_CLOSE

computed_percentiles_too_close

FEA-
TURE_IS_ALL_NANS

feature_is_all_nans

FEA-
TURE_IS_MOSTLY_ONE_VALUE

feature_is_mostly_one_value

FEA-
TURES_ARGUMENT_INCORRECT_TYPES

features_argument_incorrect_types

ICE_PLOT_REQUESTED_FOR_TWO_WAY_PLOTice_plot_requested_for_two_way_partial_dependence_plot
IN-
VALID_CLASS_LABEL

invalid_class_label_requested_for_plot

IN-
VALID_FEATURE_TYPE

invalid_feature_type

PIPELINE_IS_BASELINEpipeline_is_baseline
TOO_MANY_FEATUREStoo_many_features
TWO_WAY_REQUESTED_FOR_DATEStwo_way_requested_for_dates
UNFIT-
TED_PIPELINE

unfitted_pipeline

Methods
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name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

exception evalml.exceptions.PipelineError(message, code, details=None)
Exception raised for errors that can be raised when applying a pipeline.

Parameters
• message (str) – descriptive error message

• code (PipelineErrorCodeEnum) – code for specific error

• details (dict) – additional details for error

class evalml.exceptions.PipelineErrorCodeEnum

Enum identifying the type of error encountered while applying a pipeline.

Attributes

PRE-
DICT_INPUT_SCHEMA_UNEQUAL

predict_input_schema_unequal

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

exception evalml.exceptions.PipelineNotFoundError

An exception raised when a particular pipeline is not found in automl search results.

exception evalml.exceptions.PipelineNotYetFittedError

An exception to be raised when predict/predict_proba/transform is called on a pipeline without fitting first.

exception evalml.exceptions.PipelineScoreError(exceptions, scored_successfully)
An exception raised when a pipeline errors while scoring any objective in a list of objectives.

Parameters
• exceptions (dict) – A dictionary mapping an objective name (str) to a tuple of the form

(exception, traceback). All of the objectives that errored will be stored here.

• scored_successfully (dict) – A dictionary mapping an objective name (str) to a score
value. All of the objectives that did not error will be stored here.
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class evalml.exceptions.ValidationErrorCode

Enum identifying the type of error encountered in holdout validation.

Attributes

IN-
VALID_HOLDOUT_GAP_SEPARATION

invalid_holdout_gap_separation

IN-
VALID_HOLDOUT_LENGTH

invalid_holdout_length

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

Model Family

Family of machine learning models.

Submodules

model_family

Enum for family of machine learning models.

Module Contents

Classes Summary

ModelFamily Enum for family of machine learning models.

Contents

class evalml.model_family.model_family.ModelFamily

Enum for family of machine learning models.

Attributes
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ARIMA ARIMA model family.
BASELINE Baseline model family.
CAT-
BOOST

CatBoost model family.

DECI-
SION_TREE

Decision Tree model family.

ENSEM-
BLE

Ensemble model family.

EXPONEN-
TIAL_SMOOTHING

Exponential Smoothing model family.

EX-
TRA_TREES

Extra Trees model family.

K_NEIGHBORSK Nearest Neighbors model family.
LIGHT-
GBM

LightGBM model family.

LIN-
EAR_MODEL

Linear model family.

NONE None
PROPHET Prophet model family.
RAN-
DOM_FOREST

Random Forest model family.

SVM SVM model family.
VARMAX VARMAX model family.
VOW-
PAL_WABBIT

Vowpal Wabbit model family.

XGBOOST XGBoost model family.

Methods

is_tree_estimator Checks whether the estimator's model family uses
trees.

name The name of the Enum member.
value The value of the Enum member.

is_tree_estimator(self )
Checks whether the estimator’s model family uses trees.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.
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utils

Utility methods for EvalML’s model families.

Module Contents

Functions

handle_model_family Handles model_family by either returning the Mod-
elFamily or converting from a string.

Contents

evalml.model_family.utils.handle_model_family(model_family)
Handles model_family by either returning the ModelFamily or converting from a string.

Parameters model_family (str or ModelFamily) – Model type that needs to be handled.

Returns ModelFamily

Raises
• KeyError – If input is not a valid model family.

• ValueError – If input is not a string or ModelFamily object.

Package Contents

Classes Summary

ModelFamily Enum for family of machine learning models.

Functions

handle_model_family Handles model_family by either returning the Mod-
elFamily or converting from a string.

Contents

evalml.model_family.handle_model_family(model_family)
Handles model_family by either returning the ModelFamily or converting from a string.

Parameters model_family (str or ModelFamily) – Model type that needs to be handled.

Returns ModelFamily

Raises
• KeyError – If input is not a valid model family.
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• ValueError – If input is not a string or ModelFamily object.

class evalml.model_family.ModelFamily

Enum for family of machine learning models.

Attributes

ARIMA ARIMA model family.
BASELINE Baseline model family.
CAT-
BOOST

CatBoost model family.

DECI-
SION_TREE

Decision Tree model family.

ENSEM-
BLE

Ensemble model family.

EXPONEN-
TIAL_SMOOTHING

Exponential Smoothing model family.

EX-
TRA_TREES

Extra Trees model family.

K_NEIGHBORSK Nearest Neighbors model family.
LIGHT-
GBM

LightGBM model family.

LIN-
EAR_MODEL

Linear model family.

NONE None
PROPHET Prophet model family.
RAN-
DOM_FOREST

Random Forest model family.

SVM SVM model family.
VARMAX VARMAX model family.
VOW-
PAL_WABBIT

Vowpal Wabbit model family.

XGBOOST XGBoost model family.

Methods

is_tree_estimator Checks whether the estimator's model family uses
trees.

name The name of the Enum member.
value The value of the Enum member.

is_tree_estimator(self )
Checks whether the estimator’s model family uses trees.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.
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Model Understanding

Model understanding tools.

Subpackages

prediction_explanations

Prediction explanation tools.

Submodules

explainers

Prediction explanation tools.

Module Contents

Classes Summary

ExplainPredictionsStage Enum for prediction stage.

Functions

abs_error Computes the absolute error per data point for regression
problems.

cross_entropy Computes Cross Entropy Loss per data point for classi-
fication problems.

explain_predictions Creates a report summarizing the top contributing fea-
tures for each data point in the input features.

explain_predictions_best_worst Creates a report summarizing the top contributing fea-
tures for the best and worst points in the dataset as mea-
sured by error to true labels.

Attributes Summary

DEFAULT_METRICS
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Contents

evalml.model_understanding.prediction_explanations.explainers.abs_error(y_true, y_pred)
Computes the absolute error per data point for regression problems.

Parameters
• y_true (pd.Series) – True labels.

• y_pred (pd.Series) – Predicted values.

Returns np.ndarray

evalml.model_understanding.prediction_explanations.explainers.cross_entropy(y_true,
y_pred_proba)

Computes Cross Entropy Loss per data point for classification problems.

Parameters
• y_true (pd.Series) – True labels encoded as ints.

• y_pred_proba (pd.DataFrame) – Predicted probabilities. One column per class.

Returns np.ndarray

evalml.model_understanding.prediction_explanations.explainers.DEFAULT_METRICS

evalml.model_understanding.prediction_explanations.explainers.explain_predictions(pipeline,
in-
put_features,
y, in-
dices_to_explain,
top_k_features=3,
in-
clude_explainer_values=False,
in-
clude_expected_value=False,
out-
put_format='text',
train-
ing_data=None,
train-
ing_target=None,
algo-
rithm='shap')

Creates a report summarizing the top contributing features for each data point in the input features.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Dataframe of input data to evaluate the pipeline on.

• y (pd.Series) – Labels for the input data.
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• indices_to_explain (list[int]) – List of integer indices to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point. Default is 3.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• include_expected_value (bool) – Whether the expected value should be included in the
table. Default is False.

• output_format (str) – Either “text”, “dict”, or “dataframe”. Default is “text”.

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features to each prediction for each row of input_features.

The report will include the feature names, prediction contribution, and explainer value
(optional).

Return type str, dict, or pd.DataFrame

Raises
• ValueError – if input_features is empty.

• ValueError – if an output_format outside of “text”, “dict” or “dataframe is provided.

• ValueError – if the requested index falls outside the input_feature’s boundaries.

evalml.model_understanding.prediction_explanations.explainers.explain_predictions_best_worst(pipeline,
in-
put_features,
y_true,
num_to_explain=5,
top_k_features=3,
in-
clude_explainer_values=False,
met-
ric=None,
out-
put_format='text',
call-
back=None,
train-
ing_data=None,
train-
ing_target=None,
al-
go-
rithm='shap')

Creates a report summarizing the top contributing features for the best and worst points in the dataset as measured
by error to true labels.
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XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Input data to evaluate the pipeline on.

• y_true (pd.Series) – True labels for the input data.

• num_to_explain (int) – How many of the best, worst, random data points to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• metric (callable) – The metric used to identify the best and worst points in the dataset.
Function must accept the true labels and predicted value or probabilities as the only argu-
ments and lower values must be better. By default, this will be the absolute error for regres-
sion problems and cross entropy loss for classification problems.

• output_format (str) – Either “text” or “dict”. Default is “text”.

• callback (callable) – Function to be called with incremental updates. Has the following
parameters: - progress_stage: stage of computation - time_elapsed: total time in seconds
that has elapsed since start of call

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features for the best/worst predictions in the input_features.

For each of the best/worst rows of input_features, the predicted values, true labels, metric
value, feature names, prediction contribution, and explainer value (optional) will be listed.

Return type str, dict, or pd.DataFrame

Raises
• ValueError – If input_features does not have more than twice the requested features to

explain.

• ValueError – If y_true and input_features have mismatched lengths.

• ValueError – If an output_format outside of “text”, “dict” or “dataframe is provided.

• PipelineScoreError – If the pipeline errors out while scoring.

class
evalml.model_understanding.prediction_explanations.explainers.ExplainPredictionsStage

Enum for prediction stage.

464 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Attributes

COM-
PUTE_EXPLAINER_VALUES_STAGE

compute_explainer_value_stage

COM-
PUTE_FEATURE_STAGE

compute_feature_stage

DONE done
PRE-
DICT_STAGE

predict_stage

PREPRO-
CESS-
ING_STAGE

preprocessing_stage

Methods

name The name of the Enum member.
value The value of the Enum member.

name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

Package Contents

Functions

explain_predictions Creates a report summarizing the top contributing fea-
tures for each data point in the input features.

explain_predictions_best_worst Creates a report summarizing the top contributing fea-
tures for the best and worst points in the dataset as mea-
sured by error to true labels.

Contents

evalml.model_understanding.prediction_explanations.explain_predictions(pipeline, input_features,
y, indices_to_explain,
top_k_features=3, in-
clude_explainer_values=False,
in-
clude_expected_value=False,
output_format='text',
training_data=None,
training_target=None,
algorithm='shap')

Creates a report summarizing the top contributing features for each data point in the input features.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support

5.14. Utils 465



EvalML Documentation, Release 0.80.0

any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Dataframe of input data to evaluate the pipeline on.

• y (pd.Series) – Labels for the input data.

• indices_to_explain (list[int]) – List of integer indices to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point. Default is 3.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• include_expected_value (bool) – Whether the expected value should be included in the
table. Default is False.

• output_format (str) – Either “text”, “dict”, or “dataframe”. Default is “text”.

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features to each prediction for each row of input_features.

The report will include the feature names, prediction contribution, and explainer value
(optional).

Return type str, dict, or pd.DataFrame

Raises
• ValueError – if input_features is empty.

• ValueError – if an output_format outside of “text”, “dict” or “dataframe is provided.

• ValueError – if the requested index falls outside the input_feature’s boundaries.
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evalml.model_understanding.prediction_explanations.explain_predictions_best_worst(pipeline,
in-
put_features,
y_true,
num_to_explain=5,
top_k_features=3,
in-
clude_explainer_values=False,
met-
ric=None,
out-
put_format='text',
call-
back=None,
train-
ing_data=None,
train-
ing_target=None,
algo-
rithm='shap')

Creates a report summarizing the top contributing features for the best and worst points in the dataset as measured
by error to true labels.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Input data to evaluate the pipeline on.

• y_true (pd.Series) – True labels for the input data.

• num_to_explain (int) – How many of the best, worst, random data points to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• metric (callable) – The metric used to identify the best and worst points in the dataset.
Function must accept the true labels and predicted value or probabilities as the only argu-
ments and lower values must be better. By default, this will be the absolute error for regres-
sion problems and cross entropy loss for classification problems.

• output_format (str) – Either “text” or “dict”. Default is “text”.

• callback (callable) – Function to be called with incremental updates. Has the following
parameters: - progress_stage: stage of computation - time_elapsed: total time in seconds
that has elapsed since start of call

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.
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• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features for the best/worst predictions in the input_features.

For each of the best/worst rows of input_features, the predicted values, true labels, metric
value, feature names, prediction contribution, and explainer value (optional) will be listed.

Return type str, dict, or pd.DataFrame

Raises
• ValueError – If input_features does not have more than twice the requested features to

explain.

• ValueError – If y_true and input_features have mismatched lengths.

• ValueError – If an output_format outside of “text”, “dict” or “dataframe is provided.

• PipelineScoreError – If the pipeline errors out while scoring.

Submodules

decision_boundary

Model Understanding for decision boundary on Binary Classification problems.

Module Contents

Functions

find_confusion_matrix_per_thresholds Gets the confusion matrix and histogram bins for each
threshold as well as the best threshold per objective.
Only works with Binary Classification Pipelines.

Contents

evalml.model_understanding.decision_boundary.find_confusion_matrix_per_thresholds(pipeline,
X, y,
n_bins=None,
top_k=5,
to_json=False)

Gets the confusion matrix and histogram bins for each threshold as well as the best threshold per objective. Only
works with Binary Classification Pipelines.

Parameters
• pipeline (PipelineBase) – A fitted Binary Classification Pipeline to get the confusion

matrix with.

• X (pd.DataFrame) – The input features.
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• y (pd.Series) – The input target.

• n_bins (int) – The number of bins to use to calculate the threshold values. Defaults to
None, which will default to using Freedman-Diaconis rule.

• top_k (int) – The maximum number of row indices per bin to include as samples. -1
includes all row indices that fall between the bins. Defaults to 5.

• to_json (bool) – Whether or not to return a json output. If False, returns the (DataFrame,
dict) tuple, otherwise returns a json.

Returns
The dataframe has the actual positive histogram, actual negative histogram, the confusion

matrix, and a sample of rows that fall in the bin, all for each threshold value. The threshold
value, represented through the dataframe index, represents the cutoff threshold at that value.
The dictionary contains the ideal threshold and score per objective, keyed by objective name.
If json, returns the info for both the dataframe and dictionary as a json output.

Return type (tuple(pd.DataFrame, dict)), json)

Raises ValueError – If the pipeline isn’t a binary classification pipeline or isn’t yet fitted on data.

feature_explanations

Human Readable Pipeline Explanations.

Module Contents

Functions

get_influential_features Finds the most influential features as well as any detri-
mental features from a dataframe of feature importances.

readable_explanation Outputs a human-readable explanation of trained
pipeline behavior.

Contents

evalml.model_understanding.feature_explanations.get_influential_features(imp_df,
max_features=5,
min_importance_threshold=0.05,
lin-
ear_importance=False)

Finds the most influential features as well as any detrimental features from a dataframe of feature importances.

Parameters
• imp_df (pd.DataFrame) – DataFrame containing feature names and associated impor-

tances.

• max_features (int) – The maximum number of features to include in an explanation.
Defaults to 5.

• min_importance_threshold (float) – The minimum percent of total importance a single
feature can have to be considered important. Defaults to 0.05.
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• linear_importance (bool) – When True, negative feature importances are not considered
detrimental. Defaults to False.

Returns Lists of feature names corresponding to heavily influential, somewhat influential, and detri-
mental features, respectively.

Return type (list, list, list)

evalml.model_understanding.feature_explanations.readable_explanation(pipeline, X=None,
y=None, impor-
tance_method='permutation',
max_features=5,
min_importance_threshold=0.05,
objective='auto')

Outputs a human-readable explanation of trained pipeline behavior.

Parameters
• pipeline (PipelineBase) – The pipeline to explain.

• X (pd.DataFrame) – If importance_method is permutation, the holdout X data to compute
importance with. Ignored otherwise.

• y (pd.Series) – The holdout y data, used to obtain the name of the target class. If impor-
tance_method is permutation, used to compute importance with.

• importance_method (str) – The method of determining feature importance. One of [“per-
mutation”, “feature”]. Defaults to “permutation”.

• max_features (int) – The maximum number of influential features to include in an expla-
nation. This does not affect the number of detrimental features reported. Defaults to 5.

• min_importance_threshold (float) – The minimum percent of total importance a single
feature can have to be considered important. Defaults to 0.05.

• objective (str, ObjectiveBase) – If importance_method is permutation, the objective
to compute importance with. Ignored otherwise, defaults to “auto”.

Raises ValueError – if any arguments passed in are invalid or the pipeline is not fitted.

force_plots

Force plots.

Module Contents

Functions

force_plot Function to generate the data required to build a force
plot.

graph_force_plot Function to generate force plots for the desired rows of
the training data.
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Contents

evalml.model_understanding.force_plots.force_plot(pipeline, rows_to_explain, training_data, y)
Function to generate the data required to build a force plot.

Parameters
• pipeline (PipelineBase) – The pipeline to generate the force plot for.

• rows_to_explain (list[int]) – A list of the indices of the training_data to explain.

• training_data (pandas.DataFrame) – The data used to train the pipeline.

• y (pandas.Series) – The target data.

Returns
list of dictionaries where each dict contains force plot data. Each dictionary entry repre-

sents the explanations for a single row.

For single row binary force plots:
[{‘malignant’: {‘expected_value’: 0.37, ’feature_names’: [‘worst concave points’,

‘worst perimeter’, ‘worst radius’], ‘shap_values’: [0.09, 0.09, 0.08], ‘plot’: Additive-
ForceVisualizer}]

For two row binary force plots:
[{‘malignant’: {‘expected_value’: 0.37, ’feature_names’: [‘worst concave points’,

‘worst perimeter’, ‘worst radius’], ‘shap_values’: [0.09, 0.09, 0.08], ‘plot’: Additive-
ForceVisualizer},

{‘malignant’: {‘expected_value’: 0.29, ’feature_names’: [‘worst concave points’,
‘worst perimeter’, ‘worst radius’], ‘shap_values’: [0.05, 0.03, 0.02], ‘plot’: Additive-
ForceVisualizer}]

Return type list[dict]

Raises
• TypeError – If rows_to_explain is not a list.

• TypeError – If all values in rows_to_explain aren’t integers.

evalml.model_understanding.force_plots.graph_force_plot(pipeline, rows_to_explain, training_data, y,
matplotlib=False)

Function to generate force plots for the desired rows of the training data.

Parameters
• pipeline (PipelineBase) – The pipeline to generate the force plot for.

• rows_to_explain (list[int]) – A list of the indices indicating which of the rows of the
training_data to explain.

• training_data (pandas.DataFrame) – The data used to train the pipeline.

• y (pandas.Series) – The target data for the pipeline.

• matplotlib (bool) – flag to display the force plot using matplotlib (outside of jupyter)
Defaults to False.

Returns
The same as force_plot(), but with an additional key in each dictionary for the plot.

5.14. Utils 471



EvalML Documentation, Release 0.80.0

Return type list[dict[shap.AdditiveForceVisualizer]]

metrics

Standard metrics used for model understanding.

Module Contents

Functions

check_distribution Determines if the distribution of the predicted data is
likely to match that of the ground truth data.

confusion_matrix Confusion matrix for binary and multiclass classifica-
tion.

graph_confusion_matrix Generate and display a confusion matrix plot.
graph_precision_recall_curve Generate and display a precision-recall plot.
graph_roc_curve Generate and display a Receiver Operating Characteris-

tic (ROC) plot for binary and multiclass classification
problems.

normalize_confusion_matrix Normalizes a confusion matrix.
precision_recall_curve Given labels and binary classifier predicted proba-

bilities, compute and return the data representing a
precision-recall curve.

roc_curve Given labels and classifier predicted probabilities, com-
pute and return the data representing a Receiver Operat-
ing Characteristic (ROC) curve. Works with binary or
multiclass problems.

Contents

evalml.model_understanding.metrics.check_distribution(y_true, y_pred, problem_type, threshold=0.1)
Determines if the distribution of the predicted data is likely to match that of the ground truth data.

Will use a different statistical test based on the given problem type: - Classification (Binary or Multiclass) -
chi squared test - Regression - Kolmogorov-Smirnov test - Time Series Regression - Wilcoxon signed-rank test
:param y_true: The ground truth data. :type y_true: pd.Series :param y_pred: Predictions from a pipeline. :type
y_pred: pd.Series :param problem_type: The pipeline’s problem type, used to determine the method. :type
problem_type: str or ProblemType :param threshold: The threshold for the p value where we choose to accept
or reject the null hypothesis.

Should be between 0 and 1, non-inclusive. Defaults to 0.1.

Returns 0 if the distribution of predicted values is not likely to match the true distribution, 1 if it is.

Return type int

evalml.model_understanding.metrics.confusion_matrix(y_true, y_predicted, normalize_method='true')
Confusion matrix for binary and multiclass classification.

Parameters
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• y_true (pd.Series or np.ndarray) – True binary labels.

• y_predicted (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

Returns Confusion matrix. The column header represents the predicted labels while row header
represents the actual labels.

Return type pd.DataFrame

evalml.model_understanding.metrics.graph_confusion_matrix(y_true, y_pred,
normalize_method='true',
title_addition=None)

Generate and display a confusion matrix plot.

If normalize_method is set, hover text will show raw count, otherwise hover text will show count normalized
with method ‘true’.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

• title_addition (str) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the confusion matrix plot generated.

evalml.model_understanding.metrics.graph_precision_recall_curve(y_true, y_pred_proba,
title_addition=None)

Generate and display a precision-recall plot.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• title_addition (str or None) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the precision-recall plot generated

evalml.model_understanding.metrics.graph_roc_curve(y_true, y_pred_proba,
custom_class_names=None,
title_addition=None)

Generate and display a Receiver Operating Characteristic (ROC) plot for binary and multiclass classification
problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a classifier, before
thresholding has been applied. Note this should a one dimensional array with the predicted
probability for the “true” label in the binary case.
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• custom_class_names (list or None) – If not None, custom labels for classes. Defaults
to None.

• title_addition (str or None) – if not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the ROC plot generated

Raises ValueError – If the number of custom class names does not match number of classes in the
input data.

evalml.model_understanding.metrics.normalize_confusion_matrix(conf_mat,
normalize_method='true')

Normalizes a confusion matrix.

Parameters
• conf_mat (pd.DataFrame or np.ndarray) – Confusion matrix to normalize.

• normalize_method ({'true', 'pred', 'all'}) – Normalization method. Supported op-
tions are: ‘true’ to normalize by row, ‘pred’ to normalize by column, or ‘all’ to normalize by
all values. Defaults to ‘true’.

Returns normalized version of the input confusion matrix. The column header represents the pre-
dicted labels while row header represents the actual labels.

Return type pd.DataFrame

Raises ValueError – If configuration is invalid, or if the sum of a given axis is zero and normaliza-
tion by axis is specified.

evalml.model_understanding.metrics.precision_recall_curve(y_true, y_pred_proba, pos_label_idx=-
1)

Given labels and binary classifier predicted probabilities, compute and return the data representing a precision-
recall curve.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• pos_label_idx (int) – the column index corresponding to the positive class. If predicted
probabilities are two-dimensional, this will be used to access the probabilities for the positive
class.

Returns
Dictionary containing metrics used to generate a precision-recall plot, with the following keys:

• precision: Precision values.

• recall: Recall values.

• thresholds: Threshold values used to produce the precision and recall.

• auc_score: The area under the ROC curve.

Return type list

Raises NoPositiveLabelException – If predicted probabilities do not contain a column at the
specified label.

474 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

evalml.model_understanding.metrics.roc_curve(y_true, y_pred_proba)
Given labels and classifier predicted probabilities, compute and return the data representing a Receiver Operating
Characteristic (ROC) curve. Works with binary or multiclass problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or pd.DataFrame or np.ndarray) – Predictions from a
classifier, before thresholding has been applied.

Returns
A list of dictionaries (with one for each class) is returned. Binary classification problems return a list with one dictionary.

Each dictionary contains metrics used to generate an ROC plot with the following keys:

• fpr_rate: False positive rate.

• tpr_rate: True positive rate.

• threshold: Threshold values used to produce each pair of true/false positive rates.

• auc_score: The area under the ROC curve.

Return type list(dict)

partial_dependence_functions

Top level functions for running partial dependence.

Module Contents

Functions

graph_partial_dependence Create an one-way or two-way partial dependence plot.
partial_dependence Calculates one or two-way partial dependence.

Contents

evalml.model_understanding.partial_dependence_functions.graph_partial_dependence(pipeline,
X, features,
class_label=None,
grid_resolution=100,
kind='average')

Create an one-way or two-way partial dependence plot.

Passing a single integer or string as features will create a one-way partial dependence plot with the feature val-
ues plotted against the partial dependence. Passing features a tuple of int/strings will create a two-way partial
dependence plot with a contour of feature[0] in the y-axis, feature[1] in the x-axis and the partial dependence in
the z-axis.

Parameters
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• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at.

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
strings, it must contain valid column int/names in X.

• class_label (string, optional) – Name of class to plot for multiclass problems. If
None, will plot the partial dependence for each class. This argument does not change be-
havior for regression or binary classification pipelines. For binary classification, the partial
dependence for the positive label will always be displayed. Defaults to None.

• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot.

• kind ({'average', 'individual', 'both'}) – Type of partial dependence to plot. ‘av-
erage’ creates a regular partial dependence (PD) graph, ‘individual’ creates an individual
conditional expectation (ICE) plot, and ‘both’ creates a single-figure PD and ICE plot. ICE
plots can only be shown for one-way partial dependence plots.

Returns figure object containing the partial dependence data for plotting

Return type plotly.graph_objects.Figure

Raises
• PartialDependenceError – if a graph is requested for a class name that isn’t present in

the pipeline.

• PartialDependenceError – if an ICE plot is requested for a two-way partial dependence.

evalml.model_understanding.partial_dependence_functions.partial_dependence(pipeline, X,
features,
percentiles=(0.05,
0.95),
grid_resolution=100,
kind='average',
fast_mode=False,
X_train=None,
y_train=None)

Calculates one or two-way partial dependence.

If a single integer or string is given for features, one-way partial dependence is calculated. If a tuple of two
integers or strings is given, two-way partial dependence is calculated with the first feature in the y-axis and
second feature in the x-axis.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
int/strings, it must contain valid column integers/names in X.

• percentiles (tuple[float]) – The lower and upper percentile used to create the extreme
values for the grid. Must be in [0, 1]. Defaults to (0.05, 0.95).
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• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot. If
this value is less than the maximum number of categories present in categorical data within
X, it will be set to the max number of categories + 1. Defaults to 100.

• kind ({'average', 'individual', 'both'}) – The type of predictions to return. ‘individ-
ual’ will return the predictions for all of the points in the grid for each sample in X. ‘average’
will return the predictions for all of the points in the grid but averaged over all of the samples
in X.

• fast_mode (bool, optional) – Whether or not performance optimizations should be used
for partial dependence calculations. Defaults to False. Note that user-specified components
may not produce correct partial dependence results, so fast mode should only be used with
EvalML-native components. Additionally, some components are not compatible with fast
mode; in those cases, an error will be raised indicating that fast mode should not be used.

• X_train (pd.DataFrame, np.ndarray) – The data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

• y_train (pd.Series, np.ndarray) – The target data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

Returns
When kind=’average’: DataFrame with averaged predictions for all points in the grid averaged
over all samples of X and the values used to calculate those predictions.

When kind=’individual’: DataFrame with individual predictions for all points in the grid for each
sample of X and the values used to calculate those predictions. If a two-way partial dependence is
calculated, then the result is a list of DataFrames with each DataFrame representing one sample’s
predictions.

When kind=’both’: A tuple consisting of the averaged predictions (in a DataFrame) over all
samples of X and the individual predictions (in a list of DataFrames) for each sample of X.

In the one-way case: The dataframe will contain two columns, “feature_values” (grid points
at which the partial dependence was calculated) and “partial_dependence” (the partial depen-
dence at that feature value). For classification problems, there will be a third column called
“class_label” (the class label for which the partial dependence was calculated). For binary clas-
sification, the partial dependence is only calculated for the “positive” class.

In the two-way case: The data frame will contain grid_resolution number of columns and rows
where the index and column headers are the sampled values of the first and second features,
respectively, used to make the partial dependence contour. The values of the data frame contain
the partial dependence data for each feature value pair.

Return type pd.DataFrame, list(pd.DataFrame), or tuple(pd.DataFrame, list(pd.DataFrame))

Raises
• ValueError – Error during call to scikit-learn’s partial dependence method.

• Exception – All other errors during calculation.

• PartialDependenceError – if the user provides a tuple of not exactly two features.

• PartialDependenceError – if the provided pipeline isn’t fitted.

• PartialDependenceError – if the provided pipeline is a Baseline pipeline.

• PartialDependenceError – if any of the features passed in are completely NaN

• PartialDependenceError – if any of the features are low-variance. Defined as having one
value occurring more than the upper percentile passed by the user. By default 95%.
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permutation_importance

Permutation importance methods.

Module Contents

Functions

calculate_permutation_importance Calculates permutation importance for features.
calculate_permutation_importance_one_column Calculates permutation importance for one column in

the original dataframe.
graph_permutation_importance Generate a bar graph of the pipeline's permutation im-

portance.

Contents

evalml.model_understanding.permutation_importance.calculate_permutation_importance(pipeline,
X, y, ob-
jective,
n_repeats=5,
n_jobs=None,
ran-
dom_seed=0)

Calculates permutation importance for features.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type pd.DataFrame

Raises ValueError – If objective cannot be used with the given pipeline.
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evalml.model_understanding.permutation_importance.calculate_permutation_importance_one_column(pipeline,
X,
y,
col_name,
ob-
jec-
tive,
n_repeats=5,
fast=True,
pre-
com-
puted_features=None,
ran-
dom_seed=0)

Calculates permutation importance for one column in the original dataframe.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• col_name (str, int) – The column in X to calculate permutation importance for.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• fast (bool) – Whether to use the fast method of calculating the permutation importance or
not. Defaults to True.

• precomputed_features (pd.DataFrame) – Precomputed features necessary to calculate
permutation importance using the fast method. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type float

Raises
• ValueError – If pipeline does not support fast permutation importance calculation.

• ValueError – If precomputed_features is None.

evalml.model_understanding.permutation_importance.graph_permutation_importance(pipeline, X,
y, objective,
impor-
tance_threshold=0)

Generate a bar graph of the pipeline’s permutation importance.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.
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• importance_threshold (float, optional) – If provided, graph features with a permu-
tation importance whose absolute value is larger than importance_threshold. Defaults to 0.

Returns plotly.Figure, a bar graph showing features and their respective permutation importance.

Raises ValueError – If importance_threshold is not greater than or equal to 0.

visualizations

Visualization functions for model understanding.

Module Contents

Functions

binary_objective_vs_threshold Computes objective score as a function of potential bi-
nary classification decision thresholds for a fitted binary
classification pipeline.

decision_tree_data_from_estimator Return data for a fitted tree in a restructured format.
decision_tree_data_from_pipeline Return data for a fitted pipeline in a restructured format.
get_linear_coefficients Returns a dataframe showing the features with the great-

est predictive power for a linear model.
get_prediction_vs_actual_data Combines y_true and y_pred into a single

dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

get_prediction_vs_actual_over_time_data Get the data needed for the predic-
tion_vs_actual_over_time plot.

graph_binary_objective_vs_threshold Generates a plot graphing objective score vs. decision
thresholds for a fitted binary classification pipeline.

graph_prediction_vs_actual Generate a scatter plot comparing the true and predicted
values. Used for regression plotting.

graph_prediction_vs_actual_over_time Plot the target values and predictions against time on the
x-axis.

graph_t_sne Plot high dimensional data into lower dimensional space
using t-SNE.

t_sne Get the transformed output after fitting X to the embed-
ded space using t-SNE.

visualize_decision_tree Generate an image visualizing the decision tree.

Contents

evalml.model_understanding.visualizations.binary_objective_vs_threshold(pipeline, X, y,
objective, steps=100)

Computes objective score as a function of potential binary classification decision thresholds for a fitted binary
classification pipeline.

Parameters
• pipeline (BinaryClassificationPipeline obj) – Fitted binary classification

pipeline.
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• X (pd.DataFrame) – The input data used to compute objective score.

• y (pd.Series) – The target labels.

• objective (ObjectiveBase obj, str) – Objective used to score.

• steps (int) – Number of intervals to divide and calculate objective score at.

Returns DataFrame with thresholds and the corresponding objective score calculated at each thresh-
old.

Return type pd.DataFrame

Raises
• ValueError – If objective is not a binary classification objective.

• ValueError – If objective’s score_needs_proba is not False.

evalml.model_understanding.visualizations.decision_tree_data_from_estimator(estimator)
Return data for a fitted tree in a restructured format.

Parameters estimator (ComponentBase) – A fitted DecisionTree-based estimator.

Returns An OrderedDict of OrderedDicts describing a tree structure.

Return type OrderedDict

Raises
• ValueError – If estimator is not a decision tree-based estimator.

• NotFittedError – If estimator is not yet fitted.

evalml.model_understanding.visualizations.decision_tree_data_from_pipeline(pipeline_)
Return data for a fitted pipeline in a restructured format.

Parameters pipeline (PipelineBase) – A pipeline with a DecisionTree-based estimator.

Returns An OrderedDict of OrderedDicts describing a tree structure.

Return type OrderedDict

Raises
• ValueError – If estimator is not a decision tree-based estimator.

• NotFittedError – If estimator is not yet fitted.

evalml.model_understanding.visualizations.get_linear_coefficients(estimator, features=None)
Returns a dataframe showing the features with the greatest predictive power for a linear model.

Parameters
• estimator (Estimator) – Fitted linear model family estimator.

• features (list[str]) – List of feature names associated with the underlying data.

Returns Displaying the features by importance.

Return type pd.DataFrame

Raises
• ValueError – If the model is not a linear model.

• NotFittedError – If the model is not yet fitted.
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evalml.model_understanding.visualizations.get_prediction_vs_actual_data(y_true, y_pred, out-
lier_threshold=None)

Combines y_true and y_pred into a single dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

Parameters
• y_true (pd.Series, or np.ndarray) – The real target values of the data

• y_pred (pd.Series, or np.ndarray) – The predicted values outputted by the regression
model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns
• prediction: Predicted values from regression model.

• actual: Real target values.

• outlier: Colors indicating which values are in the threshold for what is considered an outlier
value.

Return type pd.DataFrame with the following columns

Raises ValueError – If threshold is not positive.

evalml.model_understanding.visualizations.get_prediction_vs_actual_over_time_data(pipeline,
X, y,
X_train,
y_train,
dates)

Get the data needed for the prediction_vs_actual_over_time plot.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions.

• y (pd.Series) – Target values to compare predictions against.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

Returns Predictions vs. time.

Return type pd.DataFrame

evalml.model_understanding.visualizations.graph_binary_objective_vs_threshold(pipeline, X, y,
objective,
steps=100)

Generates a plot graphing objective score vs. decision thresholds for a fitted binary classification pipeline.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame) – The input data used to score and compute scores
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• y (pd.Series) – The target labels

• objective (ObjectiveBase obj, str) – Objective used to score, shown on the y-axis
of the graph

• steps (int) – Number of intervals to divide and calculate objective score at

Returns plotly.Figure representing the objective score vs. threshold graph generated

evalml.model_understanding.visualizations.graph_prediction_vs_actual(y_true, y_pred,
outlier_threshold=None)

Generate a scatter plot comparing the true and predicted values. Used for regression plotting.

Parameters
• y_true (pd.Series) – The real target values of the data.

• y_pred (pd.Series) – The predicted values outputted by the regression model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns plotly.Figure representing the predicted vs. actual values graph

Raises ValueError – If threshold is not positive.

evalml.model_understanding.visualizations.graph_prediction_vs_actual_over_time(pipeline, X,
y, X_train,
y_train,
dates, sin-
gle_series=None)

Plot the target values and predictions against time on the x-axis.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions. If problem is multiseries,
X should be stacked.

• y (pd.Series) – Target values to compare predictions against. If problem is multiseries, y
should be stacked.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

• single_series (str) – A single series id value to plot just one series in a multiseries
dataset. Defaults to None.

Returns Showing the prediction vs actual over time.

Return type plotly.Figure

Raises ValueError – If the pipeline is not a time-series regression pipeline.

evalml.model_understanding.visualizations.graph_t_sne(X, n_components=2, perplexity=30.0,
learning_rate=200.0, metric='euclidean',
marker_line_width=2, marker_size=7,
**kwargs)
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Plot high dimensional data into lower dimensional space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int) – Dimension of the embedded space. Defaults to 2.

• perplexity (float) – Related to the number of nearest neighbors that is used in other
manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider
selecting a value between 5 and 50. Defaults to 30.

• learning_rate (float) – Usually in the range [10.0, 1000.0]. If the cost function gets
stuck in a bad local minimum, increasing the learning rate may help. Must be positive.
Defaults to 200.

• metric (str) – The metric to use when calculating distance between instances in a feature
array. The default is “euclidean” which is interpreted as the squared euclidean distance.

• marker_line_width (int) – Determines the line width of the marker boundary. Defaults
to 2.

• marker_size (int) – Determines the size of the marker. Defaults to 7.

• kwargs – Arbitrary keyword arguments.

Returns Figure representing the transformed data.

Return type plotly.Figure

Raises ValueError – If marker_line_width or marker_size are not valid values.

evalml.model_understanding.visualizations.t_sne(X, n_components=2, perplexity=30.0,
learning_rate=200.0, metric='euclidean', **kwargs)

Get the transformed output after fitting X to the embedded space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int, optional) – Dimension of the embedded space.

• perplexity (float, optional) – Related to the number of nearest neighbors that is used
in other manifold learning algorithms. Larger datasets usually require a larger perplexity.
Consider selecting a value between 5 and 50.

• learning_rate (float, optional) – Usually in the range [10.0, 1000.0]. If the cost
function gets stuck in a bad local minimum, increasing the learning rate may help.

• metric (str, optional) – The metric to use when calculating distance between instances
in a feature array.

• kwargs – Arbitrary keyword arguments.

Returns TSNE output.

Return type np.ndarray (n_samples, n_components)

Raises ValueError – If specified parameters are not valid values.

evalml.model_understanding.visualizations.visualize_decision_tree(estimator, max_depth=None,
rotate=False, filled=False,
filepath=None)

Generate an image visualizing the decision tree.
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Parameters
• estimator (ComponentBase) – A fitted DecisionTree-based estimator.

• max_depth (int, optional) – The depth to which the tree should be displayed. If set to
None (as by default), tree is fully generated.

• rotate (bool, optional) – Orient tree left to right rather than top-down.

• filled (bool, optional) – Paint nodes to indicate majority class for classification, ex-
tremity of values for regression, or purity of node for multi-output.

• filepath (str, optional) – Path to where the graph should be saved. If set to None (as
by default), the graph will not be saved.

Returns DOT object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Source

Raises
• ValueError – If estimator is not a decision tree-based estimator.

• NotFittedError – If estimator is not yet fitted.

Package Contents
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Functions

binary_objective_vs_threshold Computes objective score as a function of potential bi-
nary classification decision thresholds for a fitted binary
classification pipeline.

calculate_permutation_importance Calculates permutation importance for features.
calculate_permutation_importance_one_column Calculates permutation importance for one column in

the original dataframe.
confusion_matrix Confusion matrix for binary and multiclass classifica-

tion.
explain_predictions Creates a report summarizing the top contributing fea-

tures for each data point in the input features.
explain_predictions_best_worst Creates a report summarizing the top contributing fea-

tures for the best and worst points in the dataset as mea-
sured by error to true labels.

find_confusion_matrix_per_thresholds Gets the confusion matrix and histogram bins for each
threshold as well as the best threshold per objective.
Only works with Binary Classification Pipelines.

get_linear_coefficients Returns a dataframe showing the features with the great-
est predictive power for a linear model.

get_prediction_vs_actual_data Combines y_true and y_pred into a single
dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

get_prediction_vs_actual_over_time_data Get the data needed for the predic-
tion_vs_actual_over_time plot.

graph_binary_objective_vs_threshold Generates a plot graphing objective score vs. decision
thresholds for a fitted binary classification pipeline.

graph_confusion_matrix Generate and display a confusion matrix plot.
graph_partial_dependence Create an one-way or two-way partial dependence plot.
graph_permutation_importance Generate a bar graph of the pipeline's permutation im-

portance.
graph_precision_recall_curve Generate and display a precision-recall plot.
graph_prediction_vs_actual Generate a scatter plot comparing the true and predicted

values. Used for regression plotting.
graph_prediction_vs_actual_over_time Plot the target values and predictions against time on the

x-axis.
graph_roc_curve Generate and display a Receiver Operating Characteris-

tic (ROC) plot for binary and multiclass classification
problems.

graph_t_sne Plot high dimensional data into lower dimensional space
using t-SNE.

normalize_confusion_matrix Normalizes a confusion matrix.
partial_dependence Calculates one or two-way partial dependence.
precision_recall_curve Given labels and binary classifier predicted proba-

bilities, compute and return the data representing a
precision-recall curve.

roc_curve Given labels and classifier predicted probabilities, com-
pute and return the data representing a Receiver Operat-
ing Characteristic (ROC) curve. Works with binary or
multiclass problems.

t_sne Get the transformed output after fitting X to the embed-
ded space using t-SNE.

486 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0
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evalml.model_understanding.binary_objective_vs_threshold(pipeline, X, y, objective, steps=100)
Computes objective score as a function of potential binary classification decision thresholds for a fitted binary
classification pipeline.

Parameters
• pipeline (BinaryClassificationPipeline obj) – Fitted binary classification

pipeline.

• X (pd.DataFrame) – The input data used to compute objective score.

• y (pd.Series) – The target labels.

• objective (ObjectiveBase obj, str) – Objective used to score.

• steps (int) – Number of intervals to divide and calculate objective score at.

Returns DataFrame with thresholds and the corresponding objective score calculated at each thresh-
old.

Return type pd.DataFrame

Raises
• ValueError – If objective is not a binary classification objective.

• ValueError – If objective’s score_needs_proba is not False.

evalml.model_understanding.calculate_permutation_importance(pipeline, X, y, objective, n_repeats=5,
n_jobs=None, random_seed=0)

Calculates permutation importance for features.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type pd.DataFrame

Raises ValueError – If objective cannot be used with the given pipeline.

evalml.model_understanding.calculate_permutation_importance_one_column(pipeline, X, y,
col_name, objective,
n_repeats=5,
fast=True, precom-
puted_features=None,
random_seed=0)

Calculates permutation importance for one column in the original dataframe.
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Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• col_name (str, int) – The column in X to calculate permutation importance for.

• objective (str, ObjectiveBase) – Objective to score on.

• n_repeats (int) – Number of times to permute a feature. Defaults to 5.

• fast (bool) – Whether to use the fast method of calculating the permutation importance or
not. Defaults to True.

• precomputed_features (pd.DataFrame) – Precomputed features necessary to calculate
permutation importance using the fast method. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Mean feature importance scores over a number of shuffles.

Return type float

Raises
• ValueError – If pipeline does not support fast permutation importance calculation.

• ValueError – If precomputed_features is None.

evalml.model_understanding.confusion_matrix(y_true, y_predicted, normalize_method='true')
Confusion matrix for binary and multiclass classification.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_predicted (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

Returns Confusion matrix. The column header represents the predicted labels while row header
represents the actual labels.

Return type pd.DataFrame

evalml.model_understanding.explain_predictions(pipeline, input_features, y, indices_to_explain,
top_k_features=3, include_explainer_values=False,
include_expected_value=False, output_format='text',
training_data=None, training_target=None,
algorithm='shap')

Creates a report summarizing the top contributing features for each data point in the input features.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.
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• input_features (pd.DataFrame) – Dataframe of input data to evaluate the pipeline on.

• y (pd.Series) – Labels for the input data.

• indices_to_explain (list[int]) – List of integer indices to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point. Default is 3.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• include_expected_value (bool) – Whether the expected value should be included in the
table. Default is False.

• output_format (str) – Either “text”, “dict”, or “dataframe”. Default is “text”.

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features to each prediction for each row of input_features.

The report will include the feature names, prediction contribution, and explainer value
(optional).

Return type str, dict, or pd.DataFrame

Raises
• ValueError – if input_features is empty.

• ValueError – if an output_format outside of “text”, “dict” or “dataframe is provided.

• ValueError – if the requested index falls outside the input_feature’s boundaries.

evalml.model_understanding.explain_predictions_best_worst(pipeline, input_features, y_true,
num_to_explain=5, top_k_features=3,
include_explainer_values=False,
metric=None, output_format='text',
callback=None, training_data=None,
training_target=None,
algorithm='shap')

Creates a report summarizing the top contributing features for the best and worst points in the dataset as measured
by error to true labels.

XGBoost models and CatBoost multiclass classifiers are not currently supported with the SHAP algorithm. To
explain XGBoost model predictions, use the LIME algorithm. The LIME algorithm does not currently support
any CatBoost models. For Stacked Ensemble models, the SHAP value for each input pipeline’s predict function
into the metalearner is used.

Parameters
• pipeline (PipelineBase) – Fitted pipeline whose predictions we want to explain with

SHAP or LIME.

• input_features (pd.DataFrame) – Input data to evaluate the pipeline on.

• y_true (pd.Series) – True labels for the input data.
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• num_to_explain (int) – How many of the best, worst, random data points to explain.

• top_k_features (int) – How many of the highest/lowest contributing feature to include
in the table for each data point.

• include_explainer_values (bool) – Whether explainer (SHAP or LIME) values should
be included in the table. Default is False.

• metric (callable) – The metric used to identify the best and worst points in the dataset.
Function must accept the true labels and predicted value or probabilities as the only argu-
ments and lower values must be better. By default, this will be the absolute error for regres-
sion problems and cross entropy loss for classification problems.

• output_format (str) – Either “text” or “dict”. Default is “text”.

• callback (callable) – Function to be called with incremental updates. Has the following
parameters: - progress_stage: stage of computation - time_elapsed: total time in seconds
that has elapsed since start of call

• training_data (pd.DataFrame, np.ndarray) – Data the pipeline was trained on. Re-
quired and only used for time series pipelines.

• training_target (pd.Series, np.ndarray) – Targets used to train the pipeline. Re-
quired and only used for time series pipelines.

• algorithm (str) – Algorithm to use while generating top contributing features, one of
“shap” or “lime”. Defaults to “shap”.

Returns
A report explaining the top contributing features for the best/worst predictions in the input_features.

For each of the best/worst rows of input_features, the predicted values, true labels, metric
value, feature names, prediction contribution, and explainer value (optional) will be listed.

Return type str, dict, or pd.DataFrame

Raises
• ValueError – If input_features does not have more than twice the requested features to

explain.

• ValueError – If y_true and input_features have mismatched lengths.

• ValueError – If an output_format outside of “text”, “dict” or “dataframe is provided.

• PipelineScoreError – If the pipeline errors out while scoring.

evalml.model_understanding.find_confusion_matrix_per_thresholds(pipeline, X, y, n_bins=None,
top_k=5, to_json=False)

Gets the confusion matrix and histogram bins for each threshold as well as the best threshold per objective. Only
works with Binary Classification Pipelines.

Parameters
• pipeline (PipelineBase) – A fitted Binary Classification Pipeline to get the confusion

matrix with.

• X (pd.DataFrame) – The input features.

• y (pd.Series) – The input target.

• n_bins (int) – The number of bins to use to calculate the threshold values. Defaults to
None, which will default to using Freedman-Diaconis rule.
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• top_k (int) – The maximum number of row indices per bin to include as samples. -1
includes all row indices that fall between the bins. Defaults to 5.

• to_json (bool) – Whether or not to return a json output. If False, returns the (DataFrame,
dict) tuple, otherwise returns a json.

Returns
The dataframe has the actual positive histogram, actual negative histogram, the confusion

matrix, and a sample of rows that fall in the bin, all for each threshold value. The threshold
value, represented through the dataframe index, represents the cutoff threshold at that value.
The dictionary contains the ideal threshold and score per objective, keyed by objective name.
If json, returns the info for both the dataframe and dictionary as a json output.

Return type (tuple(pd.DataFrame, dict)), json)

Raises ValueError – If the pipeline isn’t a binary classification pipeline or isn’t yet fitted on data.

evalml.model_understanding.get_linear_coefficients(estimator, features=None)
Returns a dataframe showing the features with the greatest predictive power for a linear model.

Parameters
• estimator (Estimator) – Fitted linear model family estimator.

• features (list[str]) – List of feature names associated with the underlying data.

Returns Displaying the features by importance.

Return type pd.DataFrame

Raises
• ValueError – If the model is not a linear model.

• NotFittedError – If the model is not yet fitted.

evalml.model_understanding.get_prediction_vs_actual_data(y_true, y_pred, outlier_threshold=None)
Combines y_true and y_pred into a single dataframe and adds a column for outliers. Used in
graph_prediction_vs_actual().

Parameters
• y_true (pd.Series, or np.ndarray) – The real target values of the data

• y_pred (pd.Series, or np.ndarray) – The predicted values outputted by the regression
model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns
• prediction: Predicted values from regression model.

• actual: Real target values.

• outlier: Colors indicating which values are in the threshold for what is considered an outlier
value.

Return type pd.DataFrame with the following columns

Raises ValueError – If threshold is not positive.
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evalml.model_understanding.get_prediction_vs_actual_over_time_data(pipeline, X, y, X_train,
y_train, dates)

Get the data needed for the prediction_vs_actual_over_time plot.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions.

• y (pd.Series) – Target values to compare predictions against.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

Returns Predictions vs. time.

Return type pd.DataFrame

evalml.model_understanding.graph_binary_objective_vs_threshold(pipeline, X, y, objective,
steps=100)

Generates a plot graphing objective score vs. decision thresholds for a fitted binary classification pipeline.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame) – The input data used to score and compute scores

• y (pd.Series) – The target labels

• objective (ObjectiveBase obj, str) – Objective used to score, shown on the y-axis
of the graph

• steps (int) – Number of intervals to divide and calculate objective score at

Returns plotly.Figure representing the objective score vs. threshold graph generated

evalml.model_understanding.graph_confusion_matrix(y_true, y_pred, normalize_method='true',
title_addition=None)

Generate and display a confusion matrix plot.

If normalize_method is set, hover text will show raw count, otherwise hover text will show count normalized
with method ‘true’.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred (pd.Series or np.ndarray) – Predictions from a binary classifier.

• normalize_method ({'true', 'pred', 'all', None}) – Normalization method to use, if
not None. Supported options are: ‘true’ to normalize by row, ‘pred’ to normalize by column,
or ‘all’ to normalize by all values. Defaults to ‘true’.

• title_addition (str) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the confusion matrix plot generated.
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evalml.model_understanding.graph_partial_dependence(pipeline, X, features, class_label=None,
grid_resolution=100, kind='average')

Create an one-way or two-way partial dependence plot.

Passing a single integer or string as features will create a one-way partial dependence plot with the feature val-
ues plotted against the partial dependence. Passing features a tuple of int/strings will create a two-way partial
dependence plot with a contour of feature[0] in the y-axis, feature[1] in the x-axis and the partial dependence in
the z-axis.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at.

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
strings, it must contain valid column int/names in X.

• class_label (string, optional) – Name of class to plot for multiclass problems. If
None, will plot the partial dependence for each class. This argument does not change be-
havior for regression or binary classification pipelines. For binary classification, the partial
dependence for the positive label will always be displayed. Defaults to None.

• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot.

• kind ({'average', 'individual', 'both'}) – Type of partial dependence to plot. ‘av-
erage’ creates a regular partial dependence (PD) graph, ‘individual’ creates an individual
conditional expectation (ICE) plot, and ‘both’ creates a single-figure PD and ICE plot. ICE
plots can only be shown for one-way partial dependence plots.

Returns figure object containing the partial dependence data for plotting

Return type plotly.graph_objects.Figure

Raises
• PartialDependenceError – if a graph is requested for a class name that isn’t present in

the pipeline.

• PartialDependenceError – if an ICE plot is requested for a two-way partial dependence.

evalml.model_understanding.graph_permutation_importance(pipeline, X, y, objective,
importance_threshold=0)

Generate a bar graph of the pipeline’s permutation importance.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline.

• X (pd.DataFrame) – The input data used to score and compute permutation importance.

• y (pd.Series) – The target data.

• objective (str, ObjectiveBase) – Objective to score on.

• importance_threshold (float, optional) – If provided, graph features with a permu-
tation importance whose absolute value is larger than importance_threshold. Defaults to 0.

Returns plotly.Figure, a bar graph showing features and their respective permutation importance.

Raises ValueError – If importance_threshold is not greater than or equal to 0.
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evalml.model_understanding.graph_precision_recall_curve(y_true, y_pred_proba,
title_addition=None)

Generate and display a precision-recall plot.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• title_addition (str or None) – If not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the precision-recall plot generated

evalml.model_understanding.graph_prediction_vs_actual(y_true, y_pred, outlier_threshold=None)
Generate a scatter plot comparing the true and predicted values. Used for regression plotting.

Parameters
• y_true (pd.Series) – The real target values of the data.

• y_pred (pd.Series) – The predicted values outputted by the regression model.

• outlier_threshold (int, float) – A positive threshold for what is considered an outlier
value. This value is compared to the absolute difference between each value of y_true and
y_pred. Values within this threshold will be blue, otherwise they will be yellow. Defaults to
None.

Returns plotly.Figure representing the predicted vs. actual values graph

Raises ValueError – If threshold is not positive.

evalml.model_understanding.graph_prediction_vs_actual_over_time(pipeline, X, y, X_train, y_train,
dates, single_series=None)

Plot the target values and predictions against time on the x-axis.

Parameters
• pipeline (TimeSeriesRegressionPipeline) – Fitted time series regression pipeline.

• X (pd.DataFrame) – Features used to generate new predictions. If problem is multiseries,
X should be stacked.

• y (pd.Series) – Target values to compare predictions against. If problem is multiseries, y
should be stacked.

• X_train (pd.DataFrame) – Data the pipeline was trained on.

• y_train (pd.Series) – Target values for training data.

• dates (pd.Series) – Dates corresponding to target values and predictions.

• single_series (str) – A single series id value to plot just one series in a multiseries
dataset. Defaults to None.

Returns Showing the prediction vs actual over time.

Return type plotly.Figure

Raises ValueError – If the pipeline is not a time-series regression pipeline.
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evalml.model_understanding.graph_roc_curve(y_true, y_pred_proba, custom_class_names=None,
title_addition=None)

Generate and display a Receiver Operating Characteristic (ROC) plot for binary and multiclass classification
problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a classifier, before
thresholding has been applied. Note this should a one dimensional array with the predicted
probability for the “true” label in the binary case.

• custom_class_names (list or None) – If not None, custom labels for classes. Defaults
to None.

• title_addition (str or None) – if not None, append to plot title. Defaults to None.

Returns plotly.Figure representing the ROC plot generated

Raises ValueError – If the number of custom class names does not match number of classes in the
input data.

evalml.model_understanding.graph_t_sne(X, n_components=2, perplexity=30.0, learning_rate=200.0,
metric='euclidean', marker_line_width=2, marker_size=7,
**kwargs)

Plot high dimensional data into lower dimensional space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int) – Dimension of the embedded space. Defaults to 2.

• perplexity (float) – Related to the number of nearest neighbors that is used in other
manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider
selecting a value between 5 and 50. Defaults to 30.

• learning_rate (float) – Usually in the range [10.0, 1000.0]. If the cost function gets
stuck in a bad local minimum, increasing the learning rate may help. Must be positive.
Defaults to 200.

• metric (str) – The metric to use when calculating distance between instances in a feature
array. The default is “euclidean” which is interpreted as the squared euclidean distance.

• marker_line_width (int) – Determines the line width of the marker boundary. Defaults
to 2.

• marker_size (int) – Determines the size of the marker. Defaults to 7.

• kwargs – Arbitrary keyword arguments.

Returns Figure representing the transformed data.

Return type plotly.Figure

Raises ValueError – If marker_line_width or marker_size are not valid values.

evalml.model_understanding.normalize_confusion_matrix(conf_mat, normalize_method='true')
Normalizes a confusion matrix.

Parameters
• conf_mat (pd.DataFrame or np.ndarray) – Confusion matrix to normalize.
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• normalize_method ({'true', 'pred', 'all'}) – Normalization method. Supported op-
tions are: ‘true’ to normalize by row, ‘pred’ to normalize by column, or ‘all’ to normalize by
all values. Defaults to ‘true’.

Returns normalized version of the input confusion matrix. The column header represents the pre-
dicted labels while row header represents the actual labels.

Return type pd.DataFrame

Raises ValueError – If configuration is invalid, or if the sum of a given axis is zero and normaliza-
tion by axis is specified.

evalml.model_understanding.partial_dependence(pipeline, X, features, percentiles=(0.05, 0.95),
grid_resolution=100, kind='average', fast_mode=False,
X_train=None, y_train=None)

Calculates one or two-way partial dependence.

If a single integer or string is given for features, one-way partial dependence is calculated. If a tuple of two
integers or strings is given, two-way partial dependence is calculated with the first feature in the y-axis and
second feature in the x-axis.

Parameters
• pipeline (PipelineBase or subclass) – Fitted pipeline

• X (pd.DataFrame, np.ndarray) – The input data used to generate a grid of values for
feature where partial dependence will be calculated at

• features (int, string, tuple[int or string]) – The target feature for which to
create the partial dependence plot for. If features is an int, it must be the index of the feature
to use. If features is a string, it must be a valid column name in X. If features is a tuple of
int/strings, it must contain valid column integers/names in X.

• percentiles (tuple[float]) – The lower and upper percentile used to create the extreme
values for the grid. Must be in [0, 1]. Defaults to (0.05, 0.95).

• grid_resolution (int) – Number of samples of feature(s) for partial dependence plot. If
this value is less than the maximum number of categories present in categorical data within
X, it will be set to the max number of categories + 1. Defaults to 100.

• kind ({'average', 'individual', 'both'}) – The type of predictions to return. ‘individ-
ual’ will return the predictions for all of the points in the grid for each sample in X. ‘average’
will return the predictions for all of the points in the grid but averaged over all of the samples
in X.

• fast_mode (bool, optional) – Whether or not performance optimizations should be used
for partial dependence calculations. Defaults to False. Note that user-specified components
may not produce correct partial dependence results, so fast mode should only be used with
EvalML-native components. Additionally, some components are not compatible with fast
mode; in those cases, an error will be raised indicating that fast mode should not be used.

• X_train (pd.DataFrame, np.ndarray) – The data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

• y_train (pd.Series, np.ndarray) – The target data that was used to train the original
pipeline. Will be used in fast mode to train the cloned pipelines. Defaults to None.

Returns
When kind=’average’: DataFrame with averaged predictions for all points in the grid averaged
over all samples of X and the values used to calculate those predictions.
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When kind=’individual’: DataFrame with individual predictions for all points in the grid for each
sample of X and the values used to calculate those predictions. If a two-way partial dependence is
calculated, then the result is a list of DataFrames with each DataFrame representing one sample’s
predictions.

When kind=’both’: A tuple consisting of the averaged predictions (in a DataFrame) over all
samples of X and the individual predictions (in a list of DataFrames) for each sample of X.

In the one-way case: The dataframe will contain two columns, “feature_values” (grid points
at which the partial dependence was calculated) and “partial_dependence” (the partial depen-
dence at that feature value). For classification problems, there will be a third column called
“class_label” (the class label for which the partial dependence was calculated). For binary clas-
sification, the partial dependence is only calculated for the “positive” class.

In the two-way case: The data frame will contain grid_resolution number of columns and rows
where the index and column headers are the sampled values of the first and second features,
respectively, used to make the partial dependence contour. The values of the data frame contain
the partial dependence data for each feature value pair.

Return type pd.DataFrame, list(pd.DataFrame), or tuple(pd.DataFrame, list(pd.DataFrame))

Raises
• ValueError – Error during call to scikit-learn’s partial dependence method.

• Exception – All other errors during calculation.

• PartialDependenceError – if the user provides a tuple of not exactly two features.

• PartialDependenceError – if the provided pipeline isn’t fitted.

• PartialDependenceError – if the provided pipeline is a Baseline pipeline.

• PartialDependenceError – if any of the features passed in are completely NaN

• PartialDependenceError – if any of the features are low-variance. Defined as having one
value occurring more than the upper percentile passed by the user. By default 95%.

evalml.model_understanding.precision_recall_curve(y_true, y_pred_proba, pos_label_idx=- 1)
Given labels and binary classifier predicted probabilities, compute and return the data representing a precision-
recall curve.

Parameters
• y_true (pd.Series or np.ndarray) – True binary labels.

• y_pred_proba (pd.Series or np.ndarray) – Predictions from a binary classifier, be-
fore thresholding has been applied. Note this should be the predicted probability for the
“true” label.

• pos_label_idx (int) – the column index corresponding to the positive class. If predicted
probabilities are two-dimensional, this will be used to access the probabilities for the positive
class.

Returns
Dictionary containing metrics used to generate a precision-recall plot, with the following keys:

• precision: Precision values.

• recall: Recall values.

• thresholds: Threshold values used to produce the precision and recall.

• auc_score: The area under the ROC curve.
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Return type list

Raises NoPositiveLabelException – If predicted probabilities do not contain a column at the
specified label.

evalml.model_understanding.roc_curve(y_true, y_pred_proba)
Given labels and classifier predicted probabilities, compute and return the data representing a Receiver Operating
Characteristic (ROC) curve. Works with binary or multiclass problems.

Parameters
• y_true (pd.Series or np.ndarray) – True labels.

• y_pred_proba (pd.Series or pd.DataFrame or np.ndarray) – Predictions from a
classifier, before thresholding has been applied.

Returns
A list of dictionaries (with one for each class) is returned. Binary classification problems return a list with one dictionary.

Each dictionary contains metrics used to generate an ROC plot with the following keys:

• fpr_rate: False positive rate.

• tpr_rate: True positive rate.

• threshold: Threshold values used to produce each pair of true/false positive rates.

• auc_score: The area under the ROC curve.

Return type list(dict)

evalml.model_understanding.t_sne(X, n_components=2, perplexity=30.0, learning_rate=200.0,
metric='euclidean', **kwargs)

Get the transformed output after fitting X to the embedded space using t-SNE.

Parameters
• X (np.ndarray, pd.DataFrame) – Data to be transformed. Must be numeric.

• n_components (int, optional) – Dimension of the embedded space.

• perplexity (float, optional) – Related to the number of nearest neighbors that is used
in other manifold learning algorithms. Larger datasets usually require a larger perplexity.
Consider selecting a value between 5 and 50.

• learning_rate (float, optional) – Usually in the range [10.0, 1000.0]. If the cost
function gets stuck in a bad local minimum, increasing the learning rate may help.

• metric (str, optional) – The metric to use when calculating distance between instances
in a feature array.

• kwargs – Arbitrary keyword arguments.

Returns TSNE output.

Return type np.ndarray (n_samples, n_components)

Raises ValueError – If specified parameters are not valid values.
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Objectives

EvalML standard and custom objectives.

Submodules

binary_classification_objective

Base class for all binary classification objectives.

Module Contents

Classes Summary

BinaryClassificationObjective Base class for all binary classification objectives.

Contents

class evalml.objectives.binary_classification_objective.BinaryClassificationObjective

Base class for all binary classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool
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decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.
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property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

cost_benefit_matrix

Cost-benefit matrix objective.

Module Contents

Classes Summary

CostBenefitMatrix Score using a cost-benefit matrix. Scores quantify the
benefits of a given value, so greater numeric scores rep-
resents a better score. Costs and scores can be negative,
indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score
represents loss of cash flow.
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Contents

class evalml.objectives.cost_benefit_matrix.CostBenefitMatrix(true_positive, true_negative,
false_positive, false_negative)

Score using a cost-benefit matrix. Scores quantify the benefits of a given value, so greater numeric scores repre-
sents a better score. Costs and scores can be negative, indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score represents loss of cash flow.

Parameters
• true_positive (float) – Cost associated with true positive predictions.

• true_negative (float) – Cost associated with true negative predictions.

• false_positive (float) – Cost associated with false positive predictions.

• false_negative (float) – Cost associated with false negative predictions.

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Cost Benefit Matrix
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculates cost-benefit of the using the predicted and

true values.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculates cost-benefit of the using the predicted and true values.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Cost-benefit matrix score

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.
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• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

fraud_cost

Score the percentage of money lost of the total transaction amount process due to fraud.

Module Contents

Classes Summary

FraudCost Score the percentage of money lost of the total transac-
tion amount process due to fraud.

Contents

class evalml.objectives.fraud_cost.FraudCost(retry_percentage=0.5, interchange_fee=0.02,
fraud_payout_percentage=1.0, amount_col='amount')

Score the percentage of money lost of the total transaction amount process due to fraud.

Parameters
• retry_percentage (float) – What percentage of customers that will retry a transaction

if it is declined. Between 0 and 1. Defaults to 0.5.

• interchange_fee (float) – How much of each successful transaction you pay. Between
0 and 1. Defaults to 0.02.
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• fraud_payout_percentage (float) – Percentage of fraud you will not be able to collect.
Between 0 and 1. Defaults to 1.0.

• amount_col (str) – Name of column in data that contains the amount. Defaults to
“amount”.

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageTrue
name Fraud Cost
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate amount lost to fraud per transaction given

predictions, true values, and dataframe with transac-
tion amount.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.
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Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, X, y_train=None, sample_weight=None)
Calculate amount lost to fraud per transaction given predictions, true values, and dataframe with transaction
amount.

Parameters
• y_predicted (pd.Series) – Predicted fraud labels.

• y_true (pd.Series) – True fraud labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Data with transaction amounts.

• sample_weight (pd.DataFrame) – Ignored.

Returns Amount lost to fraud per transaction.

Return type float

Raises ValueError – If amount_col is not a valid column in the input data.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.
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positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

lead_scoring

Lead scoring objective.

Module Contents

Classes Summary

LeadScoring Lead scoring.

Contents

class evalml.objectives.lead_scoring.LeadScoring(true_positives=1, false_positives=- 1)
Lead scoring.

Parameters
• true_positives (int) – Reward for a true positive. Defaults to 1.

• false_positives (int) – Cost for a false positive. Should be negative. Defaults to -1.

Attributes
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ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Lead Scoring
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate the profit per lead.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool
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decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculate the profit per lead.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Profit per lead

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score
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• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

multiclass_classification_objective

Base class for all multiclass classification objectives.

Module Contents

Classes Summary

MulticlassClassificationObjective Base class for all multiclass classification objectives.

Contents

class
evalml.objectives.multiclass_classification_objective.MulticlassClassificationObjective

Base class for all multiclass classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

Methods
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calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].
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• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

objective_base

Base class for all objectives.

Module Contents

Classes Summary

ObjectiveBase Base class for all objectives.

Contents

class evalml.objectives.objective_base.ObjectiveBase

Base class for all objectives.

Attributes

prob-
lem_types

None

Methods

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.
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classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

5.14. Utils 515



EvalML Documentation, Release 0.80.0

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

regression_objective

Base class for all regression objectives.

Module Contents

Classes Summary

RegressionObjective Base class for all regression objectives.
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Contents

class evalml.objectives.regression_objective.RegressionObjective

Base class for all regression objectives.

Attributes

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

Methods

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float
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property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

sensitivity_low_alert

Sensitivity at Low Alert Rates objective.

Module Contents

Classes Summary

SensitivityLowAlert Sensitivity at Low Alert Rates.

Attributes Summary

logger

Contents

evalml.objectives.sensitivity_low_alert.logger

class evalml.objectives.sensitivity_low_alert.SensitivityLowAlert(alert_rate=0.01)
Sensitivity at Low Alert Rates.

Parameters alert_rate (float) – percentage of top scores to classify as high risk.

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Sensitivity at Low Alert Rates
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Determine if an observation is high risk given an alert

rate.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate sensitivity across all predictions, using the

top alert_rate percent of observations as the predicted
positive class.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.
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Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, **kwargs)
Determine if an observation is high risk given an alert rate.

Parameters
• ypred_proba (pd.Series) – Predicted probabilities.

• **kwargs – Additional abritrary parameters.

Returns Whether or not an observation is high risk given an alert rate.

Return type pd.Series

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, **kwargs)
Calculate sensitivity across all predictions, using the top alert_rate percent of observations as the predicted
positive class.

Parameters
• y_true (pd.Series) – True labels.

• y_predicted (pd.Series) – Predicted labels based on alert_rate.

• **kwargs – Additional abritrary parameters.

Returns sensitivity using the observations with the top scores as the predicted positive class.

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]
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• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

standard_metrics

Standard machine learning objective functions.

Module Contents

Classes Summary

AccuracyBinary Accuracy score for binary classification.
AccuracyMulticlass Accuracy score for multiclass classification.
AUC AUC score for binary classification.
AUCMacro AUC score for multiclass classification using macro av-

eraging.
AUCMicro AUC score for multiclass classification using micro av-

eraging.
AUCWeighted AUC Score for multiclass classification using weighted

averaging.
BalancedAccuracyBinary Balanced accuracy score for binary classification.
BalancedAccuracyMulticlass Balanced accuracy score for multiclass classification.
ExpVariance Explained variance score for regression.
F1 F1 score for binary classification.
F1Macro F1 score for multiclass classification using macro aver-

aging.
F1Micro F1 score for multiclass classification using micro aver-

aging.
F1Weighted F1 score for multiclass classification using weighted av-

eraging.
Gini Gini coefficient for binary classification.
LogLossBinary Log Loss for binary classification.
LogLossMulticlass Log Loss for multiclass classification.
MAE Mean absolute error for regression.
MAPE Mean absolute percentage error for time series regres-

sion. Scaled by 100 to return a percentage.
MASE Mean absolute scaled error for time series regression.
MaxError Maximum residual error for regression.
MCCBinary Matthews correlation coefficient for binary classifica-

tion.
MCCMulticlass Matthews correlation coefficient for multiclass classifi-

cation.
continues on next page
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Table 4 – continued from previous page
MeanSquaredLogError Mean squared log error for regression.
MedianAE Median absolute error for regression.
MSE Mean squared error for regression.
Precision Precision score for binary classification.
PrecisionMacro Precision score for multiclass classification using

macro-averaging.
PrecisionMicro Precision score for multiclass classification using micro

averaging.
PrecisionWeighted Precision score for multiclass classification using

weighted averaging.
R2 Coefficient of determination for regression.
Recall Recall score for binary classification.
RecallMacro Recall score for multiclass classification using macro av-

eraging.
RecallMicro Recall score for multiclass classification using micro av-

eraging.
RecallWeighted Recall score for multiclass classification using weighted

averaging.
RootMeanSquaredError Root mean squared error for regression.
RootMeanSquaredLogError Root mean squared log error for regression.
SMAPE Symmetric mean absolute percentage error for time se-

ries regression. Scaled by 100 to return a percentage.

Contents

class evalml.objectives.standard_metrics.AccuracyBinary

Accuracy score for binary classification.

Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AccuracyBinary().objective_function(y_true, y_
→˓pred), 0.6363636)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.AccuracyMulticlass

Accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(AccuracyMulticlass().objective_function(y_true,␣
→˓y_pred), 0.5454545)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for multiclass

classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.AUC

AUC score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AUC().objective_function(y_true, y_pred), 0.
→˓5714285)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for binary classifi-

cation.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.AUCMacro

AUC score for multiclass classification using macro averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.6, 0.1, 0.3],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMacro().objective_function(y_true, y_pred), 0.
→˓75)
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Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.
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Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.AUCMicro

AUC score for multiclass classification using micro averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMicro().objective_function(y_true, y_pred), 0.
→˓9861111)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.AUCWeighted

AUC Score for multiclass classification using weighted averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.1, 0.2, 0.7],
... [0.6, 0.1, 0.3],
... [0.5, 0.2, 0.3]]
>>> np.testing.assert_almost_equal(AUCWeighted().objective_function(y_true, y_pred),
→˓ 0.4375)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC Score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.
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classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC Score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.BalancedAccuracyBinary

Balanced accuracy score for binary classification.
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Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(BalancedAccuracyBinary().objective_function(y_
→˓true, y_pred), 0.60)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.
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Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result
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Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.BalancedAccuracyMulticlass

Balanced accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(BalancedAccuracyMulticlass().objective_
→˓function(y_true, y_pred), 0.5555555)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns

5.14. Utils 537



EvalML Documentation, Release 0.80.0

The percent difference between the scores. Note that for objectives that can be interpreted
as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.ExpVariance

Explained variance score for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(ExpVariance().objective_function(y_true, y_pred),
→˓ 0.7760736)

Attributes
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ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name ExpVariance
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for explained variance score for

regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for explained variance score for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.F1

F1 score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(F1().objective_function(y_true, y_pred), 0.25)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.F1Macro

F1 score for multiclass classification using macro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Macro().objective_function(y_true, y_pred), 0.
→˓5476190)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using macro averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using macro averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.F1Micro

F1 score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Micro().objective_function(y_true, y_pred), 0.
→˓5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.F1Weighted

F1 score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Weighted().objective_function(y_true, y_pred),␣
→˓0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.Gini

Gini coefficient for binary classification.
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Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Gini().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Gini
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Gini coefficient for binary

classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.
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Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Gini coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result
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Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.LogLossBinary

Log Loss for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(LogLossBinary().objective_function(y_true, y_
→˓pred), 19.6601745)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Binary
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.LogLossMulticlass

Log Loss for multiclass classification.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(LogLossMulticlass().objective_function(y_true, y_
→˓pred), 0.4783301)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Multiclass
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for multiclass classifi-

cation.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MAE

Mean absolute error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAE().objective_function(y_true, y_pred), 0.
→˓2727272)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MAPE

Mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAPE().objective_function(y_true, y_pred), 15.
→˓9848484)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute percentage er-

ror for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MASE

Mean absolute scaled error for time series regression.

Only valid if there exists a nonzero input in y_train. Otherwise, will throw a ValueError.

Example

>>> y_train = pd.Series([5, 0.5, 4, 6, 3, 5, 2])
>>> y_true = pd.Series([3, -0.5, 2, 7, 2])
>>> y_pred = pd.Series([2.5, 0.0, 2, 8, 1.25])
>>> np.testing.assert_almost_equal(MASE().objective_function(y_true, y_pred, y_
→˓train), 0.18333333333333335)

Attributes
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ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Scaled Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute scaled error for

time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train, X=None, sample_weight=None)
Objective function for mean absolute scaled error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MaxError

Maximum residual error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MaxError().objective_function(y_true, y_pred), 1.
→˓0)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MaxError
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for maximum residual error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for maximum residual error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MCCBinary

Matthews correlation coefficient for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(MCCBinary().objective_function(y_true, y_pred),␣
→˓0.2390457)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.
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classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

562 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.MCCMulticlass

Matthews correlation coefficient for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(MCCMulticlass().objective_function(y_true, y_
→˓pred), 0.325)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MeanSquaredLogError

Mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MeanSquaredLogError().objective_function(y_true,␣
→˓y_pred), 0.0171353)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared log error for re-

gression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared log error for regression.

positive_only(self )
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MedianAE

Median absolute error for regression.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MedianAE().objective_function(y_true, y_pred), 0.
→˓25)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MedianAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for median absolute error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for median absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.MSE

Mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MSE().objective_function(y_true, y_pred), 0.
→˓1590909)

Attributes
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ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MSE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.Precision

Precision score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Precision().objective_function(y_true, y_pred),␣
→˓1.0)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.PrecisionMacro

Precision score for multiclass classification using macro-averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMacro().objective_function(y_true, y_
→˓pred), 0.5555555)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.PrecisionMicro

Precision score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMicro().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.PrecisionWeighted

Precision score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionWeighted().objective_function(y_true, y_
→˓pred), 0.5606060)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.R2

Coefficient of determination for regression.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(R2().objective_function(y_true, y_pred), 0.
→˓7638036)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name R2
per-
fect_score

1

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for coefficient of determination

for regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for coefficient of determination for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.Recall

Recall score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Recall().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for binary classi-

fication.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.
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Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.standard_metrics.RecallMacro

Recall score for multiclass classification using macro averaging.
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Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMacro().objective_function(y_true, y_pred),
→˓ 0.5555555)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RecallMicro

Recall score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMicro().objective_function(y_true, y_pred),
→˓ 0.5454545)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RecallWeighted

Recall score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallWeighted().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RootMeanSquaredError

Root mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredError().objective_function(y_true,
→˓ y_pred), 0.3988620)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.RootMeanSquaredLogError

Root mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredLogError().objective_function(y_
→˓true, y_pred), 0.13090204)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared log error for

regression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared log error for regression.

positive_only(self )
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.standard_metrics.SMAPE

Symmetric mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(SMAPE().objective_function(y_true, y_pred), 18.
→˓13652589)

Attributes
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ex-
pected_range

[0, 200]

greater_is_betterFalse
is_bounded_like_percentageTrue
name Symmetric Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for symmetric mean absolute per-

centage error for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for symmetric mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

time_series_regression_objective

Base class for all time series regression objectives.

Module Contents

Classes Summary

TimeSeriesRegressionObjective Base class for all time series regression objectives.

Contents

class evalml.objectives.time_series_regression_objective.TimeSeriesRegressionObjective

Base class for all time series regression objectives.

Attributes

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

Methods
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calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].
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• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

utils

Utility methods for EvalML objectives.

Module Contents

Functions

get_all_objective_names Get a list of the names of all objectives.
get_core_objective_names Get a list of all valid core objectives.
get_core_objectives Returns all core objective instances associated with the

given problem type.
get_default_recommendation_objectives Get the default recommendation score metrics for the

given problem type.
get_non_core_objectives Get non-core objective classes.
get_objective Returns the Objective class corresponding to a given ob-

jective name.
get_optimization_objectives Get objectives for optimization.
get_ranking_objectives Get objectives for pipeline rankings.
normalize_objectives Converts objectives from a [0, inf) scale to [0, 1] given

a max and min for each objective.
organize_objectives Generate objectives to consider, with optional modifica-

tions to the defaults.
ranking_only_objectives Get ranking-only objective classes.
recommendation_score Computes a recommendation score for a model given

scores for a group of objectives.

Attributes Summary

DEFAULT_RECOMMENDATION_OBJECTIVES

Contents

evalml.objectives.utils.DEFAULT_RECOMMENDATION_OBJECTIVES

evalml.objectives.utils.get_all_objective_names()

Get a list of the names of all objectives.

Returns Objective names

Return type list (str)
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evalml.objectives.utils.get_core_objective_names()

Get a list of all valid core objectives.

Returns Objective names.

Return type list[str]

evalml.objectives.utils.get_core_objectives(problem_type)
Returns all core objective instances associated with the given problem type.

Core objectives are designed to work out-of-the-box for any dataset.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

Examples

>>> for objective in get_core_objectives("regression"):
... print(objective.name)
ExpVariance
MaxError
MedianAE
MSE
MAE
R2
Root Mean Squared Error
>>> for objective in get_core_objectives("binary"):
... print(objective.name)
MCC Binary
Log Loss Binary
Gini
AUC
Precision
F1
Balanced Accuracy Binary
Accuracy Binary

evalml.objectives.utils.get_default_recommendation_objectives(problem_type, imbalanced=False)
Get the default recommendation score metrics for the given problem type.

Parameters
• problem_type (str/ProblemType) – Type of problem

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns Set of string objective names that correspond to ObjectiveBase objectives

evalml.objectives.utils.get_non_core_objectives()

Get non-core objective classes.

Non-core objectives are objectives that are domain-specific. Users typically need to configure these objectives
before using them in AutoMLSearch.

Returns List of ObjectiveBase classes
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evalml.objectives.utils.get_objective(objective, return_instance=False, **kwargs)
Returns the Objective class corresponding to a given objective name.

Parameters
• objective (str or ObjectiveBase) – Name or instance of the objective class.

• return_instance (bool) – Whether to return an instance of the objective. This only ap-
plies if objective is of type str. Note that the instance will be initialized with default argu-
ments.

• kwargs (Any) – Any keyword arguments to pass into the objective. Only used when re-
turn_instance=True.

Returns ObjectiveBase if the parameter objective is of type ObjectiveBase. If objective is instead a
valid objective name, function will return the class corresponding to that name. If return_instance
is True, an instance of that objective will be returned.

Raises
• TypeError – If objective is None.

• TypeError – If objective is not a string and not an instance of ObjectiveBase.

• ObjectiveNotFoundError – If input objective is not a valid objective.

• ObjectiveCreationError – If objective cannot be created properly.

evalml.objectives.utils.get_optimization_objectives(problem_type)
Get objectives for optimization.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

evalml.objectives.utils.get_ranking_objectives(problem_type)
Get objectives for pipeline rankings.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

evalml.objectives.utils.normalize_objectives(objectives_to_normalize, max_objectives, min_objectives)
Converts objectives from a [0, inf) scale to [0, 1] given a max and min for each objective.

Parameters
• objectives_to_normalize (dict[str,float]) – A dictionary mapping objectives to

values

• max_objectives (dict[str,float]) – The mapping of objectives to the maximum val-
ues for normalization

• min_objectives (dict[str,float]) – The mapping of objectives to the minimum val-
ues for normalization

Returns A dictionary mapping objective names to their new normalized values

evalml.objectives.utils.organize_objectives(problem_type, include=None, exclude=None,
imbalanced=False)

Generate objectives to consider, with optional modifications to the defaults.

Parameters
• problem_type (str/ProblemType) – Type of problem
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• include (list[str/ObjectiveBase]) – A list of objectives to include beyond the de-
faults. Defaults to None.

• exclude (list[str/ObjectiveBase]) – A list of objectives to exclude from the defaults.
Defaults to None.

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns List of string objective names that correspond to ObjectiveBase objectives

Raises
• ValueError – If any objectives to include or exclude are not valid for the problem type

• ValueError – If an objective to exclude is not in the default objectives

evalml.objectives.utils.ranking_only_objectives()

Get ranking-only objective classes.

Ranking-only objectives are objectives that are useful for evaluating the performance of a model, but should not
be used as an optimization objective during AutoMLSearch for various reasons.

Returns List of ObjectiveBase classes

evalml.objectives.utils.recommendation_score(objectives, prioritized_objective=None,
custom_weights=None)

Computes a recommendation score for a model given scores for a group of objectives.

This recommendation score is a weighted average of the given objectives, by default all weighted equally. Passing
in a prioritized objective will weight that objective with the prioritized weight, and all other objectives will split
the remaining weight equally.

Parameters
• objectives (dict[str,float]) – A dictionary mapping objectives to their values. Ob-

jectives should be a float between 0 and 1, where higher is better. If the objective does not
represent score this way, scores should first be normalized using the normalize_objectives
function.

• prioritized_objective (str) – An optional name of a priority objective that should be
given heavier weight (50% of the total) than the other objectives contributing to the score.
Defaults to None, where all objectives are weighted equally.

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. If all objectives are listed, should add up to 1. If a
subset of objectives are listed, should add up to less than 1, and remaining weight will be
evenly distributed between the remaining objectives. Should not be used at the same time as
prioritized_objective.

Returns A value between 0 and 100 representing how strongly we recommend a pipeline given a set
of evaluated objectives

Raises ValueError – If the objective(s) to prioritize are not in the known objectives, or if the custom
weight(s) are not a float between 0 and 1.
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Package Contents

Classes Summary

AccuracyBinary Accuracy score for binary classification.
AccuracyMulticlass Accuracy score for multiclass classification.
AUC AUC score for binary classification.
AUCMacro AUC score for multiclass classification using macro av-

eraging.
AUCMicro AUC score for multiclass classification using micro av-

eraging.
AUCWeighted AUC Score for multiclass classification using weighted

averaging.
BalancedAccuracyBinary Balanced accuracy score for binary classification.
BalancedAccuracyMulticlass Balanced accuracy score for multiclass classification.
BinaryClassificationObjective Base class for all binary classification objectives.
CostBenefitMatrix Score using a cost-benefit matrix. Scores quantify the

benefits of a given value, so greater numeric scores rep-
resents a better score. Costs and scores can be negative,
indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score
represents loss of cash flow.

ExpVariance Explained variance score for regression.
F1 F1 score for binary classification.
F1Macro F1 score for multiclass classification using macro aver-

aging.
F1Micro F1 score for multiclass classification using micro aver-

aging.
F1Weighted F1 score for multiclass classification using weighted av-

eraging.
FraudCost Score the percentage of money lost of the total transac-

tion amount process due to fraud.
Gini Gini coefficient for binary classification.
LeadScoring Lead scoring.
LogLossBinary Log Loss for binary classification.
LogLossMulticlass Log Loss for multiclass classification.
MAE Mean absolute error for regression.
MAPE Mean absolute percentage error for time series regres-

sion. Scaled by 100 to return a percentage.
MASE Mean absolute scaled error for time series regression.
MaxError Maximum residual error for regression.
MCCBinary Matthews correlation coefficient for binary classifica-

tion.
MCCMulticlass Matthews correlation coefficient for multiclass classifi-

cation.
MeanSquaredLogError Mean squared log error for regression.
MedianAE Median absolute error for regression.
MSE Mean squared error for regression.
MulticlassClassificationObjective Base class for all multiclass classification objectives.
ObjectiveBase Base class for all objectives.

continues on next page
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Table 5 – continued from previous page
Precision Precision score for binary classification.
PrecisionMacro Precision score for multiclass classification using

macro-averaging.
PrecisionMicro Precision score for multiclass classification using micro

averaging.
PrecisionWeighted Precision score for multiclass classification using

weighted averaging.
R2 Coefficient of determination for regression.
Recall Recall score for binary classification.
RecallMacro Recall score for multiclass classification using macro av-

eraging.
RecallMicro Recall score for multiclass classification using micro av-

eraging.
RecallWeighted Recall score for multiclass classification using weighted

averaging.
RegressionObjective Base class for all regression objectives.
RootMeanSquaredError Root mean squared error for regression.
RootMeanSquaredLogError Root mean squared log error for regression.
SensitivityLowAlert Sensitivity at Low Alert Rates.
SMAPE Symmetric mean absolute percentage error for time se-

ries regression. Scaled by 100 to return a percentage.

Functions

get_all_objective_names Get a list of the names of all objectives.
get_core_objective_names Get a list of all valid core objectives.
get_core_objectives Returns all core objective instances associated with the

given problem type.
get_default_recommendation_objectives Get the default recommendation score metrics for the

given problem type.
get_non_core_objectives Get non-core objective classes.
get_objective Returns the Objective class corresponding to a given ob-

jective name.
get_optimization_objectives Get objectives for optimization.
get_ranking_objectives Get objectives for pipeline rankings.
normalize_objectives Converts objectives from a [0, inf) scale to [0, 1] given

a max and min for each objective.
organize_objectives Generate objectives to consider, with optional modifica-

tions to the defaults.
ranking_only_objectives Get ranking-only objective classes.
recommendation_score Computes a recommendation score for a model given

scores for a group of objectives.
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Contents

class evalml.objectives.AccuracyBinary

Accuracy score for binary classification.

Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AccuracyBinary().objective_function(y_true, y_
→˓pred), 0.6363636)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.
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• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]
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• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.AccuracyMulticlass

Accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(AccuracyMulticlass().objective_function(y_true,␣
→˓y_pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for multiclass

classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.
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Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.AUC

AUC score for binary classification.
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Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AUC().objective_function(y_true, y_pred), 0.
→˓5714285)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for binary classifi-

cation.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.
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Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result
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Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.AUCMacro

AUC score for multiclass classification using macro averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.6, 0.1, 0.3],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMacro().objective_function(y_true, y_pred), 0.
→˓75)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.
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• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.AUCMicro

AUC score for multiclass classification using micro averaging.
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Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMicro().objective_function(y_true, y_pred), 0.
→˓9861111)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.
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Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.AUCWeighted

AUC Score for multiclass classification using weighted averaging.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.1, 0.2, 0.7],
... [0.6, 0.1, 0.3],
... [0.5, 0.2, 0.3]]
>>> np.testing.assert_almost_equal(AUCWeighted().objective_function(y_true, y_pred),
→˓ 0.4375)
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Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name AUC Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for AUC Score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for AUC Score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.
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Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.BalancedAccuracyBinary

Balanced accuracy score for binary classification.

Example

>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(BalancedAccuracyBinary().objective_function(y_
→˓true, y_pred), 0.60)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.BalancedAccuracyMulticlass

Balanced accuracy score for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(BalancedAccuracyMulticlass().objective_
→˓function(y_true, y_pred), 0.5555555)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Balanced Accuracy Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for accuracy score for balanced

accuracy for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for accuracy score for balanced accuracy for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.BinaryClassificationObjective

Base class for all binary classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool
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decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.
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property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.CostBenefitMatrix(true_positive, true_negative, false_positive, false_negative)
Score using a cost-benefit matrix. Scores quantify the benefits of a given value, so greater numeric scores repre-
sents a better score. Costs and scores can be negative, indicating that a value is not beneficial. For example, in
the case of monetary profit, a negative cost and/or score represents loss of cash flow.

Parameters
• true_positive (float) – Cost associated with true positive predictions.

• true_negative (float) – Cost associated with true negative predictions.

• false_positive (float) – Cost associated with false positive predictions.

• false_negative (float) – Cost associated with false negative predictions.

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Cost Benefit Matrix
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse
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Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculates cost-benefit of the using the predicted and

true values.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculates cost-benefit of the using the predicted and true values.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Cost-benefit matrix score

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.ExpVariance

Explained variance score for regression.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(ExpVariance().objective_function(y_true, y_pred),
→˓ 0.7760736)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name ExpVariance
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for explained variance score for

regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for explained variance score for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.F1

F1 score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(F1().objective_function(y_true, y_pred), 0.25)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse
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Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.F1Macro

F1 score for multiclass classification using macro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Macro().objective_function(y_true, y_pred), 0.
→˓5476190)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using macro averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using macro averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.F1Micro

F1 score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Micro().objective_function(y_true, y_pred), 0.
→˓5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

628 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.F1Weighted

F1 score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Weighted().objective_function(y_true, y_pred),␣
→˓0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name F1 Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for F1 score for multiclass classi-

fication using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for F1 score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.FraudCost(retry_percentage=0.5, interchange_fee=0.02,
fraud_payout_percentage=1.0, amount_col='amount')

Score the percentage of money lost of the total transaction amount process due to fraud.

Parameters
• retry_percentage (float) – What percentage of customers that will retry a transaction

if it is declined. Between 0 and 1. Defaults to 0.5.

• interchange_fee (float) – How much of each successful transaction you pay. Between
0 and 1. Defaults to 0.02.
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• fraud_payout_percentage (float) – Percentage of fraud you will not be able to collect.
Between 0 and 1. Defaults to 1.0.

• amount_col (str) – Name of column in data that contains the amount. Defaults to
“amount”.

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageTrue
name Fraud Cost
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate amount lost to fraud per transaction given

predictions, true values, and dataframe with transac-
tion amount.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.
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Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, X, y_train=None, sample_weight=None)
Calculate amount lost to fraud per transaction given predictions, true values, and dataframe with transaction
amount.

Parameters
• y_predicted (pd.Series) – Predicted fraud labels.

• y_true (pd.Series) – True fraud labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Data with transaction amounts.

• sample_weight (pd.DataFrame) – Ignored.

Returns Amount lost to fraud per transaction.

Return type float

Raises ValueError – If amount_col is not a valid column in the input data.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.
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positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

evalml.objectives.get_all_objective_names()

Get a list of the names of all objectives.

Returns Objective names

Return type list (str)

evalml.objectives.get_core_objective_names()

Get a list of all valid core objectives.

Returns Objective names.

Return type list[str]

evalml.objectives.get_core_objectives(problem_type)
Returns all core objective instances associated with the given problem type.

Core objectives are designed to work out-of-the-box for any dataset.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

Examples

>>> for objective in get_core_objectives("regression"):
... print(objective.name)
ExpVariance
MaxError
MedianAE
MSE
MAE
R2
Root Mean Squared Error

(continues on next page)
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(continued from previous page)

>>> for objective in get_core_objectives("binary"):
... print(objective.name)
MCC Binary
Log Loss Binary
Gini
AUC
Precision
F1
Balanced Accuracy Binary
Accuracy Binary

evalml.objectives.get_default_recommendation_objectives(problem_type, imbalanced=False)
Get the default recommendation score metrics for the given problem type.

Parameters
• problem_type (str/ProblemType) – Type of problem

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns Set of string objective names that correspond to ObjectiveBase objectives

evalml.objectives.get_non_core_objectives()

Get non-core objective classes.

Non-core objectives are objectives that are domain-specific. Users typically need to configure these objectives
before using them in AutoMLSearch.

Returns List of ObjectiveBase classes

evalml.objectives.get_objective(objective, return_instance=False, **kwargs)
Returns the Objective class corresponding to a given objective name.

Parameters
• objective (str or ObjectiveBase) – Name or instance of the objective class.

• return_instance (bool) – Whether to return an instance of the objective. This only ap-
plies if objective is of type str. Note that the instance will be initialized with default argu-
ments.

• kwargs (Any) – Any keyword arguments to pass into the objective. Only used when re-
turn_instance=True.

Returns ObjectiveBase if the parameter objective is of type ObjectiveBase. If objective is instead a
valid objective name, function will return the class corresponding to that name. If return_instance
is True, an instance of that objective will be returned.

Raises
• TypeError – If objective is None.

• TypeError – If objective is not a string and not an instance of ObjectiveBase.

• ObjectiveNotFoundError – If input objective is not a valid objective.

• ObjectiveCreationError – If objective cannot be created properly.
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evalml.objectives.get_optimization_objectives(problem_type)
Get objectives for optimization.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

evalml.objectives.get_ranking_objectives(problem_type)
Get objectives for pipeline rankings.

Parameters problem_type (str/ProblemTypes) – Type of problem

Returns List of ObjectiveBase instances

class evalml.objectives.Gini

Gini coefficient for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Gini().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Gini
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Gini coefficient for binary

classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Gini coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.LeadScoring(true_positives=1, false_positives=- 1)
Lead scoring.

Parameters
• true_positives (int) – Reward for a true positive. Defaults to 1.

• false_positives (int) – Cost for a false positive. Should be negative. Defaults to -1.

Attributes
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ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name Lead Scoring
per-
fect_score

None

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate the profit per lead.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool
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decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Calculate the profit per lead.

Parameters
• y_predicted (pd.Series) – Predicted labels.

• y_true (pd.Series) – True labels.

• y_train (pd.Series) – Ignored.

• X (pd.DataFrame) – Ignored.

• sample_weight (pd.DataFrame) – Ignored.

Returns Profit per lead

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score
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• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.LogLossBinary

Log Loss for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(LogLossBinary().objective_function(y_true, y_
→˓pred), 19.6601745)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Binary
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaTrue

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for binary classifica-

tion.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.
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classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.
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score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.LogLossMulticlass

Log Loss for multiclass classification.

Example

>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(LogLossMulticlass().objective_function(y_true, y_
→˓pred), 0.4783301)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterFalse
is_bounded_like_percentageFalse
name Log Loss Multiclass
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaTrue

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for log loss for multiclass classifi-

cation.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for log loss for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MAE

Mean absolute error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAE().objective_function(y_true, y_pred), 0.
→˓2727272)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MAPE

Mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAPE().objective_function(y_true, y_pred), 15.
→˓9848484)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute percentage er-

ror for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MASE

Mean absolute scaled error for time series regression.

Only valid if there exists a nonzero input in y_train. Otherwise, will throw a ValueError.

Example

>>> y_train = pd.Series([5, 0.5, 4, 6, 3, 5, 2])
>>> y_true = pd.Series([3, -0.5, 2, 7, 2])
>>> y_pred = pd.Series([2.5, 0.0, 2, 8, 1.25])
>>> np.testing.assert_almost_equal(MASE().objective_function(y_true, y_pred, y_
→˓train), 0.18333333333333335)

Attributes

5.14. Utils 647



EvalML Documentation, Release 0.80.0

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Absolute Scaled Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean absolute scaled error for

time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train, X=None, sample_weight=None)
Objective function for mean absolute scaled error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MaxError

Maximum residual error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MaxError().objective_function(y_true, y_pred), 1.
→˓0)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MaxError
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for maximum residual error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for maximum residual error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

650 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MCCBinary

Matthews correlation coefficient for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(MCCBinary().objective_function(y_true, y_pred),␣
→˓0.2390457)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Binary
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for binary classification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.
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classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.
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score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.MCCMulticlass

Matthews correlation coefficient for multiclass classification.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(MCCMulticlass().objective_function(y_true, y_
→˓pred), 0.325)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name MCC Multiclass
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for Matthews correlation coeffi-

cient for multiclass classification.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for Matthews correlation coefficient for multiclass classification.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MeanSquaredLogError

Mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MeanSquaredLogError().objective_function(y_true,␣
→˓y_pred), 0.0171353)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared log error for re-

gression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared log error for regression.

positive_only(self )
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MedianAE

Median absolute error for regression.

656 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MedianAE().objective_function(y_true, y_pred), 0.
→˓25)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MedianAE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for median absolute error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

5.14. Utils 657



EvalML Documentation, Release 0.80.0

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for median absolute error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MSE

Mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MSE().objective_function(y_true, y_pred), 0.
→˓1590909)

Attributes
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ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name MSE
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for mean squared error for regres-

sion.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.MulticlassClassificationObjective

Base class for all multiclass classification objectives.

Attributes

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

Methods

calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.
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classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.
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score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.normalize_objectives(objectives_to_normalize, max_objectives, min_objectives)
Converts objectives from a [0, inf) scale to [0, 1] given a max and min for each objective.

Parameters
• objectives_to_normalize (dict[str,float]) – A dictionary mapping objectives to

values

• max_objectives (dict[str,float]) – The mapping of objectives to the maximum val-
ues for normalization

• min_objectives (dict[str,float]) – The mapping of objectives to the minimum val-
ues for normalization

Returns A dictionary mapping objective names to their new normalized values

class evalml.objectives.ObjectiveBase

Base class for all objectives.

Attributes

prob-
lem_types

None

Methods
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calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].
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• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.organize_objectives(problem_type, include=None, exclude=None, imbalanced=False)
Generate objectives to consider, with optional modifications to the defaults.

Parameters
• problem_type (str/ProblemType) – Type of problem

• include (list[str/ObjectiveBase]) – A list of objectives to include beyond the de-
faults. Defaults to None.

• exclude (list[str/ObjectiveBase]) – A list of objectives to exclude from the defaults.
Defaults to None.

• imbalanced (boolean) – For multiclass problems, if the classes are imbalanced. Defaults
to False

Returns List of string objective names that correspond to ObjectiveBase objectives

Raises
• ValueError – If any objectives to include or exclude are not valid for the problem type

• ValueError – If an objective to exclude is not in the default objectives

class evalml.objectives.Precision

Precision score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Precision().objective_function(y_true, y_pred),␣
→˓1.0)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.PrecisionMacro

Precision score for multiclass classification using macro-averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMacro().objective_function(y_true, y_
→˓pred), 0.5555555)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters

668 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.PrecisionMicro

Precision score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMicro().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for binary clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for binary classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.PrecisionWeighted

Precision score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionWeighted().objective_function(y_true, y_
→˓pred), 0.5606060)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Precision Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for precision score for multiclass

classification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
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• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for precision score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.R2

Coefficient of determination for regression.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(R2().objective_function(y_true, y_pred), 0.
→˓7638036)

Attributes

ex-
pected_range

None

greater_is_betterTrue
is_bounded_like_percentageFalse
name R2
per-
fect_score

1

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for coefficient of determination

for regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for coefficient of determination for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.ranking_only_objectives()

Get ranking-only objective classes.

Ranking-only objectives are objectives that are useful for evaluating the performance of a model, but should not
be used as an optimization objective during AutoMLSearch for various reasons.

Returns List of ObjectiveBase classes

class evalml.objectives.Recall

Recall score for binary classification.

Example

>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Recall().objective_function(y_true, y_pred), 0.
→˓1428571)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Apply a learned threshold to predicted probabilities

to get predicted classes.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for binary classi-

fication.
optimize_threshold Learn a binary classification threshold which opti-

mizes the current objective.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.
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Return type bool

decision_function(self, ypred_proba, threshold=0.5, X=None)
Apply a learned threshold to predicted probabilities to get predicted classes.

Parameters
• ypred_proba (pd.Series, np.ndarray) – The classifier’s predicted probabilities

• threshold (float, optional) – Threshold used to make a prediction. Defaults to 0.5.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns predictions

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for binary classification.

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.RecallMacro

Recall score for multiclass classification using macro averaging.
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Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMacro().objective_function(y_true, y_pred),
→˓ 0.5555555)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Macro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using macro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using macro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RecallMicro

Recall score for multiclass classification using micro averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMicro().objective_function(y_true, y_pred),
→˓ 0.5454545)

Attributes
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ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Micro
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using micro-averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using micro-averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
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• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RecallWeighted

Recall score for multiclass classification using weighted averaging.

Example

>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallWeighted().objective_function(y_true, y_
→˓pred), 0.5454545)

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Recall Weighted
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for recall score for multiclass clas-

sification using weighted averaging.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for recall score for multiclass classification using weighted averaging.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score
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validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

evalml.objectives.recommendation_score(objectives, prioritized_objective=None, custom_weights=None)
Computes a recommendation score for a model given scores for a group of objectives.

This recommendation score is a weighted average of the given objectives, by default all weighted equally. Passing
in a prioritized objective will weight that objective with the prioritized weight, and all other objectives will split
the remaining weight equally.

Parameters
• objectives (dict[str,float]) – A dictionary mapping objectives to their values. Ob-

jectives should be a float between 0 and 1, where higher is better. If the objective does not
represent score this way, scores should first be normalized using the normalize_objectives
function.

• prioritized_objective (str) – An optional name of a priority objective that should be
given heavier weight (50% of the total) than the other objectives contributing to the score.
Defaults to None, where all objectives are weighted equally.

• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. If all objectives are listed, should add up to 1. If a
subset of objectives are listed, should add up to less than 1, and remaining weight will be
evenly distributed between the remaining objectives. Should not be used at the same time as
prioritized_objective.

Returns A value between 0 and 100 representing how strongly we recommend a pipeline given a set
of evaluated objectives

Raises ValueError – If the objective(s) to prioritize are not in the known objectives, or if the custom
weight(s) are not a float between 0 and 1.

class evalml.objectives.RegressionObjective

Base class for all regression objectives.

Attributes

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

Methods
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calculate_percent_difference Calculate the percent difference between scores.
expected_range Returns the expected range of the objective, which is

not necessarily the possible ranges.
greater_is_better Returns a boolean determining if a greater score in-

dicates better model performance.
is_bounded_like_percentage Returns whether this objective is bounded between 0

and 1, inclusive.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
name Returns a name describing the objective.
objective_function Computes the relative value of the provided predic-

tions compared to the actual labels, according a spec-
ified metric.

perfect_score Returns the score obtained by evaluating this objec-
tive on a perfect model.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

score_needs_proba Returns a boolean determining if the score() method
needs probability estimates.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property expected_range(cls)
Returns the expected range of the objective, which is not necessarily the possible ranges.

For example, our expected R2 range is from [-1, 1], although the actual range is (-inf, 1].

property greater_is_better(cls)
Returns a boolean determining if a greater score indicates better model performance.

property is_bounded_like_percentage(cls)
Returns whether this objective is bounded between 0 and 1, inclusive.

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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property name(cls)
Returns a name describing the objective.

abstract classmethod objective_function(cls, y_true, y_predicted, y_train=None, X=None,
sample_weight=None)

Computes the relative value of the provided predictions compared to the actual labels, according a specified
metric.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns Numerical value used to calculate score

property perfect_score(cls)
Returns the score obtained by evaluating this objective on a perfect model.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

property score_needs_proba(cls)
Returns a boolean determining if the score() method needs probability estimates.

This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false
for objectives which compare predicted class labels to the actual labels, like F1 or correlation.

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].
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• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RootMeanSquaredError

Root mean squared error for regression.

Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredError().objective_function(y_true,
→˓ y_pred), 0.3988620)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared error for re-

gression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
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The percent difference between the scores. Note that for objectives that can be interpreted
as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared error for regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.RootMeanSquaredLogError

Root mean squared log error for regression.

Only valid for nonnegative inputs. Otherwise, will throw a ValueError.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredLogError().objective_function(y_
→˓true, y_pred), 0.13090204)

Attributes

ex-
pected_range

None

greater_is_betterFalse
is_bounded_like_percentageFalse
name Root Mean Squared Log Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, Problem-
Types.MULTISERIES_TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for root mean squared log error for

regression.
positive_only If True, this objective is only valid for positive data.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for root mean squared log error for regression.

positive_only(self )
If True, this objective is only valid for positive data.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

class evalml.objectives.SensitivityLowAlert(alert_rate=0.01)
Sensitivity at Low Alert Rates.

Parameters alert_rate (float) – percentage of top scores to classify as high risk.

Attributes

ex-
pected_range

[0, 1]

greater_is_betterTrue
is_bounded_like_percentageTrue
name Sensitivity at Low Alert Rates
per-
fect_score

1.0

prob-
lem_types

[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

score_needs_probaFalse

Methods
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calculate_percent_difference Calculate the percent difference between scores.
can_optimize_threshold Returns a boolean determining if we can optimize the

binary classification objective threshold.
decision_function Determine if an observation is high risk given an alert

rate.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Calculate sensitivity across all predictions, using the

top alert_rate percent of observations as the predicted
positive class.

optimize_threshold Learn a binary classification threshold which opti-
mizes the current objective.

positive_only If True, this objective is only valid for positive data.
Defaults to False.

score Returns a numerical score indicating performance
based on the differences between the predicted and
actual values.

validate_inputs Validate inputs for scoring.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

property can_optimize_threshold(cls)
Returns a boolean determining if we can optimize the binary classification objective threshold.

This will be false for any objective that works directly with predicted probabilities, like log loss and AUC.
Otherwise, it will be true.

Returns Whether or not an objective can be optimized.

Return type bool

decision_function(self, ypred_proba, **kwargs)
Determine if an observation is high risk given an alert rate.

Parameters
• ypred_proba (pd.Series) – Predicted probabilities.

• **kwargs – Additional abritrary parameters.

Returns Whether or not an observation is high risk given an alert rate.

Return type pd.Series
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classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.

objective_function(self, y_true, y_predicted, **kwargs)
Calculate sensitivity across all predictions, using the top alert_rate percent of observations as the predicted
positive class.

Parameters
• y_true (pd.Series) – True labels.

• y_predicted (pd.Series) – Predicted labels based on alert_rate.

• **kwargs – Additional abritrary parameters.

Returns sensitivity using the observations with the top scores as the predicted positive class.

Return type float

optimize_threshold(self, ypred_proba, y_true, X=None)
Learn a binary classification threshold which optimizes the current objective.

Parameters
• ypred_proba (pd.Series) – The classifier’s predicted probabilities

• y_true (pd.Series) – The ground truth for the predictions.

• X (pd.DataFrame, optional) – Any extra columns that are needed from training data.

Returns Optimal threshold for this objective.

Raises RuntimeError – If objective cannot be optimized.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validate inputs for scoring.

class evalml.objectives.SMAPE

Symmetric mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.

Only valid for nonzero inputs. Otherwise, will throw a ValueError.
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Example

>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(SMAPE().objective_function(y_true, y_pred), 18.
→˓13652589)

Attributes

ex-
pected_range

[0, 200]

greater_is_betterFalse
is_bounded_like_percentageTrue
name Symmetric Mean Absolute Percentage Error
per-
fect_score

0.0

prob-
lem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

score_needs_probaFalse

Methods

calculate_percent_difference Calculate the percent difference between scores.
is_defined_for_problem_type Returns whether or not an objective is defined for a

problem type.
objective_function Objective function for symmetric mean absolute per-

centage error for time series regression.
positive_only If True, this objective is only valid for positive data.

Defaults to False.
score Returns a numerical score indicating performance

based on the differences between the predicted and
actual values.

validate_inputs Validates the input based on a few simple checks.

classmethod calculate_percent_difference(cls, score, baseline_score)
Calculate the percent difference between scores.

Parameters
• score (float) – A score. Output of the score method of this objective.

• baseline_score (float) – A score. Output of the score method of this objective. In
practice, this is the score achieved on this objective with a baseline estimator.

Returns
The percent difference between the scores. Note that for objectives that can be interpreted

as percentages, this will be the difference between the reference score and score. For all
other objectives, the difference will be normalized by the reference score.

Return type float

classmethod is_defined_for_problem_type(cls, problem_type)
Returns whether or not an objective is defined for a problem type.
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objective_function(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Objective function for symmetric mean absolute percentage error for time series regression.

positive_only(cls)
If True, this objective is only valid for positive data. Defaults to False.

score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None)
Returns a numerical score indicating performance based on the differences between the predicted and actual
values.

Parameters
• y_predicted (pd.Series) – Predicted values of length [n_samples]

• y_true (pd.Series) – Actual class labels of length [n_samples]

• y_train (pd.Series) – Observed training values of length [n_samples]

• X (pd.DataFrame or np.ndarray) – Extra data of shape [n_samples, n_features] nec-
essary to calculate score

• sample_weight (pd.DataFrame or np.ndarray) – Sample weights used in comput-
ing objective value result

Returns score

validate_inputs(self, y_true, y_predicted)
Validates the input based on a few simple checks.

Parameters
• y_predicted (pd.Series, or pd.DataFrame) – Predicted values of length

[n_samples].

• y_true (pd.Series) – Actual class labels of length [n_samples].

Raises ValueError – If the inputs are malformed.

Pipelines

EvalML pipelines.

Subpackages

components

EvalML component classes.
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Subpackages

ensemble

Ensemble components.

Submodules

stacked_ensemble_base

Stacked Ensemble Base.

Module Contents

Classes Summary

StackedEnsembleBase Stacked Ensemble Base Class.

Contents

class evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase(final_estimator=None,
n_jobs=-
1,
ran-
dom_seed=0,
**kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

stacked_ensemble_classifier

Stacked Ensemble Classifier.

Module Contents

Classes Summary

StackedEnsembleClassifier Stacked Ensemble Classifier.

Contents

class evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier(final_estimator=None,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)
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Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
... ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

stacked_ensemble_regressor

Stacked Ensemble Regressor.

Module Contents

Classes Summary

StackedEnsembleRegressor Stacked Ensemble Regressor.
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Contents

class evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor(final_estimator=None,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),
... "Random Forest.x",
... "Random Forest B.x",
... "y",
... ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

StackedEnsembleBase Stacked Ensemble Base Class.
StackedEnsembleClassifier Stacked Ensemble Classifier.
StackedEnsembleRegressor Stacked Ensemble Regressor.
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Contents

class evalml.pipelines.components.ensemble.StackedEnsembleBase(final_estimator=None, n_jobs=-
1, random_seed=0, **kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
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• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ensemble.StackedEnsembleClassifier(final_estimator=None,
n_jobs=- 1,
random_seed=0,
**kwargs)

Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
... ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ensemble.StackedEnsembleRegressor(final_estimator=None,
n_jobs=- 1,
random_seed=0,
**kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),
... "Random Forest.x",
... "Random Forest B.x",
... "y",
... ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

estimators

EvalML estimator components.

Subpackages

classifiers

Classification model components.

Submodules

baseline_classifier

Baseline classifier.
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Module Contents

Classes Summary

BaselineClassifier Classifier that predicts using the specified strategy.

Contents

class evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier(strategy='mode',
ran-
dom_seed=0,
**kwargs)

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False

Methods
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classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self )
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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property feature_importance(self )
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

catboost_classifier

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library and
natively supports categorical features.

Module Contents

Classes Summary

CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.
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Contents

class evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier(n_estimators=10,
eta=0.03,
max_depth=6,
boot-
strap_type=None,
silent=True,
al-
low_writing_files=False,
ran-
dom_seed=0,
n_jobs=-

1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].
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Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

decision_tree_classifier

Decision Tree Classifier.

Module Contents

Classes Summary

DecisionTreeClassifier Decision Tree Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier(criterion='gini',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.
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– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

elasticnet_classifier

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Module Contents

Classes Summary

ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with
elasticnet penalty as the base estimator.

Contents
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class evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier(penalty='elasticnet',
C=1.0,
l1_ratio=0.15,
multi_class='auto',
solver='saga',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

et_classifier

Extra Trees Classifier.

Module Contents

Classes Summary

ExtraTreesClassifier Extra Trees Classifier.
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Contents

class evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier(n_estimators=100,
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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kneighbors_classifier

K-Nearest Neighbors Classifier.

Module Contents

Classes Summary

KNeighborsClassifier K-Nearest Neighbors Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier(n_neighbors=5,
weights='uniform',
al-
go-
rithm='auto',
leaf_size=30,
p=2,
ran-
dom_seed=0,
**kwargs)

K-Nearest Neighbors Classifier.

Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.
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• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.
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Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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lightgbm_classifier

LightGBM Classifier.

Module Contents

Classes Summary

LightGBMClassifier LightGBM Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier(boosting_type='gbdt',
learn-
ing_rate=0.1,
n_estimators=100,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bag-
ging_freq=0,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.
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• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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logistic_regression_classifier

Logistic Regression Classifier.

Module Contents

Classes Summary

LogisticRegressionClassifier Logistic Regression Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier(penalty='l2',
C=1.0,
multi_class='auto',
solver='lbfgs',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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rf_classifier

Random Forest Classifier.

Module Contents

Classes Summary

RandomForestClassifier Random Forest Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier(n_estimators=100,
max_depth=6,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

svm_classifier

Support Vector Machine Classifier.

Module Contents

Classes Summary

SVMClassifier Support Vector Machine Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier(C=1.0,
ker-
nel='rbf',
gamma='auto',
prob-
a-
bil-
ity=True,
ran-
dom_seed=0,
**kwargs)
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Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
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• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

vowpal_wabbit_classifiers

Vowpal Wabbit Classifiers.

Module Contents

Classes Summary

VowpalWabbitBaseClassifier Vowpal Wabbit Base Classifier.
VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Base Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
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• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,
“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 761



EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

xgboost_classifier

XGBoost Classifier.

Module Contents

Classes Summary

XGBoostClassifier XGBoost Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier(eta=0.1,
max_depth=6,
min_child_weight=1,
n_estimators=100,
ran-
dom_seed=0,
eval_metric='logloss',
n_jobs=12,
**kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.
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• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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Package Contents

Classes Summary

BaselineClassifier Classifier that predicts using the specified strategy.
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeClassifier Decision Tree Classifier.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ExtraTreesClassifier Extra Trees Classifier.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LogisticRegressionClassifier Logistic Regression Classifier.
RandomForestClassifier Random Forest Classifier.
SVMClassifier Support Vector Machine Classifier.
VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
XGBoostClassifier XGBoost Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.BaselineClassifier(strategy='mode',
random_seed=0,
**kwargs)

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False
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Methods

classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self )
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

property feature_importance(self )
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.CatBoostClassifier(n_estimators=10,
eta=0.03,
max_depth=6,
boot-
strap_type=None,
silent=True, al-
low_writing_files=False,
random_seed=0,
n_jobs=- 1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.
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• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier(criterion='gini',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Classifier.
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Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier(penalty='elasticnet',
C=1.0,
l1_ratio=0.15,
multi_class='auto',
solver='saga',
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.
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• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

5.14. Utils 781



EvalML Documentation, Release 0.80.0

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier(n_estimators=100,
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier(n_neighbors=5,
weights='uniform',
algo-
rithm='auto',
leaf_size=30,
p=2, ran-
dom_seed=0,
**kwargs)

K-Nearest Neighbors Classifier.

Parameters
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• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.
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Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.LightGBMClassifier(boosting_type='gbdt',
learn-
ing_rate=0.1,
n_estimators=100,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bagging_freq=0,
n_jobs=- 1,
random_seed=0,
**kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.
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• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier(penalty='l2',
C=1.0,
multi_class='auto',
solver='lbfgs',
n_jobs=-
1,
ran-
dom_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

794 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.RandomForestClassifier(n_estimators=100,
max_depth=6,
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.SVMClassifier(C=1.0, kernel='rbf',
gamma='auto',
probability=True,
random_seed=0,
**kwargs)

Support Vector Machine Classifier.

Parameters
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• C (float) – The regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.
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Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.classifiers.XGBoostClassifier(eta=0.1,
max_depth=6,
min_child_weight=1,
n_estimators=100,
random_seed=0,
eval_metric='logloss',
n_jobs=12,
**kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0
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• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.
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Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

812 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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regressors

Regression model components.

Submodules

arima_regressor

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the degree of
differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/statsmodels.tsa.
arima.model.ARIMA.html.

Module Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

Contents
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class evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor(time_index:
Op-
tional[Hashable]
=
None,
trend:
Op-
tional[str]
=
None,
start_p:
int
=
2,
d:
int
=
0,
start_q:
int
=
2,
max_p:
int
=
5,
max_d:
int
=
2,
max_q:
int
=
5,
sea-
sonal:
bool
=
True,
sp:
int
=
1,
n_jobs:
int
= -
1,
ran-
dom_seed:
Union[int,
float]
=
0,
max-
iter:
int
=
10,
use_covariates:
bool
=
True,
**kwargs)
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Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].
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Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

baseline_regressor

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to
compare with other regressors.

Module Contents

Classes Summary

BaselineRegressor Baseline regressor that uses a simple strategy to make
predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Contents

class evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor(strategy='mean',
ran-
dom_seed=0,
**kwargs)

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters
• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults

to “mean”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

catboost_regressor

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library and
natively supports categorical features.
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Module Contents

Classes Summary

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

Contents

class evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor(n_estimators=10,
eta=0.03,
max_depth=6,
boot-
strap_type=None,
silent=False,
al-
low_writing_files=False,
ran-
dom_seed=0,
n_jobs=-

1,
**kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

decision_tree_regressor

Decision Tree Regressor.

Module Contents

Classes Summary

DecisionTreeRegressor Decision Tree Regressor.
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Contents

class evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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elasticnet_regressor

Elastic Net Regressor.

Module Contents

Classes Summary

ElasticNetRegressor Elastic Net Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor(alpha=0.0001,
l1_ratio=0.15,
max_iter=1000,
ran-
dom_seed=0,
**kwargs)

Elastic Net Regressor.

Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

5.14. Utils 833



EvalML Documentation, Release 0.80.0

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

et_regressor

Extra Trees Regressor.

Module Contents

Classes Summary

ExtraTreesRegressor Extra Trees Regressor.

Contents

834 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

class evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor(n_estimators:
int
=
100,
max_features:
str
=
'sqrt',
max_depth:
int
=
6,
min_samples_split:
int
=
2,
min_weight_fraction_leaf:
float
=
0.0,
n_jobs:
int
=
-

1,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.
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• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.
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Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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exponential_smoothing_regressor

Holt-Winters Exponential Smoothing Forecaster.

Module Contents

Classes Summary

ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.

Contents

class evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor(trend:
Op-
tional[str]
=
None,
damped_trend:
bool
=
False,
sea-
sonal:
Op-
tional[str]
=
None,
sp:
int
=
2,
n_jobs:
int
=
-

1,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
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• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.
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Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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lightgbm_regressor

LightGBM Regressor.

Module Contents

Classes Summary

LightGBMRegressor LightGBM Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor(boosting_type='gbdt',
learn-
ing_rate=0.1,
n_estimators=20,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bag-
ging_freq=0,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

LightGBM Regressor.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

5.14. Utils 843



EvalML Documentation, Release 0.80.0

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.
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Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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linear_regressor

Linear Regressor.

Module Contents

Classes Summary

LinearRegressor Linear Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor(fit_intercept=True,
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.
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Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

multiseries_time_series_baseline_regressor

Time series estimator that predicts using the naive forecasting approach.

Module Contents

Classes Summary

MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the
naive forecasting approach.

Contents

class evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

5.14. Utils 851



EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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prophet_regressor

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with
yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects
and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles
outliers well.

Module Contents

Classes Summary

ProphetRegressor Prophet is a procedure for forecasting time series data
based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

Contents
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class evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor(time_index:
Op-
tional[Hashable]
=
None,
change-
point_prior_scale:
float
=
0.05,
sea-
son-
al-
ity_prior_scale:
int
=
10,
hol-
i-
days_prior_scale:
int
=
10,
sea-
son-
al-
ity_mode:
str
=
'ad-
di-
tive',
stan_backend:
str
=
'CMD-
STANPY',
in-
ter-
val_width:
float
=
0.95,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.
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More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self )→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

rf_regressor

Random Forest Regressor.

Module Contents

Classes Summary

RandomForestRegressor Random Forest Regressor.

Contents
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class evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor(n_estimators:
int
=
100,
max_depth:
int
=
6,
n_jobs:
int
=
-

1,
ran-
dom_seed:
Union[int,
float]
=
0,
**kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.
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Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

svm_regressor

Support Vector Machine Regressor.

Module Contents

Classes Summary

SVMRegressor Support Vector Machine Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor(C=1.0,
ker-
nel='rbf',
gamma='auto',
ran-
dom_seed=0,
**kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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time_series_baseline_estimator

Time series estimator that predicts using the naive forecasting approach.

Module Contents

Classes Summary

TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-
casting approach.

Contents

class evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)
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fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].
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Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

varmax_regressor

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order
and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.
varmax.VARMAX.html.

Module Contents

Classes Summary

VARMAXRegressor Vector Autoregressive Moving Average with eXoge-
nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

870 Chapter 5. API Reference

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html


EvalML Documentation, Release 0.80.0

Contents

class evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor(time_index:
Op-
tional[Hashable]
=
None,
p:
int
=
1,
q:
int
=
0,
trend:
Op-
tional[str]
=
'c',
ran-
dom_seed:
Union[int,
float]
=
0,
max-
iter:
int
=
10,
use_covariates:
bool
=
False,
**kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

vowpal_wabbit_regressor

Vowpal Wabbit Regressor.
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Module Contents

Classes Summary

VowpalWabbitRegressor Vowpal Wabbit Regressor.

Contents

class evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor(learning_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.
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Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

xgboost_regressor

XGBoost Regressor.

Module Contents

Classes Summary

XGBoostRegressor XGBoost Regressor.

Contents
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class evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor(eta:
float
=
0.1,
max_depth:
int
=
6,
min_child_weight:
int
=
1,
n_estimators:
int
=
100,
ran-
dom_seed:
Union[int,
float]
=
0,
n_jobs:
int
=
12,
**kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes
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hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineRegressor Baseline regressor that uses a simple strategy to make
predictions. This is useful as a simple baseline regressor
to compare with other regressors.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeRegressor Decision Tree Regressor.
ElasticNetRegressor Elastic Net Regressor.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesRegressor Extra Trees Regressor.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the

naive forecasting approach.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestRegressor Random Forest Regressor.
SVMRegressor Support Vector Machine Regressor.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
VARMAXRegressor Vector Autoregressive Moving Average with eXoge-

nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostRegressor XGBoost Regressor.
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Contents

class evalml.pipelines.components.estimators.regressors.ARIMARegressor(time_index:
Optional[Hashable] =
None, trend:
Optional[str] = None,
start_p: int = 2, d: int
= 0, start_q: int = 2,
max_p: int = 5, max_d:
int = 2, max_q: int = 5,
seasonal: bool = True,
sp: int = 1, n_jobs: int
= - 1, random_seed:
Union[int, float] = 0,
maxiter: int = 10,
use_covariates: bool =
True, **kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.BaselineRegressor(strategy='mean',
random_seed=0,
**kwargs)

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters
• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults

to “mean”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 887



EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

888 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.CatBoostRegressor(n_estimators=10,
eta=0.03,
max_depth=6, boot-
strap_type=None,
silent=False, al-
low_writing_files=False,
random_seed=0,
n_jobs=- 1,
**kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.
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For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self
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get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

5.14. Utils 893



EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
ran-
dom_seed=0,
**kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.
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• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
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• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.ElasticNetRegressor(alpha=0.0001,
l1_ratio=0.15,
max_iter=1000,
random_seed=0,
**kwargs)

Elastic Net Regressor.

Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.
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Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor(trend:
Op-
tional[str]
=
None,
damped_trend:
bool
=
False,
sea-
sonal:
Op-
tional[str]
=
None,
sp:
int
= 2,
n_jobs:
int
= -
1,
ran-
dom_seed:
Union[int,
float]
= 0,
**kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
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• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.
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Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor(n_estimators: int
= 100,
max_features: str
= 'sqrt',
max_depth: int =
6,
min_samples_split:
int = 2,
min_weight_fraction_leaf:
float = 0.0,
n_jobs: int = - 1,
random_seed:
Union[int, float]
= 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.LightGBMRegressor(boosting_type='gbdt',
learning_rate=0.1,
n_estimators=20,
max_depth=0,
num_leaves=31,
min_child_samples=20,
bag-
ging_fraction=0.9,
bagging_freq=0,
n_jobs=- 1,
random_seed=0,
**kwargs)

LightGBM Regressor.

Parameters
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• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses
traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.LinearRegressor(fit_intercept=True,
n_jobs=- 1,
random_seed=0,
**kwargs)

Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

912 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

5.14. Utils 913



EvalML Documentation, Release 0.80.0

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.regressors.ProphetRegressor(time_index:
Optional[Hashable]
= None, change-
point_prior_scale:
float = 0.05, season-
ality_prior_scale: int
= 10, holi-
days_prior_scale: int
= 10,
seasonality_mode:
str = 'additive',
stan_backend: str =
'CMDSTANPY',
interval_width: float
= 0.95,
random_seed:
Union[int, float] = 0,
**kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self )→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.RandomForestRegressor(n_estimators:
int = 100,
max_depth:
int = 6,
n_jobs: int = -
1,
random_seed:
Union[int,
float] = 0,
**kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.
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• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.SVMRegressor(C=1.0, kernel='rbf',
gamma='auto',
random_seed=0,
**kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.
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• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.
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Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)
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Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.
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• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.VARMAXRegressor(time_index:
Optional[Hashable] =
None, p: int = 1, q: int
= 0, trend:
Optional[str] = 'c',
random_seed:
Union[int, float] = 0,
maxiter: int = 10,
use_covariates: bool
= False, **kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.
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Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor(learning_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1, ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

5.14. Utils 935



EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.
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Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.regressors.XGBoostRegressor(eta: float = 0.1,
max_depth: int = 6,
min_child_weight:
int = 1,
n_estimators: int =
100, random_seed:
Union[int, float] = 0,
n_jobs: int = 12,
**kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes
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hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Submodules

estimator

A component that fits and predicts given data.

Module Contents

Classes Summary

Estimator A component that fits and predicts given data.
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Contents

class evalml.pipelines.components.estimators.estimator.Estimator(parameters: dict = None,
component_obj:
Type[evalml.pipelines.components.ComponentBase]
= None, random_seed:
Union[int, float] = 0,
**kwargs)

A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.
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fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineClassifier Classifier that predicts using the specified strategy.
BaselineRegressor Baseline regressor that uses a simple strategy to make

predictions. This is useful as a simple baseline regressor
to compare with other regressors.

continues on next page
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Table 6 – continued from previous page
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

DecisionTreeClassifier Decision Tree Classifier.
DecisionTreeRegressor Decision Tree Regressor.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ElasticNetRegressor Elastic Net Regressor.
Estimator A component that fits and predicts given data.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesClassifier Extra Trees Classifier.
ExtraTreesRegressor Extra Trees Regressor.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
LogisticRegressionClassifier Logistic Regression Classifier.
MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the

naive forecasting approach.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestClassifier Random Forest Classifier.
RandomForestRegressor Random Forest Regressor.
SVMClassifier Support Vector Machine Classifier.
SVMRegressor Support Vector Machine Regressor.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
VARMAXRegressor Vector Autoregressive Moving Average with eXoge-

nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostClassifier XGBoost Classifier.
XGBoostRegressor XGBoost Regressor.
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Contents

class evalml.pipelines.components.estimators.ARIMARegressor(time_index: Optional[Hashable] =
None, trend: Optional[str] = None,
start_p: int = 2, d: int = 0, start_q:
int = 2, max_p: int = 5, max_d: int =
2, max_q: int = 5, seasonal: bool =
True, sp: int = 1, n_jobs: int = - 1,
random_seed: Union[int, float] = 0,
maxiter: int = 10, use_covariates:
bool = True, **kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.BaselineClassifier(strategy='mode',
random_seed=0, **kwargs)

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False

Methods

classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self )
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.
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Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.BaselineRegressor(strategy='mean', random_seed=0,
**kwargs)

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters
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• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults
to “mean”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.
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Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.CatBoostClassifier(n_estimators=10, eta=0.03,
max_depth=6,
bootstrap_type=None,
silent=True,
allow_writing_files=False,
random_seed=0, n_jobs=- 1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.
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Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.CatBoostRegressor(n_estimators=10, eta=0.03,
max_depth=6,
bootstrap_type=None,
silent=False,
allow_writing_files=False,
random_seed=0, n_jobs=- 1,
**kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.DecisionTreeClassifier(criterion='gini',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0,
**kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.
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– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

5.14. Utils 967



EvalML Documentation, Release 0.80.0

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ElasticNetClassifier(penalty='elasticnet', C=1.0,
l1_ratio=0.15,
multi_class='auto',
solver='saga', n_jobs=- 1,
random_seed=0, **kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.
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– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15,
max_iter=1000,
random_seed=0, **kwargs)

Elastic Net Regressor.
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Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.Estimator(parameters: dict = None, component_obj:
Type[evalml.pipelines.components.ComponentBase]
= None, random_seed: Union[int, float] = 0,
**kwargs)
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A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ExponentialSmoothingRegressor(trend:
Optional[str] =
None,
damped_trend:
bool = False,
seasonal:
Optional[str] =
None, sp: int = 2,
n_jobs: int = - 1,
random_seed:
Union[int, float] =
0, **kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ExtraTreesClassifier(n_estimators=100,
max_features='sqrt',
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=- 1, random_seed=0,
**kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.
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– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ExtraTreesRegressor(n_estimators: int = 100,
max_features: str = 'sqrt',
max_depth: int = 6,
min_samples_split: int = 2,
min_weight_fraction_leaf: float
= 0.0, n_jobs: int = - 1,
random_seed: Union[int, float]
= 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.
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• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.
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Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.KNeighborsClassifier(n_neighbors=5,
weights='uniform',
algorithm='auto',
leaf_size=30, p=2,
random_seed=0, **kwargs)

K-Nearest Neighbors Classifier.

Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.LightGBMClassifier(boosting_type='gbdt',
learning_rate=0.1,
n_estimators=100,
max_depth=0, num_leaves=31,
min_child_samples=20,
bagging_fraction=0.9,
bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.
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• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.
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fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.
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Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.LightGBMRegressor(boosting_type='gbdt',
learning_rate=0.1,
n_estimators=20, max_depth=0,
num_leaves=31,
min_child_samples=20,
bagging_fraction=0.9,
bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Regressor.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.
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• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.
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Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.LinearRegressor(fit_intercept=True, n_jobs=- 1,
random_seed=0, **kwargs)

Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.estimators.LogisticRegressionClassifier(penalty='l2',
C=1.0,
multi_class='auto',
solver='lbfgs',
n_jobs=- 1,
random_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor(gap=1,
fore-
cast_horizon=1,
ran-
dom_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.ProphetRegressor(time_index: Optional[Hashable] =
None, changepoint_prior_scale:
float = 0.05,
seasonality_prior_scale: int = 10,
holidays_prior_scale: int = 10,
seasonality_mode: str = 'additive',
stan_backend: str =
'CMDSTANPY', interval_width:
float = 0.95, random_seed:
Union[int, float] = 0, **kwargs)
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Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self )→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.RandomForestClassifier(n_estimators=100,
max_depth=6, n_jobs=- 1,
random_seed=0,
**kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.
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fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.
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Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.RandomForestRegressor(n_estimators: int = 100,
max_depth: int = 6, n_jobs:
int = - 1, random_seed:
Union[int, float] = 0,
**kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.SVMClassifier(C=1.0, kernel='rbf', gamma='auto',
probability=True, random_seed=0,
**kwargs)

Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.SVMRegressor(C=1.0, kernel='rbf', gamma='auto',
random_seed=0, **kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.
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• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator(gap=1,
forecast_horizon=1,
random_seed=0,
**kwargs)
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Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.
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• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VARMAXRegressor(time_index: Optional[Hashable] =
None, p: int = 1, q: int = 0, trend:
Optional[str] = 'c', random_seed:
Union[int, float] = 0, maxiter: int =
10, use_covariates: bool = False,
**kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 1033



EvalML Documentation, Release 0.80.0

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.
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Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier(loss_function='logistic',
learning_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1,
random_seed=0,
**kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

5.14. Utils 1035



EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learn-
ing_rate=0.5,
de-
cay_learning_rate=1.0,
power_t=0.5,
passes=1, ran-
dom_seed=0,
**kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.
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• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.VowpalWabbitRegressor(learning_rate=0.5,
decay_learning_rate=1.0,
power_t=0.5, passes=1,
random_seed=0, **kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.
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• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.XGBoostClassifier(eta=0.1, max_depth=6,
min_child_weight=1,
n_estimators=100,
random_seed=0,
eval_metric='logloss', n_jobs=12,
**kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.
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• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.estimators.XGBoostRegressor(eta: float = 0.1, max_depth: int =
6, min_child_weight: int = 1,
n_estimators: int = 100,
random_seed: Union[int, float] =
0, n_jobs: int = 12, **kwargs)

XGBoost Regressor.
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Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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transformers

Components that transform data.

Subpackages

dimensionality_reduction

Transformers that reduce the dimensionality of the input data.

Submodules

lda

Component that reduces the number of features by using Linear Discriminant Analysis.

Module Contents

Classes Summary

LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-
criminant Analysis.

Contents

class evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis(n_components=None,
ran-
dom_seed=0,
**kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1052 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame
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Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

pca

Component that reduces the number of features by using Principal Component Analysis (PCA).

Module Contents

Classes Summary

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

Contents

class evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA(variance=0.95,
n_components=None,
ran-
dom_seed=0,
**kwargs)

Reduces the number of features by using Principal Component Analysis (PCA).

Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.
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fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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Package Contents

Classes Summary

LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-
criminant Analysis.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

Contents

class evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis(n_components=None,
ran-
dom_seed=0,
**kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.dimensionality_reduction.PCA(variance=0.95,
n_components=None,
random_seed=0,
**kwargs)

Reduces the number of features by using Principal Component Analysis (PCA).
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Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

encoders

Components used to encode the input data.

Submodules

label_encoder

A transformer that encodes target labels using values between 0 and num_classes - 1.

Module Contents

Classes Summary

LabelEncoder A transformer that encodes target labels using values be-
tween 0 and num_classes - 1.

Contents

class evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder(positive_label=None,
ran-
dom_seed=0,
**kwargs)

A transformer that encodes target labels using values between 0 and num_classes - 1.

Parameters
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• positive_label (int, str) – The label for the class that should be treated as positive (1)
for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

5.14. Utils 1063



EvalML Documentation, Release 0.80.0

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
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• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

onehot_encoder

A transformer that encodes categorical features in a one-hot numeric array.

Module Contents

Classes Summary

OneHotEncoder A transformer that encodes categorical features in a one-
hot numeric array.

OneHotEncoderMeta A version of the ComponentBaseMeta class which in-
cludes validation on an additional one-hot-encoder-
specific method categories.

Contents
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class evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder(top_n=10,
fea-
tures_to_encode=None,
cate-
gories=None,
drop='if_binary',
han-
dle_unknown='ignore',
han-
dle_missing='error',
ran-
dom_seed=0,
**kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

Methods
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categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoderMeta

A version of the ComponentBaseMeta class which includes validation on an additional one-hot-encoder-specific
method categories.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

None

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.
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classmethod set_fit(cls, method)
Wrapper for the fit method.

ordinal_encoder

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of categories.

Module Contents

Classes Summary

OrdinalEncoder A transformer that encodes ordinal features as an array
of ordinal integers representing the relative order of cat-
egories.

OrdinalEncoderMeta A version of the ComponentBaseMeta class which
includes validation on an additional ordinal-encoder-
specific method categories.

Contents

class evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder(features_to_encode=None,
cat-
e-
gories=None,
han-
dle_unknown='error',
un-
known_value=None,
en-
coded_missing_value=None,
ran-
dom_seed=0,
**kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
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unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.
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Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.
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get_feature_names(self )
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class
evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoderMeta

A version of the ComponentBaseMeta class which includes validation on an additional ordinal-encoder-specific
method categories.

Attributes
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FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

None

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

target_encoder

A transformer that encodes categorical features into target encodings.

Module Contents

Classes Summary

TargetEncoder A transformer that encodes categorical features into tar-
get encodings.
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Contents

class evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder(cols=None,
smooth-
ing=1,
han-
dle_unknown='value',
han-
dle_missing='value',
ran-
dom_seed=0,
**kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self )
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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Package Contents

Classes Summary

LabelEncoder A transformer that encodes target labels using values be-
tween 0 and num_classes - 1.

OneHotEncoder A transformer that encodes categorical features in a one-
hot numeric array.

OrdinalEncoder A transformer that encodes ordinal features as an array
of ordinal integers representing the relative order of cat-
egories.

TargetEncoder A transformer that encodes categorical features into tar-
get encodings.

Contents

class evalml.pipelines.components.transformers.encoders.LabelEncoder(positive_label=None,
random_seed=0,
**kwargs)

A transformer that encodes target labels using values between 0 and num_classes - 1.

Parameters
• positive_label (int, str) – The label for the class that should be treated as positive (1)

for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.
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fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.OneHotEncoder(top_n=10, fea-
tures_to_encode=None,
categories=None,
drop='if_binary', han-
dle_unknown='ignore',
handle_missing='error',
random_seed=0,
**kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False
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Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

5.14. Utils 1083



EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.OrdinalEncoder(features_to_encode=None,
categories=None, han-
dle_unknown='error',
unknown_value=None,
en-
coded_missing_value=None,
random_seed=0,
**kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”
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• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.
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Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.encoders.TargetEncoder(cols=None,
smoothing=1, han-
dle_unknown='value',
handle_missing='value',
random_seed=0,
**kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None
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• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.
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Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self )
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

feature_selection

Components that select features.

Submodules

feature_selector

Component that selects top features based on importance weights.

Module Contents

Classes Summary

FeatureSelector Selects top features based on importance weights.
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Contents

class evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector(parameters=None,
com-
po-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

recursive_feature_elimination_selector

Components that select top features based on recursive feature elimination with a Random Forest model.
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Module Contents

Classes Summary

RecursiveFeatureEliminationSelector Selects relevant features using recursive feature elimina-
tion.

RFClassifierRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Classifier.

RFRegressorRFESelector Selects relevant features using recursive feature elimina-
tion with a Random Forest Regressor.

Contents

class evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RecursiveFeatureEliminationSelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame
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Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFClassifierRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.recursive_feature_elimination_selector.RFRegressorRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.
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• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

rf_classifier_feature_selector

Component that selects top features based on importance weights using a Random Forest classifier.

Module Contents

Classes Summary

RFClassifierSelectFromModel Selects top features based on importance weights using
a Random Forest classifier.

Contents
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class evalml.pipelines.components.transformers.feature_selection.rf_classifier_feature_selector.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

rf_regressor_feature_selector

Component that selects top features based on importance weights using a Random Forest regresor.

Module Contents

Classes Summary

RFRegressorSelectFromModel Selects top features based on importance weights using
a Random Forest regressor.

Contents

class evalml.pipelines.components.transformers.feature_selection.rf_regressor_feature_selector.RFRegressorSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.
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• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

FeatureSelector Selects top features based on importance weights.
RFClassifierRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Classifier.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Regressor.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.
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Contents

class evalml.pipelines.components.transformers.feature_selection.FeatureSelector(parameters=None,
compo-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-

1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters
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• step (int, float) – The number of features to eliminate in each iteration. If an integer
is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scor-
ing=None,
n_jobs=-
1,
n_estimators=10,
max_depth=None,
ran-
dom_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=-

1,
ran-
dom_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

imputers

Components that impute missing values in the input data.

Submodules

imputer

Component that imputes missing data according to a specified imputation strategy.

Module Contents

Classes Summary

Imputer Imputes missing data according to a specified imputation
strategy.
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Contents

class evalml.pipelines.components.transformers.imputers.imputer.Imputer(categorical_impute_strategy='most_frequent',
categori-
cal_fill_value=None,
nu-
meric_impute_strategy='mean',
nu-
meric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None,
random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.
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Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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knn_imputer

Component that imputes missing data according to a specified imputation strategy.

Module Contents

Classes Summary

KNNImputer Imputes missing data using KNN according to a speci-
fied number of neighbors. Natural language columns are
ignored.

Contents

class evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer(number_neighbors=3,
ran-
dom_seed=0,
**kwargs)

Imputes missing data using KNN according to a specified number of neighbors. Natural language columns are
ignored.

Parameters
• number_neighbors (int) – Number of nearest neighbors for KNN to search for. Defaults

to 3.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

name KNN Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the KNNImputer receives a dataframe with both Boolean and Categor-
ical data.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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per_column_imputer

Component that imputes missing data according to a specified imputation strategy per column.

Module Contents

Classes Summary

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

Contents

class evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer(impute_strategies=None,
ran-
dom_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
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• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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simple_imputer

Component that imputes missing data according to a specified imputation strategy.

Module Contents

Classes Summary

SimpleImputer Imputes missing data according to a specified imputation
strategy. Natural language columns are ignored.

Contents

class evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer(impute_strategy='most_frequent',
fill_value=None,
ran-
dom_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1138 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

target_imputer

Component that imputes missing target data according to a specified imputation strategy.

Module Contents

Classes Summary

TargetImputer Imputes missing target data according to a specified im-
putation strategy.

TargetImputerMeta A version of the ComponentBaseMeta class which han-
dles when input features is None.

Contents

class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer(impute_strategy='most_frequent',
fill_value=None,
ran-
dom_seed=0,
**kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta

A version of the ComponentBaseMeta class which handles when input features is None.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

Parameters method (callable) – Method to wrap.

Raises ComponentNotYetFittedError – If component is not fitted.

Returns The wrapped input method.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

time_series_imputer

Component that imputes missing data according to a specified timeseries-specific imputation strategy.

Module Contents

Classes Summary

TimeSeriesImputer Imputes missing data according to a specified
timeseries-specific imputation strategy.
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Contents

class evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
nu-
meric_impute_strategy='interpolate',
tar-
get_impute_strategy='forwards_fill',
ran-
dom_seed=0,
**kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]
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Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1145



EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

Imputer Imputes missing data according to a specified imputation
strategy.

KNNImputer Imputes missing data using KNN according to a speci-
fied number of neighbors. Natural language columns are
ignored.

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

SimpleImputer Imputes missing data according to a specified imputation
strategy. Natural language columns are ignored.

TargetImputer Imputes missing target data according to a specified im-
putation strategy.

TimeSeriesImputer Imputes missing data according to a specified
timeseries-specific imputation strategy.

Contents

class evalml.pipelines.components.transformers.imputers.Imputer(categorical_impute_strategy='most_frequent',
categorical_fill_value=None, nu-
meric_impute_strategy='mean',
numeric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X
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Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.KNNImputer(number_neighbors=3,
random_seed=0, **kwargs)

Imputes missing data using KNN according to a specified number of neighbors. Natural language columns are
ignored.

Parameters
• number_neighbors (int) – Number of nearest neighbors for KNN to search for. Defaults

to 3.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

name KNN Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the KNNImputer receives a dataframe with both Boolean and Categor-
ical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.PerColumnImputer(impute_strategies=None,
random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.
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Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.transformers.imputers.SimpleImputer(impute_strategy='most_frequent',
fill_value=None,
random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.TargetImputer(impute_strategy='most_frequent',
fill_value=None,
random_seed=0,
**kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.

1158 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.imputers.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
nu-
meric_impute_strategy='interpolate',
tar-
get_impute_strategy='forwards_fill',
random_seed=0,
**kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]
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Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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preprocessing

Preprocessing transformer components.

Submodules

datetime_featurizer

Transformer that can automatically extract features from datetime columns.

Module Contents

Classes Summary

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

Contents

class evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer(features_to_extract=None,
en-
code_as_categories=False,
time_index=None,
ran-
dom_seed=0,
**kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.

• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.
Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

decomposer

Component that removes trends from time series and returns the decomposed components.

Module Contents

Classes Summary

Decomposer Component that removes trends and seasonality from
time series and returns the decomposed components.

Contents

class evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer(component_obj=None,
ran-
dom_seed:
int = 0,
degree:
int = 1,
period:
int = -
1, sea-
sonal_smoother:
int = 7,
time_index:
str =
None,
**kwargs)

Component that removes trends and seasonality from time series and returns the decomposed components.
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Parameters
• parameters (dict) – Dictionary of parameters to pass to component object.

• component_obj (class) – Instance of a detrender/deseasonalizer class.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• degree (int) – Currently the degree of the PolynomialDecomposer, not used for STLDe-
composer.

• period (int) – The best guess, in units, for the period of the seasonal signal.

• seasonal_smoother (int) – The seasonal smoothing parameter for STLDecomposer, not
used for PolynomialDecomposer.

• time_index (str) – The column name of the feature matrix (X) that the datetime informa-
tion should be pulled from.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Decomposer
needs_fitting True
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits component to data.
fit_transform Removes fitted trend and seasonality from target vari-

able.
get_trend_dataframe Return a list of dataframes, each with 3 columns:

trend, seasonality, residual.
inverse_transform Add the trend + seasonality back to y.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.
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Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

abstract get_trend_dataframe(self, y: pandas.Series)
Return a list of dataframes, each with 3 columns: trend, seasonality, residual.

abstract inverse_transform(self, y: pandas.Series)
Add the trend + seasonality back to y.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.
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Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
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• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

drop_nan_rows_transformer

Transformer to drop rows specified by row indices.

Module Contents

Classes Summary

DropNaNRowsTransformer Transformer to drop rows with NaN values.

Contents

class evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer(parameters=None,
com-
po-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

5.14. Utils 1171



EvalML Documentation, Release 0.80.0

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

drop_null_columns

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Module Contents

Classes Summary

DropNullColumns Transformer to drop features whose percentage of NaN
values exceeds a specified threshold.

Contents

class evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns(pct_null_threshold=1.0,
ran-
dom_seed=0,
**kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.

Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

1174 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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drop_rows_transformer

Transformer to drop rows specified by row indices.

Module Contents

Classes Summary

DropRowsTransformer Transformer to drop rows specified by row indices.

Contents

class evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer(indices_to_drop=None,
ran-
dom_seed=0)

Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.

• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

5.14. Utils 1177



EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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featuretools

Featuretools DFS component that generates features for the input features.

Module Contents

Classes Summary

DFSTransformer Featuretools DFS component that generates features for
the input features.

Contents

class evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer(index='index',
fea-
tures=None,
ran-
dom_seed=0,
**kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]
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• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

log_transformer

Component that applies a log transformation to the target data.

Module Contents

Classes Summary

LogTransformer Applies a log transformation to the target data.

Contents

class evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters
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• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

lsa

Transformer to calculate the Latent Semantic Analysis Values of text input.

Module Contents

Classes Summary

LSA Transformer to calculate the Latent Semantic Analysis
Values of text input.

Contents

class evalml.pipelines.components.transformers.preprocessing.lsa.LSA(random_seed=0,
**kwargs)

Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.
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• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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natural_language_featurizer

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Module Contents

Classes Summary

NaturalLanguageFeaturizer Transformer that can automatically featurize text
columns using featuretools' nlp_primitives.

Contents

class evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.
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Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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polynomial_decomposer

Component that removes trends from time series by fitting a polynomial to the data.

Module Contents

Classes Summary

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

Contents

class evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer(time_index:
str
=
None,
de-
gree:
int
=
1,
pe-
riod:
int
=
-

1,
ran-
dom_seed:
int
=
0,
**kwargs)

Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.
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• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
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The first element are the input features returned without modification. The second ele-
ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
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The input features are returned without modification. The target variable y is de-
trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

replace_nullable_types

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Module Contents

Classes Summary

ReplaceNullableTypes Transformer to replace features with the new nullable
dtypes with a dtype that is compatible in EvalML.

Contents

class evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes(random_seed=0,
**kwargs)

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.
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Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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stl_decomposer

Component that removes trends and seasonality from time series using STL.

Module Contents

Classes Summary

STLDecomposer Removes trends and seasonality from time series using
the STL algorithm.

Contents

class evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer(time_index:
str
=
None,
de-
gree:
int
=
1,
pe-
riod:
int
=
None,
sea-
sonal_smoother:
int
=
7,
ran-
dom_seed:
int
=
0,
**kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and

1200 Chapter 5. API Reference

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html


EvalML Documentation, Release 0.80.0

if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.
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Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.
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classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.
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transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

text_transformer

Base class for all transformers working with text features.

Module Contents

Classes Summary

TextTransformer Base class for all transformers working with text fea-
tures.

Contents

class evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer(component_obj=None,
ran-
dom_seed=0,
**kwargs)

Base class for all transformers working with text features.

Parameters
• component_obj (obj) – Third-party objects useful in component implementation. Defaults

to None.
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.
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• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

time_series_featurizer

Transformer that delays input features and target variable for time series problems.

Module Contents

Classes Summary

TimeSeriesFeaturizer Transformer that delays input features and target variable
for time series problems.

Contents

class evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer(time_index=None,
max_delay=2,
gap=0,
fore-
cast_horizon=1,
conf_level=0.05,
rolling_window_size=0.25,
de-
lay_features=True,
de-
lay_target=True,
ran-
dom_seed=0,
**kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.
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The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
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• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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time_series_regularizer

Transformer that regularizes a dataset with an uninferrable offset frequency for time series problems.

Module Contents

Classes Summary

TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced
datetime column.

Contents

class evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer(time_index=None,
fre-
quency_payload=None,
win-
dow_length=4,
thresh-
old=0.4,
ran-
dom_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more
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• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

transform_primitive_components

Components that extract features from the input data.

Module Contents

Classes Summary

EmailFeaturizer Transformer that can automatically extract features from
emails.

URLFeaturizer Transformer that can automatically extract features from
URL.
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Contents

class evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

5.14. Utils 1221



EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

Decomposer Component that removes trends and seasonality from
time series and returns the decomposed components.

DFSTransformer Featuretools DFS component that generates features for
the input features.

DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
EmailFeaturizer Transformer that can automatically extract features from

emails.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
PolynomialDecomposer Removes trends and seasonality from time series by fit-

ting a polynomial and moving average to the data.
ReplaceNullableTypes Transformer to replace features with the new nullable

dtypes with a dtype that is compatible in EvalML.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
TextTransformer Base class for all transformers working with text fea-

tures.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
URLFeaturizer Transformer that can automatically extract features from

URL.

Contents

class evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer(features_to_extract=None,
en-
code_as_categories=False,
time_index=None,
ran-
dom_seed=0,
**kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.
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• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.
Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.Decomposer(component_obj=None,
random_seed: int = 0,
degree: int = 1,
period: int = - 1,
seasonal_smoother:
int = 7, time_index:
str = None, **kwargs)

Component that removes trends and seasonality from time series and returns the decomposed components.

Parameters
• parameters (dict) – Dictionary of parameters to pass to component object.

• component_obj (class) – Instance of a detrender/deseasonalizer class.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• degree (int) – Currently the degree of the PolynomialDecomposer, not used for STLDe-
composer.

• period (int) – The best guess, in units, for the period of the seasonal signal.

• seasonal_smoother (int) – The seasonal smoothing parameter for STLDecomposer, not
used for PolynomialDecomposer.

• time_index (str) – The column name of the feature matrix (X) that the datetime informa-
tion should be pulled from.
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Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Decomposer
needs_fitting True
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits component to data.
fit_transform Removes fitted trend and seasonality from target vari-

able.
get_trend_dataframe Return a list of dataframes, each with 3 columns:

trend, seasonality, residual.
inverse_transform Add the trend + seasonality back to y.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
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• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

abstract get_trend_dataframe(self, y: pandas.Series)
Return a list of dataframes, each with 3 columns: trend, seasonality, residual.

abstract inverse_transform(self, y: pandas.Series)
Add the trend + seasonality back to y.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DFSTransformer(index='index',
features=None,
random_seed=0,
**kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer(parameters=None,
com-
po-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.
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• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DropNullColumns(pct_null_threshold=1.0,
ran-
dom_seed=0,
**kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
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• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.
Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer(indices_to_drop=None,
ran-
dom_seed=0)

Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.

• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
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• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

1240 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.
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• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.LSA(random_seed=0, **kwargs)
Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
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• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer(time_index:
str =
None,
degree:
int = 1,
period:
int = - 1,
ran-
dom_seed:
int = 0,
**kwargs)

Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.
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• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

5.14. Utils 1251



EvalML Documentation, Release 0.80.0

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.
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inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes(random_seed=0,
**kwargs)

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes
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hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.

Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.STLDecomposer(time_index: str =
None, degree: int
= 1, period: int =
None, sea-
sonal_smoother:
int = 7,
random_seed: int
= 0, **kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and
if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.
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Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.
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classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.
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transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.TextTransformer(component_obj=None,
ran-
dom_seed=0,
**kwargs)

Base class for all transformers working with text features.

Parameters
• component_obj (obj) – Third-party objects useful in component implementation. Defaults

to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

1264 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer(time_index=None,
max_delay=2,
gap=0,
fore-
cast_horizon=1,
conf_level=0.05,
rolling_window_size=0.25,
de-
lay_features=True,
de-
lay_target=True,
ran-
dom_seed=0,
**kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

5.14. Utils 1265



EvalML Documentation, Release 0.80.0

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

5.14. Utils 1267



EvalML Documentation, Release 0.80.0

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer(time_index=None,
fre-
quency_payload=None,
win-
dow_length=4,
thresh-
old=0.4,
ran-
dom_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –
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• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.preprocessing.URLFeaturizer(random_seed=0,
**kwargs)

Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods

5.14. Utils 1271



EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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samplers

Sampler components.

Submodules

base_sampler

Base Sampler component. Used as the base class of all sampler components.

Module Contents

Classes Summary

BaseSampler Base Sampler component. Used as the base class of all
sampler components.

Contents

class evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler(parameters=None,
compo-
nent_obj=None,
ran-
dom_seed=0,
**kwargs)

Base Sampler component. Used as the base class of all sampler components.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

True

train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.
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fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1276 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

oversampler

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC based
on inputs to the component.

Module Contents

Classes Summary

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

Contents

class evalml.pipelines.components.transformers.samplers.oversampler.Oversampler(sampling_ratio=0.25,
sam-
pling_ratio_dict=None,
k_neighbors_default=5,
n_jobs=- 1,
ran-
dom_seed=0,
**kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters
• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with

range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

undersampler

An undersampling transformer to downsample the majority classes in the dataset.

Module Contents

Classes Summary

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

Contents

class evalml.pipelines.components.transformers.samplers.undersampler.Undersampler(sampling_ratio=0.25,
sam-
pling_ratio_dict=None,
min_samples=100,
min_percentage=0.1,
ran-
dom_seed=0,
**kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples
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are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

Contents

class evalml.pipelines.components.transformers.samplers.Oversampler(sampling_ratio=0.25,
sampling_ratio_dict=None,
k_neighbors_default=5,
n_jobs=- 1,
random_seed=0,
**kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters
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• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with
range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.samplers.Undersampler(sampling_ratio=0.25,
sam-
pling_ratio_dict=None,
min_samples=100,
min_percentage=0.1,
random_seed=0,
**kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples
are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.
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• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

scalers

Components that scale input data.

Submodules

standard_scaler

A transformer that standardizes input features by removing the mean and scaling to unit variance.

Module Contents

Classes Summary

StandardScaler A transformer that standardizes input features by remov-
ing the mean and scaling to unit variance.
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Contents

class evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler(random_seed=0,
**kwargs)

A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

StandardScaler A transformer that standardizes input features by remov-
ing the mean and scaling to unit variance.

Contents

class evalml.pipelines.components.transformers.scalers.StandardScaler(random_seed=0,
**kwargs)

A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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Submodules

column_selectors

Initalizes an transformer that selects specified columns in input data.

Module Contents

Classes Summary

ColumnSelector Initalizes an transformer that selects specified columns
in input data.

DropColumns Drops specified columns in input data.
SelectByType Selects columns by specified Woodwork logical type or

semantic tag in input data.
SelectColumns Selects specified columns in input data.

Contents

class evalml.pipelines.components.transformers.column_selectors.ColumnSelector(columns=None,
ran-
dom_seed=0,
**kwargs)

Initalizes an transformer that selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.
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• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.column_selectors.DropColumns(columns=None,
random_seed=0,
**kwargs)

Drops specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

drop.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by dropping columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns.

Parameters
• X (pd.DataFrame) – Data to transform.
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• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.column_selectors.SelectByType(column_types=None,
exclude=False,
ran-
dom_seed=0,
**kwargs)

Selects columns by specified Woodwork logical type or semantic tag in input data.

Parameters
• column_types (string, ww.LogicalType, list(string), list(ww.
LogicalType)) – List of Woodwork types or tags, used to determine which columns
to select or exclude.

• exclude (bool) – If true, exclude the column_types instead of including them. Defaults to
False.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns By Type Transformer
needs_fitting False
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by selecting columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.
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Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by selecting columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.column_selectors.SelectColumns(columns=None,
ran-
dom_seed=0,
**kwargs)

Selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select. If columns are not present, they will not be selected.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, optional) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

1304 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

transformer

A component that may or may not need fitting that transforms data. These components are used before an estimator.

Module Contents

Classes Summary

Transformer A component that may or may not need fitting that trans-
forms data. These components are used before an esti-
mator.

Contents

class evalml.pipelines.components.transformers.transformer.Transformer(parameters=None,
component_obj=None,
random_seed=0,
**kwargs)

A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Package Contents

Classes Summary

DateTimeFeaturizer Transformer that can automatically extract features from
datetime columns.

DFSTransformer Featuretools DFS component that generates features for
the input features.

DropColumns Drops specified columns in input data.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
EmailFeaturizer Transformer that can automatically extract features from

emails.
FeatureSelector Selects top features based on importance weights.
Imputer Imputes missing data according to a specified imputation

strategy.
LabelEncoder A transformer that encodes target labels using values be-

tween 0 and num_classes - 1.
LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-

criminant Analysis.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

continues on next page
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Table 7 – continued from previous page
ReplaceNullableTypes Transformer to replace features with the new nullable

dtypes with a dtype that is compatible in EvalML.
RFClassifierRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Classifier.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Regressor.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.
SelectByType Selects columns by specified Woodwork logical type or

semantic tag in input data.
SelectColumns Selects specified columns in input data.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TargetImputer Imputes missing target data according to a specified im-

putation strategy.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

URLFeaturizer Transformer that can automatically extract features from
URL.

Contents

class evalml.pipelines.components.transformers.DateTimeFeaturizer(features_to_extract=None,
encode_as_categories=False,
time_index=None,
random_seed=0, **kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.

• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.
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Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DFSTransformer(index='index', features=None,
random_seed=0, **kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropColumns(columns=None, random_seed=0,
**kwargs)

Drops specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

drop.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Columns Transformer
needs_fitting False
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by dropping columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.
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Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropNaNRowsTransformer(parameters=None,
component_obj=None,
random_seed=0,
**kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

5.14. Utils 1317



EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropNullColumns(pct_null_threshold=1.0,
random_seed=0, **kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.

Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.DropRowsTransformer(indices_to_drop=None,
random_seed=0)

Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.

• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters

5.14. Utils 1323



EvalML Documentation, Release 0.80.0

• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.EmailFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.
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• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.FeatureSelector(parameters=None,
component_obj=None,
random_seed=0, **kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame
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Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.Imputer(categorical_impute_strategy='most_frequent',
categorical_fill_value=None,
numeric_impute_strategy='mean',
numeric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.
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Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LabelEncoder(positive_label=None,
random_seed=0, **kwargs)

A transformer that encodes target labels using values between 0 and num_classes - 1.
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Parameters
• positive_label (int, str) – The label for the class that should be treated as positive (1)

for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LinearDiscriminantAnalysis(n_components=None,
random_seed=0,
**kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

5.14. Utils 1337



EvalML Documentation, Release 0.80.0

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.LSA(random_seed=0, **kwargs)
Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.
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• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.NaturalLanguageFeaturizer(random_seed=0,
**kwargs)
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Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.OneHotEncoder(top_n=10,
features_to_encode=None,
categories=None, drop='if_binary',
handle_unknown='ignore',
handle_missing='error',
random_seed=0, **kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.OrdinalEncoder(features_to_encode=None,
categories=None,
handle_unknown='error',
unknown_value=None,
encoded_missing_value=None,
random_seed=0, **kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.
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• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.
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Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame
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Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.transformers.Oversampler(sampling_ratio=0.25,
sampling_ratio_dict=None,
k_neighbors_default=5, n_jobs=- 1,
random_seed=0, **kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters
• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with

range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.PCA(variance=0.95, n_components=None,
random_seed=0, **kwargs)

Reduces the number of features by using Principal Component Analysis (PCA).

Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.PerColumnImputer(impute_strategies=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
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• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.PolynomialDecomposer(time_index: str = None,
degree: int = 1, period: int
= - 1, random_seed: int =
0, **kwargs)
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Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
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The first element are the input features returned without modification. The second ele-
ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
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The input features are returned without modification. The target variable y is de-
trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.ReplaceNullableTypes(random_seed=0,
**kwargs)

Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.

Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFClassifierRFESelector(step=0.2,
min_features_to_select=1,
cv=None,
scoring=None,
n_jobs=- 1,
n_estimators=10,
max_depth=None,
random_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.
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• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
thresh-
old='median',
n_jobs=- 1,
random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.
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• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFRegressorRFESelector(step=0.2,
min_features_to_select=1,
cv=None, scoring=None,
n_jobs=- 1,
n_estimators=10,
max_depth=None,
random_seed=0,
**kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.
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• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.RFRegressorSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
per-
cent_features=0.5,
threshold='median',
n_jobs=- 1,
random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.
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• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

1378 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.SelectByType(column_types=None, exclude=False,
random_seed=0, **kwargs)

Selects columns by specified Woodwork logical type or semantic tag in input data.

Parameters
• column_types (string, ww.LogicalType, list(string), list(ww.
LogicalType)) – List of Woodwork types or tags, used to determine which columns
to select or exclude.

• exclude (bool) – If true, exclude the column_types instead of including them. Defaults to
False.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns By Type Transformer
needs_fitting False
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by selecting columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.
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• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by selecting columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.SelectColumns(columns=None, random_seed=0,
**kwargs)

Selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select. If columns are not present, they will not be selected.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, optional) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.transformers.SimpleImputer(impute_strategy='most_frequent',
fill_value=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.StandardScaler(random_seed=0, **kwargs)
A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.STLDecomposer(time_index: str = None, degree: int
= 1, period: int = None,
seasonal_smoother: int = 7,
random_seed: int = 0, **kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters
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• time_index (str) – Specifies the name of the column in X that provides the datetime ob-
jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and
if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

1390 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.
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Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.
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classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.
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transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TargetEncoder(cols=None, smoothing=1,
handle_unknown='value',
handle_missing='value',
random_seed=0, **kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

5.14. Utils 1395



EvalML Documentation, Release 0.80.0

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self )
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TargetImputer(impute_strategy='most_frequent',
fill_value=None, random_seed=0,
**kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.transformers.TimeSeriesFeaturizer(time_index=None,
max_delay=2, gap=0,
forecast_horizon=1,
conf_level=0.05,
rolling_window_size=0.25,
delay_features=True,
delay_target=True,
random_seed=0,
**kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes
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df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.
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Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
nu-
meric_impute_strategy='interpolate',
tar-
get_impute_strategy='forwards_fill',
random_seed=0, **kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]
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Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.
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• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.TimeSeriesRegularizer(time_index=None,
frequency_payload=None,
window_length=4,
threshold=0.4,
random_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
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• ValueError – if self.time_index is None, if X and y have different lengths, if time_index
in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.Transformer(parameters=None,
component_obj=None,
random_seed=0, **kwargs)

A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.Undersampler(sampling_ratio=0.25,
sampling_ratio_dict=None,
min_samples=100,
min_percentage=0.1,
random_seed=0, **kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples
are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.

fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.transformers.URLFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 1415



EvalML Documentation, Release 0.80.0

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Submodules

component_base

Base class for all components.
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Module Contents

Classes Summary

ComponentBase Base class for all components.

Contents

class evalml.pipelines.components.component_base.ComponentBase(parameters=None,
component_obj=None,
random_seed=0, **kwargs)

Base class for all components.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
load Loads component at file path.
modifies_features Returns whether this component modifies (subsets or

transforms) the features variable during transform.
modifies_target Returns whether this component modifies (subsets or

transforms) the target variable during transform.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
training_only Returns whether or not this component should be

evaluated during training-time only, or during both
training and prediction time.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property modifies_features(cls)
Returns whether this component modifies (subsets or transforms) the features variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property modifies_target(cls)
Returns whether this component modifies (subsets or transforms) the target variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property training_only(cls)
Returns whether or not this component should be evaluated during training-time only, or during both train-
ing and prediction time.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

component_base_meta

Metaclass that overrides creating a new component by wrapping methods with validators and setters.

Module Contents

Classes Summary

ComponentBaseMeta Metaclass that overrides creating a new component by
wrapping methods with validators and setters.

Contents

class evalml.pipelines.components.component_base_meta.ComponentBaseMeta

Metaclass that overrides creating a new component by wrapping methods with validators and setters.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods
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check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

utils

Utility methods for EvalML components.

Module Contents

Classes Summary

WrappedSKClassifier Scikit-learn classifier wrapper class.
WrappedSKRegressor Scikit-learn regressor wrapper class.
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Functions

all_components Get all available components.
allowed_model_families List the model types allowed for a particular problem

type.
convert_bool_to_double Converts all boolean columns in dataframe to doubles.

If include_ints, converts all integer columns to doubles
as well.

estimator_unable_to_handle_nans If True, provided estimator class is unable to handle NaN
values as an input.

generate_component_code Creates and returns a string that contains the Python im-
ports and code required for running the EvalML compo-
nent.

get_estimators Returns the estimators allowed for a particular problem
type.

get_prediction_intevals_for_tree_regressors Find the prediction intervals for tree-based regressors.
handle_component_class Standardizes input from a string name to a Component-

Base subclass if necessary.
handle_float_categories_for_catboost Updates input data to be compatible with CatBoost esti-

mators.
make_balancing_dictionary Makes dictionary for oversampler components. Find ra-

tio of each class to the majority. If the ratio is smaller
than the sampling_ratio, we want to oversample, other-
wise, we don't want to sample at all, and we leave the
data as is.

match_indices Matches index from the passed dataframe to the passed
series.

scikit_learn_wrapped_estimator Wraps an EvalML object as a scikit-learn estimator.

Contents

evalml.pipelines.components.utils.all_components()

Get all available components.

evalml.pipelines.components.utils.allowed_model_families(problem_type)
List the model types allowed for a particular problem type.

Parameters problem_type (ProblemTypes or str) – ProblemTypes enum or string.

Returns A list of model families.

Return type list[ModelFamily]

evalml.pipelines.components.utils.convert_bool_to_double(data: pandas.DataFrame, include_ints:
bool = False)→ pandas.DataFrame

Converts all boolean columns in dataframe to doubles. If include_ints, converts all integer columns to doubles
as well.

Parameters
• data (pd.DataFrame) – Input dataframe.

• include_ints (bool) – If True, converts all integer columns to doubles as well. Defaults
to False.
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Returns Input dataframe with all boolean-valued columns converted to doubles.

Return type pd.DataFrame

evalml.pipelines.components.utils.estimator_unable_to_handle_nans(estimator_class)
If True, provided estimator class is unable to handle NaN values as an input.

Parameters estimator_class (Estimator) – Estimator class

Raises ValueError – If estimator is not a valid estimator class.

Returns True if estimator class is unable to process NaN values, False otherwise.

Return type bool

evalml.pipelines.components.utils.generate_component_code(element)
Creates and returns a string that contains the Python imports and code required for running the EvalML compo-
nent.

Parameters element (component instance) – The instance of the component to generate string
Python code for.

Returns String representation of Python code that can be run separately in order to recreate the
component instance. Does not include code for custom component implementation.

Raises ValueError – If the input element is not a component instance.

Examples

>>> from evalml.pipelines.components.estimators.regressors.decision_tree_regressor␣
→˓import DecisionTreeRegressor
>>> assert generate_component_code(DecisionTreeRegressor()) == "from evalml.
→˓pipelines.components.estimators.regressors.decision_tree_regressor import␣
→˓DecisionTreeRegressor\n\ndecisionTreeRegressor = DecisionTreeRegressor(**{
→˓'criterion': 'squared_error', 'max_features': 'sqrt', 'max_depth': 6, 'min_
→˓samples_split': 2, 'min_weight_fraction_leaf': 0.0})"
...
>>> from evalml.pipelines.components.transformers.imputers.simple_imputer import␣
→˓SimpleImputer
>>> assert generate_component_code(SimpleImputer()) == "from evalml.pipelines.
→˓components.transformers.imputers.simple_imputer import SimpleImputer\n\
→˓nsimpleImputer = SimpleImputer(**{'impute_strategy': 'most_frequent', 'fill_value
→˓': None})"

evalml.pipelines.components.utils.get_estimators(problem_type, model_families=None,
excluded_model_families=None)

Returns the estimators allowed for a particular problem type.

Can also optionally filter by a list of model types.

Parameters
• problem_type (ProblemTypes or str) – Problem type to filter for.

• model_families (list(str, ModelFamily)) – Model families to filter for.

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the results.

Returns A list of estimator subclasses.
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Return type list[class]

Raises
• TypeError – If the model_families parameter is not a list.

• RuntimeError – If a model family is not valid for the problem type.

evalml.pipelines.components.utils.get_prediction_intevals_for_tree_regressors(X: pan-
das.DataFrame,
predictions:
pandas.Series,
coverage:
List[float],
estimators:
List[evalml.pipelines.components.estimators.estimator.Estimator])
→ Dict[str,
pandas.Series]

Find the prediction intervals for tree-based regressors.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• predictions (pd.Series) – Predictions from the regressor.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• estimators (list) – Collection of fitted sub-estimators.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

evalml.pipelines.components.utils.handle_component_class(component_class)
Standardizes input from a string name to a ComponentBase subclass if necessary.

If a str is provided, will attempt to look up a ComponentBase class by that name and return a new instance. Oth-
erwise if a ComponentBase subclass or Component instance is provided, will return that without modification.

Parameters component_class (str, ComponentBase) – Input to be standardized.

Returns ComponentBase

Raises
• ValueError – If input is not a valid component class.

• MissingComponentError – If the component cannot be found.

Examples

>>> from evalml.pipelines.components.estimators.regressors.decision_tree_regressor␣
→˓import DecisionTreeRegressor
>>> handle_component_class(DecisionTreeRegressor)
<class 'evalml.pipelines.components.estimators.regressors.decision_tree_regressor.
→˓DecisionTreeRegressor'>
>>> handle_component_class("Random Forest Regressor")
<class 'evalml.pipelines.components.estimators.regressors.rf_regressor.
→˓RandomForestRegressor'>
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evalml.pipelines.components.utils.handle_float_categories_for_catboost(X)
Updates input data to be compatible with CatBoost estimators.

CatBoost cannot handle data in X that is the Categorical Woodwork logical type with floating point categories.
This utility determines if the floating point categories can be converted to integers without truncating any data,
and if they can be, converts them to int64 categories. Will not attempt to use values that are truly floating points.

Parameters X (pd.DataFrame) – Input data to CatBoost that has Woodwork initialized

Returns
Input data with exact same Woodwork typing info as the original but with any float categories

converted to be int64 when possible.

Return type DataFrame

Raises ValueError – if the numeric categories are actual floats that cannot be converted to integers
without truncating data

evalml.pipelines.components.utils.make_balancing_dictionary(y, sampling_ratio)
Makes dictionary for oversampler components. Find ratio of each class to the majority. If the ratio is smaller
than the sampling_ratio, we want to oversample, otherwise, we don’t want to sample at all, and we leave the data
as is.

Parameters
• y (pd.Series) – Target data.

• sampling_ratio (float) – The balanced ratio we want the samples to meet.

Returns Dictionary where keys are the classes, and the corresponding values are the counts of sam-
ples for each class that will satisfy sampling_ratio.

Return type dict

Raises ValueError – If sampling ratio is not in the range (0, 1] or the target is empty.

Examples

>>> import pandas as pd
>>> y = pd.Series([1] * 4 + [2] * 8 + [3])
>>> assert make_balancing_dictionary(y, 0.5) == {2: 8, 1: 4, 3: 4}
>>> assert make_balancing_dictionary(y, 0.9) == {2: 8, 1: 7, 3: 7}
>>> assert make_balancing_dictionary(y, 0.1) == {2: 8, 1: 4, 3: 1}

evalml.pipelines.components.utils.match_indices(X: pandas.DataFrame, y: pandas.Series)→
Tuple[pandas.DataFrame, Union[pandas.Series,
pandas.DataFrame]]

Matches index from the passed dataframe to the passed series.

Parameters
• X (pd.DataFrame) – Dataframe to match index from.

• y (pd.Series) – Series to match the index to.

Returns: Tuple(pd.DataFrame, pd.Series): DataFrame and Series with matching indicies.

evalml.pipelines.components.utils.scikit_learn_wrapped_estimator(evalml_obj)
Wraps an EvalML object as a scikit-learn estimator.
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class evalml.pipelines.components.utils.WrappedSKClassifier(pipeline)
Scikit-learn classifier wrapper class.

Methods

fit Fits component to data.
get_metadata_routing Get metadata routing of this object.
get_params Get parameters for this estimator.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
score Return the mean accuracy on the given test data and

labels.
set_params Set the parameters of this estimator.

fit(self, X, y)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_params(self, deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this estima-
tor and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type dict

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Features

Returns Predicted values.

Return type np.ndarray

predict_proba(self, X)
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type np.ndarray
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score(self, X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters
• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

Returns score – Mean accuracy of self.predict(X) w.r.t. y.

Return type float

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

class evalml.pipelines.components.utils.WrappedSKRegressor(pipeline)
Scikit-learn regressor wrapper class.

Methods

fit Fits component to data.
get_metadata_routing Get metadata routing of this object.
get_params Get parameters for this estimator.
predict Make predictions using selected features.
score Return the coefficient of determination of the predic-

tion.
set_params Set the parameters of this estimator.

fit(self, X, y)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.
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Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_params(self, deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this estima-
tor and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type dict

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Features.

Returns Predicted values.

Return type np.ndarray

score(self, X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination 𝑅2 is defined as (1− 𝑢
𝑣 ), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters
• X (array-like of shape (n_samples, n_features)) – Test samples. For some es-

timators this may be a precomputed kernel matrix or a list of generic objects instead with
shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of
samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
values for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

Returns score – 𝑅2 of self.predict(X) w.r.t. y.

Return type float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.
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Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineClassifier Classifier that predicts using the specified strategy.
BaselineRegressor Baseline regressor that uses a simple strategy to make

predictions. This is useful as a simple baseline regressor
to compare with other regressors.

CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

ComponentBase Base class for all components.
ComponentBaseMeta Metaclass that overrides creating a new component by

wrapping methods with validators and setters.
DateTimeFeaturizer Transformer that can automatically extract features from

datetime columns.
DecisionTreeClassifier Decision Tree Classifier.
DecisionTreeRegressor Decision Tree Regressor.
DFSTransformer Featuretools DFS component that generates features for

the input features.
DropColumns Drops specified columns in input data.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
DropNullColumns Transformer to drop features whose percentage of NaN

values exceeds a specified threshold.
DropRowsTransformer Transformer to drop rows specified by row indices.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ElasticNetRegressor Elastic Net Regressor.
EmailFeaturizer Transformer that can automatically extract features from

emails.
Estimator A component that fits and predicts given data.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesClassifier Extra Trees Classifier.
ExtraTreesRegressor Extra Trees Regressor.
FeatureSelector Selects top features based on importance weights.
Imputer Imputes missing data according to a specified imputation

strategy.
continues on next page
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Table 8 – continued from previous page
KNeighborsClassifier K-Nearest Neighbors Classifier.
LabelEncoder A transformer that encodes target labels using values be-

tween 0 and num_classes - 1.
LightGBMClassifier LightGBM Classifier.
LightGBMRegressor LightGBM Regressor.
LinearDiscriminantAnalysis Reduces the number of features by using Linear Dis-

criminant Analysis.
LinearRegressor Linear Regressor.
LogisticRegressionClassifier Logistic Regression Classifier.
LogTransformer Applies a log transformation to the target data.
LSA Transformer to calculate the Latent Semantic Analysis

Values of text input.
MultiseriesTimeSeriesBaselineRegressor Multiseries time series regressor that predicts using the

naive forecasting approach.
NaturalLanguageFeaturizer Transformer that can automatically featurize text

columns using featuretools' nlp_primitives.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

Oversampler SMOTE Oversampler component. Will automatically
select whether to use SMOTE, SMOTEN, or SMO-
TENC based on inputs to the component.

PCA Reduces the number of features by using Principal Com-
ponent Analysis (PCA).

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PolynomialDecomposer Removes trends and seasonality from time series by fit-
ting a polynomial and moving average to the data.

ProphetRegressor Prophet is a procedure for forecasting time series data
based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestClassifier Random Forest Classifier.
RandomForestRegressor Random Forest Regressor.
ReplaceNullableTypes Transformer to replace features with the new nullable

dtypes with a dtype that is compatible in EvalML.
RFClassifierRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Classifier.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorRFESelector Selects relevant features using recursive feature elimina-

tion with a Random Forest Regressor.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.
SelectByType Selects columns by specified Woodwork logical type or

semantic tag in input data.
continues on next page
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Table 8 – continued from previous page
SelectColumns Selects specified columns in input data.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StackedEnsembleBase Stacked Ensemble Base Class.
StackedEnsembleClassifier Stacked Ensemble Classifier.
StackedEnsembleRegressor Stacked Ensemble Regressor.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
STLDecomposer Removes trends and seasonality from time series using

the STL algorithm.
SVMClassifier Support Vector Machine Classifier.
SVMRegressor Support Vector Machine Regressor.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TargetImputer Imputes missing target data according to a specified im-

putation strategy.
TimeSeriesBaselineEstimator Time series estimator that predicts using the naive fore-

casting approach.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

Undersampler Initializes an undersampling transformer to downsample
the majority classes in the dataset.

URLFeaturizer Transformer that can automatically extract features from
URL.

VARMAXRegressor Vector Autoregressive Moving Average with eXoge-
nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostClassifier XGBoost Classifier.
XGBoostRegressor XGBoost Regressor.
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Contents

class evalml.pipelines.components.ARIMARegressor(time_index: Optional[Hashable] = None, trend:
Optional[str] = None, start_p: int = 2, d: int = 0,
start_q: int = 2, max_p: int = 5, max_d: int = 2,
max_q: int = 5, seasonal: bool = True, sp: int = 1,
n_jobs: int = - 1, random_seed: Union[int, float] =
0, maxiter: int = 10, use_covariates: bool = True,
**kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.BaselineClassifier(strategy='mode', random_seed=0, **kwargs)
Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
• strategy (str) – Method used to predict. Valid options are “mode”, “random” and “ran-

dom_weighted”. Defaults to “mode”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Classifier
sup-
ported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

train-
ing_only

False

Methods

classes_ Returns class labels. Will return None before fitting.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline classification
strategy.

predict_proba Make prediction probabilities using the baseline clas-
sification strategy.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

property classes_(self )
Returns class labels. Will return None before fitting.

Returns Class names

Return type list[str] or list(float)

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.
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Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature. Since baseline classifiers do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes

Return type pd.Series

fit(self, X, y=None)
Fits baseline classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the baseline classification strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.BaselineRegressor(strategy='mean', random_seed=0, **kwargs)
Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor
to compare with other regressors.

Parameters
• strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults

to “mean”.
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.

Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

fit Fits baseline regression component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the baseline regression strat-
egy.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature. Since baseline regressors do not use input features to
calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)

fit(self, X, y=None)
Fits baseline regression component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the baseline regression strategy.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.CatBoostClassifier(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=True,
allow_writing_files=False, random_seed=0,
n_jobs=- 1, **kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/
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Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.
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Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.CatBoostRegressor(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=False,
allow_writing_files=False, random_seed=0,
n_jobs=- 1, **kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ComponentBase(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Base class for all components.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
load Loads component at file path.
modifies_features Returns whether this component modifies (subsets or

transforms) the features variable during transform.
modifies_target Returns whether this component modifies (subsets or

transforms) the target variable during transform.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
training_only Returns whether or not this component should be

evaluated during training-time only, or during both
training and prediction time.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property modifies_features(cls)
Returns whether this component modifies (subsets or transforms) the features variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property modifies_target(cls)
Returns whether this component modifies (subsets or transforms) the target variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be
used as features or targets.

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property training_only(cls)
Returns whether or not this component should be evaluated during training-time only, or during both train-
ing and prediction time.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ComponentBaseMeta

Metaclass that overrides creating a new component by wrapping methods with validators and setters.

Attributes
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FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

It raises an exception if False and calls and returns the wrapped method if True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises ComponentNotYetFittedError – If component is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.

class evalml.pipelines.components.DateTimeFeaturizer(features_to_extract=None,
encode_as_categories=False,
time_index=None, random_seed=0, **kwargs)

Transformer that can automatically extract features from datetime columns.

Parameters
• features_to_extract (list) – List of features to extract. Valid options include “year”,

“month”, “day_of_week”, “hour”. Defaults to None.

• encode_as_categories (bool) – Whether day-of-week and month features should be en-
coded as pandas “category” dtype. This allows OneHotEncoders to encode these features.
Defaults to False.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DateTime Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fit the datetime featurizer component.
fit_transform Fits on X and transforms X.
get_feature_names Gets the categories of each datetime feature.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting DateTime columns, and then dropping those
DateTime columns.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fit the datetime featurizer component.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Target data. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Gets the categories of each datetime feature.

Returns
Dictionary, where each key-value pair is a column name and a dictionary mapping the

unique feature values to their integer encoding.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing DateTime columns, and then dropping those
DateTime columns.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DecisionTreeClassifier(criterion='gini', max_features='sqrt',
max_depth=6, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.
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• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DecisionTreeRegressor(criterion='squared_error',
max_features='sqrt', max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)
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Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DFSTransformer(index='index', features=None, random_seed=0,
**kwargs)

Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.
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• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]

• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DropColumns(columns=None, random_seed=0, **kwargs)
Drops specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

drop.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Columns Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by dropping columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.DropNaNRowsTransformer(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DropNullColumns(pct_null_threshold=1.0, random_seed=0,
**kwargs)

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
• pct_null_threshold (float) – The percentage of NaN values in an input feature to drop.

Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null
values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Drop Null Columns Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by dropping columns that exceed

the threshold of null values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
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• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.DropRowsTransformer(indices_to_drop=None, random_seed=0)
Transformer to drop rows specified by row indices.

Parameters
• indices_to_drop (list) – List of indices to drop in the input data. Defaults to None.
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• random_seed (int) – Seed for the random number generator. Is not used by this component.
Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop Rows Transformer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If indices to drop do not exist in input features or target.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.
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• y (pd.Series, optional) – Target data.

Returns Data with row indices dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15,
multi_class='auto', solver='saga', n_jobs=-
1, random_seed=0, **kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15,
max_iter=1000, random_seed=0, **kwargs)

Elastic Net Regressor.

Parameters
• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.EmailFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from emails.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Email Featurizer
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.
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• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Estimator(parameters: dict = None, component_obj:
Type[evalml.pipelines.components.ComponentBase] =
None, random_seed: Union[int, float] = 0, **kwargs)

A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

5.14. Utils 1483



EvalML Documentation, Release 0.80.0

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.
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• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ExponentialSmoothingRegressor(trend: Optional[str] = None,
damped_trend: bool = False,
seasonal: Optional[str] = None,
sp: int = 2, n_jobs: int = - 1,
random_seed: Union[int, float]
= 0, **kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ExtraTreesClassifier(n_estimators=100, max_features='sqrt',
max_depth=6, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_jobs=- 1,
random_seed=0, **kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.
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– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

1492 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ExtraTreesRegressor(n_estimators: int = 100, max_features: str =
'sqrt', max_depth: int = 6, min_samples_split:
int = 2, min_weight_fraction_leaf: float = 0.0,
n_jobs: int = - 1, random_seed: Union[int,
float] = 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:
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– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.FeatureSelector(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Selects top features based on importance weights.

Parameters
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• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Imputer(categorical_impute_strategy='most_frequent',
categorical_fill_value=None,
numeric_impute_strategy='mean', numeric_fill_value=None,
boolean_impute_strategy='most_frequent',
boolean_fill_value=None, random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.
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Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.KNeighborsClassifier(n_neighbors=5, weights='uniform',
algorithm='auto', leaf_size=30, p=2,
random_seed=0, **kwargs)

K-Nearest Neighbors Classifier.

Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LabelEncoder(positive_label=None, random_seed=0, **kwargs)
A transformer that encodes target labels using values between 0 and num_classes - 1.

Parameters
• positive_label (int, str) – The label for the class that should be treated as positive (1)

for binary classification problems. Ignored for multiclass problems. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0. Ignored.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Label Encoder
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the label encoder.
fit_transform Fit and transform data using the label encoder.
inverse_transform Decodes the target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform the target using the fitted label encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.
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fit_transform(self, X, y)
Fit and transform data using the label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

inverse_transform(self, y)
Decodes the target data.

Parameters y (pd.Series) – Target data.

Returns The decoded version of the target.

Return type pd.Series

Raises ValueError – If input y is None.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform the target using the fitted label encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns The original features and an encoded version of the target.

Return type pd.DataFrame, pd.Series

Raises ValueError – If input y is None.
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LightGBMClassifier(boosting_type='gbdt', learning_rate=0.1,
n_estimators=100, max_depth=0,
num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0,
n_jobs=- 1, random_seed=0, **kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LightGBMRegressor(boosting_type='gbdt', learning_rate=0.1,
n_estimators=20, max_depth=0,
num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0,
n_jobs=- 1, random_seed=0, **kwargs)

LightGBM Regressor.

Parameters
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• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses
traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LinearDiscriminantAnalysis(n_components=None,
random_seed=0, **kwargs)

Reduces the number of features by using Linear Discriminant Analysis.

Parameters
• n_components (int) – The number of features to maintain after computation. Defaults to

None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Linear Discriminant Analysis Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LDA component.
fit_transform Fit and transform data using the LDA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted LDA component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the LDA component.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted LDA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LinearRegressor(fit_intercept=True, n_jobs=- 1, random_seed=0,
**kwargs)

Linear Regressor.

Parameters
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• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to
False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.
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Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LogisticRegressionClassifier(penalty='l2', C=1.0,
multi_class='auto', solver='lbfgs',
n_jobs=- 1, random_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.
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• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LogTransformer(random_seed=0)
Applies a log transformation to the target data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

False

modi-
fies_target

True

name Log Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the LogTransformer.
fit_transform Log transforms the target variable.
inverse_transform Apply exponential to target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Log transforms the target variable.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the LogTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – Ignored.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Log transforms the target variable.

Parameters
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• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)
Apply exponential to target data.

Parameters y (pd.Series) – Target variable.

Returns Target with exponential applied.

Return type pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Log transforms the target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target data to log transform.

Returns
The input features are returned without modification. The target variable y is log trans-

formed.

Return type tuple of pd.DataFrame, pd.Series
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.LSA(random_seed=0, **kwargs)
Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name LSA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by applying the LSA pipeline.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the input data.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
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• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by applying the LSA pipeline.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns
Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor(gap=1,
forecast_horizon=1,
random_seed=0,
**kwargs)

Multiseries time series regressor that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for multiseries time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Multiseries Time Series Baseline Regressor
sup-
ported_problem_types

[ ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits multiseries time series baseline regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted multiseries time series
baseline regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)
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fit(self, X, y=None)
Fits multiseries time series baseline regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features * n_series].

• y (pd.DataFrame) – The target training data of shape [n_samples, n_features * n_series].

Returns self

Raises ValueError – If input y is None or if y is not a DataFrame with multiple columns.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted multiseries time series baseline regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].
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Returns Predicted values.

Return type pd.DataFrame

Raises ValueError – If the lagged columns are not present in X.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.NaturalLanguageFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Since models cannot handle non-numeric data, any text must be broken down into features that provide useful
information about that text. This component splits each text column into several informative features: Diversity
Score, Mean Characters per Word, Polarity Score, LSA (Latent Semantic Analysis), Number of Characters, and
Number of Words. Calling transform on this component will replace any text columns in the given dataset with
these numeric columns.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Natural Language Featurizer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by creating new features using ex-

isting text columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.
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Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by creating new features using existing text columns.

Parameters
• X (pd.DataFrame) – The data to transform.

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.OneHotEncoder(top_n=10, features_to_encode=None,
categories=None, drop='if_binary',
handle_unknown='ignore', handle_missing='error',
random_seed=0, **kwargs)
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A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False

Methods
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categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.OrdinalEncoder(features_to_encode=None, categories=None,
handle_unknown='error', unknown_value=None,
encoded_missing_value=None, random_seed=0,
**kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Oversampler(sampling_ratio=0.25, sampling_ratio_dict=None,
k_neighbors_default=5, n_jobs=- 1, random_seed=0,
**kwargs)

SMOTE Oversampler component. Will automatically select whether to use SMOTE, SMOTEN, or SMOTENC
based on inputs to the component.

Parameters
• sampling_ratio (float) – This is the goal ratio of the minority to majority class, with

range (0, 1]. A value of 0.25 means we want a 1:4 ratio of the minority to majority class
after oversampling. We will create the a sampling dictionary using this ratio, with the keys
corresponding to the class and the values responding to the number of samples. Defaults to
0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.
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• k_neighbors_default (int) – The number of nearest neighbors used to construct syn-
thetic samples. This is the default value used, but the actual k_neighbors value might be
smaller if there are less samples. Defaults to 5.

• n_jobs (int) – The number of CPU cores to use. Defaults to -1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

True

name Oversampler
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits oversampler to data.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by Oversampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits oversampler to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by Oversampling the data.

Parameters
• X (pd.DataFrame) – Training features.
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• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.PCA(variance=0.95, n_components=None, random_seed=0, **kwargs)
Reduces the number of features by using Principal Component Analysis (PCA).

Parameters
• variance (float) – The percentage of the original data variance that should be preserved

when reducing the number of features. Defaults to 0.95.

• n_components (int) – The number of features to maintain after computing SVD. Defaults
to None, but will override variance variable if set.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

Real(0.25, 1)}:type: {“variance”

modi-
fies_features

True

modi-
fies_target

False

name PCA Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the PCA component.
fit_transform Fit and transform data using the PCA component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using fitted PCA component.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input data is not all numeric.

fit_transform(self, X, y=None)
Fit and transform data using the PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted PCA component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

Raises ValueError – If input data is not all numeric.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.PerColumnImputer(impute_strategies=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns Transformed X
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Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.PolynomialDecomposer(time_index: str = None, degree: int = 1,
period: int = - 1, random_seed: int = 0,
**kwargs)

Removes trends and seasonality from time series by fitting a polynomial and moving average to the data.

Scikit-learn’s PolynomialForecaster is used to generate the additive trend portion of the target data. A polynomial
will be fit to the data during fit. That additive polynomial trend will be removed during fit so that
statsmodel’s seasonal_decompose can determine the addititve seasonality of the data by using rolling
averages over the series’ inferred periodicity.

For example, daily time series data will generate rolling averages over the first week of data, normalize
out the mean and return those 7 averages repeated over the entire length of the given series. Those seven
averages, repeated as many times as necessary to match the length of the given target data, will be used as
the seasonal signal of the data.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic
model is fit, etc. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and if
the data is daily data, period should be 7. For daily data with a yearly seasonal signal, period
should be 365. Defaults to -1, which uses the statsmodels libarary’s freq_to_period function.
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/tsatools.py

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “degree”: Integer(1, 3)}

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name Polynomial Decomposer
needs_fitting True
train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the PolynomialDecomposer and determine the
seasonal signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

inverse_transform Adds back fitted trend and seasonality to target vari-
able.

is_freq_valid Determines if the given string represents a valid fre-
quency for this decomposer.

load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the polyno-

mial trend and rolling average seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ PolynomialDecomposer
Fits the PolynomialDecomposer and determine the seasonal signal.

Currently only fits the polynomial detrender. The seasonality is determined by removing the trend from the
signal and using statsmodels’ seasonal_decompose(). Both the trend and seasonality are currently assumed
to be additive.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• NotImplementedError – If the input data has a frequency of “month-begin”. This isn’t

supported by statsmodels decompose as the freqstr “MS” is misinterpreted as milliseconds.

• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
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The first element are the input features returned without modification. The second ele-
ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X: pandas.DataFrame, y: pandas.Series)→ list[pandas.DataFrame]
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Scikit-learn’s PolynomialForecaster is used to generate the trend portion of the target data. statsmodel’s
seasonal_decompose is used to generate the seasonality of the data.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The polynomial trend is added back into the signal, calling the detrender’s inverse_transform(). Then, the
seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.

classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the polynomial trend and rolling average seasonality.

Applies the fit polynomial detrender to the target data, removing the additive polynomial trend. Then,
utilizes the first period’s worth of seasonal data determined in the .fit() function to extrapolate the seasonal
signal of the data to be transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
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The input features are returned without modification. The target variable y is de-
trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ProphetRegressor(time_index: Optional[Hashable] = None,
changepoint_prior_scale: float = 0.05,
seasonality_prior_scale: int = 10,
holidays_prior_scale: int = 10,
seasonality_mode: str = 'additive', stan_backend:
str = 'CMDSTANPY', interval_width: float = 0.95,
random_seed: Union[int, float] = 0, **kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self )→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RandomForestClassifier(n_estimators=100, max_depth=6,
n_jobs=- 1, random_seed=0, **kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RandomForestRegressor(n_estimators: int = 100, max_depth: int =
6, n_jobs: int = - 1, random_seed:
Union[int, float] = 0, **kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.
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• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.ReplaceNullableTypes(random_seed=0, **kwargs)
Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.

Attributes
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hyper-
parame-
ter_ranges

None

modi-
fies_features

True

modi-
fies_target

{}

name Replace Nullable Types Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Substitutes non-nullable types for the new pandas

nullable types in the data and target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data by replacing columns that contain

nullable types with the appropriate replacement type.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Substitutes non-nullable types for the new pandas nullable types in the data and target data.

Parameters
• X (pd.DataFrame, optional) – Input features.

• y (pd.Series) – Target data.

Returns The input features and target data with the non-nullable types set.

Return type tuple of pd.DataFrame, pd.Series

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.

“float64” for nullable integers and “category” for nullable booleans.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Target data to transform

Returns Transformed X pd.Series: Transformed y

Return type pd.DataFrame
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFClassifierRFESelector(step=0.2, min_features_to_select=1,
cv=None, scoring=None, n_jobs=- 1,
n_estimators=10, max_depth=None,
random_seed=0, **kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Classifier.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Classifier
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFClassifierSelectFromModel(number_features=None,
n_estimators=10,
max_depth=None,
percent_features=0.5,
threshold='median', n_jobs=- 1,
random_seed=0, **kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFRegressorRFESelector(step=0.2, min_features_to_select=1,
cv=None, scoring=None, n_jobs=- 1,
n_estimators=10, max_depth=None,
random_seed=0, **kwargs)

Selects relevant features using recursive feature elimination with a Random Forest Regressor.

Parameters
• step (int, float) – The number of features to eliminate in each iteration. If an integer

is specified this will represent the number of features to eliminate. If a float is specified this
represents the percentage of features to eliminate each iteration. The last iteration may drop
fewer than this number of features in order to satisfy the min_features_to_select constraint.
Defaults to 0.2.

• min_features_to_select (int) – The minimum number of features to return. Defaults
to 1.

• cv (int or None) – Number of folds to use for the cross-validation splitting strategy. De-
faults to None which will use 5 folds.

• scoring (str, callable or None) – A string or scorer callable object to specify the
scoring method.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “step”: Real(0.05, 0.25)}

modi-
fies_features

True

modi-
fies_target

False

name RFE Selector with RF Regressor
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.RFRegressorSelectFromModel(number_features=None,
n_estimators=10, max_depth=None,
percent_features=0.5,
threshold='median', n_jobs=- 1,
random_seed=0, **kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SelectByType(column_types=None, exclude=False, random_seed=0,
**kwargs)

Selects columns by specified Woodwork logical type or semantic tag in input data.

Parameters
• column_types (string, ww.LogicalType, list(string), list(ww.
LogicalType)) – List of Woodwork types or tags, used to determine which columns
to select or exclude.

• exclude (bool) – If true, exclude the column_types instead of including them. Defaults to
False.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns By Type Transformer
needs_fitting False
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transforms data X by selecting columns.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, ignored) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
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• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by selecting columns.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Targets.

Returns Transformed X.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SelectColumns(columns=None, random_seed=0, **kwargs)
Selects specified columns in input data.

Parameters
• columns (list(string)) – List of column names, used to determine which columns to

select. If columns are not present, they will not be selected.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Select Columns Transformer
needs_fitting False
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the transformer by checking if column names are

present in the dataset.
fit_transform Fits on X and transforms X.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Transform data using fitted column selector compo-

nent.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the transformer by checking if column names are present in the dataset.

Parameters
• X (pd.DataFrame) – Data to check.

• y (pd.Series, optional) – Targets.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.
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• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using fitted column selector component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SimpleImputer(impute_strategy='most_frequent', fill_value=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.
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• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.StackedEnsembleBase(final_estimator=None, n_jobs=- 1,
random_seed=0, **kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.StackedEnsembleClassifier(final_estimator=None, n_jobs=- 1,
random_seed=0, **kwargs)

Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],

(continues on next page)
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(continued from previous page)

... "Stacked Ensemble": [

... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
... ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.StackedEnsembleRegressor(final_estimator=None, n_jobs=- 1,
random_seed=0, **kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),

(continues on next page)
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(continued from previous page)

... "Random Forest.x",

... "Random Forest B.x",

... "y",

... ],

... }

...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.components.StandardScaler(random_seed=0, **kwargs)
A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.STLDecomposer(time_index: str = None, degree: int = 1, period: int =
None, seasonal_smoother: int = 7, random_seed: int
= 0, **kwargs)

Removes trends and seasonality from time series using the STL algorithm.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• degree (int) – Not currently used. STL 3x “degree-like” values. None are able to be set at
this time. Defaults to 1.

• period (int) – The number of entries in the time series data that corresponds to one period
of a cyclic signal. For instance, if data is known to possess a weekly seasonal signal, and
if the data is daily data, the period should likely be 7. For daily data with a yearly seasonal
signal, the period should likely be 365. If None, statsmodels will infer the period based on
the frequency. Defaults to None.

• seasonal_smoother (int) – The length of the seasonal smoother used by the underlying
STL algorithm. For compatibility, must be odd. If an even number is provided, the next,
highest odd number will be used. Defaults to 7.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

in-
valid_frequencies

[]

modi-
fies_features

False

modi-
fies_target

True

name STL Decomposer
needs_fitting True
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
determine_periodicity Function that uses autocorrelative methods to deter-

mine the likely most signficant period of the seasonal
signal.

fit Fits the STLDecomposer and determine the seasonal
signal.

fit_transform Removes fitted trend and seasonality from target vari-
able.

get_trend_dataframe Return a list of dataframes with 4 columns: signal,
trend, seasonality, residual.

get_trend_prediction_intervals Calculate the prediction intervals for the trend data.
inverse_transform Adds back fitted trend and seasonality to target vari-

able.
is_freq_valid Determines if the given string represents a valid fre-

quency for this decomposer.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
plot_decomposition Plots the decomposition of the target signal.
save Saves component at file path.
set_period Function to set the component's seasonal period

based on the target's seasonality.
transform Transforms the target data by removing the STL trend

and seasonality.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict
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classmethod determine_periodicity(cls, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float
= 0.01, rel_max_order: int = 5)

Function that uses autocorrelative methods to determine the likely most signficant period of the seasonal
signal.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.

Returns
The integer number of entries in time series data over which the seasonal part of the target data

repeats. If the time series data is in days, then this is the number of days that it takes
the target’s seasonal signal to repeat. Note: the target data can contain multiple seasonal
signals. This function will only return the stronger. E.g. if the target has both weekly
and yearly seasonality, the function may return either “7” or “365”, depending on which
seasonality is more strongly autocorrelated. If no period is detected, returns None.

Return type int

fit(self, X: pandas.DataFrame, y: pandas.Series = None)→ STLDecomposer
Fits the STLDecomposer and determine the seasonal signal.

Instantiates a statsmodels STL decompose object with the component’s stored parameters and fits it. Since
the statsmodels object does not fit the sklearn api, it is not saved during __init__() in _component_obj and
will be re-instantiated each time fit is called.

To emulate the sklearn API, when the STL decomposer is fit, the full seasonal component, a single period
sample of the seasonal component, the full trend-cycle component and the residual are saved.

y(t) = S(t) + T(t) + R(t)

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns self

Raises
• ValueError – If y is None.

• ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

fit_transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame,
pandas.Series]

Removes fitted trend and seasonality from target variable.

Parameters
• X (pd.DataFrame, optional) – Ignored.

• y (pd.Series) – Target variable to detrend and deseasonalize.
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Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the fitted trend removed.

Return type tuple of pd.DataFrame, pd.Series

get_trend_dataframe(self, X, y)
Return a list of dataframes with 4 columns: signal, trend, seasonality, residual.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

Returns
Each DataFrame contains the columns “signal”, “trend”, “seasonality” and “residual,”

with the latter 3 column values being the decomposed elements of the target data. The
“signal” column is simply the input target signal but reindexed with a datetime index to
match the input features.

Return type list of pd.DataFrame

Raises
• TypeError – If X does not have time-series data in the index.

• ValueError – If time series index of X does not have an inferred frequency.

• ValueError – If the forecaster associated with the detrender has not been fit yet.

• TypeError – If y is not provided as a pandas Series or DataFrame.

get_trend_prediction_intervals(self, y, coverage=None)
Calculate the prediction intervals for the trend data.

Parameters
• y (pd.Series) – Target data.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict of pd.Series

inverse_transform(self, y_t: pandas.Series)→ tuple[pandas.DataFrame, pandas.Series]
Adds back fitted trend and seasonality to target variable.

The STL trend is projected to cover the entire requested target range, then added back into the signal. Then,
the seasonality is projected forward to and added back into the signal.

Parameters y_t (pd.Series) – Target variable.

Returns
The first element are the input features returned without modification. The second ele-

ment is the target variable y with the trend and seasonality added back in.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If y is None.
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classmethod is_freq_valid(cls, freq: str)
Determines if the given string represents a valid frequency for this decomposer.

Parameters freq (str) – A frequency to validate. See the pandas docs at https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases for options.

Returns boolean representing whether the frequency is valid or not.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

plot_decomposition(self, X: pandas.DataFrame, y: pandas.Series, show: bool = False)→
tuple[matplotlib.pyplot.Figure, list]

Plots the decomposition of the target signal.

Parameters
• X (pd.DataFrame) – Input data with time series data in index.

• y (pd.Series or pd.DataFrame) – Target variable data provided as a Series for uni-
variate problems or a DataFrame for multivariate problems.

• show (bool) – Whether to display the plot or not. Defaults to False.

Returns
The figure and axes that have the decompositions plotted on them

Return type matplotlib.pyplot.Figure, list[matplotlib.pyplot.Axes]

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

set_period(self, X: pandas.DataFrame, y: pandas.Series, acf_threshold: float = 0.01, rel_max_order: int =
5)

Function to set the component’s seasonal period based on the target’s seasonality.

Parameters
• X (pandas.DataFrame) – The feature data of the time series problem.

• y (pandas.Series) – The target data of a time series problem.

• acf_threshold (float) – The threshold for the autocorrelation function to determine the
period. Any values below the threshold are considered to be 0 and will not be considered
for the period. Defaults to 0.01.

• rel_max_order (int) – The order of the relative maximum to determine the period. De-
faults to 5.
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transform(self, X: pandas.DataFrame, y: pandas.Series = None)→ tuple[pandas.DataFrame, pandas.Series]
Transforms the target data by removing the STL trend and seasonality.

Uses an ARIMA model to project forward the addititve trend and removes it. Then, utilizes the first period’s
worth of seasonal data determined in the .fit() function to extrapolate the seasonal signal of the data to be
transformed. This seasonal signal is also assumed to be additive and is removed.

Parameters
• X (pd.DataFrame, optional) – Conditionally used to build datetime index.

• y (pd.Series) – Target variable to detrend and deseasonalize.

Returns
The input features are returned without modification. The target variable y is de-

trended and deseasonalized.

Return type tuple of pd.DataFrame, pd.Series

Raises ValueError – If target data doesn’t have DatetimeIndex AND no Datetime features in
features data

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SVMClassifier(C=1.0, kernel='rbf', gamma='auto',
probability=True, random_seed=0, **kwargs)

Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.SVMRegressor(C=1.0, kernel='rbf', gamma='auto', random_seed=0,
**kwargs)

Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

1606 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TargetEncoder(cols=None, smoothing=1, handle_unknown='value',
handle_missing='value', random_seed=0, **kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
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• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise
only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0

• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self )
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TargetImputer(impute_strategy='most_frequent', fill_value=None,
random_seed=0, **kwargs)

Imputes missing target data according to a specified imputation strategy.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to “most_frequent”.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to None which uses 0 when imputing numerical data and “miss-
ing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

False

modi-
fies_target

True

name Target Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to target data. 'None' values are con-

verted to np.nan before imputation and are treated as
the same.

fit_transform Fits on and transforms the input target data.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input target data by imputing missing val-

ues. 'None' and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the
same.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]. Ignored.

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises TypeError – If target is filled with all null values.

fit_transform(self, X, y)
Fits on and transforms the input target data.

Parameters
• X (pd.DataFrame) – Features. Ignored.

• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Features. Ignored.
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• y (pd.Series) – Target data to impute.

Returns The original X, transformed y

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesBaselineEstimator(gap=1, forecast_horizon=1,
random_seed=0, **kwargs)

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
• gap (int) – Gap between prediction date and target date and must be a positive integer. If

gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

• forecast_horizon (int) – Number of time steps the model is expected to predict.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.BASELINE
modi-
fies_features

True

modi-
fies_target

False

name Time Series Baseline Estimator
sup-
ported_problem_types

[ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY,
ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits time series baseline estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted time series baseline es-
timator.

predict_proba Make prediction probabilities using fitted time series
baseline estimator.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns An array of zeroes.

Return type np.ndarray (float)
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fit(self, X, y=None)
Fits time series baseline estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].
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Returns Predicted values.

Return type pd.Series

Raises ValueError – If input y is None.

predict_proba(self, X)
Make prediction probabilities using fitted time series baseline estimator.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

Raises ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesFeaturizer(time_index=None, max_delay=2, gap=0,
forecast_horizon=1, conf_level=0.05,
rolling_window_size=0.25,
delay_features=True, delay_target=True,
random_seed=0, **kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
• time_index (str) – Name of the column containing the datetime information used to order

the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.
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• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
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• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
numeric_impute_strategy='interpolate',
target_impute_strategy='forwards_fill',
random_seed=0, **kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes
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hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.
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transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.TimeSeriesRegularizer(time_index=None,
frequency_payload=None,
window_length=4, threshold=0.4,
random_seed=0, **kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –

• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.
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• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Transformer(parameters=None, component_obj=None,
random_seed=0, **kwargs)

A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.
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fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.Undersampler(sampling_ratio=0.25, sampling_ratio_dict=None,
min_samples=100, min_percentage=0.1,
random_seed=0, **kwargs)

Initializes an undersampling transformer to downsample the majority classes in the dataset.

This component is only run during training and not during predict.

Parameters
• sampling_ratio (float) – The smallest minority:majority ratio that is accepted as ‘bal-

anced’. For instance, a 1:4 ratio would be represented as 0.25, while a 1:1 ratio is 1.0. Must
be between 0 and 1, inclusive. Defaults to 0.25.

• sampling_ratio_dict (dict) – A dictionary specifying the desired balanced ratio for
each target value. For instance, in a binary case where class 1 is the minority, we could
specify: sampling_ratio_dict={0: 0.5, 1: 1}, which means we would undersample class 0 to
have twice the number of samples as class 1 (minority:majority ratio = 0.5), and don’t sample
class 1. Overrides sampling_ratio if provided. Defaults to None.

• min_samples (int) – The minimum number of samples that we must have for any class,
pre or post sampling. If a class must be downsampled, it will not be downsampled past this
value. To determine severe imbalance, the minority class must occur less often than this and
must have a class ratio below min_percentage. Must be greater than 0. Defaults to 100.

• min_percentage (float) – The minimum percentage of the minimum class to total dataset
that we tolerate, as long as it is above min_samples. If min_percentage and min_samples
are not met, treat this as severely imbalanced, and we will not resample the data. Must be
between 0 and 0.5, inclusive. Defaults to 0.1.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Raises
• ValueError – If sampling_ratio is not in the range (0, 1].

• ValueError – If min_sample is not greater than 0.

• ValueError – If min_percentage is not between 0 and 0.5, inclusive.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Undersampler
train-
ing_only

True
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the sampler to the data.
fit_resample Resampling technique for this sampler.
fit_transform Fit and transform data using the sampler component.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms the input data by sampling the data.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the sampler to the data.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Target.

Returns self

Raises ValueError – If y is None.
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fit_resample(self, X, y)
Resampling technique for this sampler.

Parameters
• X (pd.DataFrame) – Training data to fit and resample.

• y (pd.Series) – Training data targets to fit and resample.

Returns Indices to keep for training data.

Return type list

fit_transform(self, X, y)
Fit and transform data using the sampler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type (pd.DataFrame, pd.Series)

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms the input data by sampling the data.

Parameters
• X (pd.DataFrame) – Training features.

• y (pd.Series) – Target.

Returns Transformed features and target.

Return type pd.DataFrame, pd.Series
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update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.URLFeaturizer(random_seed=0, **kwargs)
Transformer that can automatically extract features from URL.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name URL Featurizer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VARMAXRegressor(time_index: Optional[Hashable] = None, p: int =
1, q: int = 0, trend: Optional[str] = 'c',
random_seed: Union[int, float] = 0, maxiter: int =
10, use_covariates: bool = False, **kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.
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Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VowpalWabbitBinaryClassifier(loss_function='logistic',
learning_rate=0.5,
decay_learning_rate=1.0,
power_t=0.5, passes=1,
random_seed=0, **kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VowpalWabbitMulticlassClassifier(loss_function='logistic',
learning_rate=0.5,
decay_learning_rate=1.0,
power_t=0.5, passes=1,
random_seed=0, **kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.
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• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.
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Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.
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Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.VowpalWabbitRegressor(learning_rate=0.5,
decay_learning_rate=1.0, power_t=0.5,
passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.
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• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.XGBoostClassifier(eta=0.1, max_depth=6, min_child_weight=1,
n_estimators=100, random_seed=0,
eval_metric='logloss', n_jobs=12, **kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.
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• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

5.14. Utils 1649



EvalML Documentation, Release 0.80.0

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.components.XGBoostRegressor(eta: float = 0.1, max_depth: int = 6,
min_child_weight: int = 1, n_estimators: int =
100, random_seed: Union[int, float] = 0, n_jobs:
int = 12, **kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.
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• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Submodules

binary_classification_pipeline

Pipeline subclass for all binary classification pipelines.
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Module Contents

Classes Summary

BinaryClassificationPipeline Pipeline subclass for all binary classification pipelines.

Contents

class evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline(component_graph,
parame-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline subclass for all binary classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = BinaryClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Binary Pipeline")
...
>>> assert pipeline.custom_name == "My Binary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.
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>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.BINARY

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels. Assumes that

the column at index 1 represents the positive label
case.

save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing
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can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.
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fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)
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graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.
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• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels. Assumes that the column at index 1 represents the positive label
case.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]
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• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self )
Threshold used to make a prediction. Defaults to None.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

binary_classification_pipeline_mixin

Binary classification pipeline mix-in class.
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Module Contents

Classes Summary

BinaryClassificationPipelineMixin Binary classification pipeline mix-in class.

Contents

class
evalml.pipelines.binary_classification_pipeline_mixin.BinaryClassificationPipelineMixin

Binary classification pipeline mix-in class.

Methods

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

threshold Threshold used to make a prediction. Defaults to
None.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.

• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property threshold(self )
Threshold used to make a prediction. Defaults to None.

classification_pipeline

Pipeline subclass for all classification pipelines.
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Module Contents

Classes Summary

ClassificationPipeline Pipeline subclass for all classification pipelines.

Contents

class evalml.pipelines.classification_pipeline.ClassificationPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline subclass for all classification pipelines.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.
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Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
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• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.
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Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.
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• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.
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Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

component_graph

Component graph for a pipeline as a directed acyclic graph (DAG).

Module Contents

Classes Summary

ComponentGraph Component graph for a pipeline as a directed acyclic
graph (DAG).

Attributes Summary

logger

Contents

class evalml.pipelines.component_graph.ComponentGraph(component_dict=None, cached_data=None,
random_seed=0)

Component graph for a pipeline as a directed acyclic graph (DAG).

Parameters
• component_dict (dict) – A dictionary which specifies the components and edges between

components that should be used to create the component graph. Defaults to None.

• cached_data (dict) – A dictionary of nested cached data. If the hashes and components
are in this cache, we skip fitting for these components. Expected to be of format {hash1:
{component_name: trained_component, . . . }, hash2: {. . . }, . . . }. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Examples

>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'Logistic Regression': ['Logistic Regression Classifier',
→˓'Imputer.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)
>>> assert component_graph.compute_order == ['Imputer', 'Logistic Regression']
...
...
>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'OHE': ['One Hot Encoder', 'Imputer.x', 'y'],
... 'estimator_1': ['Random Forest Classifier', 'OHE.x', 'y'],
... 'estimator_2': ['Decision Tree Classifier', 'OHE.x', 'y'],
... 'final': ['Logistic Regression Classifier', 'estimator_1.x',
→˓'estimator_2.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)

The default parameters for every component in the component graph.

>>> assert component_graph.default_parameters == {
... 'Imputer': {'categorical_impute_strategy': 'most_frequent',
... 'numeric_impute_strategy': 'mean',
... 'boolean_impute_strategy': 'most_frequent',
... 'categorical_fill_value': None,
... 'numeric_fill_value': None,
... 'boolean_fill_value': None},
... 'One Hot Encoder': {'top_n': 10,
... 'features_to_encode': None,
... 'categories': None,
... 'drop': 'if_binary',
... 'handle_unknown': 'ignore',
... 'handle_missing': 'error'},
... 'Random Forest Classifier': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Logistic Regression Classifier': {'penalty': 'l2',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'lbfgs'}}

Methods
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compute_order The order that components will be computed or
called in.

default_parameters The default parameter dictionary for this pipeline.
describe Outputs component graph details including compo-

nent parameters.
fit Fit each component in the graph.
fit_and_transform_all_but_final Fit and transform all components save the final one,

usually an estimator.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
generate_order Regenerated the topologically sorted order of the

graph.
get_component Retrieves a single component object from the graph.
get_component_input_logical_types Get the logical types that are passed to the given com-

ponent.
get_estimators Gets a list of all the estimator components within this

graph.
get_inputs Retrieves all inputs for a given component.
get_last_component Retrieves the component that is computed last in the

graph, usually the final estimator.
graph Generate an image representing the component

graph.
has_dfs Whether this component graph contains a DFSTrans-

former or not.
instantiate Instantiates all uninstantiated components within the

graph using the given parameters. An error will be
raised if a component is already instantiated but the
parameters dict contains arguments for that compo-
nent.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

last_component_input_logical_types Get the logical types that are passed to the last com-
ponent in the pipeline.

predict Make predictions using selected features.
transform Transform the input using the component graph.
transform_all_but_final Transform all components save the final one, and

gathers the data from any number of parents to get all
the information that should be fed to the final compo-
nent.

property compute_order(self )
The order that components will be computed or called in.

property default_parameters(self )
The default parameter dictionary for this pipeline.

Returns Dictionary of all component default parameters.

Return type dict

describe(self, return_dict=False)
Outputs component graph details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about component
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graph. Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None

Return type dict

Raises ValueError – If the componentgraph is not instantiated

fit(self, X, y)
Fit each component in the graph.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_and_transform_all_but_final(self, X, y)
Fit and transform all components save the final one, usually an estimator.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns Transformed features and target.

Return type Tuple (pd.DataFrame, pd.Series)

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

classmethod generate_order(cls, component_dict)
Regenerated the topologically sorted order of the graph.

get_component(self, component_name)
Retrieves a single component object from the graph.

Parameters component_name (str) – Name of the component to retrieve

Returns ComponentBase object

Raises ValueError – If the component is not in the graph.

get_component_input_logical_types(self, component_name)
Get the logical types that are passed to the given component.

Parameters component_name (str) – Name of component in the graph

Returns Dict - Mapping feature name to logical type instance.

Raises
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• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

get_estimators(self )
Gets a list of all the estimator components within this graph.

Returns All estimator objects within the graph.

Return type list

Raises ValueError – If the component graph is not yet instantiated.

get_inputs(self, component_name)
Retrieves all inputs for a given component.

Parameters component_name (str) – Name of the component to look up.

Returns List of inputs for the component to use.

Return type list[str]

Raises ValueError – If the component is not in the graph.

get_last_component(self )
Retrieves the component that is computed last in the graph, usually the final estimator.

Returns ComponentBase object

Raises ValueError – If the component graph has no edges.

graph(self, name=None, graph_format=None)
Generate an image representing the component graph.

Parameters
• name (str) – Name of the graph. Defaults to None.

• graph_format (str) – file format to save the graph in. Defaults to None.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises RuntimeError – If graphviz is not installed.

property has_dfs(self )
Whether this component graph contains a DFSTransformer or not.

instantiate(self, parameters=None)
Instantiates all uninstantiated components within the graph using the given parameters. An error will be
raised if a component is already instantiated but the parameters dict contains arguments for that component.

Parameters parameters (dict) – Dictionary with component names as keys and dictionary of
that component’s parameters as values. An empty dictionary {} or None implies using all
default values for component parameters. If a component in the component graph is already
instantiated, it will not use any of its parameters defined in this dictionary. Defaults to None.

Returns self

Raises ValueError – If component graph is already instantiated or if a component errored while
instantiating.
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inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y – (pd.Series): Final component features.

Returns The target with inverse transformation applied.

Return type pd.Series

property last_component_input_logical_types(self )
Get the logical types that are passed to the last component in the pipeline.

Returns Dict - Mapping feature name to logical type instance.

Raises
• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Input features of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

transform(self, X, y=None)
Transform the input using the component graph.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is not a Transformer.

transform_all_but_final(self, X, y=None)
Transform all components save the final one, and gathers the data from any number of parents to get all the
information that should be fed to the final component.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples]. Defaults to None.

Returns Transformed values.

Return type pd.DataFrame

evalml.pipelines.component_graph.logger
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multiclass_classification_pipeline

Pipeline subclass for all multiclass classification pipelines.

Module Contents

Classes Summary

MulticlassClassificationPipeline Pipeline subclass for all multiclass classification
pipelines.

Contents

class evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline subclass for all multiclass classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Example

>>> pipeline = MulticlassClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Multiclass Pipeline
→˓")
...
>>> assert pipeline.custom_name == "My Multiclass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.MULTICLASS

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

5.14. Utils 1677



EvalML Documentation, Release 0.80.0

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
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• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.
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Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.
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• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.
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Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

multiseries_regression_pipeline

Pipeline base class for time series regression problems.

Module Contents

Classes Summary

MultiseriesRegressionPipeline Pipeline base class for multiseries time series regression
problems.

Contents

class evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for multiseries time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components.

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
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must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a multiseries time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.

continues on next page
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Table 9 – continued from previous page
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))
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Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a multiseries time series pipeline.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.

Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series
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Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
... )
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)
>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters
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• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.
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inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

1688 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.
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transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

pipeline_base

Base machine learning pipeline class.

Module Contents

Classes Summary

PipelineBase Machine learning pipeline.

Attributes Summary

logger
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Contents

evalml.pipelines.pipeline_base.logger

class evalml.pipelines.pipeline_base.PipelineBase(component_graph, parameters=None,
custom_name=None, random_seed=0)

Machine learning pipeline.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”].

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool
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clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

abstract fit(self, X, y)
Build a model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component
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get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series
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static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
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• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

pipeline_meta

Metaclass that overrides creating a new pipeline by wrapping methods with validators and setters.
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Module Contents

Classes Summary

PipelineBaseMeta Metaclass that overrides creating a new pipeline by
wrapping methods with validators and setters.

Contents

class evalml.pipelines.pipeline_meta.PipelineBaseMeta

Metaclass that overrides creating a new pipeline by wrapping methods with validators and setters.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit check_for_fit wraps a method that validates if
self._is_fitted is True.

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

classmethod check_for_fit(cls, method)
check_for_fit wraps a method that validates if self._is_fitted is True.

Parameters method (callable) – Method to wrap.

Returns The wrapped method.

Raises PipelineNotYetFittedError – If pipeline is not yet fitted.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)
Wrapper for the fit method.
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regression_pipeline

Pipeline subclass for all regression pipelines.

Module Contents

Classes Summary

RegressionPipeline Pipeline subclass for all regression pipelines.

Contents

class evalml.pipelines.regression_pipeline.RegressionPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline subclass for all regression pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = RegressionPipeline(component_graph=["Simple Imputer", "Linear␣
→˓Regressor"],
... parameters={"Simple Imputer": {"impute_strategy":
→˓"mean"}},
... custom_name="My Regression Pipeline")
...
>>> assert pipeline.custom_name == "My Regression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.
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>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1}}

Attributes

prob-
lem_type

ProblemTypes.REGRESSION

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a regression model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool
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clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a regression model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training data of length [n_samples]

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component
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get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series
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static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
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• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – True values of length [n_samples]

• objectives (list) – Non-empty list of objectives to score on

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

time_series_classification_pipelines

Pipeline base class for time-series classification problems.
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Module Contents

Classes Summary

TimeSeriesBinaryClassificationPipeline Pipeline base class for time series binary classification
problems.

TimeSeriesClassificationPipeline Pipeline base class for time series classification prob-
lems.

TimeSeriesMulticlassClassificationPipeline Pipeline base class for time series multiclass classifica-
tion problems.

Contents

class evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series binary classification problems.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesBinaryClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {"gap
→˓": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},

(continues on next page)
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(continued from previous page)

... custom_name="My␣
→˓TimeSeriesBinary Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesBinary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
...
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.

continues on next page
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Table 10 – continued from previous page
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.
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static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.
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fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)
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graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.
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• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame) – Future data of shape [n_samples, n_features].

• y (pd.Series) – Future target of shape [n_samples].

• X_train (pd.DataFrame) – Data the pipeline was trained on of shape [n_samples_train,
n_feautures].

• y_train (pd.Series) – Targets used to train the pipeline of shape [n_samples_train].

• objective (ObjectiveBase, str) – Objective used to threshold predicted probabili-
ties, optional. Defaults to None.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If objective is not defined for time-series binary classification problems.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.
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Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self )
Threshold used to make a prediction. Defaults to None.
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transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series classification problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.

continues on next page
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Table 11 – continued from previous page
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date
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describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict
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graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object
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property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.
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Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.
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• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline(component_graph,
pa-
ram-
e-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series multiclass classification problems.

Parameters
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• component_graph (list or dict) – List of components in order. Accepts strings or
ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesMulticlassClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesMulticlass Pipeline")
>>> assert pipeline.custom_name == "My TimeSeriesMulticlass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

ProblemTypes.TIME_SERIES_MULTICLASS

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

continues on next page
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Table 12 – continued from previous page
clone Constructs a new pipeline with the same components,

parameters, and random seed.
create_objectives Create objective instances from a list of strings or ob-

jective classes.
custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
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Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame
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fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.
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graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].
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• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

5.14. Utils 1727



EvalML Documentation, Release 0.80.0

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

time_series_pipeline_base

Pipeline base class for time-series problems.

Module Contents

Classes Summary

TimeSeriesPipelineBase Pipeline base class for time series problems.

Contents

class evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline base class for time series problems.

Parameters
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• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list
of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.
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Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

abstract fit(self, X, y)
Build a model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

5.14. Utils 1731



EvalML Documentation, Release 0.80.0

• y (pd.Series, np.ndarray) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.
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Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict
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predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.
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• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

time_series_regression_pipeline

Pipeline base class for time series regression problems.
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Module Contents

Classes Summary

TimeSeriesRegressionPipeline Pipeline base class for time series regression problems.

Contents

class evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline(component_graph,
pa-
rame-
ters=None,
cus-
tom_name=None,
ran-
dom_seed=0)

Pipeline base class for time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Simple Imputer",
→˓"Linear Regressor"],
... parameters={"Simple␣
→˓Imputer": {"impute_strategy": "mean"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesRegression Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesRegression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}
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The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

continues on next page
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Table 13 – continued from previous page
inverse_transform Apply component inverse_transform methods to es-

timator predictions in reverse order.
load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.
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• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series pipeline.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training targets of length [n_samples].

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component
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get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.

Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series

Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
... )
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)
>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict
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get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)
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graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].
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• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.
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Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

utils

Utility methods for EvalML pipelines.

Module Contents
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Functions

generate_pipeline_code Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

generate_pipeline_example Creates and returns a string that contains the Python
imports and code required for running the EvalML
pipeline.

get_actions_from_option_defaults Returns a list of actions based on the defaults parameters
of each option in the input DataCheckActionOption list.

make_pipeline Given input data, target data, an estimator class and the
problem type, generates a pipeline class with a prepro-
cessing chain which was recommended based on the in-
puts. The pipeline will be a subclass of the appropriate
pipeline base class for the specified problem_type.

make_pipeline_from_actions Creates a pipeline of components to address the input
DataCheckAction list.

make_pipeline_from_data_check_output Creates a pipeline of components to address warnings
and errors output from running data checks. Uses all
default suggestions.

make_timeseries_baseline_pipeline Make a baseline pipeline for time series regression prob-
lems.

rows_of_interest Get the row indices of the data that are closest to the
threshold. Works only for binary classification problems
and pipelines.

stack_data Stacks the given DataFrame back into a single Series, or
a DataFrame if include_series_id is True.

stack_X Restacks the unstacked features into a single DataFrame.
unstack_multiseries Converts multiseries data with one series_id column and

one target column to one target column per series id.

Attributes Summary

DECOMPOSER_PERIOD_CAP

Contents

evalml.pipelines.utils.DECOMPOSER_PERIOD_CAP = 1000

evalml.pipelines.utils.generate_pipeline_code(element, features_path=None)
Creates and returns a string that contains the Python imports and code required for running the EvalML pipeline.

Parameters
• element (pipeline instance) – The instance of the pipeline to generate string Python

code.

• features_path (str) – path to features json created from featuretools.save_features(). De-
faults to None.

5.14. Utils 1745



EvalML Documentation, Release 0.80.0

Returns String representation of Python code that can be run separately in order to recreate the
pipeline instance. Does not include code for custom component implementation.

Return type str

Raises
• ValueError – If element is not a pipeline, or if the pipeline is nonlinear.

• ValueError – If features in features_path do not match the features on the pipeline.

evalml.pipelines.utils.generate_pipeline_example(pipeline, path_to_train, path_to_holdout, target,
path_to_features=None, path_to_mapping='',
output_file_path=None)

Creates and returns a string that contains the Python imports and code required for running the EvalML pipeline.

Parameters
• pipeline (pipeline instance) – The instance of the pipeline to generate string Python

code.

• path_to_train (str) – path to training data.

• path_to_holdout (str) – path to holdout data.

• target (str) – target variable.

• path_to_features (str) – path to features json. Defaults to None.

• path_to_mapping (str) – path to mapping json. Defaults to None.

• output_file_path (str) – path to output python file. Defaults to None.

Returns String representation of Python code that can be run separately in order to recreate the
pipeline instance. Does not include code for custom component implementation.

Return type str

evalml.pipelines.utils.get_actions_from_option_defaults(action_options)
Returns a list of actions based on the defaults parameters of each option in the input DataCheckActionOption
list.

Parameters action_options (list[DataCheckActionOption]) – List of DataCheckAc-
tionOption objects

Returns List of actions based on the defaults parameters of each option in the input list.

Return type list[DataCheckAction]

evalml.pipelines.utils.make_pipeline(X, y, estimator, problem_type, parameters=None,
sampler_name=None, extra_components_before=None,
extra_components_after=None, use_estimator=True,
known_in_advance=None, features=False,
exclude_featurizers=None, include_decomposer=True)

Given input data, target data, an estimator class and the problem type, generates a pipeline class with a prepro-
cessing chain which was recommended based on the inputs. The pipeline will be a subclass of the appropriate
pipeline base class for the specified problem_type.

Parameters
• X (pd.DataFrame) – The input data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

• estimator (Estimator) – Estimator for pipeline.
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• problem_type (ProblemTypes or str) – Problem type for pipeline to generate.

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters.

• sampler_name (str) – The name of the sampler component to add to the pipeline. Only
used in classification problems. Defaults to None

• extra_components_before (list[ComponentBase]) – List of extra components to be
added before preprocessing components. Defaults to None.

• extra_components_after (list[ComponentBase]) – List of extra components to be
added after preprocessing components. Defaults to None.

• use_estimator (bool) – Whether to add the provided estimator to the pipeline or not.
Defaults to True.

• known_in_advance (list[str], None) – List of features that are known in advance.

• features (bool) – Whether to add a DFSTransformer component to this pipeline.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipeline. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”, “URLFeaturizer”,
“NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• include_decomposer (bool) – For time series regression problems, whether or not to
include a decomposer in the generated pipeline. Defaults to True.

Returns PipelineBase instance with dynamically generated preprocessing components and specified
estimator.

Return type PipelineBase object

Raises ValueError – If estimator is not valid for the given problem type, or sampling is not sup-
ported for the given problem type.

evalml.pipelines.utils.make_pipeline_from_actions(problem_type, actions,
problem_configuration=None)

Creates a pipeline of components to address the input DataCheckAction list.

Parameters
• problem_type (str or ProblemType) – The problem type that the pipeline should ad-

dress.

• actions (list[DataCheckAction]) – List of DataCheckAction objects used to create list
of components

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index, gap, forecast_horizon, and max_delay.

Returns Pipeline which can be used to address data check actions.

Return type PipelineBase

evalml.pipelines.utils.make_pipeline_from_data_check_output(problem_type, data_check_output,
problem_configuration=None)

Creates a pipeline of components to address warnings and errors output from running data checks. Uses all
default suggestions.

Parameters
• problem_type (str or ProblemType) – The problem type.
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• data_check_output (dict) – Output from calling DataCheck.validate().

• problem_configuration (dict) – Required for time series problem types. Values should
be passed in for time_index, gap, forecast_horizon, and max_delay.

Returns Pipeline which can be used to address data check outputs.

Return type PipelineBase

Raises ValueError – If problem_type is of type time series but an incorrect problem_configuration
has been passed.

evalml.pipelines.utils.make_timeseries_baseline_pipeline(problem_type, gap, forecast_horizon,
time_index, exclude_featurizer=False,
series_id=None)

Make a baseline pipeline for time series regression problems.

Parameters
• problem_type – One of TIME_SERIES_REGRESSION,

TIME_SERIES_MULTICLASS, TIME_SERIES_BINARY

• gap (int) – Non-negative gap parameter.

• forecast_horizon (int) – Positive forecast_horizon parameter.

• time_index (str) – Column name of time_index parameter.

• exclude_featurizer (bool) – Whether or not to exclude the TimeSeriesFeaturizer from
the baseline graph. Defaults to False.

• series_id (str) – Column name of series_id parameter. Only used for multiseries time
series. Defaults to None.

Returns TimeSeriesPipelineBase, a time series pipeline corresponding to the problem type.

evalml.pipelines.utils.rows_of_interest(pipeline, X, y=None, threshold=None, epsilon=0.1,
sort_values=True, types='all')

Get the row indices of the data that are closest to the threshold. Works only for binary classification problems
and pipelines.

Parameters
• pipeline (PipelineBase) – The fitted binary pipeline.

• X (ww.DataTable, pd.DataFrame) – The input features to predict on.

• y (ww.DataColumn, pd.Series, None) – The input target data, if available. Defaults to
None.

• threshold (float) – The threshold value of interest to separate positive and negative pre-
dictions. If None, uses the pipeline threshold if set, else 0.5. Defaults to None.

• epsilon (epsilon) – The difference between the probability and the threshold that would
make the row interesting for us. For instance, epsilon=0.1 and threhsold=0.5 would mean
we consider all rows in [0.4, 0.6] to be of interest. Defaults to 0.1.

• sort_values (bool) – Whether to return the indices sorted by the distance from the thresh-
old, such that the first values are closer to the threshold and the later values are further. De-
faults to True.

• types (str) – The type of rows to keep and return. Can be one of [‘incorrect’, ‘correct’,
‘true_positive’, ‘true_negative’, ‘all’]. Defaults to ‘all’.
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’incorrect’ - return only the rows where the predictions are incorrect. This means that, given
the threshold and target y, keep only the rows which are labeled wrong. ‘correct’ - return
only the rows where the predictions are correct. This means that, given the threshold and
target y, keep only the rows which are correctly labeled. ‘true_positive’ - return only the
rows which are positive, as given by the targets. ‘true_negative’ - return only the rows which
are negative, as given by the targets. ‘all’ - return all rows. This is the only option available
when there is no target data provided.

Returns The indices corresponding to the rows of interest.

Raises
• ValueError – If pipeline is not a fitted Binary Classification pipeline.

• ValueError – If types is invalid or y is not provided when types is not ‘all’.

• ValueError – If the threshold is provided and is exclusive of [0, 1].

evalml.pipelines.utils.stack_data(data, include_series_id=False, series_id_name=None,
starting_index=None)

Stacks the given DataFrame back into a single Series, or a DataFrame if include_series_id is True.

Should only be used for data that is expected to be a single series. To stack multiple unstacked columns, use
stack_X.

Parameters
• data (pd.DataFrame) – The data to stack.

• include_series_id (bool) – Whether or not to extract the series id and include it in a
separate columns

• series_id_name (str) – If include_series_id is True, the series_id name to set for the
column. The column will be named ‘series_id’ if this parameter is None.

• starting_index (int) – The starting index to use for the stacked series. If None and the
input index is numeric, the starting index will match that of the input data. If None and the
input index is a DatetimeIndex, the index will be the input data’s index repeated over the
number of columns in the input data.

Returns The data in stacked series form.

Return type pd.Series or pd.DataFrame

evalml.pipelines.utils.stack_X(X, series_id_name, time_index, starting_index=None,
series_id_values=None)

Restacks the unstacked features into a single DataFrame.

Parameters
• X (pd.DataFrame) – The unstacked features.

• series_id_name (str) – The name of the series id column.

• time_index (str) – The name of the time index column.

• starting_index (int) – The starting index to use for the stacked DataFrame. If None, the
starting index will match that of the input data. Defaults to None.

• series_id_values (set, list) – The unique values of a series ID, used to generate the
index. If None, values will be generated from X column values. Required if X only has time
index values and no exogenous values. Defaults to None.

Returns The restacked features.
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Return type pd.DataFrame

evalml.pipelines.utils.unstack_multiseries(X, y, series_id, time_index, target_name)
Converts multiseries data with one series_id column and one target column to one target column per series id.

Datetime information will be preserved only as a column in X.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• series_id (str) – The column which identifies which series each row belongs to.

• time_index (str) – Specifies the name of the column in X that provides the datetime ob-
jects.

• target_name (str) – The name of the target column.

Returns The unstacked X and y data.

Return type pd.DataFrame, pd.DataFrame

Package Contents

Classes Summary

ARIMARegressor Autoregressive Integrated Moving Average Model. The
three parameters (p, d, q) are the AR order, the
degree of differencing, and the MA order. More
information here: https://www.statsmodels.org/devel/
generated/statsmodels.tsa.arima.model.ARIMA.html.

BinaryClassificationPipeline Pipeline subclass for all binary classification pipelines.
CatBoostClassifier CatBoost Classifier, a classifier that uses gradient-

boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

CatBoostRegressor CatBoost Regressor, a regressor that uses gradient-
boosting on decision trees. CatBoost is an open-source
library and natively supports categorical features.

ClassificationPipeline Pipeline subclass for all classification pipelines.
ComponentGraph Component graph for a pipeline as a directed acyclic

graph (DAG).
DecisionTreeClassifier Decision Tree Classifier.
DecisionTreeRegressor Decision Tree Regressor.
DFSTransformer Featuretools DFS component that generates features for

the input features.
DropNaNRowsTransformer Transformer to drop rows with NaN values.
ElasticNetClassifier Elastic Net Classifier. Uses Logistic Regression with

elasticnet penalty as the base estimator.
ElasticNetRegressor Elastic Net Regressor.
Estimator A component that fits and predicts given data.
ExponentialSmoothingRegressor Holt-Winters Exponential Smoothing Forecaster.
ExtraTreesClassifier Extra Trees Classifier.
ExtraTreesRegressor Extra Trees Regressor.

continues on next page
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Table 14 – continued from previous page
FeatureSelector Selects top features based on importance weights.
Imputer Imputes missing data according to a specified imputation

strategy.
KNeighborsClassifier K-Nearest Neighbors Classifier.
LightGBMClassifier LightGBM Classifier.
LightGBMRegressor LightGBM Regressor.
LinearRegressor Linear Regressor.
LogisticRegressionClassifier Logistic Regression Classifier.
MulticlassClassificationPipeline Pipeline subclass for all multiclass classification

pipelines.
MultiseriesRegressionPipeline Pipeline base class for multiseries time series regression

problems.
OneHotEncoder A transformer that encodes categorical features in a one-

hot numeric array.
OrdinalEncoder A transformer that encodes ordinal features as an array

of ordinal integers representing the relative order of cat-
egories.

PerColumnImputer Imputes missing data according to a specified imputation
strategy per column.

PipelineBase Machine learning pipeline.
ProphetRegressor Prophet is a procedure for forecasting time series data

based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus hol-
iday effects. It works best with time series that have
strong seasonal effects and several seasons of historical
data. Prophet is robust to missing data and shifts in the
trend, and typically handles outliers well.

RandomForestClassifier Random Forest Classifier.
RandomForestRegressor Random Forest Regressor.
RegressionPipeline Pipeline subclass for all regression pipelines.
RFClassifierSelectFromModel Selects top features based on importance weights using

a Random Forest classifier.
RFRegressorSelectFromModel Selects top features based on importance weights using

a Random Forest regressor.
SimpleImputer Imputes missing data according to a specified imputation

strategy. Natural language columns are ignored.
StackedEnsembleBase Stacked Ensemble Base Class.
StackedEnsembleClassifier Stacked Ensemble Classifier.
StackedEnsembleRegressor Stacked Ensemble Regressor.
StandardScaler A transformer that standardizes input features by remov-

ing the mean and scaling to unit variance.
SVMClassifier Support Vector Machine Classifier.
SVMRegressor Support Vector Machine Regressor.
TargetEncoder A transformer that encodes categorical features into tar-

get encodings.
TimeSeriesBinaryClassificationPipeline Pipeline base class for time series binary classification

problems.
TimeSeriesClassificationPipeline Pipeline base class for time series classification prob-

lems.
TimeSeriesFeaturizer Transformer that delays input features and target variable

for time series problems.
continues on next page
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Table 14 – continued from previous page
TimeSeriesImputer Imputes missing data according to a specified

timeseries-specific imputation strategy.
TimeSeriesMulticlassClassificationPipeline Pipeline base class for time series multiclass classifica-

tion problems.
TimeSeriesRegressionPipeline Pipeline base class for time series regression problems.
TimeSeriesRegularizer Transformer that regularizes an inconsistently spaced

datetime column.
Transformer A component that may or may not need fitting that trans-

forms data. These components are used before an esti-
mator.

VARMAXRegressor Vector Autoregressive Moving Average with eXoge-
nous regressors model. The two parameters (p, q) are
the AR order and the MA order. More information
here: https://www.statsmodels.org/stable/generated/
statsmodels.tsa.statespace.varmax.VARMAX.html.

VowpalWabbitBinaryClassifier Vowpal Wabbit Binary Classifier.
VowpalWabbitMulticlassClassifier Vowpal Wabbit Multiclass Classifier.
VowpalWabbitRegressor Vowpal Wabbit Regressor.
XGBoostClassifier XGBoost Classifier.
XGBoostRegressor XGBoost Regressor.

Contents

class evalml.pipelines.ARIMARegressor(time_index: Optional[Hashable] = None, trend: Optional[str] =
None, start_p: int = 2, d: int = 0, start_q: int = 2, max_p: int = 5,
max_d: int = 2, max_q: int = 5, seasonal: bool = True, sp: int = 1,
n_jobs: int = - 1, random_seed: Union[int, float] = 0, maxiter: int
= 10, use_covariates: bool = True, **kwargs)

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the de-
gree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/
statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• start_p (int) – Minimum Autoregressive order. Defaults to 2.

• d (int) – Minimum Differencing degree. Defaults to 0.

• start_q (int) – Minimum Moving Average order. Defaults to 2.

• max_p (int) – Maximum Autoregressive order. Defaults to 5.

• max_d (int) – Maximum Differencing degree. Defaults to 2.

• max_q (int) – Maximum Moving Average order. Defaults to 5.

• seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.
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• sp (int or str) – Period for seasonal differencing, specifically the number of periods in
each season. If “detect”, this model will automatically detect this parameter (given the time
series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected.
Defaults to 1.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3,
10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

max_cols 7
max_rows 1000
model_family ModelFamily.ARIMA
modi-
fies_features

True

modi-
fies_target

False

name ARIMA Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for ARIMA regressor.
fit Fits ARIMA regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted ARI-

MARegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted ARIMA regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits ARIMA regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] =
None, predictions: pandas.Series = None)→ Dict[str, pandas.Series]

Find the prediction intervals using the fitted ARIMARegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for ARIMA regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted ARIMA regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.BinaryClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline subclass for all binary classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
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component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = BinaryClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Binary Pipeline")
...
>>> assert pipeline.custom_name == "My Binary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.BINARY

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels. Assumes that

the column at index 1 represents the positive label
case.

save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.5.14. Utils 1757



EvalML Documentation, Release 0.80.0

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.
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fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)
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graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.
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• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels. Assumes that the column at index 1 represents the positive label
case.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]
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• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self )
Threshold used to make a prediction. Defaults to None.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.CatBoostClassifier(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=True,
allow_writing_files=False, random_seed=0, n_jobs=- 1,
**kwargs)

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.

• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

1762 Chapter 5. API Reference

https://catboost.ai/


EvalML Documentation, Release 0.80.0

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost classifier.
fit Fits CatBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost classifier.
predict_proba Make prediction probabilities using the fitted Cat-

Boost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost classifier.

fit(self, X, y=None)
Fits CatBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X)
Make prediction probabilities using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.CatBoostRegressor(n_estimators=10, eta=0.03, max_depth=6,
bootstrap_type=None, silent=False, allow_writing_files=False,
random_seed=0, n_jobs=- 1, **kwargs)

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library
and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
• n_estimators (float) – The maximum number of trees to build. Defaults to 10.
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• eta (float) – The learning rate. Defaults to 0.03.

• max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

• bootstrap_type (string) – Defines the method for sampling the weights of objects.
Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

• silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

• allow_writing_files (boolean) – Whether to allow writing snapshot files while train-
ing. Defaults to False.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family ModelFamily.CATBOOST
modi-
fies_features

True

modi-
fies_target

False

name CatBoost Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted CatBoost regressor.
fit Fits CatBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted CatBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)
Fits CatBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted CatBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline subclass for all classification pipelines.

Parameters
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• component_graph (list or dict) – List of components in order. Accepts strings or
ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.
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Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
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• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.
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Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.
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• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.
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Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.ComponentGraph(component_dict=None, cached_data=None, random_seed=0)
Component graph for a pipeline as a directed acyclic graph (DAG).

Parameters
• component_dict (dict) – A dictionary which specifies the components and edges between

components that should be used to create the component graph. Defaults to None.

• cached_data (dict) – A dictionary of nested cached data. If the hashes and components
are in this cache, we skip fitting for these components. Expected to be of format {hash1:
{component_name: trained_component, . . . }, hash2: {. . . }, . . . }. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Examples

>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'Logistic Regression': ['Logistic Regression Classifier',
→˓'Imputer.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)
>>> assert component_graph.compute_order == ['Imputer', 'Logistic Regression']
...
...
>>> component_dict = {'Imputer': ['Imputer', 'X', 'y'],
... 'OHE': ['One Hot Encoder', 'Imputer.x', 'y'],
... 'estimator_1': ['Random Forest Classifier', 'OHE.x', 'y'],
... 'estimator_2': ['Decision Tree Classifier', 'OHE.x', 'y'],
... 'final': ['Logistic Regression Classifier', 'estimator_1.x',
→˓'estimator_2.x', 'y']}
>>> component_graph = ComponentGraph(component_dict)

The default parameters for every component in the component graph.

>>> assert component_graph.default_parameters == {
... 'Imputer': {'categorical_impute_strategy': 'most_frequent',
... 'numeric_impute_strategy': 'mean',
... 'boolean_impute_strategy': 'most_frequent',

(continues on next page)
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(continued from previous page)

... 'categorical_fill_value': None,

... 'numeric_fill_value': None,

... 'boolean_fill_value': None},

... 'One Hot Encoder': {'top_n': 10,

... 'features_to_encode': None,

... 'categories': None,

... 'drop': 'if_binary',

... 'handle_unknown': 'ignore',

... 'handle_missing': 'error'},

... 'Random Forest Classifier': {'n_estimators': 100,

... 'max_depth': 6,

... 'n_jobs': -1},

... 'Decision Tree Classifier': {'criterion': 'gini',

... 'max_features': 'sqrt',

... 'max_depth': 6,

... 'min_samples_split': 2,

... 'min_weight_fraction_leaf': 0.0},

... 'Logistic Regression Classifier': {'penalty': 'l2',

... 'C': 1.0,

... 'n_jobs': -1,

... 'multi_class': 'auto',

... 'solver': 'lbfgs'}}

Methods
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compute_order The order that components will be computed or
called in.

default_parameters The default parameter dictionary for this pipeline.
describe Outputs component graph details including compo-

nent parameters.
fit Fit each component in the graph.
fit_and_transform_all_but_final Fit and transform all components save the final one,

usually an estimator.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
generate_order Regenerated the topologically sorted order of the

graph.
get_component Retrieves a single component object from the graph.
get_component_input_logical_types Get the logical types that are passed to the given com-

ponent.
get_estimators Gets a list of all the estimator components within this

graph.
get_inputs Retrieves all inputs for a given component.
get_last_component Retrieves the component that is computed last in the

graph, usually the final estimator.
graph Generate an image representing the component

graph.
has_dfs Whether this component graph contains a DFSTrans-

former or not.
instantiate Instantiates all uninstantiated components within the

graph using the given parameters. An error will be
raised if a component is already instantiated but the
parameters dict contains arguments for that compo-
nent.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

last_component_input_logical_types Get the logical types that are passed to the last com-
ponent in the pipeline.

predict Make predictions using selected features.
transform Transform the input using the component graph.
transform_all_but_final Transform all components save the final one, and

gathers the data from any number of parents to get all
the information that should be fed to the final compo-
nent.

property compute_order(self )
The order that components will be computed or called in.

property default_parameters(self )
The default parameter dictionary for this pipeline.

Returns Dictionary of all component default parameters.

Return type dict

describe(self, return_dict=False)
Outputs component graph details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about component
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graph. Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None

Return type dict

Raises ValueError – If the componentgraph is not instantiated

fit(self, X, y)
Fit each component in the graph.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_and_transform_all_but_final(self, X, y)
Fit and transform all components save the final one, usually an estimator.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns Transformed features and target.

Return type Tuple (pd.DataFrame, pd.Series)

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

classmethod generate_order(cls, component_dict)
Regenerated the topologically sorted order of the graph.

get_component(self, component_name)
Retrieves a single component object from the graph.

Parameters component_name (str) – Name of the component to retrieve

Returns ComponentBase object

Raises ValueError – If the component is not in the graph.

get_component_input_logical_types(self, component_name)
Get the logical types that are passed to the given component.

Parameters component_name (str) – Name of component in the graph

Returns Dict - Mapping feature name to logical type instance.

Raises

1778 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

get_estimators(self )
Gets a list of all the estimator components within this graph.

Returns All estimator objects within the graph.

Return type list

Raises ValueError – If the component graph is not yet instantiated.

get_inputs(self, component_name)
Retrieves all inputs for a given component.

Parameters component_name (str) – Name of the component to look up.

Returns List of inputs for the component to use.

Return type list[str]

Raises ValueError – If the component is not in the graph.

get_last_component(self )
Retrieves the component that is computed last in the graph, usually the final estimator.

Returns ComponentBase object

Raises ValueError – If the component graph has no edges.

graph(self, name=None, graph_format=None)
Generate an image representing the component graph.

Parameters
• name (str) – Name of the graph. Defaults to None.

• graph_format (str) – file format to save the graph in. Defaults to None.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises RuntimeError – If graphviz is not installed.

property has_dfs(self )
Whether this component graph contains a DFSTransformer or not.

instantiate(self, parameters=None)
Instantiates all uninstantiated components within the graph using the given parameters. An error will be
raised if a component is already instantiated but the parameters dict contains arguments for that component.

Parameters parameters (dict) – Dictionary with component names as keys and dictionary of
that component’s parameters as values. An empty dictionary {} or None implies using all
default values for component parameters. If a component in the component graph is already
instantiated, it will not use any of its parameters defined in this dictionary. Defaults to None.

Returns self

Raises ValueError – If component graph is already instantiated or if a component errored while
instantiating.
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inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y – (pd.Series): Final component features.

Returns The target with inverse transformation applied.

Return type pd.Series

property last_component_input_logical_types(self )
Get the logical types that are passed to the last component in the pipeline.

Returns Dict - Mapping feature name to logical type instance.

Raises
• ValueError – If the component is not in the graph.

• ValueError – If the component graph as not been fitted

predict(self, X)
Make predictions using selected features.

Parameters X (pd.DataFrame) – Input features of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

transform(self, X, y=None)
Transform the input using the component graph.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is not a Transformer.

transform_all_but_final(self, X, y=None)
Transform all components save the final one, and gathers the data from any number of parents to get all the
information that should be fed to the final component.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples]. Defaults to None.

Returns Transformed values.

Return type pd.DataFrame
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class evalml.pipelines.DecisionTreeClassifier(criterion='gini', max_features='sqrt', max_depth=6,
min_samples_split=2, min_weight_fraction_leaf=0.0,
random_seed=0, **kwargs)

Decision Tree Classifier.

Parameters
• criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Sup-

ported criteria are “gini” for the Gini impurity and “entropy” for the information gain. De-
faults to “gini”.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.
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fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

5.14. Utils 1783



EvalML Documentation, Release 0.80.0

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.DecisionTreeRegressor(criterion='squared_error', max_features='sqrt',
max_depth=6, min_samples_split=2,
min_weight_fraction_leaf=0.0, random_seed=0,
**kwargs)

Decision Tree Regressor.

Parameters
• criterion ({"squared_error", "friedman_mse", "absolute_error",
"poisson"}) – The function to measure the quality of a split. Supported criteria
are:

– ”squared_error” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the L2 loss using the mean of each terminal node

– ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for
potential splits

– ”absolute_error” for the mean absolute error, which minimizes the L1 loss using the me-
dian of each terminal node,

– ”poisson” which uses reduction in Poisson deviance to find splits.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.
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– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

Defaults to 2.

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “criterion”: [“squared_error”, “friedman_mse”, “absolute_error”], “max_features”:
[“sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family ModelFamily.DECISION_TREE
modi-
fies_features

True

modi-
fies_target

False

name Decision Tree Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.DFSTransformer(index='index', features=None, random_seed=0, **kwargs)
Featuretools DFS component that generates features for the input features.

Parameters
• index (string) – The name of the column that contains the indices. If no column with this

name exists, then featuretools.EntitySet() creates a column with this name to serve as the
index column. Defaults to ‘index’.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• features (list) – List of features to run DFS on. Defaults to None. Features will only be
computed if the columns used by the feature exist in the input and if the feature itself is not
in input. If features is an empty list, no transformation will occur to inputted data.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name DFS Transformer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

contains_pre_existing_features Determines whether or not features from a DFS
Transformer match pipeline input features.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DFSTransformer Transformer component.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Computes the feature matrix for the input X using fea-

turetools' dfs algorithm.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

static contains_pre_existing_features(dfs_features:
Optional[List[featuretools.feature_base.FeatureBase]],
input_feature_names: List[str], target: Optional[str] =
None)

Determines whether or not features from a DFS Transformer match pipeline input features.

Parameters
• dfs_features (Optional[List[FeatureBase]]) – List of features output from a DFS

Transformer.

• input_feature_names (List[str]) – List of input features into the DFS Transformer.

• target (Optional[str]) – The target whose values we are trying to predict. This is used
to know which column to ignore if the target column is present in the list of features in the
DFS Transformer’s parameters.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}
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Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DFSTransformer Transformer component.

Parameters
• X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples,

n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape

[n_samples, n_features]
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• y (pd.Series, optional) – Ignored.

Returns Feature matrix

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.DropNaNRowsTransformer(parameters=None, component_obj=None,
random_seed=0, **kwargs)

Transformer to drop rows with NaN values.

Parameters random_seed (int) – Seed for the random number generator. Is not used by this com-
ponent. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Drop NaN Rows Transformer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data using fitted component.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data using fitted component.

Parameters
• X (pd.DataFrame) – Features.

• y (pd.Series, optional) – Target data.

Returns Data with NaN rows dropped.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15,
multi_class='auto', solver='saga', n_jobs=- 1,
random_seed=0, **kwargs)

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “elasticnet”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty
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– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “saga”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet classifier.
fit Fits ElasticNet classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet classifier.

fit(self, X, y)
Fits ElasticNet classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15, max_iter=1000,
random_seed=0, **kwargs)

Elastic Net Regressor.

Parameters
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• alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

• l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if
penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting
l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combina-
tion of L1 and L2. Defaults to 0.15.

• max_iter (int) – The maximum number of iterations. Defaults to 1000.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Elastic Net Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted ElasticNet regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.
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Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted ElasticNet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.Estimator(parameters: dict = None, component_obj:
Type[evalml.pipelines.components.ComponentBase] = None,
random_seed: Union[int, float] = 0, **kwargs)
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A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and
a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component subclass.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.NONE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
model_family ModelFamily.NONE
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.
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• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property model_family(cls)
Returns ModelFamily of this component.

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.
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• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ExponentialSmoothingRegressor(trend: Optional[str] = None, damped_trend:
bool = False, seasonal: Optional[str] = None,
sp: int = 2, n_jobs: int = - 1, random_seed:
Union[int, float] = 0, **kwargs)

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed
via PyPI.

Parameters
• trend (str) – Type of trend component. Defaults to None.

• damped_trend (bool) – If the trend component should be damped. Defaults to False.

• seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also
be multiplicative if

• 0 (none of the target data is) –

• None. (but AutoMLSearch wiill not tune for this. Defaults to) –

• sp (int) – The number of seasonal periods to consider. Defaults to 2.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “addi-
tive”], “sp”: Integer(2, 8),}

model_family ModelFamily.EXPONENTIAL_SMOOTHING
modi-
fies_features

True

modi-
fies_target

False

name Exponential Smoothing Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for Exponential
Smoothing regressor.

fit Fits Exponential Smoothing Regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted Expo-

nentialSmoothingRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Exponential Smooth-
ing regressor.

predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing
regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Exponential Smoothing Regressor to data.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

• y (pd.Series) – The target training data of length [n_samples].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExponentialSmoothingRegressor.

Calculates the prediction intervals by using a simulation of the time series following a specified state space
model.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Exponential Smoothing regressor.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Exponential Smoothing regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast

horizon.

• y (pd.Series) – Target data.

Returns Predicted values.

Return type pd.Series
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.ExtraTreesClassifier(n_estimators=100, max_features='sqrt', max_depth=6,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_jobs=- 1, random_seed=0, **kwargs)

Extra Trees Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.
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• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.
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Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.ExtraTreesRegressor(n_estimators: int = 100, max_features: str = 'sqrt',
max_depth: int = 6, min_samples_split: int = 2,
min_weight_fraction_leaf: float = 0.0, n_jobs: int = - 1,
random_seed: Union[int, float] = 0, **kwargs)

Extra Trees Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_features (int, float or {"sqrt", "log2"}) – The number of features to con-
sider when looking for the best split:

– If int, then consider max_features features at each split.

– If float, then max_features is a fraction and int(max_features * n_features) features are
considered at each split.

– If “sqrt”, then max_features=sqrt(n_features).

– If “log2”, then max_features=log2(n_features).

– If None, then max_features = n_features.

The search for a split does not stop until at least one valid partition of the node samples is
found, even if it requires to effectively inspect more than max_features features.

• max_depth (int) – The maximum depth of the tree. Defaults to 6.

• min_samples_split (int or float) – The minimum number of samples required to
split an internal node:

– If int, then consider min_samples_split as the minimum number.

– If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are
the minimum number of samples for each split.

• 2. (Defaults to) –

• min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“sqrt”, “log2”], “max_depth”: Inte-
ger(4, 10),}

model_family ModelFamily.EXTRA_TREES
modi-
fies_features

True

modi-
fies_target

False

name Extra Trees Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Extra-

TreesRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.
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fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ExtraTreesRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.FeatureSelector(parameters=None, component_obj=None, random_seed=0,
**kwargs)

Selects top features based on importance weights.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self
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Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame
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Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.Imputer(categorical_impute_strategy='most_frequent', categorical_fill_value=None,
numeric_impute_strategy='mean', numeric_fill_value=None,
boolean_impute_strategy='most_frequent', boolean_fill_value=None,
random_seed=0, **kwargs)

Imputes missing data according to a specified imputation strategy.

Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “most_frequent” and “constant”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “mean”, “median”, “most_frequent”, and “constant”.

• boolean_impute_strategy (string) – Impute strategy to use for boolean columns. Valid
values include “most_frequent” and “constant”.

• categorical_fill_value (string) – When categorical_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with the string
“missing_value”.

• numeric_fill_value (int, float) – When numeric_impute_strategy == “constant”,
fill_value is used to replace missing data. The default value of None will fill with 0.

• boolean_fill_value (bool) – When boolean_impute_strategy == “constant”, fill_value
is used to replace missing data. The default value of None will fill with True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“most_frequent”], “numeric_impute_strategy”: [“mean”,
“median”, “most_frequent”, “knn”], “boolean_impute_strategy”: [“most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Imputer
train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.
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Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values.

Parameters
• X (pd.DataFrame) – Data to transform

• y (pd.Series, optional) – Ignored.

Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto',
leaf_size=30, p=2, random_seed=0, **kwargs)

K-Nearest Neighbors Classifier.
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Parameters
• n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

• weights ({‘uniform’, ‘distance’} or callable) – Weight function used in predic-
tion. Can be:

– ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

– ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

– [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Defaults to “uniform”.

• algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) – Algorithm used to
compute the nearest neighbors:

– ‘ball_tree’ will use BallTree

– ‘kd_tree’ will use KDTree

– ‘brute’ will use a brute-force search.

‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to
fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this
parameter, using brute force.

• leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem. Defaults to 30.

• p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used. Defaults to 2.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”,
“ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family ModelFamily.K_NEIGHBORS
modi-
fies_features

True

modi-
fies_target

False

name KNN Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's matching the input number of fea-

tures as feature_importance is not defined for KNN
classifiers.

fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN
classifiers.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.
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Returns Probability estimates.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LightGBMClassifier(boosting_type='gbdt', learning_rate=0.1, n_estimators=100,
max_depth=0, num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Classifier.

Parameters
• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses

traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Classifier
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted LightGBM classi-
fier.

predict_proba Make prediction probabilities using the fitted Light-
GBM classifier.

save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make prediction probabilities using the fitted LightGBM classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted probability values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LightGBMRegressor(boosting_type='gbdt', learning_rate=0.1, n_estimators=20,
max_depth=0, num_leaves=31, min_child_samples=20,
bagging_fraction=0.9, bagging_freq=0, n_jobs=- 1,
random_seed=0, **kwargs)

LightGBM Regressor.

Parameters
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• boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses
traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive
Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random
Forest

• learning_rate (float) – Boosting learning rate. Defaults to 0.1.

• n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to
0.

• num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

• min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults
to 20.

• bagging_fraction (float) – LightGBM will randomly select a subset of features on each
iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8,
LightGBM will select 80% of features before training each tree. This can be used to speed
up training and deal with overfitting. Defaults to 0.9.

• bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means
perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select
bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

• n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”],
“n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2,
100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bag-
ging_freq”: Integer(0, 1),}

model_family ModelFamily.LIGHTGBM
modi-
fies_features

True

modi-
fies_target

False

name LightGBM Regressor
SEED_MAX SEED_BOUNDS.max_bound
SEED_MIN 0
sup-
ported_problem_types

[ProblemTypes.REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits LightGBM regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted LightGBM regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X, y=None)
Fits LightGBM regressor to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using fitted LightGBM regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LinearRegressor(fit_intercept=True, n_jobs=- 1, random_seed=0, **kwargs)
Linear Regressor.

Parameters
• fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to

False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults
to True.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to
-1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “fit_intercept”: [True, False],}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Linear Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted linear regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted linear regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self
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get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.
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Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.LogisticRegressionClassifier(penalty='l2', C=1.0, multi_class='auto',
solver='lbfgs', n_jobs=- 1, random_seed=0,
**kwargs)

Logistic Regression Classifier.

Parameters
• penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization.

Defaults to “l2”.

• C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

• multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then
a binary problem is fit for each label. For “multinomial” the loss minimised is the multino-
mial loss fit across the entire probability distribution, even when the data is binary. “multi-
nomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or
if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

• solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) – Algorithm to
use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas
“sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”,
“saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

– ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

– ”liblinear” and “saga” also handle L1 penalty

– ”saga” also supports “elasticnet” penalty

– ”liblinear” does not support setting penalty=’none’

Defaults to “lbfgs”.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Attributes

hyper-
parame-
ter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family ModelFamily.LINEAR_MODEL
modi-
fies_features

True

modi-
fies_target

False

name Logistic Regression Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for fitted logistic regression clas-

sifier.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for fitted logistic regression classifier.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.MulticlassClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline subclass for all multiclass classification pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]
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• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = MulticlassClassificationPipeline(component_graph=["Simple Imputer",
→˓"Logistic Regression Classifier"],
... parameters={"Logistic Regression␣
→˓Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"}},
... custom_name="My Multiclass Pipeline
→˓")
...
>>> assert pipeline.custom_name == "My Multiclass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'}}

Attributes

prob-
lem_type

ProblemTypes.MULTICLASS

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a classification model. For string and categor-

ical targets, classes are sorted by sorted(set(y)) and
then are mapped to values between 0 and n_classes-
1.

fit_transform Fit and transform all components in the component
graph, if all components are Transformers.

get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves pipeline at file path.
score Evaluate model performance on objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.
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Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a classification model. For string and categorical targets, classes are sorted by sorted(set(y)) and then
are mapped to values between 0 and n_classes-1.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises
• ValueError – If the number of unique classes in y are not appropriate for the type of

pipeline.

• TypeError – If the dtype is boolean but pd.NA exists in the series.

• Exception – For all other exceptions.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
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• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.
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Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.
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• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Estimated labels.

Return type pd.Series

predict_proba(self, X, X_train=None, y_train=None)
Make probability estimates for labels.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features]

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Probability estimates

Return type pd.DataFrame

Raises ValueError – If final component is not an estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on objectives.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features]

• y (pd.Series) – True labels of length [n_samples]

• objectives (list) – List of objectives to score

• X_train (pd.DataFrame) – Training data. Ignored. Only used for time series.

• y_train (pd.Series) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.
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Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.MultiseriesRegressionPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline base class for multiseries time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components.

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
continues on next page
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Table 15 – continued from previous page
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a multiseries time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.
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Return type bool

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a multiseries time series pipeline.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

Returns self
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Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.

Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series

Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
... )
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)

(continues on next page)
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(continued from previous page)

>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.
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graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object
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property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.
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• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.
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• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.OneHotEncoder(top_n=10, features_to_encode=None, categories=None,
drop='if_binary', handle_unknown='ignore',
handle_missing='error', random_seed=0, **kwargs)

A transformer that encodes categorical features in a one-hot numeric array.

Parameters
• top_n (int) – Number of categories per column to encode. If None, all categories will be

encoded. Otherwise, the n most frequent will be encoded and all others will be dropped.
Defaults to 10.

• features_to_encode (list[str]) – List of columns to encode. All other columns will
remain untouched. If None, all appropriate columns will be encoded. Defaults to None.

• categories (list) – A two dimensional list of categories, where categories[i] is a list of
the categories for the column at index i. This can also be None, or “auto” if top_n is not
None. Defaults to None.

• drop (string, list) – Method (“first” or “if_binary”) to use to drop one category per
feature. Can also be a list specifying which categories to drop for each feature. Defaults to
‘if_binary’.

• handle_unknown (string) – Whether to ignore or error for unknown categories for a fea-
ture encountered during fit or transform. If either top_n or categories is used to limit the
number of categories per column, this must be “ignore”. Defaults to “ignore”.

• handle_missing (string) – Options for how to handle missing (NaN) values encountered
during fit or transform. If this is set to “as_category” and NaN values are within the n most
frequent, “nan” values will be encoded as their own column. If this is set to “error”, any
missing values encountered will raise an error. Defaults to “error”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name One Hot Encoder
train-
ing_only

False
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Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the one-hot encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the categorical features after

fitting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform One-hot encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to one-hot encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to one-hot encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits the one-hot encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises ValueError – If encoding a column failed.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the categorical features after fitting.

Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an
integer will be added at the end of the feature name to distinguish it.

For example, consider a dataframe with a column called “A” and category “x_y” and another column called
“A_x” with “y”. In this example, the feature names would be “A_x_y” and “A_x_y_1”.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
One-hot encode the input data.

Parameters
• X (pd.DataFrame) – Features to one-hot encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each categorical feature has been encoded into numerical
columns using one-hot encoding.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.OrdinalEncoder(features_to_encode=None, categories=None,
handle_unknown='error', unknown_value=None,
encoded_missing_value=None, random_seed=0, **kwargs)

A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of
categories.

Parameters
• features_to_encode (list[str]) – List of columns to encode. All other columns will

remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The
order of columns does not matter.

• categories (dict[str, list[str]]) – A dictionary mapping column names to their
categories in the dataframes passed in at fit and transform. The order of categories specified
for a column does not matter. Any category found in the data that is not present in cate-
gories will be handled as an unknown value. To not have unknown values raise an error, set
handle_unknown to “use_encoded_value”. Defaults to None.

• handle_unknown ("error" or "use_encoded_value") – Whether to ignore or error for
unknown categories for a feature encountered during fit or transform. When set to “error”, an
error will be raised when an unknown category is found. When set to “use_encoded_value”,
unknown categories will be encoded as the value given for the parameter unknown_value.
Defaults to “error.”

• unknown_value (int or np.nan) – The value to use for unknown categories seen
during fit or transform. Required when the parameter handle_unknown is set to
“use_encoded_value.” The value has to be distinct from the values used to encode any of
the categories in fit. Defaults to None.

• encoded_missing_value (int or np.nan) – The value to use for missing (null) values
seen during fit or transform. Defaults to np.nan.
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Ordinal Encoder
train-
ing_only

False

Methods

categories Returns a list of the unique categories to be encoded
for the particular feature, in order.

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the ordinal encoder component.
fit_transform Fits on X and transforms X.
get_feature_names Return feature names for the ordinal features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Ordinally encode the input data.
update_parameters Updates the parameter dictionary of the component.

categories(self, feature_name)
Returns a list of the unique categories to be encoded for the particular feature, in order.

Parameters feature_name (str) – The name of any feature provided to ordinal encoder during
fit.

Returns The unique categories, in the same dtype as they were provided during fit.

Return type np.ndarray

Raises ValueError – If feature was not provided to ordinal encoder as a training feature.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the ordinal encoder component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – If encoding a column failed.

• TypeError – If non-Ordinal columns are specified in features_to_encode.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

get_feature_names(self )
Return feature names for the ordinal features after fitting.

Feature names are formatted as {column name}_ordinal_encoding.

Returns The feature names after encoding, provided in the same order as input_features.

Return type np.ndarray
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static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Ordinally encode the input data.

Parameters
• X (pd.DataFrame) – Features to encode.

• y (pd.Series) – Ignored.

Returns Transformed data, where each ordinal feature has been encoded into a numerical column
where ordinal integers represent the relative order of categories.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.PerColumnImputer(impute_strategies=None, random_seed=0, **kwargs)
Imputes missing data according to a specified imputation strategy per column.

Parameters
• impute_strategies (dict) – Column and {“impute_strategy”: strategy,

“fill_value”:value} pairings. Valid values for impute strategy include “mean”, “me-
dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types. Defaults to None, which uses “most_frequent” for all columns. When
impute_strategy == “constant”, fill_value is used to replace missing data. When None, uses
0 when imputing numerical data and “missing_value” for strings or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

1856 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Per Column Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputers on input data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by imputing missing values.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits imputers on input data.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to fit.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by imputing missing values.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features] to transform.

• y (pd.Series, optional) – The target training data of length [n_samples]. Ignored.
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Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.PipelineBase(component_graph, parameters=None, custom_name=None,
random_seed=0)

Machine learning pipeline.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list

of components in order, or dictionary of components. Accepts strings or ComponentBase
subclasses in the list. Note that when duplicate components are specified in a list, the dupli-
cate component names will be modified with the component’s index in the list. For example,
the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier]
will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Clas-
sifier”].

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool
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clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

abstract fit(self, X, y)
Build a model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component
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get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series
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static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
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• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.ProphetRegressor(time_index: Optional[Hashable] = None,
changepoint_prior_scale: float = 0.05, seasonality_prior_scale:
int = 10, holidays_prior_scale: int = 10, seasonality_mode: str
= 'additive', stan_backend: str = 'CMDSTANPY',
interval_width: float = 0.95, random_seed: Union[int, float] =
0, **kwargs)

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are
fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong
seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend,
and typically handles outliers well.

More information here: https://facebook.github.io/prophet/
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Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• changepoint_prior_scale (float) – Determines the strength of the sparse prior for fit-
ting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to
0.05.

• seasonality_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the ex-
tent to which the seasonality model will fit the data. Defaults to 10.

• holidays_prior_scale (int) – Similar to changepoint_prior_scale. Adjusts the extent to
which holidays will fit the data. Defaults to 10.

• seasonality_mode (str) – Determines how this component fits the seasonality. Options
are “additive” and “multiplicative”. Defaults to “additive”.

• stan_backend (str) – Determines the backend that should be used to run Prophet. Options
are “CMDSTANPY” and “PYSTAN”. Defaults to “CMDSTANPY”.

• interval_width (float) – Determines the confidence of the prediction interval range
when calling get_prediction_intervals. Accepts values in the range (0,1). Defaults to 0.95.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10),
“holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplica-
tive”],}

model_family ModelFamily.PROPHET
modi-
fies_features

True

modi-
fies_target

False

name Prophet Regressor
sup-
ported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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build_prophet_df Build the Prophet data to pass fit and predict on.
clone Constructs a new component with the same parame-

ters and random state.
default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with len(1) as fea-

ture_importance is not defined for Prophet regressor.
fit Fits Prophet regressor component to data.
get_params Get parameters for the Prophet regressor.
get_prediction_intervals Find the prediction intervals using the fitted

ProphetRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted Prophet regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

static build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str =
'ds')→ pandas.DataFrame

Build the Prophet data to pass fit and predict on.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)→ dict
Returns the default parameters for this component.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits Prophet regressor component to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_params(self )→ dict
Get parameters for the Prophet regressor.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted ProphetRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for Prophet estimator.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)→ pandas.Series
Make predictions using fitted Prophet regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

Returns Predicted values.

Return type pd.Series
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RandomForestClassifier(n_estimators=100, max_depth=6, n_jobs=- 1,
random_seed=0, **kwargs)

Random Forest Classifier.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.
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Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series
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Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RandomForestRegressor(n_estimators: int = 100, max_depth: int = 6, n_jobs: int
= - 1, random_seed: Union[int, float] = 0, **kwargs)

Random Forest Regressor.

Parameters
• n_estimators (float) – The number of trees in the forest. Defaults to 100.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family ModelFamily.RANDOM_FOREST
modi-
fies_features

True

modi-
fies_target

False

name Random Forest Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

5.14. Utils 1871



EvalML Documentation, Release 0.80.0

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns importance associated with each feature.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted Random-

ForestRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Returns importance associated with each feature.

Returns Importance associated with each feature.

Return type np.ndarray

Raises MethodPropertyNotFoundError – If estimator does not have a feature_importance
method or a component_obj that implements feature_importance.
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fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted RandomForestRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RegressionPipeline(component_graph, parameters=None, custom_name=None,
random_seed=0)

Pipeline subclass for all regression pipelines.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• custom_name (str) – Custom name for the pipeline. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = RegressionPipeline(component_graph=["Simple Imputer", "Linear␣
→˓Regressor"],
... parameters={"Simple Imputer": {"impute_strategy":
→˓"mean"}},
... custom_name="My Regression Pipeline")
...

(continues on next page)
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(continued from previous page)

>>> assert pipeline.custom_name == "My Regression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.

>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1}}

Attributes

prob-
lem_type

ProblemTypes.REGRESSION

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Build a regression model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Make predictions using selected features.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool
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clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Build a regression model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training data of length [n_samples]

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component
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get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series
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static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Make predictions using selected features.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Predicted values.

Return type pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
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• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – True values of length [n_samples]

• objectives (list) – Non-empty list of objectives to score on

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only
used for time series.

• y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series or None) – Targets corresponding to X. Optional.

• X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for
time series.

• y_train (pd.Series or None) – Training labels. Only used for time series.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.RFClassifierSelectFromModel(number_features=None, n_estimators=10,
max_depth=None, percent_features=0.5,
threshold='median', n_jobs=- 1, random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest classifier.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to None.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.
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• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.

• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Classifier Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.
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default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.RFRegressorSelectFromModel(number_features=None, n_estimators=10,
max_depth=None, percent_features=0.5,
threshold='median', n_jobs=- 1, random_seed=0,
**kwargs)

Selects top features based on importance weights using a Random Forest regressor.

Parameters
• number_features (int) – The maximum number of features to select. If both per-

cent_features and number_features are specified, take the greater number of features. De-
faults to 0.5.

• n_estimators (int) – The number of trees in the forest. Defaults to 10.

• max_depth (int) – Maximum tree depth for base learners. Defaults to None.

• percent_features (float) – Percentage of features to use. If both percent_features and
number_features are specified, take the greater number of features. Defaults to 0.5.
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• threshold (string or float) – The threshold value to use for feature selection. Features
whose importance is greater or equal are kept while the others are discarded. If “median”,
then the threshold value is the median of the feature importances. A scaling factor (e.g.,
“1.25*mean”) may also be used. Defaults to median.

• n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults
to -1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}

modi-
fies_features

True

modi-
fies_target

False

name RF Regressor Select From Model
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fit and transform data using the feature selector.
get_names Get names of selected features.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input data by selecting features. If the

component_obj does not have a transform method,
will raise an MethodPropertyNotFoundError excep-
tion.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

1884 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fit and transform data using the feature selector.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_names(self )
Get names of selected features.

Returns List of the names of features selected.

Return type list[str]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input data by selecting features. If the component_obj does not have a transform method, will
raise an MethodPropertyNotFoundError exception.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data. Ignored.

Returns Transformed X

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If feature selector does not have a transform method
or a component_obj that implements transform

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.SimpleImputer(impute_strategy='most_frequent', fill_value=None, random_seed=0,
**kwargs)

Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.

Parameters
• impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “me-

dian”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for
object data types.

• fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace
missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings
or object data types.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modi-
fies_features

True

modi-
fies_target

False

name Simple Imputer
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data. 'None' values are converted to

np.nan before imputation and are treated as the same.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms input by imputing missing values. 'None'

and np.nan values are treated as the same.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.
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Return type None or dict

fit(self, X, y=None)
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – the target training data of length [n_samples]

Returns self

Raises ValueError – if the SimpleImputer receives a dataframe with both Boolean and Cate-
gorical data.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform

• y (pd.Series, optional) – Target data.

Returns Transformed X

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Ignored.
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Returns Transformed X

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.StackedEnsembleBase(final_estimator=None, n_jobs=- 1, random_seed=0,
**kwargs)

Stacked Ensemble Base Class.

Parameters
• final_estimator (Estimator or subclass) – The estimator used to combine the base

estimators.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
supported_problem_types Problem types this estimator supports.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

property supported_problem_types(cls)
Problem types this estimator supports.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.StackedEnsembleClassifier(final_estimator=None, n_jobs=- 1, random_seed=0,
**kwargs)

Stacked Ensemble Classifier.

Parameters
• final_estimator (Estimator or subclass) – The classifier used to combine the base

estimators. If None, uses ElasticNetClassifier.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_
→˓classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier␣
→˓import ElasticNetClassifier
...
>>> component_graph = {
... "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
... "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],

(continues on next page)
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(continued from previous page)

... "Stacked Ensemble": [

... StackedEnsembleClassifier(n_jobs=1, final_
→˓estimator=DecisionTreeClassifier()),
... "Decision Tree.x",
... "Decision Tree B.x",
... "y",
... ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Decision Tree Classifier': {'criterion': 'gini',
... 'max_features': 'sqrt',
... 'max_depth': 6,
... 'min_samples_split': 2,
... 'min_weight_fraction_leaf': 0.0},
... 'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.StackedEnsembleRegressor(final_estimator=None, n_jobs=- 1, random_seed=0,
**kwargs)

Stacked Ensemble Regressor.

Parameters
• final_estimator (Estimator or subclass) – The regressor used to combine the base

estimators. If None, uses ElasticNetRegressor.

• n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None
and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1
+ n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown
for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import␣
→˓RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor␣
→˓import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_
→˓estimator=RandomForestRegressor()),

(continues on next page)
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(continued from previous page)

... "Random Forest.x",

... "Random Forest B.x",

... "y",

... ],

... }

...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}

Attributes

hyper-
parame-
ter_ranges

{}

model_family ModelFamily.ENSEMBLE
modi-
fies_features

True

modi-
fies_target

False

name Stacked Ensemble Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for stacked ensemble
classes.

describe Describe a component and its parameters.
feature_importance Not implemented for StackedEnsembleClassifier and

StackedEnsembleRegressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.
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clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for stacked ensemble classes.

Returns default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict
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Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.
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class evalml.pipelines.StandardScaler(random_seed=0, **kwargs)
A transformer that standardizes input features by removing the mean and scaling to unit variance.

Parameters random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Standard Scaler
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the standard scalar on the given data.
fit_transform Fit and transform data using the standard scaler com-

ponent.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted standard scaler.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the standard scalar on the given data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y=None)
Fit and transform data using the standard scaler component.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted standard scaler.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.SVMClassifier(C=1.0, kernel='rbf', gamma='auto', probability=True,
random_seed=0, **kwargs)

Support Vector Machine Classifier.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• probability (boolean) – Whether to enable probability estimates. Defaults to True.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance only works with linear kernels.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is
not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.SVMRegressor(C=1.0, kernel='rbf', gamma='auto', random_seed=0, **kwargs)
Support Vector Machine Regressor.

Parameters
• C (float) – The regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to
1.0.

• kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the
algorithm. Defaults to “rbf”.

• gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sig-
moid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var())
as value of gamma - If “auto” (default), uses 1 / n_features

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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hyper-
parame-
ter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family ModelFamily.SVM
modi-
fies_features

True

modi-
fies_target

False

name SVM Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted SVM regresor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component
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• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel
is not linear.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TargetEncoder(cols=None, smoothing=1, handle_unknown='value',
handle_missing='value', random_seed=0, **kwargs)

A transformer that encodes categorical features into target encodings.

Parameters
• cols (list) – Columns to encode. If None, all string columns will be encoded, otherwise

only the columns provided will be encoded. Defaults to None

• smoothing (float) – The smoothing factor to apply. The larger this value is, the more
influence the expected target value has on the resulting target encodings. Must be strictly
larger than 0. Defaults to 1.0
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• handle_unknown (string) – Determines how to handle unknown categories for a feature
encountered. Options are ‘value’, ‘error’, nd ‘return_nan’. Defaults to ‘value’, which replaces
with the target mean

• handle_missing (string) – Determines how to handle missing values encountered during
fit or transform. Options are ‘value’, ‘error’, and ‘return_nan’. Defaults to ‘value’, which
replaces with the target mean

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

False

name Target Encoder
train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the target encoder.
fit_transform Fit and transform data using the target encoder.
get_feature_names Return feature names for the input features after fit-

ting.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transform data using the fitted target encoder.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict
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describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y)
Fits the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

fit_transform(self, X, y)
Fit and transform data using the target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

get_feature_names(self )
Return feature names for the input features after fitting.

Returns The feature names after encoding.

Return type np.array

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.
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save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transform data using the fitted target encoder.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Transformed data.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TimeSeriesBinaryClassificationPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline base class for time series binary classification problems.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.
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Example

>>> pipeline = TimeSeriesBinaryClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {"gap
→˓": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesBinary Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesBinary Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
...
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
continues on next page
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Table 16 – continued from previous page
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

optimize_threshold Optimize the pipeline threshold given the objective to
use. Only used for binary problems with objectives
whose thresholds can be tuned.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
threshold Threshold used to make a prediction. Defaults to

None.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.
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clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self
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Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)
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graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

optimize_threshold(self, X, y, y_pred_proba, objective)
Optimize the pipeline threshold given the objective to use. Only used for binary problems with objectives
whose thresholds can be tuned.

Parameters
• X (pd.DataFrame) – Input features.

• y (pd.Series) – Input target values.

• y_pred_proba (pd.Series) – The predicted probabilities of the target outputted by the
pipeline.
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• objective (ObjectiveBase) – The objective to threshold with. Must have a tunable
threshold.

Raises ValueError – If objective is not optimizable.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame) – Future data of shape [n_samples, n_features].

• y (pd.Series) – Future target of shape [n_samples].

• X_train (pd.DataFrame) – Data the pipeline was trained on of shape [n_samples_train,
n_feautures].

• y_train (pd.Series) – Targets used to train the pipeline of shape [n_samples_train].

• objective (ObjectiveBase, str) – Objective used to threshold predicted probabili-
ties, optional. Defaults to None.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If objective is not defined for time-series binary classification problems.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.
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Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

property threshold(self )
Threshold used to make a prediction. Defaults to None.
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transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesClassificationPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline base class for time series classification problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

prob-
lem_type

None

Methods
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can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
continues on next page

1920 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Table 17 – continued from previous page
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict
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property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
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• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
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• parameters (dict) – Dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].
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• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict
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property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesFeaturizer(time_index=None, max_delay=2, gap=0,
forecast_horizon=1, conf_level=0.05,
rolling_window_size=0.25, delay_features=True,
delay_target=True, random_seed=0, **kwargs)

Transformer that delays input features and target variable for time series problems.

This component uses an algorithm based on the autocorrelation values of the target variable to determine which
lags to select from the set of all possible lags.

The algorithm is based on the idea that the local maxima of the autocorrelation function indicate the lags that
have the most impact on the present time.

The algorithm computes the autocorrelation values and finds the local maxima, called “peaks”, that are significant
at the given conf_level. Since lags in the range [0, 10] tend to be predictive but not local maxima, the union of
the peaks is taken with the significant lags in the range [0, 10]. At the end, only selected lags in the range [0,
max_delay] are used.

Parametrizing the algorithm by conf_level lets the AutoMLAlgorithm tune the set of lags chosen so that the
chances of finding a good set of lags is higher.

Using conf_level value of 1 selects all possible lags.

Parameters
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• time_index (str) – Name of the column containing the datetime information used to order
the data. Ignored.

• max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

• forecast_horizon (int) – The number of time periods the pipeline is expected to forecast.

• conf_level (float) – Float in range (0, 1] that determines the confidence interval size used
to select which lags to compute from the set of [1, max_delay]. A delay of 1 will always be
computed. If 1, selects all possible lags in the set of [1, max_delay], inclusive.

• rolling_window_size (float) – Float in range (0, 1] that determines the size of the win-
dow used for rolling features. Size is computed as rolling_window_size * max_delay.

• delay_features (bool) – Whether to delay the input features. Defaults to True.

• delay_target (bool) – Whether to delay the target. Defaults to True.

• gap (int) – The number of time units between when the features are collected and when
the target is collected. For example, if you are predicting the next time step’s target, gap=1.
This is only needed because when gap=0, we need to be sure to start the lagging of the target
variable at 1. Defaults to 1.

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

Attributes

df_colname_prefix{}_delay_{}
hyper-
parame-
ter_ranges

Real(0.001, 1.0), “rolling_window_size”: Real(0.001, 1.0)}:type: {“conf_level”

modi-
fies_features

True

modi-
fies_target

False

name Time Series Featurizer
needs_fitting True
tar-
get_colname_prefix

target_delay_{}

train-
ing_only

False

Methods

5.14. Utils 1927



EvalML Documentation, Release 0.80.0

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the DelayFeatureTransformer.
fit_transform Fit the component and transform the input data.
load Loads component at file path.
parameters Returns the parameters which were used to initialize

the component.
save Saves component at file path.
transform Computes the delayed values and rolling means for X

and y.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the DelayFeatureTransformer.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises ValueError – if self.time_index is None

fit_transform(self, X, y=None)
Fit the component and transform the input data.

Parameters
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• X (pd.DataFrame) – Data to transform.

• y (pd.Series, or None) – Target.

Returns Transformed X.

Return type pd.DataFrame

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Computes the delayed values and rolling means for X and y.

The chosen delays are determined by the autocorrelation function of the target variable. See the class
docstring for more information on how they are chosen. If y is None, all possible lags are chosen.

If y is not None, it will also compute the delayed values for the target variable.

The rolling means for all numeric features in X and y, if y is numeric, are also returned.

Parameters
• X (pd.DataFrame or None) – Data to transform. None is expected when only the target

variable is being used.

• y (pd.Series, or None) – Target.

Returns Transformed X. No original features are returned.

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TimeSeriesImputer(categorical_impute_strategy='forwards_fill',
numeric_impute_strategy='interpolate',
target_impute_strategy='forwards_fill', random_seed=0,
**kwargs)

Imputes missing data according to a specified timeseries-specific imputation strategy.

This Transformer should be used after the TimeSeriesRegularizer in order to impute the missing values that were
added to X and y (if passed).
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Parameters
• categorical_impute_strategy (string) – Impute strategy to use for string, object,

boolean, categorical dtypes. Valid values include “backwards_fill” and “forwards_fill”. De-
faults to “forwards_fill”.

• numeric_impute_strategy (string) – Impute strategy to use for numeric columns. Valid
values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “interpo-
late”.

• target_impute_strategy (string) – Impute strategy to use for the target column.
Valid values include “backwards_fill”, “forwards_fill”, and “interpolate”. Defaults to “for-
wards_fill”.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Raises ValueError – If categorical_impute_strategy, numeric_impute_strategy, or tar-
get_impute_strategy is not one of the valid values.

Attributes

hyper-
parame-
ter_ranges

{ “categorical_impute_strategy”: [“backwards_fill”, “forwards_fill”], “nu-
meric_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”], “tar-
get_impute_strategy”: [“backwards_fill”, “forwards_fill”, “interpolate”],}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Imputer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits imputer to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X by imputing missing values using

specified timeseries-specific strategies. 'None' val-
ues are converted to np.nan before imputation and are
treated as the same.

update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.
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Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits imputer to data.

‘None’ values are converted to np.nan before imputation and are treated as the same. If a value is missing
at the beginning or end of a column, that value will be imputed using backwards fill or forwards fill as
necessary, respectively.

Parameters
• X (pd.DataFrame, np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object
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needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Transforms data X by imputing missing values using specified timeseries-specific strategies. ‘None’ values
are converted to np.nan before imputation and are treated as the same.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Optionally, target data to transform.

Returns Transformed X and y

Return type pd.DataFrame

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.TimeSeriesMulticlassClassificationPipeline(component_graph,
parameters=None,
custom_name=None,
random_seed=0)

Pipeline base class for time series multiclass classification problems.

Parameters
• component_graph (list or dict) – List of components in order. Accepts strings or

ComponentBase subclasses in the list. Note that when duplicate components are specified in
a list, the duplicate component names will be modified with the component’s index in the list.
For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regres-
sion Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic
Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).
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• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesMulticlassClassificationPipeline(component_graph=["Simple␣
→˓Imputer", "Logistic Regression Classifier"],
... parameters={"Logistic␣
→˓Regression Classifier": {"penalty": "elasticnet",
... ␣
→˓ "solver": "liblinear"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesMulticlass Pipeline")
>>> assert pipeline.custom_name == "My TimeSeriesMulticlass Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Logistic Regression Classifier'}
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Logistic Regression Classifier': {'penalty': 'elasticnet',
... 'C': 1.0,
... 'n_jobs': -1,
... 'multi_class': 'auto',
... 'solver': 'liblinear'},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

prob-
lem_type

ProblemTypes.TIME_SERIES_MULTICLASS

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

classes_ Gets the class names for the pipeline. Will return
None before pipeline is fit.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
continues on next page
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Table 18 – continued from previous page
fit Fit a time series classification model.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
predict_proba Predict on future data where the target is unknown.
predict_proba_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

property classes_(self )
Gets the class names for the pipeline. Will return None before pipeline is fit.

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.
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static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series classification model.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features]

• y (pd.Series, np.ndarray) – The target training labels of length [n_samples]

Returns self

Raises ValueError – If the number of unique classes in y are not appropriate for the type of
pipeline.
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fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)
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graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.

Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].
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• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.

Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None)
Predict on future data where the target is known, e.g. cross validation.

Note: we cast y as ints first to address boolean values that may be returned from calculating predictions
which we would not be able to otherwise transform if we originally had integer targets.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• y (pd.Series, np.ndarray) – Future target of shape [n_samples].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba(self, X, X_train=None, y_train=None)
Predict on future data where the target is unknown.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features].

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

predict_proba_in_sample(self, X_holdout, y_holdout, X_train, y_train)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X_holdout (pd.DataFrame or np.ndarray) – Future data of shape [n_samples,

n_features].

• y_holdout (pd.Series, np.ndarray) – Future target of shape [n_samples].
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• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Estimated probabilities.

Return type pd.Series

Raises ValueError – If the final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.

transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
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• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesRegressionPipeline(component_graph, parameters=None,
custom_name=None, random_seed=0)

Pipeline base class for time series regression problems.

Parameters
• component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of

components in order, or dictionary of components. Accepts strings or ComponentBase sub-
classes in the list. Note that when duplicate components are specified in a list, the duplicate
component names will be modified with the component’s index in the list. For example, the
component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will
have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]

• parameters (dict) – Dictionary with component names as keys and dictionary of that com-
ponent’s parameters as values. An empty dictionary {} implies using all default values for
component parameters. Pipeline-level parameters such as time_index, gap, and max_delay
must be specified with the “pipeline” key. For example: Pipeline(parameters={“pipeline”:
{“time_index”: “Date”, “max_delay”: 4, “gap”: 2}}).

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Simple Imputer",
→˓"Linear Regressor"],
... parameters={"Simple␣
→˓Imputer": {"impute_strategy": "mean"},
... "pipeline": {
→˓"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}},
... custom_name="My␣
→˓TimeSeriesRegression Pipeline")
...
>>> assert pipeline.custom_name == "My TimeSeriesRegression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer',
→˓'Linear Regressor'}

The pipeline parameters will be chosen from the default parameters for every component, unless specific param-
eters were passed in as they were above.
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>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1},
... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index':
→˓"date"}}

Attributes

NO_PREDS_PI_ESTIMATORSProblemTypes.TIME_SERIES_REGRESSION
prob-
lem_type

None

Methods

can_tune_threshold_with_objective Determine whether the threshold of a binary classifi-
cation pipeline can be tuned.

clone Constructs a new pipeline with the same components,
parameters, and random seed.

create_objectives Create objective instances from a list of strings or ob-
jective classes.

custom_name Custom name of the pipeline.
dates_needed_for_prediction Return dates needed to forecast the given date in the

future.
dates_needed_for_prediction_range Return dates needed to forecast the given date in the

future.
describe Outputs pipeline details including component param-

eters.
feature_importance Importance associated with each feature. Features

dropped by the feature selection are excluded.
fit Fit a time series pipeline.
fit_transform Fit and transform all components in the component

graph, if all components are Transformers.
get_component Returns component by name.
get_forecast_period Generates all possible forecasting time points based

on latest data point in X.
get_forecast_predictions Generates all possible forecasting predictions based

on last period of X.
get_hyperparameter_ranges Returns hyperparameter ranges from all components

as a dictionary.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
graph Generate an image representing the pipeline graph.
graph_dict Generates a dictionary with nodes consisting of the

component names and parameters, and edges de-
tailing component relationships. This dictionary is
JSON serializable in most cases.

graph_feature_importance Generate a bar graph of the pipeline's feature impor-
tance.

inverse_transform Apply component inverse_transform methods to es-
timator predictions in reverse order.

load Loads pipeline at file path.
continues on next page
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Table 19 – continued from previous page
model_family Returns model family of this pipeline.
name Name of the pipeline.
new Constructs a new instance of the pipeline with the

same component graph but with a different set of pa-
rameters. Not to be confused with python's __new__
method.

parameters Parameter dictionary for this pipeline.
predict Predict on future data where target is not known.
predict_in_sample Predict on future data where the target is known, e.g.

cross validation.
save Saves pipeline at file path.
score Evaluate model performance on current and addi-

tional objectives.
summary A short summary of the pipeline structure, describing

the list of components used.
transform Transform the input.
transform_all_but_final Transforms the data by applying all pre-processing

components.

can_tune_threshold_with_objective(self, objective)
Determine whether the threshold of a binary classification pipeline can be tuned.

Parameters objective (ObjectiveBase) – Primary AutoMLSearch objective.

Returns True if the pipeline threshold can be tuned.

Return type bool

clone(self )
Constructs a new pipeline with the same components, parameters, and random seed.

Returns A new instance of this pipeline with identical components, parameters, and random
seed.

static create_objectives(objectives)
Create objective instances from a list of strings or objective classes.

property custom_name(self )
Custom name of the pipeline.

dates_needed_for_prediction(self, date)
Return dates needed to forecast the given date in the future.

Parameters date (pd.Timestamp) – Date to forecast in the future.

Returns Range of dates needed to forecast the given date.

Return type dates_needed (tuple(pd.Timestamp))

dates_needed_for_prediction_range(self, start_date, end_date)
Return dates needed to forecast the given date in the future.

Parameters
• start_date (pd.Timestamp) – Start date of range to forecast in the future.

• end_date (pd.Timestamp) – End date of range to forecast in the future.

Returns Range of dates needed to forecast the given date.

1942 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Return type dates_needed (tuple(pd.Timestamp))

Raises ValueError – If start_date doesn’t come before end_date

describe(self, return_dict=False)
Outputs pipeline details including component parameters.

Parameters return_dict (bool) – If True, return dictionary of information about pipeline.
Defaults to False.

Returns Dictionary of all component parameters if return_dict is True, else None.

Return type dict

property feature_importance(self )
Importance associated with each feature. Features dropped by the feature selection are excluded.

Returns Feature names and their corresponding importance

Return type pd.DataFrame

fit(self, X, y)
Fit a time series pipeline.

Parameters
• X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples,

n_features].

• y (pd.Series, np.ndarray) – The target training targets of length [n_samples].

Returns self

Raises ValueError – If the target is not numeric.

fit_transform(self, X, y)
Fit and transform all components in the component graph, if all components are Transformers.

Parameters
• X (pd.DataFrame) – Input features of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples].

Returns Transformed output.

Return type pd.DataFrame

Raises ValueError – If final component is an Estimator.

get_component(self, name)
Returns component by name.

Parameters name (str) – Name of component.

Returns Component to return

Return type Component

get_forecast_period(self, X)
Generates all possible forecasting time points based on latest data point in X.

Parameters X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

Raises ValueError – If pipeline is not trained.
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Returns Datetime periods from gap to forecast_horizon + gap.

Return type pd.Series

Example

>>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq=
→˓'D'), 'feature': range(10, 20)})
>>> y = pd.Series(range(0, 10), name='target')
>>> gap = 1
>>> forecast_horizon = 2
>>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor
→˓"],
... parameters={"Simple Imputer": {
→˓"impute_strategy": "mean"},
... "pipeline": {"gap": gap,
→˓ "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}},
... )
>>> pipeline.fit(X, y)
pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': [
→˓'Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept
→˓': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_
→˓horizon': 2, 'time_index': 'date'}}, random_seed=0)
>>> dates = pipeline.get_forecast_period(X)
>>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=forecast_
→˓horizon, freq='D').shift(gap), name='date', index=[10, 11])
>>> assert dates.equals(expected)

get_forecast_predictions(self, X, y)
Generates all possible forecasting predictions based on last period of X.

Parameters
• X (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape

[n_samples_train, n_feautures].

• y (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Predictions from gap periods out to forecast_horizon + gap periods.

get_hyperparameter_ranges(self, custom_hyperparameters)
Returns hyperparameter ranges from all components as a dictionary.

Parameters custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.

Returns Dictionary of hyperparameter ranges for each component in the pipeline.

Return type dict

get_prediction_intervals(self, X, y=None, X_train=None, y_train=None, coverage=None)
Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.
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Certain estimators (Extra Trees Estimator, XGBoost Estimator, Prophet Estimator, ARIMA, and Exponen-
tial Smoothing estimator) utilize a different methodology to calculate prediction intervals. See the docs for
these estimators to learn more.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_features].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

graph(self, filepath=None)
Generate an image representing the pipeline graph.

Parameters filepath (str, optional) – Path to where the graph should be saved. If set to
None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.

Return type graphviz.Digraph

Raises
• RuntimeError – If graphviz is not installed.

• ValueError – If path is not writeable.

graph_dict(self )
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing
component relationships. This dictionary is JSON serializable in most cases.

x_edges specifies from which component feature data is being passed. y_edges specifies from which
component target data is being passed. This can be used to build graphs across a variety of vi-
sualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parame-
ters”: parameters_attributes}, . . . }}, “x_edges”: [[from_component_name, to_component_name],
[from_component_name, to_component_name], . . . ], “y_edges”: [[from_component_name,
to_component_name], [from_component_name, to_component_name], . . . ]}

Returns A dictionary representing the DAG structure.

Return type dag_dict (dict)

graph_feature_importance(self, importance_threshold=0)
Generate a bar graph of the pipeline’s feature importance.

Parameters importance_threshold (float, optional) – If provided, graph features with
a permutation importance whose absolute value is larger than importance_threshold. Defaults
to zero.

Returns A bar graph showing features and their corresponding importance.
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Return type plotly.Figure

Raises ValueError – If importance threshold is not valid.

inverse_transform(self, y)
Apply component inverse_transform methods to estimator predictions in reverse order.

Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEn-
coder (tbd).

Parameters y (pd.Series) – Final component features.

Returns The inverse transform of the target.

Return type pd.Series

static load(file_path: Union[str, io.BytesIO])
Loads pipeline at file path.

Parameters file_path (str|BytesIO) – load filepath or a BytesIO object.

Returns PipelineBase object

property model_family(self )
Returns model family of this pipeline.

property name(self )
Name of the pipeline.

new(self, parameters, random_seed=0)
Constructs a new instance of the pipeline with the same component graph but with a different set of param-
eters. Not to be confused with python’s __new__ method.

Parameters
• parameters (dict) – Dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary or None implies using all default
values for component parameters. Defaults to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns A new instance of this pipeline with identical components.

property parameters(self )
Parameter dictionary for this pipeline.

Returns Dictionary of all component parameters.

Return type dict

predict(self, X, objective=None, X_train=None, y_train=None)
Predict on future data where target is not known.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• objective (Object or string) – The objective to use to make predictions.

• X_train (pd.DataFrame or np.ndarray or None) – Training data.

• y_train (pd.Series or None) – Training labels.

Raises ValueError – If X_train and/or y_train are None or if final component is not an Estima-
tor.
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Returns Predictions.

predict_in_sample(self, X, y, X_train, y_train, objective=None, calculating_residuals=False)
Predict on future data where the target is known, e.g. cross validation.

Parameters
• X (pd.DataFrame or np.ndarray) – Future data of shape [n_samples, n_features]

• y (pd.Series, np.ndarray) – Future target of shape [n_samples]

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures]

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train]

• objective (ObjectiveBase, str, None) – Objective used to threshold predicted
probabilities, optional.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns Estimated labels.

Return type pd.Series

Raises ValueError – If final component is not an Estimator.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves pipeline at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

score(self, X, y, objectives, X_train=None, y_train=None)
Evaluate model performance on current and additional objectives.

Parameters
• X (pd.DataFrame or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – True labels of length [n_samples].

• objectives (list) – Non-empty list of objectives to score on.

• X_train (pd.DataFrame, np.ndarray) – Data the pipeline was trained on of shape
[n_samples_train, n_feautures].

• y_train (pd.Series, np.ndarray) – Targets used to train the pipeline of shape
[n_samples_train].

Returns Ordered dictionary of objective scores.

Return type dict

property summary(self )
A short summary of the pipeline structure, describing the list of components used.

Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder

Returns A string describing the pipeline structure.
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transform(self, X, y=None)
Transform the input.

Parameters
• X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].

• y (pd.Series) – The target data of length [n_samples]. Defaults to None.

Returns Transformed output.

Return type pd.DataFrame

transform_all_but_final(self, X, y=None, X_train=None, y_train=None, calculating_residuals=False)
Transforms the data by applying all pre-processing components.

Parameters
• X (pd.DataFrame) – Input data to the pipeline to transform.

• y (pd.Series) – Targets corresponding to the pipeline targets.

• X_train (pd.DataFrame) – Training data used to generate generates from past observa-
tions.

• y_train (pd.Series) – Training targets used to generate features from past observations.

• calculating_residuals (bool) – Whether we’re calling predict_in_sample to calculate
the residuals. This means the X and y arguments are not future data, but actually the train
data.

Returns New transformed features.

Return type pd.DataFrame

class evalml.pipelines.TimeSeriesRegularizer(time_index=None, frequency_payload=None,
window_length=4, threshold=0.4, random_seed=0,
**kwargs)

Transformer that regularizes an inconsistently spaced datetime column.

If X is passed in to fit/transform, the column time_index will be checked for an inferrable offset frequency. If the
time_index column is perfectly inferrable then this Transformer will do nothing and return the original X and y.

If X does not have a perfectly inferrable frequency but one can be estimated, then X and y will be reformatted
based on the estimated frequency for time_index. In the original X and y passed: - Missing datetime values will
be added and will have their corresponding columns in X and y set to None. - Duplicate datetime values will
be dropped. - Extra datetime values will be dropped. - If it can be determined that a duplicate or extra value is
misaligned, then it will be repositioned to take the place of a missing value.

This Transformer should be used before the TimeSeriesImputer in order to impute the missing values that were
added to X and y (if passed).

Parameters
• time_index (string) – Name of the column containing the datetime information used to

order the data, required. Defaults to None.

• frequency_payload (tuple) – Payload returned from Woodwork’s infer_frequency func-
tion where debug is True. Defaults to None.

• window_length (int) – The size of the rolling window over which inference is conducted
to determine the prevalence of uninferrable frequencies.

• 5. (Lower values make this component more sensitive to recognizing
numerous faulty datetime values. Defaults to) –
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• threshold (float) – The minimum percentage of windows that need to have been able to
infer a frequency. Lower values make this component more

• 0.8. (sensitive to recognizing numerous faulty datetime values.
Defaults to) –

• random_seed (int) – Seed for the random number generator. This transformer performs
the same regardless of the random seed provided.

• 0. (Defaults to) –

Raises ValueError – if the frequency_payload parameter has not been passed a tuple

Attributes

hyper-
parame-
ter_ranges

{}

modi-
fies_features

True

modi-
fies_target

True

name Time Series Regularizer
train-
ing_only

True

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits the TimeSeriesRegularizer.
fit_transform Fits on X and transforms X.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Regularizes a dataframe and target data to an in-

ferrable offset frequency.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.
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Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits the TimeSeriesRegularizer.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

Raises
• ValueError – if self.time_index is None, if X and y have different lengths, if time_index

in X does not have an offset frequency that can be estimated

• TypeError – if the time_index column is not of type Datetime

• KeyError – if the time_index column doesn’t exist

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.
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property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)
Regularizes a dataframe and target data to an inferrable offset frequency.

A ‘clean’ X and y (if y was passed in) are created based on an inferrable offset frequency and matching
datetime values with the original X and y are imputed into the clean X and y. Datetime values identified as
misaligned are shifted into their appropriate position.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns Data with an inferrable time_index offset frequency.

Return type (pd.DataFrame, pd.Series)

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.Transformer(parameters=None, component_obj=None, random_seed=0, **kwargs)
A component that may or may not need fitting that transforms data. These components are used before an
estimator.

To implement a new Transformer, define your own class which is a subclass of Transformer, including a name
and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define
an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard
keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform,
fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Transformer component.

Parameters
• parameters (dict) – Dictionary of parameters for the component. Defaults to None.

• component_obj (obj) – Third-party objects useful in component implementation. Defaults
to None.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes
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modi-
fies_features

True

modi-
fies_target

False

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
fit Fits component to data.
fit_transform Fits on X and transforms X.
load Loads component at file path.
name Returns string name of this component.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

save Saves component at file path.
transform Transforms data X.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

fit(self, X, y=None)
Fits component to data.

Parameters
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• X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

• y (pd.Series, optional) – The target training data of length [n_samples]

Returns self

Raises MethodPropertyNotFoundError – If component does not have a fit method or a com-
ponent_obj that implements fit.

fit_transform(self, X, y=None)
Fits on X and transforms X.

Parameters
• X (pd.DataFrame) – Data to fit and transform.

• y (pd.Series) – Target data.

Returns Transformed X.

Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

property name(cls)
Returns string name of this component.

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

abstract transform(self, X, y=None)
Transforms data X.

Parameters
• X (pd.DataFrame) – Data to transform.

• y (pd.Series, optional) – Target data.

Returns Transformed X
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Return type pd.DataFrame

Raises MethodPropertyNotFoundError – If transformer does not have a transform method or
a component_obj that implements transform.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VARMAXRegressor(time_index: Optional[Hashable] = None, p: int = 1, q: int = 0,
trend: Optional[str] = 'c', random_seed: Union[int, float] = 0,
maxiter: int = 10, use_covariates: bool = False, **kwargs)

Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR
order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.
statespace.varmax.VARMAX.html.

Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
• time_index (str) – Specifies the name of the column in X that provides the datetime ob-

jects. Defaults to None.

• p (int) – Maximum Autoregressive order. Defaults to 1.

• q (int) – Maximum Moving Average order. Defaults to 0.

• trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is
a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when
defining a polynomial, such as [1, 1, 0, 1].

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• max_iter (int) – Maximum number of iterations for solver. Defaults to 10.

• use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If
False, forecasts will solely be based off of the datetimes and target values. Defaults to True.

Attributes

hyper-
parame-
ter_ranges

{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}

model_family ModelFamily.VARMAX
modi-
fies_features

True

modi-
fies_target

False

name VARMAX Regressor
sup-
ported_problem_types

[ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Returns array of 0's with a length of 1 as fea-

ture_importance is not defined for VARMAX regres-
sor.

fit Fits VARMAX regressor to data.
get_prediction_intervals Find the prediction intervals using the fitted VAR-

MAXRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted VARMAX regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ numpy.ndarray
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)
Fits VARMAX regressor to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
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• y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].

Returns self

Raises ValueError – If y was not passed in.

get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted VARMAXRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Not used for VARMAX regressor.

Returns A dict of prediction intervals, where the dict is in the format {series_id: {cover-
age}_lower or {coverage}_upper}.

Return type dict[dict]

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)→ pandas.Series
Make predictions using fitted VARMAX regressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].

Returns Predicted values.

Return type pd.Series

Raises ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.
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Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VowpalWabbitBinaryClassifier(loss_function='logistic', learning_rate=0.5,
decay_learning_rate=1.0, power_t=0.5,
passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Binary Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Binary Classifier
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY,]

train-
ing_only

False

Methods
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clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VowpalWabbitMulticlassClassifier(loss_function='logistic', learning_rate=0.5,
decay_learning_rate=1.0, power_t=0.5,
passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Multiclass Classifier.

Parameters
• loss_function (str) – Specifies the loss function to use. One of {“squared”, “classic”,

“hinge”, “logistic”, “quantile”}. Defaults to “logistic”.

• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Multiclass Classifier
sup-
ported_problem_types

[ ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit classifiers.

This is not implemented.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit classifiers. This is not implemented.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

5.14. Utils 1961



EvalML Documentation, Release 0.80.0

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.VowpalWabbitRegressor(learning_rate=0.5, decay_learning_rate=1.0,
power_t=0.5, passes=1, random_seed=0, **kwargs)

Vowpal Wabbit Regressor.

Parameters
• learning_rate (float) – Boosting learning rate. Defaults to 0.5.

• decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

• power_t (float) – Power on learning rate decay. Defaults to 0.5.

• passes (int) – Number of training passes. Defaults to 1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyper-
parame-
ter_ranges

None

model_family ModelFamily.VOWPAL_WABBIT
modi-
fies_features

True

modi-
fies_target

False

name Vowpal Wabbit Regressor
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False
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Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance for Vowpal Wabbit regressor.
fit Fits estimator to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using selected features.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance for Vowpal Wabbit regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits estimator to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].
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Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using selected features.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict method or a
component_obj that implements predict.
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predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.XGBoostClassifier(eta=0.1, max_depth=6, min_child_weight=1,
n_estimators=100, random_seed=0, eval_metric='logloss',
n_jobs=12, **kwargs)

XGBoost Classifier.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.

Attributes
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hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Classifier
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, Problem-
Types.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost classifier.
fit Fits XGBoost classifier component to data.
get_prediction_intervals Find the prediction intervals using the fitted regres-

sor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using the fitted XGBoost classifier.
predict_proba Make predictions using the fitted CatBoost classifier.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.

Parameters
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• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )
Feature importance of fitted XGBoost classifier.

fit(self, X, y=None)
Fits XGBoost classifier component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across
all predictions using a window size of 5. The lower and upper predictions are determined by taking the
percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard
deviation.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

Raises MethodPropertyNotFoundError – If the estimator does not support Time Series Re-
gression as a problem type.

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
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Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

predict(self, X)
Make predictions using the fitted XGBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

predict_proba(self, X)
Make predictions using the fitted CatBoost classifier.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

class evalml.pipelines.XGBoostRegressor(eta: float = 0.1, max_depth: int = 6, min_child_weight: int = 1,
n_estimators: int = 100, random_seed: Union[int, float] = 0,
n_jobs: int = 12, **kwargs)

XGBoost Regressor.

Parameters
• eta (float) – Boosting learning rate. Defaults to 0.1.

• max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

• min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a
child. Defaults to 1.0

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds. Defaults to 100.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread
contention will significantly slow down the algorithm. Defaults to 12.
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Attributes

hyper-
parame-
ter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10),
“n_estimators”: Integer(1, 1000),}

model_family ModelFamily.XGBOOST
modi-
fies_features

True

modi-
fies_target

False

name XGBoost Regressor
SEED_MAX None
SEED_MIN None
sup-
ported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

train-
ing_only

False

Methods

clone Constructs a new component with the same parame-
ters and random state.

default_parameters Returns the default parameters for this component.
describe Describe a component and its parameters.
feature_importance Feature importance of fitted XGBoost regressor.
fit Fits XGBoost regressor component to data.
get_prediction_intervals Find the prediction intervals using the fitted XG-

BoostRegressor.
load Loads component at file path.
needs_fitting Returns boolean determining if component needs fit-

ting before calling predict, predict_proba, transform,
or feature_importances.

parameters Returns the parameters which were used to initialize
the component.

predict Make predictions using fitted XGBoost regressor.
predict_proba Make probability estimates for labels.
save Saves component at file path.
update_parameters Updates the parameter dictionary of the component.

clone(self )
Constructs a new component with the same parameters and random state.

Returns A new instance of this component with identical parameters and random state.

default_parameters(cls)
Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns Default parameters for this component.

Return type dict

describe(self, print_name=False, return_dict=False)
Describe a component and its parameters.
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Parameters
• print_name (bool, optional) – whether to print name of component

• return_dict (bool, optional) – whether to return description as dictionary in the
format {“name”: name, “parameters”: parameters}

Returns Returns dictionary if return_dict is True, else None.

Return type None or dict

property feature_importance(self )→ pandas.Series
Feature importance of fitted XGBoost regressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)
Fits XGBoost regressor component to data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

• y (pd.Series, optional) – The target training data of length [n_samples].

Returns self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage:
List[float] = None, predictions: pandas.Series = None)→ Dict[str,
pandas.Series]

Find the prediction intervals using the fitted XGBoostRegressor.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• y (pd.Series) – Target data. Ignored.

• coverage (List[float]) – A list of floats between the values 0 and 1 that the upper and
lower bounds of the prediction interval should be calculated for.

• predictions (pd.Series) – Optional list of predictions to use. If None, will generate
predictions using X.

Returns Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type dict

static load(file_path)
Loads component at file path.

Parameters file_path (str) – Location to load file.

Returns ComponentBase object

needs_fitting(self )
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform,
or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns True.

property parameters(self )
Returns the parameters which were used to initialize the component.

5.14. Utils 1971



EvalML Documentation, Release 0.80.0

predict(self, X: pandas.DataFrame)→ pandas.Series
Make predictions using fitted XGBoost regressor.

Parameters X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns Predicted values.

Return type pd.Series

predict_proba(self, X: pandas.DataFrame)→ pandas.Series
Make probability estimates for labels.

Parameters X (pd.DataFrame) – Features.

Returns Probability estimates.

Return type pd.Series

Raises MethodPropertyNotFoundError – If estimator does not have a predict_proba method
or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves component at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)
Updates the parameter dictionary of the component.

Parameters
• update_dict (dict) – A dict of parameters to update.

• reset_fit (bool, optional) – If True, will set _is_fitted to False.

Preprocessing

Preprocessing utilities.

Subpackages

data_splitters

Data splitter classes.
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Submodules

no_split

Empty Data Splitter class.

Module Contents

Classes Summary

NoSplit Does not split the training data into training and valida-
tion sets.

Contents

class evalml.preprocessing.data_splitters.no_split.NoSplit(random_seed=0)
Does not split the training data into training and validation sets.

All data is passed as the training set, test data is simply an array of None. To be used for future unsupervised
learning, should not be used in any of the currently supported pipelines.

Parameters random_seed (int) – The seed to use for random sampling. Defaults to 0. Not used.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets, where

the testing set is empty.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 0.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool
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split(self, X, y=None)
Divide the data into training and testing sets, where the testing set is empty.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

sk_splitters

SKLearn data splitter wrapper classes.

Module Contents

Classes Summary

KFold Wrapper class for sklearn's KFold splitter.
StratifiedKFold Wrapper class for sklearn's Stratified KFold splitter.

Contents

class evalml.preprocessing.data_splitters.sk_splitters.KFold(n_splits=5, *, shuffle=False,
random_state=None)

Wrapper class for sklearn’s KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters
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• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.

• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

• y (array-like of shape (n_samples,), default=None) – The target variable for
supervised learning problems.

• groups (array-like of shape (n_samples,), default=None) – Group labels for
the samples used while splitting the dataset into train/test set.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

class evalml.preprocessing.data_splitters.sk_splitters.StratifiedKFold(n_splits=5, *,
shuffle=False,
random_state=None)

Wrapper class for sklearn’s Stratified KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest
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get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters
• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.

• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

Note that providing y is sufficient to generate the splits and hence np.zeros(n_samples)
may be used as a placeholder for X instead of actual training data.

• y (array-like of shape (n_samples,)) – The target variable for supervised learning
problems. Stratification is done based on the y labels.

• groups (object) – Always ignored, exists for compatibility.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results iden-
tical by setting random_state to an integer.

time_series_split

Rolling Origin Cross Validation for time series problems.
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Module Contents

Classes Summary

TimeSeriesSplit Rolling Origin Cross Validation for time series prob-
lems.

Contents

class evalml.preprocessing.data_splitters.time_series_split.TimeSeriesSplit(max_delay=0,
gap=0, fore-
cast_horizon=None,
time_index=None,
n_series=None,
n_splits=3)

Rolling Origin Cross Validation for time series problems.

The max_delay, gap, and forecast_horizon parameters are only used to validate that the requested split size is not
too small given these parameters.

Parameters
• max_delay (int) – Max delay value for feature engineering. Time series pipelines cre-

ate delayed features from existing features. This process will introduce NaNs into the first
max_delay number of rows. The splitter uses the last max_delay number of rows from the
previous split as the first max_delay number of rows of the current split to avoid “throwing
out” more data than in necessary. Defaults to 0.

• gap (int) – Number of time units separating the data used to generate features and the data
to forecast on. Defaults to 0.

• forecast_horizon (int, None) – Number of time units to forecast. Used for parameter
validation. If an integer, will set the size of the cv splits. Defaults to None.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Defaults to None.

• n_splits (int) – number of data splits to make. Defaults to 3.

Example

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> ts_split = TimeSeriesSplit(n_splits=4)
>>> generator_ = ts_split.split(X, y)
...
>>> first_split = next(generator_)
>>> assert (first_split[0] == np.array([0, 1])).all()
>>> assert (first_split[1] == np.array([2, 3])).all()

(continues on next page)
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(continued from previous page)

...

...
>>> second_split = next(generator_)
>>> assert (second_split[0] == np.array([0, 1, 2, 3])).all()
>>> assert (second_split[1] == np.array([4, 5])).all()
...
...
>>> third_split = next(generator_)
>>> assert (third_split[0] == np.array([0, 1, 2, 3, 4, 5])).all()
>>> assert (third_split[1] == np.array([6, 7])).all()
...
...
>>> fourth_split = next(generator_)
>>> assert (fourth_split[0] == np.array([0, 1, 2, 3, 4, 5, 6, 7])).all()
>>> assert (fourth_split[1] == np.array([8, 9])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Get the number of data splits.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Get the time series splits.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Get the number of data splits.

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Returns Number of splits.

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Get the time series splits.

X and y are assumed to be sorted in ascending time order. This method can handle passing in empty or
None X and y data but note that X and y cannot be None or empty at the same time.
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Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Yields Iterator of (train, test) indices tuples.

Raises ValueError – If one of the proposed splits would be empty.

training_validation_split

Training Validation Split class.

Module Contents

Classes Summary

TrainingValidationSplit Split the training data into training and validation sets.

Contents

class evalml.preprocessing.data_splitters.training_validation_split.TrainingValidationSplit(test_size=None,
train_size=None,
shuf-
fle=False,
strat-
ify=None,
ran-
dom_seed=0)

Split the training data into training and validation sets.

Parameters
• test_size (float) – What percentage of data points should be included in the validation

set. Defalts to the complement of train_size if train_size is set, and 0.25 otherwise.

• train_size (float) – What percentage of data points should be included in the training
set. Defaults to the complement of test_size

• shuffle (boolean) – Whether to shuffle the data before splitting. Defaults to False.

• stratify (list) – Splits the data in a stratified fashion, using this argument as class labels.
Defaults to None.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.
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Examples

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> tv_split = TrainingValidationSplit()
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4, 5, 6])).all()
>>> assert (split_[1] == np.array([7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(test_size=0.5)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4])).all()
>>> assert (split_[1] == np.array([5, 6, 7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(shuffle=True)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([9, 1, 6, 7, 3, 0, 5])).all()
>>> assert (split_[1] == np.array([2, 8, 4])).all()
...
...
>>> y = pd.Series([i % 3 for i in range(10)])
>>> tv_split = TrainingValidationSplit(shuffle=True, stratify=y)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([1, 9, 3, 2, 8, 6, 7])).all()
>>> assert (split_[1] == np.array([0, 4, 5])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 1.

Return type int
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property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

Package Contents

Classes Summary

KFold Wrapper class for sklearn's KFold splitter.
NoSplit Does not split the training data into training and valida-

tion sets.
StratifiedKFold Wrapper class for sklearn's Stratified KFold splitter.
TimeSeriesSplit Rolling Origin Cross Validation for time series prob-

lems.
TrainingValidationSplit Split the training data into training and validation sets.

Contents

class evalml.preprocessing.data_splitters.KFold(n_splits=5, *, shuffle=False, random_state=None)
Wrapper class for sklearn’s KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest
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get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters
• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.

• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

• y (array-like of shape (n_samples,), default=None) – The target variable for
supervised learning problems.

• groups (array-like of shape (n_samples,), default=None) – Group labels for
the samples used while splitting the dataset into train/test set.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

class evalml.preprocessing.data_splitters.NoSplit(random_seed=0)
Does not split the training data into training and validation sets.

All data is passed as the training set, test data is simply an array of None. To be used for future unsupervised
learning, should not be used in any of the currently supported pipelines.

Parameters random_seed (int) – The seed to use for random sampling. Defaults to 0. Not used.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets, where

the testing set is empty.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.
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Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 0.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets, where the testing set is empty.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

class evalml.preprocessing.data_splitters.StratifiedKFold(n_splits=5, *, shuffle=False,
random_state=None)

Wrapper class for sklearn’s Stratified KFold splitter.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Returns the number of splitting iterations in the cross-

validator
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Generate indices to split data into training and test

set.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters
• X (object) – Always ignored, exists for compatibility.

• y (object) – Always ignored, exists for compatibility.
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• groups (object) – Always ignored, exists for compatibility.

Returns n_splits – Returns the number of splitting iterations in the cross-validator.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y, groups=None)
Generate indices to split data into training and test set.

Parameters
• X (array-like of shape (n_samples, n_features)) – Training data, where

n_samples is the number of samples and n_features is the number of features.

Note that providing y is sufficient to generate the splits and hence np.zeros(n_samples)
may be used as a placeholder for X instead of actual training data.

• y (array-like of shape (n_samples,)) – The target variable for supervised learning
problems. Stratification is done based on the y labels.

• groups (object) – Always ignored, exists for compatibility.

Yields
• train (ndarray) – The training set indices for that split.

• test (ndarray) – The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results iden-
tical by setting random_state to an integer.

class evalml.preprocessing.data_splitters.TimeSeriesSplit(max_delay=0, gap=0,
forecast_horizon=None,
time_index=None, n_series=None,
n_splits=3)

Rolling Origin Cross Validation for time series problems.

The max_delay, gap, and forecast_horizon parameters are only used to validate that the requested split size is not
too small given these parameters.

Parameters
• max_delay (int) – Max delay value for feature engineering. Time series pipelines cre-

ate delayed features from existing features. This process will introduce NaNs into the first
max_delay number of rows. The splitter uses the last max_delay number of rows from the
previous split as the first max_delay number of rows of the current split to avoid “throwing
out” more data than in necessary. Defaults to 0.

• gap (int) – Number of time units separating the data used to generate features and the data
to forecast on. Defaults to 0.

• forecast_horizon (int, None) – Number of time units to forecast. Used for parameter
validation. If an integer, will set the size of the cv splits. Defaults to None.
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• time_index (str) – Name of the column containing the datetime information used to order
the data. Defaults to None.

• n_splits (int) – number of data splits to make. Defaults to 3.

Example

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> ts_split = TimeSeriesSplit(n_splits=4)
>>> generator_ = ts_split.split(X, y)
...
>>> first_split = next(generator_)
>>> assert (first_split[0] == np.array([0, 1])).all()
>>> assert (first_split[1] == np.array([2, 3])).all()
...
...
>>> second_split = next(generator_)
>>> assert (second_split[0] == np.array([0, 1, 2, 3])).all()
>>> assert (second_split[1] == np.array([4, 5])).all()
...
...
>>> third_split = next(generator_)
>>> assert (third_split[0] == np.array([0, 1, 2, 3, 4, 5])).all()
>>> assert (third_split[1] == np.array([6, 7])).all()
...
...
>>> fourth_split = next(generator_)
>>> assert (fourth_split[0] == np.array([0, 1, 2, 3, 4, 5, 6, 7])).all()
>>> assert (fourth_split[1] == np.array([8, 9])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Get the number of data splits.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Get the time series splits.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Get the number of data splits.
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Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Returns Number of splits.

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Get the time series splits.

X and y are assumed to be sorted in ascending time order. This method can handle passing in empty or
None X and y data but note that X and y cannot be None or empty at the same time.

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Yields Iterator of (train, test) indices tuples.

Raises ValueError – If one of the proposed splits would be empty.

class evalml.preprocessing.data_splitters.TrainingValidationSplit(test_size=None,
train_size=None,
shuffle=False, stratify=None,
random_seed=0)

Split the training data into training and validation sets.

Parameters
• test_size (float) – What percentage of data points should be included in the validation

set. Defalts to the complement of train_size if train_size is set, and 0.25 otherwise.

• train_size (float) – What percentage of data points should be included in the training
set. Defaults to the complement of test_size

• shuffle (boolean) – Whether to shuffle the data before splitting. Defaults to False.

• stratify (list) – Splits the data in a stratified fashion, using this argument as class labels.
Defaults to None.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.
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Examples

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> tv_split = TrainingValidationSplit()
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4, 5, 6])).all()
>>> assert (split_[1] == np.array([7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(test_size=0.5)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4])).all()
>>> assert (split_[1] == np.array([5, 6, 7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(shuffle=True)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([9, 1, 6, 7, 3, 0, 5])).all()
>>> assert (split_[1] == np.array([2, 8, 4])).all()
...
...
>>> y = pd.Series([i % 3 for i in range(10)])
>>> tv_split = TrainingValidationSplit(shuffle=True, stratify=y)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([1, 9, 3, 2, 8, 6, 7])).all()
>>> assert (split_[1] == np.array([0, 4, 5])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 1.

Return type int
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property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list

Submodules

utils

Helpful preprocessing utilities.

Module Contents

Functions

load_data Load features and target from file.
number_of_features Get the number of features of each specific dtype in a

DataFrame.
split_data Split data into train and test sets.
split_multiseries_data Split stacked multiseries data into train and test sets. Un-

stacked data can use split_data.
target_distribution Get the target distributions.

Contents

evalml.preprocessing.utils.load_data(path, index, target, n_rows=None, drop=None, verbose=True,
**kwargs)

Load features and target from file.

Parameters
• path (str) – Path to file or a http/ftp/s3 URL.

• index (str) – Column for index.

• target (str) – Column for target.

• n_rows (int) – Number of rows to return. Defaults to None.

• drop (list) – List of columns to drop. Defaults to None.
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• verbose (bool) – If True, prints information about features and target. Defaults to True.

• **kwargs – Other keyword arguments that should be passed to panda’s read_csv method.

Returns Features matrix and target.

Return type pd.DataFrame, pd.Series

evalml.preprocessing.utils.number_of_features(dtypes)
Get the number of features of each specific dtype in a DataFrame.

Parameters dtypes (pd.Series) – DataFrame.dtypes to get the number of features for.

Returns dtypes and the number of features for each input type.

Return type pd.Series

Example

>>> X = pd.DataFrame()
>>> X["integers"] = [i for i in range(10)]
>>> X["floats"] = [float(i) for i in range(10)]
>>> X["strings"] = [str(i) for i in range(10)]
>>> X["booleans"] = [bool(i%2) for i in range(10)]

Lists the number of columns corresponding to each dtype.

>>> number_of_features(X.dtypes)
Number of Features

Boolean 1
Categorical 1
Numeric 2

evalml.preprocessing.utils.split_data(X, y, problem_type, problem_configuration=None, test_size=None,
random_seed=0)

Split data into train and test sets.

Parameters
• X (pd.DataFrame or np.ndarray) – data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – target data of length [n_samples]

• problem_type (str or ProblemTypes) – type of supervised learning problem. see
evalml.problem_types.problemtype.all_problem_types for a full list.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
and max_delay variables.

• test_size (float) – What percentage of data points should be included in the test set.
Defaults to 0.2 (20%) for non-timeseries problems and 0.1 (10%) for timeseries problems.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series
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Examples

>>> X = pd.DataFrame([1, 2, 3, 4, 5, 6], columns=["First"])
>>> y = pd.Series([8, 9, 10, 11, 12, 13])
...
>>> X_train, X_validation, y_train, y_validation = split_data(X, y, "regression",␣
→˓random_seed=42)
>>> X_train

First
5 6
2 3
4 5
3 4
>>> X_validation

First
0 1
1 2
>>> y_train
5 13
2 10
4 12
3 11
dtype: int64
>>> y_validation
0 8
1 9
dtype: int64

evalml.preprocessing.utils.split_multiseries_data(X, y, series_id, time_index, **kwargs)
Split stacked multiseries data into train and test sets. Unstacked data can use split_data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples*n_series, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

• series_id (str) – Name of column containing series id.

• time_index (str) – Name of column containing time index.

• **kwargs – Additional keyword arguments to pass to the split_data function.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.preprocessing.utils.target_distribution(targets)
Get the target distributions.

Parameters targets (pd.Series) – Target data.

Returns Target data and their frequency distribution as percentages.

Return type pd.Series
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Examples

>>> y = pd.Series([1, 2, 4, 1, 3, 3, 1, 2])
>>> print(target_distribution(y).to_string())
Targets
1 37.50%
2 25.00%
3 25.00%
4 12.50%
>>> y = pd.Series([True, False, False, False, True])
>>> print(target_distribution(y).to_string())
Targets
False 60.00%
True 40.00%

Package Contents

Classes Summary

NoSplit Does not split the training data into training and valida-
tion sets.

TimeSeriesSplit Rolling Origin Cross Validation for time series prob-
lems.

TrainingValidationSplit Split the training data into training and validation sets.

Functions

load_data Load features and target from file.
number_of_features Get the number of features of each specific dtype in a

DataFrame.
split_data Split data into train and test sets.
split_multiseries_data Split stacked multiseries data into train and test sets. Un-

stacked data can use split_data.
target_distribution Get the target distributions.

Contents

evalml.preprocessing.load_data(path, index, target, n_rows=None, drop=None, verbose=True, **kwargs)
Load features and target from file.

Parameters
• path (str) – Path to file or a http/ftp/s3 URL.

• index (str) – Column for index.

• target (str) – Column for target.

• n_rows (int) – Number of rows to return. Defaults to None.
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• drop (list) – List of columns to drop. Defaults to None.

• verbose (bool) – If True, prints information about features and target. Defaults to True.

• **kwargs – Other keyword arguments that should be passed to panda’s read_csv method.

Returns Features matrix and target.

Return type pd.DataFrame, pd.Series

class evalml.preprocessing.NoSplit(random_seed=0)
Does not split the training data into training and validation sets.

All data is passed as the training set, test data is simply an array of None. To be used for future unsupervised
learning, should not be used in any of the currently supported pipelines.

Parameters random_seed (int) – The seed to use for random sampling. Defaults to 0. Not used.

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets, where

the testing set is empty.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 0.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets, where the testing set is empty.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list
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evalml.preprocessing.number_of_features(dtypes)
Get the number of features of each specific dtype in a DataFrame.

Parameters dtypes (pd.Series) – DataFrame.dtypes to get the number of features for.

Returns dtypes and the number of features for each input type.

Return type pd.Series

Example

>>> X = pd.DataFrame()
>>> X["integers"] = [i for i in range(10)]
>>> X["floats"] = [float(i) for i in range(10)]
>>> X["strings"] = [str(i) for i in range(10)]
>>> X["booleans"] = [bool(i%2) for i in range(10)]

Lists the number of columns corresponding to each dtype.

>>> number_of_features(X.dtypes)
Number of Features

Boolean 1
Categorical 1
Numeric 2

evalml.preprocessing.split_data(X, y, problem_type, problem_configuration=None, test_size=None,
random_seed=0)

Split data into train and test sets.

Parameters
• X (pd.DataFrame or np.ndarray) – data of shape [n_samples, n_features]

• y (pd.Series, or np.ndarray) – target data of length [n_samples]

• problem_type (str or ProblemTypes) – type of supervised learning problem. see
evalml.problem_types.problemtype.all_problem_types for a full list.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
and max_delay variables.

• test_size (float) – What percentage of data points should be included in the test set.
Defaults to 0.2 (20%) for non-timeseries problems and 0.1 (10%) for timeseries problems.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series
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Examples

>>> X = pd.DataFrame([1, 2, 3, 4, 5, 6], columns=["First"])
>>> y = pd.Series([8, 9, 10, 11, 12, 13])
...
>>> X_train, X_validation, y_train, y_validation = split_data(X, y, "regression",␣
→˓random_seed=42)
>>> X_train

First
5 6
2 3
4 5
3 4
>>> X_validation

First
0 1
1 2
>>> y_train
5 13
2 10
4 12
3 11
dtype: int64
>>> y_validation
0 8
1 9
dtype: int64

evalml.preprocessing.split_multiseries_data(X, y, series_id, time_index, **kwargs)
Split stacked multiseries data into train and test sets. Unstacked data can use split_data.

Parameters
• X (pd.DataFrame) – The input training data of shape [n_samples*n_series, n_features].

• y (pd.Series) – The target training targets of length [n_samples*n_series].

• series_id (str) – Name of column containing series id.

• time_index (str) – Name of column containing time index.

• **kwargs – Additional keyword arguments to pass to the split_data function.

Returns Feature and target data each split into train and test sets.

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

evalml.preprocessing.target_distribution(targets)
Get the target distributions.

Parameters targets (pd.Series) – Target data.

Returns Target data and their frequency distribution as percentages.

Return type pd.Series
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Examples

>>> y = pd.Series([1, 2, 4, 1, 3, 3, 1, 2])
>>> print(target_distribution(y).to_string())
Targets
1 37.50%
2 25.00%
3 25.00%
4 12.50%
>>> y = pd.Series([True, False, False, False, True])
>>> print(target_distribution(y).to_string())
Targets
False 60.00%
True 40.00%

class evalml.preprocessing.TimeSeriesSplit(max_delay=0, gap=0, forecast_horizon=None,
time_index=None, n_series=None, n_splits=3)

Rolling Origin Cross Validation for time series problems.

The max_delay, gap, and forecast_horizon parameters are only used to validate that the requested split size is not
too small given these parameters.

Parameters
• max_delay (int) – Max delay value for feature engineering. Time series pipelines cre-

ate delayed features from existing features. This process will introduce NaNs into the first
max_delay number of rows. The splitter uses the last max_delay number of rows from the
previous split as the first max_delay number of rows of the current split to avoid “throwing
out” more data than in necessary. Defaults to 0.

• gap (int) – Number of time units separating the data used to generate features and the data
to forecast on. Defaults to 0.

• forecast_horizon (int, None) – Number of time units to forecast. Used for parameter
validation. If an integer, will set the size of the cv splits. Defaults to None.

• time_index (str) – Name of the column containing the datetime information used to order
the data. Defaults to None.

• n_splits (int) – number of data splits to make. Defaults to 3.

Example

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> ts_split = TimeSeriesSplit(n_splits=4)
>>> generator_ = ts_split.split(X, y)
...
>>> first_split = next(generator_)
>>> assert (first_split[0] == np.array([0, 1])).all()
>>> assert (first_split[1] == np.array([2, 3])).all()

(continues on next page)
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(continued from previous page)

...

...
>>> second_split = next(generator_)
>>> assert (second_split[0] == np.array([0, 1, 2, 3])).all()
>>> assert (second_split[1] == np.array([4, 5])).all()
...
...
>>> third_split = next(generator_)
>>> assert (third_split[0] == np.array([0, 1, 2, 3, 4, 5])).all()
>>> assert (third_split[1] == np.array([6, 7])).all()
...
...
>>> fourth_split = next(generator_)
>>> assert (fourth_split[0] == np.array([0, 1, 2, 3, 4, 5, 6, 7])).all()
>>> assert (fourth_split[1] == np.array([8, 9])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Get the number of data splits.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Get the time series splits.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

get_n_splits(self, X=None, y=None, groups=None)
Get the number of data splits.

Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Returns Number of splits.

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None, groups=None)
Get the time series splits.

X and y are assumed to be sorted in ascending time order. This method can handle passing in empty or
None X and y data but note that X and y cannot be None or empty at the same time.
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Parameters
• X (pd.DataFrame, None) – Features to split.

• y (pd.DataFrame, None) – Target variable to split. Defaults to None.

• groups – Ignored but kept for compatibility with sklearn API. Defaults to None.

Yields Iterator of (train, test) indices tuples.

Raises ValueError – If one of the proposed splits would be empty.

class evalml.preprocessing.TrainingValidationSplit(test_size=None, train_size=None, shuffle=False,
stratify=None, random_seed=0)

Split the training data into training and validation sets.

Parameters
• test_size (float) – What percentage of data points should be included in the validation

set. Defalts to the complement of train_size if train_size is set, and 0.25 otherwise.

• train_size (float) – What percentage of data points should be included in the training
set. Defaults to the complement of test_size

• shuffle (boolean) – Whether to shuffle the data before splitting. Defaults to False.

• stratify (list) – Splits the data in a stratified fashion, using this argument as class labels.
Defaults to None.

• random_seed (int) – The seed to use for random sampling. Defaults to 0.

Examples

>>> import numpy as np
>>> import pandas as pd
...
>>> X = pd.DataFrame([i for i in range(10)], columns=["First"])
>>> y = pd.Series([i for i in range(10)])
...
>>> tv_split = TrainingValidationSplit()
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4, 5, 6])).all()
>>> assert (split_[1] == np.array([7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(test_size=0.5)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([0, 1, 2, 3, 4])).all()
>>> assert (split_[1] == np.array([5, 6, 7, 8, 9])).all()
...
...
>>> tv_split = TrainingValidationSplit(shuffle=True)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([9, 1, 6, 7, 3, 0, 5])).all()
>>> assert (split_[1] == np.array([2, 8, 4])).all()
...
...
>>> y = pd.Series([i % 3 for i in range(10)])

(continues on next page)
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(continued from previous page)

>>> tv_split = TrainingValidationSplit(shuffle=True, stratify=y)
>>> split_ = next(tv_split.split(X, y))
>>> assert (split_[0] == np.array([1, 9, 3, 2, 8, 6, 7])).all()
>>> assert (split_[1] == np.array([0, 4, 5])).all()

Methods

get_metadata_routing Get metadata routing of this object.
get_n_splits Return the number of splits of this object.
is_cv Returns whether or not the data splitter is a cross-

validation data splitter.
split Divide the data into training and testing sets.

get_metadata_routing(self )
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns routing – A MetadataRequest encapsulating routing information.

Return type MetadataRequest

static get_n_splits()

Return the number of splits of this object.

Returns Always returns 1.

Return type int

property is_cv(self )
Returns whether or not the data splitter is a cross-validation data splitter.

Returns If the splitter is a cross-validation data splitter

Return type bool

split(self, X, y=None)
Divide the data into training and testing sets.

Parameters
• X (pd.DataFrame) – Dataframe of points to split

• y (pd.Series) – Series of points to split

Returns Indices to split data into training and test set

Return type list
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Problem Types

The supported types of machine learning problems.

Submodules

problem_types

Enum defining the supported types of machine learning problems.

Module Contents

Classes Summary

ProblemTypes Enum defining the supported types of machine learning
problems.

Contents

class evalml.problem_types.problem_types.ProblemTypes

Enum defining the supported types of machine learning problems.

Attributes

BINARY Binary classification problem.
MULTI-
CLASS

Multiclass classification problem.

MULTI-
SERIES_TIME_SERIES_REGRESSION

Multiseries time series regression problem.

REGRES-
SION

Regression problem.

TIME_SERIES_BINARYTime series binary classification problem.
TIME_SERIES_MULTICLASSTime series multiclass classification problem.
TIME_SERIES_REGRESSIONTime series regression problem.

Methods

all_problem_types Get a list of all defined problem types.
name The name of the Enum member.
value The value of the Enum member.

all_problem_types(cls)
Get a list of all defined problem types.

Returns List of all defined problem types.

Return type list(ProblemTypes)
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name(self )
The name of the Enum member.

value(self )
The value of the Enum member.

utils

Utility methods for the ProblemTypes enum in EvalML.

Module Contents

Functions

detect_problem_type Determine the type of problem is being solved based on
the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

handle_problem_types Handles problem_type by either returning the Problem-
Types or converting from a str.

is_binary Determines if the provided problem_type is a binary
classification problem type.

is_classification Determines if the provided problem_type is a classifica-
tion problem type.

is_multiclass Determines if the provided problem_type is a multiclass
classification problem type.

is_multiseries Determines if the provided problem_type is a multiseries
time series problem type.

is_regression Determines if the provided problem_type is a regression
problem type.

is_time_series Determines if the provided problem_type is a time series
problem type.

Contents

evalml.problem_types.utils.detect_problem_type(y)
Determine the type of problem is being solved based on the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

Parameters y (pd.Series) – The target labels to predict.

Returns ProblemType Enum

Return type ProblemType
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Examples

>>> y = pd.Series([0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])
>>> assert detect_problem_type(y) == ProblemTypes.BINARY
...
>>> y = pd.Series([1, 2, 3, 2, 1, 1, 1, 2, 2, 3, 3])
>>> assert detect_problem_type(y) == ProblemTypes.MULTICLASS
...
>>> y = pd.Series([1.6, 4.2, 3.3, 2.9, 4, 1, 5.5, 2, -2, -3.2, 3])
>>> assert detect_problem_type(y) == ProblemTypes.REGRESSION

Raises ValueError – If the input has less than two classes.

evalml.problem_types.utils.handle_problem_types(problem_type)
Handles problem_type by either returning the ProblemTypes or converting from a str.

Parameters problem_type (str or ProblemTypes) – Problem type that needs to be handled.

Returns ProblemTypes enum

Raises
• KeyError – If input is not a valid ProblemTypes enum value.

• ValueError – If input is not a string or ProblemTypes object.

Examples

>>> assert handle_problem_types("regression") == ProblemTypes.REGRESSION
>>> assert handle_problem_types("TIME SERIES BINARY") == ProblemTypes.TIME_SERIES_
→˓BINARY
>>> assert handle_problem_types("Multiclass") == ProblemTypes.MULTICLASS

evalml.problem_types.utils.is_binary(problem_type)
Determines if the provided problem_type is a binary classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a binary classification problem type.

Return type bool

Examples

>>> assert is_binary("Binary")
>>> assert is_binary(ProblemTypes.BINARY)
>>> assert is_binary(ProblemTypes.TIME_SERIES_BINARY)

evalml.problem_types.utils.is_classification(problem_type)
Determines if the provided problem_type is a classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.
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Returns Whether or not the provided problem_type is a classification problem type.

Return type bool

Examples

>>> assert is_classification("Multiclass")
>>> assert is_classification(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_classification(ProblemTypes.REGRESSION)

evalml.problem_types.utils.is_multiclass(problem_type)
Determines if the provided problem_type is a multiclass classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiclass classification problem type.

Return type bool

Examples

>>> assert is_multiclass("Multiclass")
>>> assert is_multiclass(ProblemTypes.MULTICLASS)
>>> assert is_multiclass(ProblemTypes.TIME_SERIES_MULTICLASS)

evalml.problem_types.utils.is_multiseries(problem_type)
Determines if the provided problem_type is a multiseries time series problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiseries time series problem type.

Return type bool

evalml.problem_types.utils.is_regression(problem_type)
Determines if the provided problem_type is a regression problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a regression problem type.

Return type bool

Examples

>>> assert is_regression("Regression")
>>> assert is_regression(ProblemTypes.REGRESSION)
>>> assert is_regression(ProblemTypes.TIME_SERIES_REGRESSION)

evalml.problem_types.utils.is_time_series(problem_type)
Determines if the provided problem_type is a time series problem type.

2002 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a time series problem type.

Return type bool

Examples

>>> assert is_time_series("time series regression")
>>> assert is_time_series(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_time_series(ProblemTypes.REGRESSION)

Package Contents

Classes Summary

ProblemTypes Enum defining the supported types of machine learning
problems.

Functions

detect_problem_type Determine the type of problem is being solved based on
the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

handle_problem_types Handles problem_type by either returning the Problem-
Types or converting from a str.

is_binary Determines if the provided problem_type is a binary
classification problem type.

is_classification Determines if the provided problem_type is a classifica-
tion problem type.

is_multiclass Determines if the provided problem_type is a multiclass
classification problem type.

is_multiseries Determines if the provided problem_type is a multiseries
time series problem type.

is_regression Determines if the provided problem_type is a regression
problem type.

is_time_series Determines if the provided problem_type is a time series
problem type.

5.14. Utils 2003



EvalML Documentation, Release 0.80.0

Contents

evalml.problem_types.detect_problem_type(y)
Determine the type of problem is being solved based on the targets (binary vs multiclass classification, regres-
sion). Ignores missing and null data.

Parameters y (pd.Series) – The target labels to predict.

Returns ProblemType Enum

Return type ProblemType

Examples

>>> y = pd.Series([0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1])
>>> assert detect_problem_type(y) == ProblemTypes.BINARY
...
>>> y = pd.Series([1, 2, 3, 2, 1, 1, 1, 2, 2, 3, 3])
>>> assert detect_problem_type(y) == ProblemTypes.MULTICLASS
...
>>> y = pd.Series([1.6, 4.2, 3.3, 2.9, 4, 1, 5.5, 2, -2, -3.2, 3])
>>> assert detect_problem_type(y) == ProblemTypes.REGRESSION

Raises ValueError – If the input has less than two classes.

evalml.problem_types.handle_problem_types(problem_type)
Handles problem_type by either returning the ProblemTypes or converting from a str.

Parameters problem_type (str or ProblemTypes) – Problem type that needs to be handled.

Returns ProblemTypes enum

Raises
• KeyError – If input is not a valid ProblemTypes enum value.

• ValueError – If input is not a string or ProblemTypes object.

Examples

>>> assert handle_problem_types("regression") == ProblemTypes.REGRESSION
>>> assert handle_problem_types("TIME SERIES BINARY") == ProblemTypes.TIME_SERIES_
→˓BINARY
>>> assert handle_problem_types("Multiclass") == ProblemTypes.MULTICLASS

evalml.problem_types.is_binary(problem_type)
Determines if the provided problem_type is a binary classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a binary classification problem type.

Return type bool
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Examples

>>> assert is_binary("Binary")
>>> assert is_binary(ProblemTypes.BINARY)
>>> assert is_binary(ProblemTypes.TIME_SERIES_BINARY)

evalml.problem_types.is_classification(problem_type)
Determines if the provided problem_type is a classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a classification problem type.

Return type bool

Examples

>>> assert is_classification("Multiclass")
>>> assert is_classification(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_classification(ProblemTypes.REGRESSION)

evalml.problem_types.is_multiclass(problem_type)
Determines if the provided problem_type is a multiclass classification problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiclass classification problem type.

Return type bool

Examples

>>> assert is_multiclass("Multiclass")
>>> assert is_multiclass(ProblemTypes.MULTICLASS)
>>> assert is_multiclass(ProblemTypes.TIME_SERIES_MULTICLASS)

evalml.problem_types.is_multiseries(problem_type)
Determines if the provided problem_type is a multiseries time series problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a multiseries time series problem type.

Return type bool

evalml.problem_types.is_regression(problem_type)
Determines if the provided problem_type is a regression problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a regression problem type.

Return type bool
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Examples

>>> assert is_regression("Regression")
>>> assert is_regression(ProblemTypes.REGRESSION)
>>> assert is_regression(ProblemTypes.TIME_SERIES_REGRESSION)

evalml.problem_types.is_time_series(problem_type)
Determines if the provided problem_type is a time series problem type.

Parameters problem_type (str or ProblemTypes) – type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

Returns Whether or not the provided problem_type is a time series problem type.

Return type bool

Examples

>>> assert is_time_series("time series regression")
>>> assert is_time_series(ProblemTypes.TIME_SERIES_BINARY)
>>> assert not is_time_series(ProblemTypes.REGRESSION)

class evalml.problem_types.ProblemTypes

Enum defining the supported types of machine learning problems.

Attributes

BINARY Binary classification problem.
MULTI-
CLASS

Multiclass classification problem.

MULTI-
SERIES_TIME_SERIES_REGRESSION

Multiseries time series regression problem.

REGRES-
SION

Regression problem.

TIME_SERIES_BINARYTime series binary classification problem.
TIME_SERIES_MULTICLASSTime series multiclass classification problem.
TIME_SERIES_REGRESSIONTime series regression problem.

Methods

all_problem_types Get a list of all defined problem types.
name The name of the Enum member.
value The value of the Enum member.

all_problem_types(cls)
Get a list of all defined problem types.

Returns List of all defined problem types.

Return type list(ProblemTypes)

name(self )
The name of the Enum member.
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value(self )
The value of the Enum member.

Tuners

EvalML tuner classes.

Submodules

grid_search_tuner

Grid Search Optimizer, which generates all of the possible points to search for using a grid.

Module Contents

Classes Summary

GridSearchTuner Grid Search Optimizer, which generates all of the possi-
ble points to search for using a grid.

Contents

class evalml.tuners.grid_search_tuner.GridSearchTuner(pipeline_hyperparameter_ranges,
n_points=10, random_seed=0)

Grid Search Optimizer, which generates all of the possible points to search for using a grid.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• n_points (int) – The number of points to sample from along each dimension defined in
the space argument. Defaults to 10.

• random_seed (int) – Seed for random number generator. Unused in this class, defaults to
0.

Examples

>>> tuner = GridSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a
→˓', 'b', 'c']}}, n_points=5)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 0.0, 'param b': 'a'}

Determines points using a grid search approach.
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>>> for each in range(5):
... print(tuner.propose())
{'My Component': {'param a': 0.0, 'param b': 'b'}}
{'My Component': {'param a': 0.0, 'param b': 'c'}}
{'My Component': {'param a': 10.0, 'param b': 'a'}}
{'My Component': {'param a': 10.0, 'param b': 'b'}}
{'My Component': {'param a': 10.0, 'param b': 'c'}}

Methods

add Not applicable to grid search tuner as generated pa-
rameters are not dependent on scores of previous pa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Returns parameters from _grid_points iterations.

add(self, pipeline_parameters, score)
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous param-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self )
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self )
Returns parameters from _grid_points iterations.

If all possible combinations of parameters have been scored, then NoParamsException is raised.

Returns proposed pipeline parameters
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Return type dict

random_search_tuner

Random Search Optimizer.

Module Contents

Classes Summary

RandomSearchTuner Random Search Optimizer.

Contents

class evalml.tuners.random_search_tuner.RandomSearchTuner(pipeline_hyperparameter_ranges,
with_replacement=False,
replacement_max_attempts=10,
random_seed=0)

Random Search Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• with_replacement (bool) – If false, only unique hyperparameters will be shown

• replacement_max_attempts (int) – The maximum number of tries to get a unique set of
random parameters. Only used if tuner is initalized with with_replacement=True

• random_seed (int) – Seed for random number generator. Defaults to 0.

Example

>>> tuner = RandomSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': [
→˓'a', 'b', 'c']}}, random_seed=42)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 3.7454011884736254, 'param b': 'c
→˓'}

Determines points using a random search approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 7.3199394181140525, 'param b': 'b'}}
{'My Component': {'param a': 1.5601864044243654, 'param b': 'a'}}
{'My Component': {'param a': 0.5808361216819947, 'param b': 'c'}}
{'My Component': {'param a': 6.011150117432089, 'param b': 'c'}}

(continues on next page)
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(continued from previous page)

{'My Component': {'param a': 0.2058449429580245, 'param b': 'c'}}
{'My Component': {'param a': 8.32442640800422, 'param b': 'a'}}
{'My Component': {'param a': 1.8182496720710064, 'param b': 'a'}}

Methods

add Not applicable to random search tuner as generated
parameters are not dependent on scores of previous
parameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Generate a unique set of parameters.

add(self, pipeline_parameters, score)
Not applicable to random search tuner as generated parameters are not dependent on scores of previous
parameters.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self )
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self )
Generate a unique set of parameters.

If tuner was initialized with with_replacement=True and the tuner is unable to generate a unique set of
parameters after replacement_max_attempts tries, then NoParamsException is raised.

Returns Proposed pipeline parameters

Return type dict
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skopt_tuner

Bayesian Optimizer.

Module Contents

Classes Summary

SKOptTuner Bayesian Optimizer.

Attributes Summary

logger

Contents

evalml.tuners.skopt_tuner.logger

class evalml.tuners.skopt_tuner.SKOptTuner(pipeline_hyperparameter_ranges, random_seed=0)
Bayesian Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – A set of hyperparameter ranges corre-

sponding to a pipeline’s parameters.

• random_seed (int) – The seed for the random number generator. Defaults to 0.

Examples

>>> tuner = SKOptTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b
→˓', 'c']}})
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 5.928446182250184, 'param b': 'c
→˓'}

Determines points using a Bayesian Optimizer approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 8.57945617622757, 'param b': 'c'}}
{'My Component': {'param a': 6.235636967859724, 'param b': 'b'}}
{'My Component': {'param a': 2.9753460654447235, 'param b': 'a'}}
{'My Component': {'param a': 2.7265629458011325, 'param b': 'b'}}
{'My Component': {'param a': 8.121687287754932, 'param b': 'b'}}

(continues on next page)
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(continued from previous page)

{'My Component': {'param a': 3.927847961008298, 'param b': 'c'}}
{'My Component': {'param a': 3.3739616041726843, 'param b': 'b'}}

Methods

add Add score to sample.
get_starting_parameters Gets the starting parameters given the pipeline hyper-

parameter range.
is_search_space_exhausted Optional. If possible search space for tuner is finite,

this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

add(self, pipeline_parameters, score)
Add score to sample.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

Returns None

Raises
• Exception – If skopt tuner errors.

• ParameterError – If skopt receives invalid parameters.

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self )
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool

propose(self )
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters.
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Return type dict

tuner

Base Tuner class.

Module Contents

Classes Summary

Tuner Base Tuner class.

Contents

class evalml.tuners.tuner.Tuner(pipeline_hyperparameter_ranges, random_seed=0)
Base Tuner class.

Tuners implement different strategies for sampling from a search space. They’re used in EvalML to search the
space of pipeline hyperparameters.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters.

• random_seed (int) – The random state. Defaults to 0.

Methods

add Register a set of hyperparameters with the score ob-
tained from training a pipeline with those hyperpa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Optional. If possible search space for tuner is finite,
this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

abstract add(self, pipeline_parameters, score)
Register a set of hyperparameters with the score obtained from training a pipeline with those hyperparam-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

Returns None
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get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self )
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool

abstract propose(self )
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters

Return type dict

tuner_exceptions

Exception thrown by tuner classes.

Module Contents

Contents

exception evalml.tuners.tuner_exceptions.NoParamsException

Raised when a tuner exhausts its search space and runs out of parameters to propose.

exception evalml.tuners.tuner_exceptions.ParameterError

Raised when a tuner encounters an error with the parameters being used with it.

Package Contents

Classes Summary

GridSearchTuner Grid Search Optimizer, which generates all of the possi-
ble points to search for using a grid.

RandomSearchTuner Random Search Optimizer.
SKOptTuner Bayesian Optimizer.
Tuner Base Tuner class.
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Exceptions Summary

Contents

class evalml.tuners.GridSearchTuner(pipeline_hyperparameter_ranges, n_points=10, random_seed=0)
Grid Search Optimizer, which generates all of the possible points to search for using a grid.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• n_points (int) – The number of points to sample from along each dimension defined in
the space argument. Defaults to 10.

• random_seed (int) – Seed for random number generator. Unused in this class, defaults to
0.

Examples

>>> tuner = GridSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a
→˓', 'b', 'c']}}, n_points=5)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 0.0, 'param b': 'a'}

Determines points using a grid search approach.

>>> for each in range(5):
... print(tuner.propose())
{'My Component': {'param a': 0.0, 'param b': 'b'}}
{'My Component': {'param a': 0.0, 'param b': 'c'}}
{'My Component': {'param a': 10.0, 'param b': 'a'}}
{'My Component': {'param a': 10.0, 'param b': 'b'}}
{'My Component': {'param a': 10.0, 'param b': 'c'}}

Methods

add Not applicable to grid search tuner as generated pa-
rameters are not dependent on scores of previous pa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Returns parameters from _grid_points iterations.
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add(self, pipeline_parameters, score)
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous param-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self )
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self )
Returns parameters from _grid_points iterations.

If all possible combinations of parameters have been scored, then NoParamsException is raised.

Returns proposed pipeline parameters

Return type dict

exception evalml.tuners.NoParamsException

Raised when a tuner exhausts its search space and runs out of parameters to propose.

exception evalml.tuners.ParameterError

Raised when a tuner encounters an error with the parameters being used with it.

class evalml.tuners.RandomSearchTuner(pipeline_hyperparameter_ranges, with_replacement=False,
replacement_max_attempts=10, random_seed=0)

Random Search Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters

• with_replacement (bool) – If false, only unique hyperparameters will be shown

• replacement_max_attempts (int) – The maximum number of tries to get a unique set of
random parameters. Only used if tuner is initalized with with_replacement=True

• random_seed (int) – Seed for random number generator. Defaults to 0.
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Example

>>> tuner = RandomSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': [
→˓'a', 'b', 'c']}}, random_seed=42)
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 3.7454011884736254, 'param b': 'c
→˓'}

Determines points using a random search approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 7.3199394181140525, 'param b': 'b'}}
{'My Component': {'param a': 1.5601864044243654, 'param b': 'a'}}
{'My Component': {'param a': 0.5808361216819947, 'param b': 'c'}}
{'My Component': {'param a': 6.011150117432089, 'param b': 'c'}}
{'My Component': {'param a': 0.2058449429580245, 'param b': 'c'}}
{'My Component': {'param a': 8.32442640800422, 'param b': 'a'}}
{'My Component': {'param a': 1.8182496720710064, 'param b': 'a'}}

Methods

add Not applicable to random search tuner as generated
parameters are not dependent on scores of previous
parameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Checks if it is possible to generate a set of valid
parameters. Stores generated parameters in self.
curr_params to be returned by propose().

propose Generate a unique set of parameters.

add(self, pipeline_parameters, score)
Not applicable to random search tuner as generated parameters are not dependent on scores of previous
parameters.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.
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Return type dict

is_search_space_exhausted(self )
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in self.
curr_params to be returned by propose().

Returns If no more valid parameters exists in the search space, return False.

Return type bool

Raises NoParamsException – If a search space is exhausted, then this exception is thrown.

propose(self )
Generate a unique set of parameters.

If tuner was initialized with with_replacement=True and the tuner is unable to generate a unique set of
parameters after replacement_max_attempts tries, then NoParamsException is raised.

Returns Proposed pipeline parameters

Return type dict

class evalml.tuners.SKOptTuner(pipeline_hyperparameter_ranges, random_seed=0)
Bayesian Optimizer.

Parameters
• pipeline_hyperparameter_ranges (dict) – A set of hyperparameter ranges corre-

sponding to a pipeline’s parameters.

• random_seed (int) – The seed for the random number generator. Defaults to 0.

Examples

>>> tuner = SKOptTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b
→˓', 'c']}})
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 5.928446182250184, 'param b': 'c
→˓'}

Determines points using a Bayesian Optimizer approach.

>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 8.57945617622757, 'param b': 'c'}}
{'My Component': {'param a': 6.235636967859724, 'param b': 'b'}}
{'My Component': {'param a': 2.9753460654447235, 'param b': 'a'}}
{'My Component': {'param a': 2.7265629458011325, 'param b': 'b'}}
{'My Component': {'param a': 8.121687287754932, 'param b': 'b'}}
{'My Component': {'param a': 3.927847961008298, 'param b': 'c'}}
{'My Component': {'param a': 3.3739616041726843, 'param b': 'b'}}

Methods
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add Add score to sample.
get_starting_parameters Gets the starting parameters given the pipeline hyper-

parameter range.
is_search_space_exhausted Optional. If possible search space for tuner is finite,

this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

add(self, pipeline_parameters, score)
Add score to sample.

Parameters
• pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline

• score (float) – The score obtained by evaluating the pipeline with the provided param-
eters

Returns None

Raises
• Exception – If skopt tuner errors.

• ParameterError – If skopt receives invalid parameters.

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self )
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool

propose(self )
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters.

Return type dict
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class evalml.tuners.Tuner(pipeline_hyperparameter_ranges, random_seed=0)
Base Tuner class.

Tuners implement different strategies for sampling from a search space. They’re used in EvalML to search the
space of pipeline hyperparameters.

Parameters
• pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges correspond-

ing to a pipeline’s parameters.

• random_seed (int) – The random state. Defaults to 0.

Methods

add Register a set of hyperparameters with the score ob-
tained from training a pipeline with those hyperpa-
rameters.

get_starting_parameters Gets the starting parameters given the pipeline hyper-
parameter range.

is_search_space_exhausted Optional. If possible search space for tuner is finite,
this method indicates whether or not all possible pa-
rameters have been scored.

propose Returns a suggested set of parameters to train and
score a pipeline with, based off the search space di-
mensions and prior samples.

abstract add(self, pipeline_parameters, score)
Register a set of hyperparameters with the score obtained from training a pipeline with those hyperparam-
eters.

Parameters
• pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline

• score (float) – the score obtained by evaluating the pipeline with the provided parameters

Returns None

get_starting_parameters(self, hyperparameter_ranges, random_seed=0)
Gets the starting parameters given the pipeline hyperparameter range.

Parameters
• hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during

search. Used to determine the starting parameters.

• random_seed (int) – The random seed to use. Defaults to 0.

Returns The starting parameters, randomly chosen, to initialize a pipeline with.

Return type dict

is_search_space_exhausted(self )
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible
parameters have been scored.

Returns Returns true if all possible parameters in a search space has been scored.

Return type bool
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abstract propose(self )
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimen-
sions and prior samples.

Returns Proposed pipeline parameters

Return type dict

Utils

Utility methods.

Submodules

base_meta

Metaclass that overrides creating a new component or pipeline by wrapping methods with validators and setters.

Module Contents

Classes Summary

BaseMeta Metaclass that overrides creating a new component or
pipeline by wrapping methods with validators and set-
ters.

Contents

class evalml.utils.base_meta.BaseMeta

Metaclass that overrides creating a new component or pipeline by wrapping methods with validators and setters.

Attributes

FIT_METHODS[‘fit’, ‘fit_transform’]
METH-
ODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPER-
TIES_TO_CHECK

[‘feature_importance’]

Methods

register Register a virtual subclass of an ABC.
set_fit Wrapper for the fit method.

register(cls, subclass)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.
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classmethod set_fit(cls, method)
Wrapper for the fit method.

cli_utils

CLI functions.

Module Contents

Functions

get_evalml_black_config Gets configuration for black.
get_evalml_pip_requirements Gets pip requirements for evalml (with pip packages

converted to conda names)
get_evalml_requirements_file Gets pip requirements for evalml as a requirements file
get_evalml_root Gets location where evalml is installed.
get_installed_packages Get dictionary mapping installed package names to their

versions.
get_sys_info Returns system information.
print_deps Prints the version number of each dependency.
print_info Prints information about the system, evalml, and depen-

dencies of evalml.
print_sys_info Prints system information.
standardize_format Standardizes the format of the given packages.

Attributes Summary

CONDA_TO_PIP_NAME

Contents

evalml.utils.cli_utils.CONDA_TO_PIP_NAME

evalml.utils.cli_utils.get_evalml_black_config(evalml_path)
Gets configuration for black.

Parameters evalml_path – Path to evalml root.

Returns Dictionary of black configuration.

evalml.utils.cli_utils.get_evalml_pip_requirements(evalml_path, ignore_packages=None,
convert_to_conda=True)

Gets pip requirements for evalml (with pip packages converted to conda names)

Parameters
• evalml_path – Path to evalml root.

• ignore_packages – List of packages to ignore. Defaults to None.
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Returns List of pip requirements for evalml.

evalml.utils.cli_utils.get_evalml_requirements_file(evalml_path, requirements_file_path)
Gets pip requirements for evalml as a requirements file

Parameters
• evalml_path – Path to evalml root.

• requirements_file_path – Path to requirements file.

Returns Pip requirements for evalml in a singular string.

evalml.utils.cli_utils.get_evalml_root()

Gets location where evalml is installed.

Returns Location where evalml is installed.

evalml.utils.cli_utils.get_installed_packages()

Get dictionary mapping installed package names to their versions.

Returns Dictionary mapping installed package names to their versions.

evalml.utils.cli_utils.get_sys_info()

Returns system information.

Returns List of tuples about system stats.

evalml.utils.cli_utils.print_deps()

Prints the version number of each dependency.

evalml.utils.cli_utils.print_info()

Prints information about the system, evalml, and dependencies of evalml.

evalml.utils.cli_utils.print_sys_info()

Prints system information.

evalml.utils.cli_utils.standardize_format(packages, ignore_packages=None, convert_to_conda=True)
Standardizes the format of the given packages.

Parameters
• packages – Requirements package generator object.

• ignore_packages – List of packages to ignore. Defaults to None.

Returns List of packages with standardized format.

gen_utils

General utility methods.
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Module Contents

Classes Summary

classproperty Allows function to be accessed as a class level property.

Functions

are_datasets_separated_by_gap_time_index Determine if the train and test datasets are separated by
gap number of units using the time_index.

are_ts_parameters_valid_for_split Validates the time series parameters in prob-
lem_configuration are compatible with split sizes.

contains_all_ts_parameters Validates that the problem configuration contains all re-
quired keys.

convert_to_seconds Converts a string describing a length of time to its length
in seconds.

deprecate_arg Helper to raise warnings when a deprecated arg is used.
drop_rows_with_nans Drop rows that have any NaNs in all dataframes or series.
get_importable_subclasses Get importable subclasses of a base class. Used to

list all of our estimators, transformers, components and
pipelines dynamically.

get_random_seed Given a numpy.random.RandomState object, generate
an int representing a seed value for another random num-
ber generator. Or, if given an int, return that int.

get_random_state Generates a numpy.random.RandomState instance using
seed.

get_time_index Determines the column in the given data that should be
used as the time index.

import_or_raise Attempts to import the requested library by name. If the
import fails, raises an ImportError or warning.

is_all_numeric Checks if the given DataFrame contains only numeric
values.

jupyter_check Get whether or not the code is being run in a Ipython
environment (such as Jupyter Notebook or Jupyter Lab).

pad_with_nans Pad the beginning num_to_pad rows with nans.
safe_repr Convert the given value into a string that can safely be

used for repr.
save_plot Saves fig to filepath if specified, or to a default location

if not.
validate_holdout_datasets Validate the holdout datasets match our expectations.
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Attributes Summary

logger

SEED_BOUNDS

Contents

evalml.utils.gen_utils.are_datasets_separated_by_gap_time_index(train, test, pipeline_params,
freq=None)

Determine if the train and test datasets are separated by gap number of units using the time_index.

This will be true when users are predicting on unseen data but not during cross validation since the target is
known.

Parameters
• train (pd.DataFrame) – Training data.

• test (pd.DataFrame) – Data of shape [n_samples, n_features].

• pipeline_params (dict) – Dictionary of time series parameters.

• freq (str) – Frequency of time index.

Returns True if the difference in time units is equal to gap + 1.

Return type bool

evalml.utils.gen_utils.are_ts_parameters_valid_for_split(gap, max_delay, forecast_horizon, n_obs,
n_splits)

Validates the time series parameters in problem_configuration are compatible with split sizes.

Parameters
• gap (int) – gap value.

• max_delay (int) – max_delay value.

• forecast_horizon (int) – forecast_horizon value.

• n_obs (int) – Number of observations in the dataset.

• n_splits (int) – Number of cross validation splits.

Returns
TsParameterValidationResult - named tuple with four fields is_valid (bool): True if param-

eters are valid. msg (str): Contains error message to display. Empty if is_valid. small-
est_split_size (int): Smallest split size given n_obs and n_splits. max_window_size (int):
Max window size given gap, max_delay, forecast_horizon.

class evalml.utils.gen_utils.classproperty(func)
Allows function to be accessed as a class level property.

Example: .. code-block:
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class LogisticRegressionBinaryPipeline(PipelineBase):
component_graph = ['Simple Imputer', 'Logistic Regression Classifier']

@classproperty
def summary(cls):
summary = ""
for component in cls.component_graph:

component = handle_component_class(component)
summary += component.name + " + "

return summary

assert LogisticRegressionBinaryPipeline.summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "
assert LogisticRegressionBinaryPipeline().summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "

evalml.utils.gen_utils.contains_all_ts_parameters(problem_configuration)
Validates that the problem configuration contains all required keys.

Parameters problem_configuration (dict) – Problem configuration.

Returns
True if the configuration contains all parameters. If False, msg is a non-empty string with

error message.

Return type bool, str

evalml.utils.gen_utils.convert_to_seconds(input_str)
Converts a string describing a length of time to its length in seconds.

Parameters input_str (str) – The string to be parsed and converted to seconds.

Returns Returns the library if importing succeeded.

Raises AssertionError – If an invalid unit is used.

Examples

>>> assert convert_to_seconds("10 hr") == 36000.0
>>> assert convert_to_seconds("30 minutes") == 1800.0
>>> assert convert_to_seconds("2.5 min") == 150.0

evalml.utils.gen_utils.deprecate_arg(old_arg, new_arg, old_value, new_value)
Helper to raise warnings when a deprecated arg is used.

Parameters
• old_arg (str) – Name of old/deprecated argument.

• new_arg (str) – Name of new argument.

• old_value (Any) – Value the user passed in for the old argument.

• new_value (Any) – Value the user passed in for the new argument.

Returns old_value if not None, else new_value
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evalml.utils.gen_utils.drop_rows_with_nans(*pd_data)
Drop rows that have any NaNs in all dataframes or series.

Parameters *pd_data – sequence of pd.Series or pd.DataFrame or None

Returns list of pd.DataFrame or pd.Series or None

evalml.utils.gen_utils.get_importable_subclasses(base_class, used_in_automl=True)
Get importable subclasses of a base class. Used to list all of our estimators, transformers, components and
pipelines dynamically.

Parameters
• base_class (abc.ABCMeta) – Base class to find all of the subclasses for.

• used_in_automl – Not all components/pipelines/estimators are used in automl search. If
True, only include those subclasses that are used in the search. This would mean excluding
classes related to ExtraTrees, ElasticNet, and Baseline estimators.

Returns List of subclasses.

evalml.utils.gen_utils.get_random_seed(random_state, min_bound=SEED_BOUNDS.min_bound,
max_bound=SEED_BOUNDS.max_bound)

Given a numpy.random.RandomState object, generate an int representing a seed value for another random number
generator. Or, if given an int, return that int.

To protect against invalid input to a particular library’s random number generator, if an int value is provided,
and it is outside the bounds “[min_bound, max_bound)”, the value will be projected into the range between the
min_bound (inclusive) and max_bound (exclusive) using modular arithmetic.

Parameters
• random_state (int, numpy.random.RandomState) – random state

• min_bound (None, int) – if not default of None, will be min bound when generating seed
(inclusive). Must be less than max_bound.

• max_bound (None, int) – if not default of None, will be max bound when generating seed
(exclusive). Must be greater than min_bound.

Returns Seed for random number generator

Return type int

Raises ValueError – If boundaries are not valid.

evalml.utils.gen_utils.get_random_state(seed)
Generates a numpy.random.RandomState instance using seed.

Parameters seed (None, int, np.random.RandomState object) – seed to use to gen-
erate numpy.random.RandomState. Must be between SEED_BOUNDS.min_bound and
SEED_BOUNDS.max_bound, inclusive.

Raises ValueError – If the input seed is not within the acceptable range.

Returns A numpy.random.RandomState instance.

evalml.utils.gen_utils.get_time_index(X: pandas.DataFrame, y: pandas.Series, time_index_name: str)
Determines the column in the given data that should be used as the time index.

evalml.utils.gen_utils.import_or_raise(library, error_msg=None, warning=False)
Attempts to import the requested library by name. If the import fails, raises an ImportError or warning.

Parameters
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• library (str) – The name of the library.

• error_msg (str) – Error message to return if the import fails.

• warning (bool) – If True, import_or_raise gives a warning instead of ImportError. Defaults
to False.

Returns Returns the library if importing succeeded.

Raises
• ImportError – If attempting to import the library fails because the library is not installed.

• Exception – If importing the library fails.

evalml.utils.gen_utils.is_all_numeric(df )
Checks if the given DataFrame contains only numeric values.

Parameters df (pd.DataFrame) – The DataFrame to check data types of.

Returns True if all the columns are numeric and are not missing any values, False otherwise.

evalml.utils.gen_utils.jupyter_check()

Get whether or not the code is being run in a Ipython environment (such as Jupyter Notebook or Jupyter Lab).

Returns True if Ipython, False otherwise.

Return type boolean

evalml.utils.gen_utils.logger

evalml.utils.gen_utils.pad_with_nans(pd_data, num_to_pad)
Pad the beginning num_to_pad rows with nans.

Parameters
• pd_data (pd.DataFrame or pd.Series) – Data to pad.

• num_to_pad (int) – Number of nans to pad.

Returns pd.DataFrame or pd.Series

evalml.utils.gen_utils.safe_repr(value)
Convert the given value into a string that can safely be used for repr.

Parameters value – The item to convert

Returns String representation of the value

evalml.utils.gen_utils.save_plot(fig, filepath=None, format='png', interactive=False,
return_filepath=False)

Saves fig to filepath if specified, or to a default location if not.

Parameters
• fig (Figure) – Figure to be saved.

• filepath (str or Path, optional) – Location to save file. Default is with filename
“test_plot”.

• format (str) – Extension for figure to be saved as. Ignored if interactive is True and fig is
of type plotly.Figure. Defaults to ‘png’.

• interactive (bool, optional) – If True and fig is of type plotly.Figure, saves the fig as
interactive instead of static, and format will be set to ‘html’. Defaults to False.
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• return_filepath (bool, optional) – Whether to return the final filepath the image is
saved to. Defaults to False.

Returns String representing the final filepath the image was saved to if return_filepath is set to True.
Defaults to None.

evalml.utils.gen_utils.SEED_BOUNDS

evalml.utils.gen_utils.validate_holdout_datasets(X, X_train, pipeline_params)
Validate the holdout datasets match our expectations.

This function is run before calling predict in a time series pipeline. It verifies that X (the holdout set) is gap units
away from the training set and is less than or equal to the forecast_horizon.

Parameters
• X (pd.DataFrame) – Data of shape [n_samples, n_features].

• X_train (pd.DataFrame) – Training data.

• pipeline_params (dict) – Dictionary of time series parameters with gap, fore-
cast_horizon, and time_index being required.

Returns
TSHoldoutValidationResult - named tuple with three fields is_valid (bool): True if holdout

data is valid. error_messages (list): List of error messages to display. Empty if is_valid.
error_codes (list): List of error codes to display. Empty if is_valid.

logger

Logging functions.

Module Contents

Functions

get_logger Get the logger with the associated name.
log_batch_times Used to print out the batch times.
log_subtitle Log with a subtitle.
log_title Log with a title.
time_elapsed How much time has elapsed since the search started.

Contents

evalml.utils.logger.get_logger(name)
Get the logger with the associated name.

Parameters name (str) – Name of the logger to get.

Returns The logger object with the associated name.
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evalml.utils.logger.log_batch_times(logger, batch_times)
Used to print out the batch times.

Parameters
• logger – the logger.

• batch_times – dict with (batch number, {pipeline name, pipeline time}).

evalml.utils.logger.log_subtitle(logger, title, underline='=')
Log with a subtitle.

evalml.utils.logger.log_title(logger, title)
Log with a title.

evalml.utils.logger.time_elapsed(start_time)
How much time has elapsed since the search started.

Parameters start_time (int) – Time when search started.

Returns elapsed time formatted as a string [H:]MM:SS

Return type str

nullable_type_utils

Module Contents

Contents

evalml.utils.nullable_type_utils.DOWNCAST_TYPE_DICT

update_checker

Check if EvalML has updated since the user installed.

Module Contents

Contents

evalml.utils.update_checker.method

woodwork_utils

Woodwork utility methods.
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Module Contents

Functions

downcast_nullable_types Downcasts IntegerNullable, BooleanNullable types to
Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

infer_feature_types Create a Woodwork structure from the given list, pan-
das, or numpy input, with specified types for columns.
If a column's type is not specified, it will be inferred by
Woodwork.

Attributes Summary

numeric_and_boolean_ww

Contents

evalml.utils.woodwork_utils.downcast_nullable_types(data, ignore_null_cols=True)
Downcasts IntegerNullable, BooleanNullable types to Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

Parameters
• data (pd.DataFrame, pd.Series) – Feature data.

• ignore_null_cols (bool) – Whether to ignore downcasting columns with null values or
not. Defaults to True.

Returns DataFrame or Series initialized with logical type information where BooleanNullable are
cast as Double.

Return type data

evalml.utils.woodwork_utils.infer_feature_types(data, feature_types=None)
Create a Woodwork structure from the given list, pandas, or numpy input, with specified types for columns. If a
column’s type is not specified, it will be inferred by Woodwork.

Parameters
• data (pd.DataFrame, pd.Series) – Input data to convert to a Woodwork data structure.

• feature_types (string, ww.logical_type obj, dict, optional) – If data is a 2D
structure, feature_types must be a dictionary mapping column names to the type of data rep-
resented in the column. If data is a 1D structure, then feature_types must be a Woodwork log-
ical type or a string representing a Woodwork logical type (“Double”, “Integer”, “Boolean”,
“Categorical”, “Datetime”, “NaturalLanguage”)

Returns A Woodwork data structure where the data type of each column was either specified or
inferred.

Raises ValueError – If there is a mismatch between the dataframe and the woodwork schema.
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evalml.utils.woodwork_utils.numeric_and_boolean_ww

Package Contents

Classes Summary

classproperty Allows function to be accessed as a class level property.

Functions

convert_to_seconds Converts a string describing a length of time to its length
in seconds.

deprecate_arg Helper to raise warnings when a deprecated arg is used.
downcast_nullable_types Downcasts IntegerNullable, BooleanNullable types to

Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

drop_rows_with_nans Drop rows that have any NaNs in all dataframes or series.
get_importable_subclasses Get importable subclasses of a base class. Used to

list all of our estimators, transformers, components and
pipelines dynamically.

get_logger Get the logger with the associated name.
get_random_seed Given a numpy.random.RandomState object, generate

an int representing a seed value for another random num-
ber generator. Or, if given an int, return that int.

get_random_state Generates a numpy.random.RandomState instance using
seed.

get_time_index Determines the column in the given data that should be
used as the time index.

import_or_raise Attempts to import the requested library by name. If the
import fails, raises an ImportError or warning.

infer_feature_types Create a Woodwork structure from the given list, pan-
das, or numpy input, with specified types for columns.
If a column's type is not specified, it will be inferred by
Woodwork.

is_all_numeric Checks if the given DataFrame contains only numeric
values.

jupyter_check Get whether or not the code is being run in a Ipython
environment (such as Jupyter Notebook or Jupyter Lab).

log_subtitle Log with a subtitle.
log_title Log with a title.
pad_with_nans Pad the beginning num_to_pad rows with nans.
safe_repr Convert the given value into a string that can safely be

used for repr.
save_plot Saves fig to filepath if specified, or to a default location

if not.
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Attributes Summary

SEED_BOUNDS

Contents

class evalml.utils.classproperty(func)
Allows function to be accessed as a class level property.

Example: .. code-block:

class LogisticRegressionBinaryPipeline(PipelineBase):
component_graph = ['Simple Imputer', 'Logistic Regression Classifier']

@classproperty
def summary(cls):
summary = ""
for component in cls.component_graph:

component = handle_component_class(component)
summary += component.name + " + "

return summary

assert LogisticRegressionBinaryPipeline.summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "
assert LogisticRegressionBinaryPipeline().summary == "Simple Imputer + Logistic␣
→˓Regression Classifier + "

evalml.utils.convert_to_seconds(input_str)
Converts a string describing a length of time to its length in seconds.

Parameters input_str (str) – The string to be parsed and converted to seconds.

Returns Returns the library if importing succeeded.

Raises AssertionError – If an invalid unit is used.

Examples

>>> assert convert_to_seconds("10 hr") == 36000.0
>>> assert convert_to_seconds("30 minutes") == 1800.0
>>> assert convert_to_seconds("2.5 min") == 150.0

evalml.utils.deprecate_arg(old_arg, new_arg, old_value, new_value)
Helper to raise warnings when a deprecated arg is used.

Parameters
• old_arg (str) – Name of old/deprecated argument.

• new_arg (str) – Name of new argument.

• old_value (Any) – Value the user passed in for the old argument.

• new_value (Any) – Value the user passed in for the new argument.
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Returns old_value if not None, else new_value

evalml.utils.downcast_nullable_types(data, ignore_null_cols=True)
Downcasts IntegerNullable, BooleanNullable types to Double, Boolean in order to support certain estimators
like ARIMA, CatBoost, and LightGBM.

Parameters
• data (pd.DataFrame, pd.Series) – Feature data.

• ignore_null_cols (bool) – Whether to ignore downcasting columns with null values or
not. Defaults to True.

Returns DataFrame or Series initialized with logical type information where BooleanNullable are
cast as Double.

Return type data

evalml.utils.drop_rows_with_nans(*pd_data)
Drop rows that have any NaNs in all dataframes or series.

Parameters *pd_data – sequence of pd.Series or pd.DataFrame or None

Returns list of pd.DataFrame or pd.Series or None

evalml.utils.get_importable_subclasses(base_class, used_in_automl=True)
Get importable subclasses of a base class. Used to list all of our estimators, transformers, components and
pipelines dynamically.

Parameters
• base_class (abc.ABCMeta) – Base class to find all of the subclasses for.

• used_in_automl – Not all components/pipelines/estimators are used in automl search. If
True, only include those subclasses that are used in the search. This would mean excluding
classes related to ExtraTrees, ElasticNet, and Baseline estimators.

Returns List of subclasses.

evalml.utils.get_logger(name)
Get the logger with the associated name.

Parameters name (str) – Name of the logger to get.

Returns The logger object with the associated name.

evalml.utils.get_random_seed(random_state, min_bound=SEED_BOUNDS.min_bound,
max_bound=SEED_BOUNDS.max_bound)

Given a numpy.random.RandomState object, generate an int representing a seed value for another random number
generator. Or, if given an int, return that int.

To protect against invalid input to a particular library’s random number generator, if an int value is provided,
and it is outside the bounds “[min_bound, max_bound)”, the value will be projected into the range between the
min_bound (inclusive) and max_bound (exclusive) using modular arithmetic.

Parameters
• random_state (int, numpy.random.RandomState) – random state

• min_bound (None, int) – if not default of None, will be min bound when generating seed
(inclusive). Must be less than max_bound.

• max_bound (None, int) – if not default of None, will be max bound when generating seed
(exclusive). Must be greater than min_bound.
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Returns Seed for random number generator

Return type int

Raises ValueError – If boundaries are not valid.

evalml.utils.get_random_state(seed)
Generates a numpy.random.RandomState instance using seed.

Parameters seed (None, int, np.random.RandomState object) – seed to use to gen-
erate numpy.random.RandomState. Must be between SEED_BOUNDS.min_bound and
SEED_BOUNDS.max_bound, inclusive.

Raises ValueError – If the input seed is not within the acceptable range.

Returns A numpy.random.RandomState instance.

evalml.utils.get_time_index(X: pandas.DataFrame, y: pandas.Series, time_index_name: str)
Determines the column in the given data that should be used as the time index.

evalml.utils.import_or_raise(library, error_msg=None, warning=False)
Attempts to import the requested library by name. If the import fails, raises an ImportError or warning.

Parameters
• library (str) – The name of the library.

• error_msg (str) – Error message to return if the import fails.

• warning (bool) – If True, import_or_raise gives a warning instead of ImportError. Defaults
to False.

Returns Returns the library if importing succeeded.

Raises
• ImportError – If attempting to import the library fails because the library is not installed.

• Exception – If importing the library fails.

evalml.utils.infer_feature_types(data, feature_types=None)
Create a Woodwork structure from the given list, pandas, or numpy input, with specified types for columns. If a
column’s type is not specified, it will be inferred by Woodwork.

Parameters
• data (pd.DataFrame, pd.Series) – Input data to convert to a Woodwork data structure.

• feature_types (string, ww.logical_type obj, dict, optional) – If data is a 2D
structure, feature_types must be a dictionary mapping column names to the type of data rep-
resented in the column. If data is a 1D structure, then feature_types must be a Woodwork log-
ical type or a string representing a Woodwork logical type (“Double”, “Integer”, “Boolean”,
“Categorical”, “Datetime”, “NaturalLanguage”)

Returns A Woodwork data structure where the data type of each column was either specified or
inferred.

Raises ValueError – If there is a mismatch between the dataframe and the woodwork schema.

evalml.utils.is_all_numeric(df )
Checks if the given DataFrame contains only numeric values.

Parameters df (pd.DataFrame) – The DataFrame to check data types of.

Returns True if all the columns are numeric and are not missing any values, False otherwise.
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evalml.utils.jupyter_check()

Get whether or not the code is being run in a Ipython environment (such as Jupyter Notebook or Jupyter Lab).

Returns True if Ipython, False otherwise.

Return type boolean

evalml.utils.log_subtitle(logger, title, underline='=')
Log with a subtitle.

evalml.utils.log_title(logger, title)
Log with a title.

evalml.utils.pad_with_nans(pd_data, num_to_pad)
Pad the beginning num_to_pad rows with nans.

Parameters
• pd_data (pd.DataFrame or pd.Series) – Data to pad.

• num_to_pad (int) – Number of nans to pad.

Returns pd.DataFrame or pd.Series

evalml.utils.safe_repr(value)
Convert the given value into a string that can safely be used for repr.

Parameters value – The item to convert

Returns String representation of the value

evalml.utils.save_plot(fig, filepath=None, format='png', interactive=False, return_filepath=False)
Saves fig to filepath if specified, or to a default location if not.

Parameters
• fig (Figure) – Figure to be saved.

• filepath (str or Path, optional) – Location to save file. Default is with filename
“test_plot”.

• format (str) – Extension for figure to be saved as. Ignored if interactive is True and fig is
of type plotly.Figure. Defaults to ‘png’.

• interactive (bool, optional) – If True and fig is of type plotly.Figure, saves the fig as
interactive instead of static, and format will be set to ‘html’. Defaults to False.

• return_filepath (bool, optional) – Whether to return the final filepath the image is
saved to. Defaults to False.

Returns String representing the final filepath the image was saved to if return_filepath is set to True.
Defaults to None.

evalml.utils.SEED_BOUNDS

2036 Chapter 5. API Reference



EvalML Documentation, Release 0.80.0

Package Contents

Classes Summary

AutoMLSearch Automated Pipeline search.

Functions

search Given data and configuration, run an automl search.
search_iterative Given data and configuration, run an automl search.

Contents

class evalml.AutoMLSearch(X_train=None, y_train=None, X_holdout=None, y_holdout=None,
problem_type=None, objective='auto', max_iterations=None, max_time=None,
patience=None, tolerance=None, data_splitter=None,
allowed_component_graphs=None, allowed_model_families=None,
excluded_model_families=None, features=None, run_feature_selection=True,
start_iteration_callback=None, add_result_callback=None, error_callback=None,
additional_objectives=None, alternate_thresholding_objective='F1',
random_seed=0, n_jobs=- 1, tuner_class=None, optimize_thresholds=True,
ensembling=False, max_batches=None, problem_configuration=None,
train_best_pipeline=True, search_parameters=None, sampler_method='auto',
sampler_balanced_ratio=0.25, allow_long_running_models=False,
_pipelines_per_batch=5, automl_algorithm='default', engine='sequential',
verbose=False, timing=False, exclude_featurizers=None, holdout_set_size=0,
use_recommendation=False, include_recommendation=None,
exclude_recommendation=None)

Automated Pipeline search.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• X_holdout (pd.DataFrame) – The input holdout data of shape [n_samples, n_features].

• y_holdout (pd.Series) – The target holdout data of length [n_samples].

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• max_iterations (int) – Maximum number of iterations to search. If max_iterations and
max_time is not set, then max_iterations will default to max_iterations of 5.
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• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• allowed_component_graphs (dict) – A dictionary of lists or ComponentGraphs indicat-
ing the component graphs allowed in the search. The format should follow { “Name_0”:
[list_of_components], “Name_1”: ComponentGraph(. . . ) }

The default of None indicates all pipeline component graphs for this problem type are al-
lowed. Setting this field will cause allowed_model_families to be ignored.

e.g. allowed_component_graphs = { “My_Graph”: [“Imputer”, “One Hot Encoder”, “Ran-
dom Forest Classifier”] }

• allowed_model_families (list(str, ModelFamily)) – The model fam-
ilies to search. The default of None searches over all model families. Run
evalml.pipelines.components.utils.allowed_model_families(“binary”) to see options.
Change binary to multiclass or regression depending on the problem type. Note that if
allowed_pipelines is provided, this parameter will be ignored. For default algorithm, this
only applies to estimators in the non-naive batches.

• features (list) – List of features to run DFS on AutoML pipelines. Defaults to None.
Features will only be computed if the columns used by the feature exist in the search input
and if the feature itself is not in search input. If features is an empty list, the DFS Transformer
will not be included in pipelines.

• run_feature_selection (bool) – If True, will run a separate feature selection pipeline
and only use selected features in subsequent batches. If False, will use all of the features for
every pipeline. Only used for default algorithm, setting is no-op for iterative algorithm.

• data_splitter (sklearn.model_selection.BaseCrossValidator) – Data splitting
method to use. Defaults to StratifiedKFold.

• tuner_class – The tuner class to use. Defaults to SKOptTuner.

• optimize_thresholds (bool) – Whether or not to optimize the binary pipeline threshold.
Defaults to True.

• start_iteration_callback (callable) – Function called before each pipeline training
iteration. Callback function takes three positional parameters: The pipeline instance and the
AutoMLSearch object.

• add_result_callback (callable) – Function called after each pipeline training iteration.
Callback function takes three positional parameters: A dictionary containing the training
results for the new pipeline, an untrained_pipeline containing the parameters used during
training, and the AutoMLSearch object.

• error_callback (callable) – Function called when search() errors and raises an Excep-
tion. Callback function takes three positional parameters: the Exception raised, the trace-
back, and the AutoMLSearch object. Must also accepts kwargs, so AutoMLSearch is able
to pass along other appropriate parameters by default. Defaults to None, which will call
log_error_callback.

• additional_objectives (list) – Custom set of objectives to score on. Will override
default objectives for problem type if not empty.
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• alternate_thresholding_objective (str) – The objective to use for thresholding bi-
nary classification pipelines if the main objective provided isn’t tuneable. Defaults to F1.

• random_seed (int) – Seed for the random number generator. Defaults to 0.

• n_jobs (int or None) – Non-negative integer describing level of parallelism used for
pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

• ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed
pipeline class has been iterated over. If the number of unique pipelines to search over per
batch is one, ensembling will not run. Defaults to False.

• max_batches (int) – The maximum number of batches of pipelines to search. Parameters
max_time, and max_iterations have precedence over stopping the search.

• problem_configuration (dict, None) – Additional parameters needed to configure the
search. For example, in time series problems, values should be passed in for the time_index,
gap, forecast_horizon, and max_delay variables. For multiseries time series problems, the
values passed in should also include the name of a series_id column.

• train_best_pipeline (boolean) – Whether or not to train the best pipeline before re-
turning it. Defaults to True.

• search_parameters (dict) – A dict of the hyperparameter ranges or pipeline parame-
ters used to iterate over during search. Keys should consist of the component names and
values should specify a singular value/list for pipeline parameters, or skopt.Space for hy-
perparameter ranges. In the example below, the Imputer parameters would be passed to the
hyperparameter ranges, and the Label Encoder parameters would be used as the component
parameter.

e.g. search_parameters = { ‘Imputer’ [{ ‘numeric_impute_strategy’: Categori-
cal([‘most_frequent’, ‘median’]) },] ’Label Encoder’: {‘positive_label’: True} }

• sampler_method (str) – The data sampling component to use in the pipelines if the prob-
lem type is classification and the target balance is smaller than the sampler_balanced_ratio.
Either ‘auto’, which will use our preferred sampler for the data, ‘Undersampler’, ‘Oversam-
pler’, or None. Defaults to ‘auto’.

• sampler_balanced_ratio (float) – The minority:majority class ratio that we consider
balanced, so a 1:4 ratio would be equal to 0.25. If the class balance is larger than this provided
value, then we will not add a sampler since the data is then considered balanced. Overrides
the sampler_ratio of the samplers. Defaults to 0.25.

• allow_long_running_models (bool) – Whether or not to allow longer-running models
for large multiclass problems. If False and no pipelines, component graphs, or model families
are provided, AutoMLSearch will not use Elastic Net or XGBoost when there are more than
75 multiclass targets and will not use CatBoost when there are more than 150 multiclass
targets. Defaults to False.

• _ensembling_split_size (float) – The amount of the training data we’ll set aside for
training ensemble metalearners. Only used when ensembling is True. Must be between 0
and 1, exclusive. Defaults to 0.2

• _pipelines_per_batch (int) – The number of pipelines to train for every batch after the
first one. The first batch will train a baseline pipline + one of each pipeline family allowed
in the search.

• automl_algorithm (str) – The automl algorithm to use. Currently the two choices are
‘iterative’ and ‘default’. Defaults to default.
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• engine (EngineBase or str) – The engine instance used to evaluate pipelines. Dask or
concurrent.futures engines can also be chosen by providing a string from the list [“sequen-
tial”, “cf_threaded”, “cf_process”, “dask_threaded”, “dask_process”]. If a parallel engine is
selected this way, the maximum amount of parallelism, as determined by the engine, will be
used. Defaults to “sequential”.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• exclude_featurizers (list[str]) – A list of featurizer components to exclude from
the pipelines built by search. Valid options are “DatetimeFeaturizer”, “EmailFeaturizer”,
“URLFeaturizer”, “NaturalLanguageFeaturizer”, “TimeSeriesFeaturizer”

• excluded_model_families (list(str, ModelFamily)) – A list of model families to
exclude from the estimators used when building pipelines. For default algorithm, this only
excludes estimators in the non-naive batches.

• holdout_set_size (float) – The size of the holdout set that AutoML search will take for
datasets larger than 500 rows. If set to 0, holdout set will not be taken regardless of number
of rows. Must be between 0 and 1, exclusive. Defaults to 0.1.

• use_recommendation (bool) – Whether or not to use a recommendation score to rank
pipelines instead of optimization objective. Defaults to False.

• include_recommendation (list[str]) – A list of objectives to include beyond the de-
faults in the recommendation score. Defaults to None.

• exclude_recommendation (list[str]) – A list of objectives to exclude from the defaults
in the recommendation score. Defaults to None.

Methods
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add_to_rankings Fits and evaluates a given pipeline then adds the re-
sults to the automl rankings with the requirement that
automl search has been run.

best_pipeline Returns a trained instance of the best pipeline
and parameters found during automl search. If
train_best_pipeline is set to False, returns an un-
trained pipeline instance.

close_engine Function to explicitly close the engine, client, parallel
resources.

describe_pipeline Describe a pipeline.
full_rankings Returns a pandas.DataFrame with scoring results

from all pipelines searched.
get_ensembler_input_pipelines Returns a list of input pipeline IDs given an ensem-

bler pipeline ID.
get_pipeline Given the ID of a pipeline training result, returns an

untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during
automl search.

get_recommendation_score_breakdown Reports the scores for the objectives used in the given
pipeline's recommendation score calculation.

get_recommendation_scores Calculates recommendation scores for all pipelines in
the search results.

load Loads AutoML object at file path.
plot Return an instance of the plot with the latest scores.
rankings Returns a pandas.DataFrame with scoring results

from the highest-scoring set of parameters used with
each pipeline.

results Class that allows access to a copy of the results from
automl_search.

save Saves AutoML object at file path.
score_pipelines Score a list of pipelines on the given holdout data.
search Find the best pipeline for the data set.
train_pipelines Train a list of pipelines on the training data.

add_to_rankings(self, pipeline)
Fits and evaluates a given pipeline then adds the results to the automl rankings with the requirement that
automl search has been run.

Parameters pipeline (PipelineBase) – pipeline to train and evaluate.

property best_pipeline(self )
Returns a trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Returns A trained instance of the best pipeline and parameters found during automl search. If
train_best_pipeline is set to False, returns an untrained pipeline instance.

Return type PipelineBase

Raises PipelineNotFoundError – If this is called before .search() is called.

close_engine(self )
Function to explicitly close the engine, client, parallel resources.
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describe_pipeline(self, pipeline_id, return_dict=False)
Describe a pipeline.

Parameters
• pipeline_id (int) – pipeline to describe

• return_dict (bool) – If True, return dictionary of information about pipeline. Defaults
to False.

Returns Description of specified pipeline. Includes information such as type of pipeline compo-
nents, problem, training time, cross validation, etc.

Raises PipelineNotFoundError – If pipeline_id is not a valid ID.

property full_rankings(self )
Returns a pandas.DataFrame with scoring results from all pipelines searched.

get_ensembler_input_pipelines(self, ensemble_pipeline_id)
Returns a list of input pipeline IDs given an ensembler pipeline ID.

Parameters ensemble_pipeline_id (id) – Ensemble pipeline ID to get input pipeline IDs
from.

Returns A list of ensemble input pipeline IDs.

Return type list[int]

Raises ValueError – If ensemble_pipeline_id does not correspond to a valid ensemble pipeline
ID.

get_pipeline(self, pipeline_id)
Given the ID of a pipeline training result, returns an untrained instance of the specified pipeline initialized
with the parameters used to train that pipeline during automl search.

Parameters pipeline_id (int) – Pipeline to retrieve.

Returns Untrained pipeline instance associated with the provided ID.

Return type PipelineBase

Raises PipelineNotFoundError – if pipeline_id is not a valid ID.

get_recommendation_score_breakdown(self, pipeline_id)
Reports the scores for the objectives used in the given pipeline’s recommendation score calculation.

Note that these scores are reported in their raw form, not scaled to be between 0 and 1.

Parameters pipeline_id (int) – The id of the pipeline to get the recommendation score break-
down for.

Returns A dictionary of the scores for each objective used in the recommendation score calcu-
lation.

Return type dict

get_recommendation_scores(self, priority=None, custom_weights=None, use_pipeline_names=False)
Calculates recommendation scores for all pipelines in the search results.

Parameters
• priority (str) – An optional name of a priority objective that should be given heavier

weight (of 0.5) than the other objectives contributing to the score. Defaults to None, where
all objectives are weighted equally.
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• custom_weights (dict[str,float]) – A dictionary mapping objective names to cor-
responding weights between 0 and 1. Should not be used at the same time as priori-
tized_objective. Defaults to None.

• use_pipeline_names (bool) – Whether or not to return the pipeline names instead of
ids as the keys to the recommendation score dictionary. Defaults to False.

Returns A dictionary mapping pipeline IDs to recommendation scores

static load(file_path, pickle_type='cloudpickle')
Loads AutoML object at file path.

Parameters
• file_path (str) – Location to find file to load

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use. Currently
not used since the standard pickle library can handle cloudpickles.

Returns AutoSearchBase object

property plot(self )
Return an instance of the plot with the latest scores.

property rankings(self )
Returns a pandas.DataFrame with scoring results from the highest-scoring set of parameters used with each
pipeline.

property results(self )
Class that allows access to a copy of the results from automl_search.

Returns
Dictionary containing pipeline_results, a dict with results from each pipeline, and

search_order, a list describing the order the pipelines were searched.

Return type dict

save(self, file_path, pickle_type='cloudpickle', pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)
Saves AutoML object at file path.

Parameters
• file_path (str) – Location to save file.

• pickle_type ({"pickle", "cloudpickle"}) – The pickling library to use.

• pickle_protocol (int) – The pickle data stream format.

Raises ValueError – If pickle_type is not “pickle” or “cloudpickle”.

score_pipelines(self, pipelines, X_holdout, y_holdout, objectives)
Score a list of pipelines on the given holdout data.

Parameters
• pipelines (list[PipelineBase]) – List of pipelines to train.

• X_holdout (pd.DataFrame) – Holdout features.

• y_holdout (pd.Series) – Holdout targets for scoring.

• objectives (list[str], list[ObjectiveBase]) – Objectives used for scoring.
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Returns Dictionary keyed by pipeline name that maps to a dictionary of scores. Note that the any
pipelines that error out during scoring will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type dict[str, Dict[str, float]]

search(self, interactive_plot=True)
Find the best pipeline for the data set.

Parameters interactive_plot (boolean, True) – Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Raises AutoMLSearchException – If all pipelines in the current AutoML batch produced a
score of np.nan on the primary objective.

Returns Dictionary keyed by batch number that maps to the timings for pipelines run in that
batch, as well as the total time for each batch. Pipelines within a batch are labeled by pipeline
name.

Return type Dict[int, Dict[str, Timestamp]]

train_pipelines(self, pipelines)
Train a list of pipelines on the training data.

This can be helpful for training pipelines once the search is complete.

Parameters pipelines (list[PipelineBase]) – List of pipelines to train.

Returns Dictionary keyed by pipeline name that maps to the fitted pipeline. Note that the any
pipelines that error out during training will not be included in the dictionary but the exception
and stacktrace will be displayed in the log.

Return type Dict[str, PipelineBase]

evalml.search(X_train=None, y_train=None, problem_type=None, objective='auto', mode='fast',
max_time=None, patience=None, tolerance=None, problem_configuration=None, n_splits=3,
verbose=False, timing=False)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• mode (str) – mode for DefaultAlgorithm. There are two modes: fast and long, where fast
is a subset of long. Please look at DefaultAlgorithm for more details.
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• max_time (int, str) – Maximum time to search for pipelines. This will not start a new
pipeline search after the duration has elapsed. If it is an integer, then the time will be in
seconds. For strings, time can be specified as seconds, minutes, or hours.

• patience (int) – Number of iterations without improvement to stop search early. Must be
positive. If None, early stopping is disabled. Defaults to None.

• tolerance (float) – Minimum percentage difference to qualify as score improvement for
early stopping. Only applicable if patience is not None. Defaults to None.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.

• verbose (boolean) – Whether or not to display semi-real-time updates to stdout while
search is running. Defaults to False.

• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

Returns The automl search object containing pipelines and rankings, and the results from running
the data checks. If the data check results contain errors, automl search will not be run and an
automl search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If search configuration is not valid.

evalml.search_iterative(X_train=None, y_train=None, problem_type=None, objective='auto',
problem_configuration=None, n_splits=3, timing=False, **kwargs)

Given data and configuration, run an automl search.

This method will run EvalML’s default suite of data checks. If the data checks produce errors, the data check
results will be returned before running the automl search. In that case we recommend you alter your data to
address these errors and try again. This method is provided for convenience. If you’d like more control over
when each of these steps is run, consider making calls directly to the various pieces like the data checks and
AutoMLSearch, instead of using this method.

Parameters
• X_train (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Re-

quired.

• y_train (pd.Series) – The target training data of length [n_samples]. Required for super-
vised learning tasks.

• problem_type (str or ProblemTypes) – Type of supervised learning problem. See
evalml.problem_types.ProblemType.all_problem_types for a full list.

• objective (str, ObjectiveBase) – The objective to optimize for. Used to propose and
rank pipelines, but not for optimizing each pipeline during fit-time. When set to ‘auto’,
chooses: - LogLossBinary for binary classification problems, - LogLossMulticlass for mul-
ticlass classification problems, and - R2 for regression problems.

• problem_configuration (dict) – Additional parameters needed to configure the search.
For example, in time series problems, values should be passed in for the time_index, gap,
forecast_horizon, and max_delay variables.

• n_splits (int) – Number of splits to use with the default data splitter.
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• timing (boolean) – Whether or not to write pipeline search times to the logger. Defaults
to False.

• **kwargs – Other keyword arguments which are provided will be passed to AutoMLSearch.

Returns the automl search object containing pipelines and rankings, and the results from running the
data checks. If the data check results contain errors, automl search will not be run and an automl
search object will not be returned.

Return type (AutoMLSearch, dict)

Raises ValueError – If the search configuration is invalid.
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RELEASE NOTES

Future Releases
• Enhancements

• Fixes

• Changes

• Documentation Changes

• Testing Changes

Warning: Breaking Changes

v0.80.0 Aug. 30, 2023
• Enhancements

– Added support for prediction intervals for VARMAX regressor #4267

– Integrated multiseries time series into AutoMLSearch #4270

• Fixes
– Fixed error when stacking data with no exogenous variables #4275

• Changes
– Updated ARIMARegressor to be compatible with sktime v0.22.0 and beyond #4283

– Updated graph_prediction_vs_actual_over_time() to be compatible with multiseries time
series #4284

– Updated excluded_model_families to take in a list of both str and ModelFamily data types
#4287

– Unpinned ipywidgets #4288

• Documentation Changes
– Removed erroneous warnings from Data Checks User Guide page and removed tqdm warning in

all notebooks #4274

• Testing Changes

Warning: Breaking Changes

v0.79.0 Aug. 11, 2023
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• Enhancements
– Updated regression metrics to handle multioutput dataframes as well as single output series #4233

– Added baseline regressor for multiseries time series problems #4246

– Added stacking and unstacking utility functions to work with multiseries data #4250

– Added multiseries regression pipeline class #4256

– Added multiseries VARMAX regressor #4238

• Fixes
– Added support for pandas 2 #4216

– Fixed bug where time series pipelines would fail due to MASE needing y_train when scoring
#4258

– Update s3 bucket for docs image #4260

– Fix deps checker including any package with post in the name #4268

• Changes
– Unpinned sktime version #4214

– Bumped minimum lightgbm version to 4.0.0 for nullable type handling #4237

– Pinned scikit-learn version due to incompatibility with pinned imbalanced-learn #4248

• Documentation Changes

• Testing Changes

Warning: Breaking Changes

v0.78.0 Jul. 10, 2023
• Enhancements

– Add run_feature_selection to AutoMLSearch and Default Algorithm #4210

– Added SMAPE to the standard metrics for time series problems #4220

– Added MASE metric and y_train parameter to objectives #4221

• Fixes
– IDColumnsDataCheck now works with Unknown data type #4203

• Changes
– Upgraded minimum SHAP version to 0.42.0 and unpinned numpy version #4228

• Documentation Changes
– Updated API reference #4213

Warning:
Breaking Changes

• Removed Decision Tree and CatBoost Estimators from AutoML search #4205

• Removed first batch from default algorithm #4215
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v0.77.0 Jun. 07, 2023
• Enhancements

– Added check_distribution function for determining if the predicted distribution matches the
true one #4184

– Added get_recommendation_score_breakdown function for insight on the recommendation
score #4188

– Added excluded_model_families parameter to AutoMLSearch() #4196

– Added option to exclude time index in IDColumnsDataCheck #4194

• Fixes
– Fixed small errors in ARIMARegressor implementation #4186

– Fixed get_forecast_period to properly handle gap parameter #4200

• Changes

• Documentation Changes

• Testing Changes
– Run looking glass performance tests on merge via Airflow #4198

v0.76.0 May. 09, 2023
• Enhancements

– Added optional recommendation_score to rank pipelines during AutoMLSearch #4156

– Added BytesIO support to PipelinBase.load() #4179

• Fixes
– Capped numpy at <=1.23.5 as a temporary measure for SHAP #4172

– Updated our readthedocs recipe to reenable builds #4177

v0.75.0 May. 01, 2023
• Fixes

– Fixed bug where resetting the holdout data indices would cause time series predict_in_sample
to be wrong #4161

• Changes
– Changed per-pipeline timings to store as a float #4160

– Update Dask install commands in pyproject.toml #4164

– Capped IPython version to < 8.12.1 for readthedocs and plotly compatibility #3987

v0.74.0 Apr. 18, 2023
• Enhancements

– Saved computed additional_objectives computed during search to AutoML object #4141

– Remove extra naive pipelines #4142

• Fixes
– Fixed usage of codecov after uploader deprecation #4144

– Fixed issue where prediction intervals were becoming NaNs due to index errors #4154
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• Changes
– Capped size of seasonal period used for determining whether to include STLDecomposer in

pipelines #4147

v0.73.0 Apr. 10, 2023
• Enhancements

– Allowed InvalidTargetDataCheck to return a DROP_ROWS DataCheckActionOption #4116

– Implemented prediction intervals for non-time series native pipelines using the naïve method
#4127

• Changes
– Removed unnecessary logic from imputer components prior to nullable type handling #4038,

#4043

– Added calls to _handle_nullable_types in component fit, transform, and predict methods
when needed #4046, #4043

– Removed existing nullable type handling across AutoMLSearch to just use new handling #4085,
#4043

– Handled nullable type incompatibility in Decomposer #4105, :pr:`4043

– Removed nullable type incompatibility handling for ARIMA and ExponentialSmoothingRegres-
sor #4129

– Changed the default value for null_strategy in InvalidTargetDataCheck to drop #4131

– Pinned sktime version to 0.17.0 for nullable types support #4137

• Testing Changes
– Fixed installation of prophet for linux nightly tests #4114

v0.72.0 Mar. 27, 2023
• Enhancements

– Updated pipeline.get_prediction_intervals() to add trend prediction interval information from STL
decomposer #4093

– Added method=all support for TargetLeakageDataCheck #4106

• Fixes
– Fixed ensemble pipelines not working with generate_pipeline_example #4102

• Changes
– Pinned ipywidgets version under 8.0.5 #4097

– Calculated partial dependence grid values for integer data by rounding instead of truncating frac-
tional values #4096

• Testing Changes
– Updated graphviz installation in GitHub workflows to fix windows nightlies #4088

v0.71.0 Mar. 17, 2023*
• Fixes

– Fixed error in PipelineBase._supports_fast_permutation_importance with stacked en-
semble pipelines #4083
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v0.70.0 Mar. 16, 2023
• Changes

– Added Oversampler nullable type incompatibility in X #4068

– Removed nullable handling from objective functions, roc_curve, and correlation_matrix
#4072

– Transitioned from prophet-prebuilt to prophet directly #4045

v0.69.0 Mar. 15, 2023
• Enhancements

– Move black to regular dependency and use it for generate_pipeline_code #4005

– Implement generate_pipeline_example #4023

– Add new downcast utils for component-specific nullable type handling and begin implementation
on objective and component base classes #4024

– Add nullable type incompatibility properties to the components that need them #4031

– Add get_evalml_requirements_file #4034

– Pipelines with DFS Transformers will run fast permutation importance if DFS features pre-exist
#4037

– Add get_prediction_intervals() at the pipeline level #4052

• Fixes
– Fixed generate_pipeline_example erroring out for pipelines with a DFSTransformer #4059

– Remove nullable types handling for OverSampler #4064

• Changes
– Uncapped pmdarima and updated minimum version #4027

– Increase min catboost to 1.1.1 and xgboost to 1.7.0 to add nullable type support for those estimators
#3996

– Unpinned networkx and updated minimum version #4035

– Increased scikit-learn version to 1.2.2 #4064

– Capped max holidays version to 0.21 #4064

– Stop allowing knn as a boolean impute strategy #4058

– Capped nbsphinx at < 0.9.0 #4071

• Testing Changes
– Use release.yaml for performance tests on merge to main #4007

– Pin github-action-check-linked-issues at v1.4.5 #4042

– Updated tests to support Woodwork’s object dtype inference for numeric columns #4066

– Updated TargetLeakageDataCheck tests to handle boolean targets properly #4066

v0.68.0 Feb. 15, 2023
• Enhancements

– Integrated determine_periodicity into AutoMLSearch #3952
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– Removed frequency limitations for decomposition using the STLDecomposer #3952

• Changes
– Remove requirements-parser requirement #3978

– Updated the SKOptTuner to use a gradient boosting regressor for tuning instead of extra trees
#3983

– Unpinned sktime from below 1.2, increased minimum to 1.2.1 #3983

• Testing Changes
– Add pull request check for linked issues to CI workflow #3970, #3980

– Upgraded minimum IPython version to 8.10.0 #3987

v0.67.0 Jan. 31, 2023
• Fixes

– Re-added TimeSeriesPipeline.should_skip_featurization to fix bug where data would
get featurized unnecessarily #3964

– Allow float categories to be passed into CatBoost estimators #3966

• Changes
– Update pyproject.toml to correctly specify the data filepaths #3967

• Documentation Changes
– Added demo for prediction intervals #3954

v0.66.1 Jan. 26, 2023
• Fixes

– Updated LabelEncoder to store the original typing information #3960

– Fixed bug where all-null BooleanNullable columns would break the imputer during transform
#3959

v0.66.0 Jan. 24, 2023
• Enhancements

– Improved decomposer determine_periodicity functionality for better period guesses #3912

– Added dates_needed_for_prediction for time series pipelines #3906

– Added RFClassifierRFESelector and RFRegressorRFESelector components for feature
selection using recursive feature elimination #3934

– Added dates_needed_for_prediction_range for time series pipelines #3941

• Fixes
– Fixed set_period() not updating decomposer parameters #3932

– Removed second identical batch for time series problems in DefaultAlgorithm #3936

– Fix install command for alteryx-open-src-update-checker #3940

– Fixed non-prophet case of test_components_can_be_used_for_partial_dependence_fast_mode
#3949

• Changes
– Updated PolynomialDecomposer to work with sktime v0.15.1 #3930
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– Add ruff and use pyproject.toml (move away from setup.cfg) #3928

– Pinned category-encoders` to 2.5.1.post0 #3933

– Remove requirements-parser and tomli from core requirements #3948

v0.65.0 Jan. 3, 2023
• Enhancements

– Added the ability to retrieve prediction intervals for estimators that support time series regression
#3876

– Added utils to handle the logic for threshold tuning objective and resplitting data #3888

– Integrated OrdinalEncoder into AutoMLSearch #3765

• Fixes
– Fixed ARIMA not accounting for gap in prediction from end of training data #3884

– Fixed DefaultAlgorithm adding an extra OneHotEncoder when a categorical column is not
selected #3914

• Changes
– Added a threshold to DateTimeFormatDataCheck to account for too many duplicate or nan val-

ues #3883

– Changed treatment of Boolean columns for SimpleImputer and ClassImbalanceDataCheck
to be compatible with new Woodwork inference #3892

– Split decomposer seasonal_period parameter into seasonal_smoother and period param-
eters #3896

– Excluded catboost from the broken link checking workflow due to 403 errors #3899

– Pinned scikit-learn version below 1.2.0 #3901

– Cast newly created one hot encoded columns as bool dtype #3913

• Documentation Changes
– Hid non-essential warning messages in time series docs #3890

• Testing Changes

v0.64.0 Dec. 8, 2022
• Enhancements

• Fixes
– Allowed the DFS Transformer to calculate feature values for Features with a dataframe_name

that is not "X" #3873

– Stopped passing full list of DFS Transformer features into cloned pipeline in partial dependence
fast mode #3875

• Changes
– Update leaderboard names to show ranking_score instead of validation_score #3878

– Remove Int64Index after Pandas 1.5 Upgrade #3825

– Reduced the threshold for setting use_covariates to False for ARIMA models in Au-
toMLSearch #3868

– Pinned woodwork version at <=0.19.0 #3871
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– Updated minimum Pandas version to 1.5.0 #3808

– Remove dsherry from automated dependency update reviews and added tamargrey #3870

• Documentation Changes

• Testing Changes

v0.63.0 Nov. 23, 2022
• Enhancements

– Added fast mode to partial dependence #3753

– Added the ability to serialize featuretools features into time series pipelines #3836

• Fixes
– Fixed TimeSeriesFeaturizer potentially selecting lags outside of feature engineering window

#3773

– Fixed bug where TimeSeriesFeaturizer could not encode Ordinal columns with non numeric
categories #3812

– Updated demo dataset links to point to new endpoint #3826

– Updated STLDecomposer to infer the time index frequency if it’s not present #3829

– Updated _drop_time_index to move the time index from X to both X.index and y.index
#3829

– Fixed bug where engineered features lost their origin attribute in partial dependence, causing it to
fail #3830

– Fixed bug where partial dependence’s fast mode handling for the DFS Transformer wouldn’t work
with multi output features #3830

– Allowed target to be present and ignored in partial dependence’s DFS Transformer fast mode
handling #3830

• Changes
– Consolidated decomposition frequency validation logic to Decomposer class #3811

– Removed Featuretools version upper bound and prevent Woodwork 0.20.0 from being installed
#3813

– Updated min Featuretools version to 0.16.0, min nlp-primitives version to 2.9.0 and min Dask
version to 2022.2.0 #3823

– Rename issue templates config.yaml to config.yml #3844

– Reverted change adding a should_skip_featurization flag to time series pipelines #3862

• Documentation Changes
– Added information about STL Decomposition to the time series docs #3835

– Removed RTD failure on warnings #3864

v0.62.0 Nov. 01, 2022
• Fixes

– Fixed bug with datetime conversion in get_time_index #3792

– Fixed bug where invalid anchored or offset frequencies were including the STLDecomposer in
pipelines #3794
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– Fixed bug where irregular datetime frequencies were causing errors in make_pipeline #3800

• Changes
– Capped dask at < 2022.10.1 #3797

– Uncapped dask and excluded 2022.10.1 from viable versions #3803

– Removed all references to XGBoost’s deprecated _use_label_encoder argument #3805

– Capped featuretools at < 1.17.0 #3805

– Capped woodwork at < 0.21.0 #3805

v0.61.1 Oct. 27, 2022
• Fixes

– Fixed bug where TimeSeriesBaselinePipeline wouldn’t preserve index name of input fea-
tures #3788

– Fixed bug in TimeSeriesBaselinePipeline referencing a static string instead of time index
var #3788

• Documentation Changes
– Updated Release Notes #3788

v0.61.0 Oct. 25, 2022
• Enhancements

– Added the STL Decomposer #3741

– Integrated STLDecomposer into AutoMLSearch for time series regression problems #3781

– Brought the PolynomialDecomposer up to parity with STLDecomposer #3768

• Changes
– Cap Featuretools at < 1.15.0 #3775

– Remove Featuretools upper bound restriction and fix nlp-primitives import statements #3778

v0.60.0 Oct. 19, 2022
• Enhancements

– Add forecast functions to time series regression pipeline #3742

• Fixes
– Fix to allow IDColumnsDataCheck to work with IntegerNullable inputs #3740

– Fixed datasets name for main performance tests #3743

• Changes
– Use Woodwork’s dependence_dict method to calculate for TargetLeakageDataCheck #3728

• Documentation Changes

• Testing Changes

Warning:
Breaking Changes

• TargetLeakageDataCheck now uses argument mutual_info rather than mutual #3728
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v0.59.0 Sept. 27, 2022
• Enhancements

– Enhanced Decomposer with determine_periodicity function to automatically determine pe-
riodicity of seasonal target. #3729

– Enhanced Decomposer with set_seasonal_period function to set a Decomposer object’s sea-
sonal period automatically. #3729

– Added OrdinalEncoder component #3736

• Fixes
– Fixed holdout warning message showing when using default parameters #3727

– Fixed bug in Oversampler where categorical dtypes would fail #3732

• Changes
– Automatic sorting of the time_index prior to running DataChecks has been disabled #3723

• Documentation Changes

• Testing Changes
– Update job to use new looking glass report command #3733

v0.58.0 Sept. 20, 2022
• Enhancements

– Defined get_trend_df() for PolynomialDecomposer to allow decomposition of target data into
trend, seasonality and residual. #3720

– Updated to run with Woodwork >= 0.18.0 #3700

– Pass time index column to time series native estimators but drop otherwise #3691

– Added errors attribute to AutoMLSearch for useful debugging #3702

• Fixes
– Removed multiple samplers occurring in pipelines generated by DefaultAlgorithm #3696

– Fix search order changing when using DefaultAlgorithm #3704

• Changes
– Bumped up minimum version of sktime to 0.12.0. #3720

– Added abstract Decomposer class as a parent to PolynomialDecomposer to support additional
decomposers. #3720

– Pinned pmdarima < 2.0.0 #3679

– Added support for using downcast_nullable_types with Series as well as DataFrames #3697

– Added distinction between ranking and optimization objectives #3721

• Documentation Changes

• Testing Changes
– Updated pytest fixtures and brittle test files to explicitly set woodwork typing information #3697

– Added github workflow to run looking glass performance tests on merge to main #3690
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– Fixed looking glass performance test script #3715

– Remove commit message from looking glass slack message #3719

v0.57.0 Sept. 6, 2022
• Enhancements

– Added KNNImputer class and created new knn parameter for Imputer #3662

• Fixes
– IDColumnsDataCheck now only returns an action code to set the first column as the primary key

if it contains unique values #3639

– IDColumnsDataCheck now can handle primary key columns containing “integer” values that are
of the double type #3683

– Added support for BooleanNullable columns in EvalML pipelines and imputer #3678

– Updated StandardScaler to only apply to numeric columns #3686

• Changes
– Unpinned sktime to allow for version 0.13.2 #3685

– Pinned pmdarima < 2.0.0 #3679

v0.56.1 Aug. 19, 2022
• Fixes

– IDColumnsDataCheck now only returns an action code to set the first column as the primary key
if it contains unique values #3639

– Reverted the make_pipeline changes that conditionally included the imputers #3672

v0.56.0 Aug. 15, 2022
• Enhancements

– Add CI testing environment in Mac for install workflow #3646

– Updated make_pipeline to only include the Imputer in pipelines if NaNs exist in the data #3657

– Updated to run with Woodwork >= 0.17.2 #3626

– Add exclude_featurizers parameter to AutoMLSearch to specify featurizers that should be
excluded from all pipelines #3631

– Add fit_transform method to pipelines and component graphs #3640

– Changed default value of data splitting for time series problem holdout set evaluation #3650

• Fixes
– Reverted the Woodwork 0.17.x compatibility work due to performance regression #3664

• Changes
– Disable holdout set in AutoML search by default #3659

– Pinned sktime at >=0.7.0,<0.13.1 due to slowdowns with time series modeling #3658

– Added additional testing support for Python 3.10 #3609

• Documentation Changes
– Updated broken link checker to exclude stackoverflow domain #3633
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– Add instructions to add new users to evalml-core-feedstock #3636

v0.55.0 July. 24, 2022
• Enhancements

– Increased the amount of logical type information passed to Woodwork when calling ww.init()
in transformers #3604

– Added ability to log how long each batch and pipeline take in automl.search() #3577

– Added the option to set the sp parameter for ARIMA models #3597

– Updated the CV split size of time series problems to match forecast horizon for improved perfor-
mance #3616

– Added holdout set evaluation as part of AutoML search and pipeline ranking #3499

– Added Dockerfile.arm and .dockerignore for python version and M1 testing #3609

– Added test_gen_utils::in_container_arm64() fixture #3609

• Fixes
– Fixed iterative graphs not appearing in documentation #3592

– Updated the load_diabetes() method to account for scikit-learn 1.1.1 changes to the dataset
#3591

– Capped woodwork version at < 0.17.0 #3612

– Bump minimum scikit-optimize version to 0.9.0 :pr:`3614

– Invalid target data checks involving regression and unsupported data types now produce a different
DataCheckMessageCode #3630

– Updated test_data_checks.py::test_data_checks_raises_value_errors_on_init -
more lenient text check #3609

• Changes
– Add pre-commit hooks for linting #3608

– Implemented a lower threshold and window size for the TimeSeriesRegularizer and
DatetimeFormatDataCheck #3627

– Updated IDColumnsDataCheck to return an action to set the first column as the primary key if it
is identified as an ID column #3634

• Documentation Changes

• Testing Changes
– Pinned GraphViz version for Windows CI Test #3596

– Removed skipping of PolynomialDecomposer tests for Python 3.9 envs. #3720

– Removed pytest.mark.skip_if_39 pytest marker #3602 #3607

– Updated pytest==7.1.2 #3609

– Added Dockerfile.arm and .dockerignore for python version and M1 testing #3609

– Added test_gen_utils::in_container_arm64() fixture #3609

Warning:
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Breaking Changes
• Refactored test cases that iterate over all components to use pytest.mark.parametrise and changed

the corresponding if...continue blocks to pytest.mark.xfail #3622

v0.54.0 June. 23, 2022
• Fixes

– Updated the Imputer and SimpleImputer to work with scikit-learn 1.1.1. #3525

– Bumped the minimum versions of scikit-learn to 1.1.1 and imbalanced-learn to 0.9.1. #3525

– Added a clearer error message when describe is called on an un-instantiated ComponentGraph
#3569

– Added a clearer error message when time series’ predict is called with its X_train or y_train
parameter set as None #3579

• Changes
– Don’t pass time_index as kwargs to sktime ARIMA implementation for compatibility with latest

version #3564

– Remove incompatible nlp-primitives version 2.6.0 from accepted dependency versions #3572,
#3574

– Updated evalml authors #3581

• Documentation Changes
– Fix typo in long_description field in setup.cfg #3553

– Update install page to remove Python 3.7 mention #3567

v0.53.1 June. 9, 2022
• Changes

– Set the development status to 4 - Beta in setup.cfg #3550

v0.53.0 June. 9, 2022
• Enhancements

– Pass n_jobs to default algorithm #3548

• Fixes
– Fixed github workflows for featuretools and woodwork to test their main branch against evalml.

#3517

– Supress warnings in TargetEncoder raised by a coming change to default parameters #3540

– Fixed bug where schema was not being preserved in column renaming for XGBoost and Light-
GBM models #3496

• Changes
– Transitioned to use pyproject.toml and setup.cfg away from setup.py #3494, #3536

• Documentation Changes
– Updated the Time Series User Guide page to include known-in-advance features and fix typos

#3521

– Add slack and stackoverflow icon to footer #3528
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– Add install instructions for M1 Mac #3543

• Testing Changes
– Rename yml to yaml for GitHub Actions #3522

– Remove noncore_dependency pytest marker #3541

– Changed test_smotenc_category_features to use valid postal code values in response to
new woodwork type validation #3544

v0.52.0 May. 12, 2022
• Changes

– Added github workflows for featuretools and woodwork to test their main branch against evalml.
#3504

– Added pmdarima to conda recipe. #3505

– Added a threshold for NullDataCheck before a warning is issued for null values #3507

– Changed NoVarianceDataCheck to only output warnings #3506

– Reverted XGBoost Classifier/Regressor patch for all boolean columns needing to be converted to
int. #3503

– Updated roc_curve() and conf_matrix() to work with IntegerNullable and BooleanNullable
types. #3465

– Changed ComponentGraph._transform_features to raise a PipelineError instead of
a ValueError. This is not a breaking change because PipelineError is a subclass of
ValueError. #3497

– Capped sklearn at version 1.1.0 #3518

• Documentation Changes
– Updated to install prophet extras in Read the Docs. #3509

• Testing Changes
– Moved vowpal wabbit in test recipe to evalml package from evalml-core #3502

v0.51.0 Apr. 28, 2022
• Enhancements

– Updated make_pipeline_from_data_check_output to work with time series problems.
#3454

• Fixes
– Changed PipelineBase.graph_json() to return a python dictionary and renamed as
graph_dict()#3463

• Changes
– Added vowpalwabbit to local recipe and remove is_using_conda pytest skip markers from

relevant tests #3481

• Documentation Changes
– Fixed broken link in contributing guide #3464

– Improved development instructions #3468
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– Added the TimeSeriesRegularizer and TimeSeriesImputer to the timeseries section of the
User Guide #3473

– Updated OSS slack link #3487

– Fix rendering of model understanding plotly charts in docs #3460

• Testing Changes
– Updated unit tests to support woodwork 0.16.2 #3482

– Fix some unit tests after vowpal wabbit got added to conda recipe #3486

Warning:
Breaking Changes

• Renamed PipelineBase.graph_json() to PipelineBase.graph_dict() #3463

• Minimum supported woodwork version is now 0.16.2 #3482

v0.50.0 Apr. 12, 2022
• Enhancements

– Added TimeSeriesImputer component #3374

– Replaced pipeline_parameters and custom_hyperparameters with search_parameters
in AutoMLSearch #3373, #3427

– Added TimeSeriesRegularizer to smooth uninferrable date ranges for time series problems
#3376

– Enabled ensembling as a parameter for DefaultAlgorithm #3435, #3444

• Fixes
– Fix DefaultAlgorithm not handling Email and URL features #3419

– Added test to ensure LabelEncoder parameters preserved during AutoMLSearch #3326

• Changes
– Updated DateTimeFormatDataCheck to use woodwork’s infer_frequency function #3425

– Renamed graphs.py to visualizations.py #3439

• Documentation Changes
– Updated the model understanding section of the user guide to include missing functions #3446

– Rearranged the user guide model understanding page for easier navigation #3457

– Update README text to Alteryx #3462

Warning:
Breaking Changes

• Renamed graphs.py to visualizations.py #3439

• Replaced pipeline_parameters and custom_hyperparameters with search_parameters in
AutoMLSearch #3373

v0.49.0 Mar. 31, 2022
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• Enhancements
– Added use_covariates parameter to ARIMARegressor #3407

– AutoMLSearch will set use_covariates to False for ARIMA when dataset is large #3407

– Add ability to retrieve logical types to a component in the graph via
get_component_input_logical_types #3428

– Add ability to get logical types passed to the last component via
last_component_input_logical_types #3428

• Fixes
– Fix conda build after PR 3407 #3429

• Changes
– Moved model understanding metrics from graph.py into a separate file #3417

– Unpin click dependency #3420

– For IterativeAlgorithm, put time series algorithms first #3407

– Use prophet-prebuilt to install prophet in extras #3407

Warning:
Breaking Changes

• Moved model understanding metrics from graph.py to metrics.py #3417

v0.48.0 Mar. 25, 2022
• Enhancements

– Add support for oversampling in time series classification problems #3387

• Fixes
– Fixed TimeSeriesFeaturizer to make it deterministic when creating and choosing columns

#3384

– Fixed bug where Email/URL features with missing values would cause the imputer to error out
#3388

• Changes
– Update maintainers to add Frank #3382

– Allow woodwork version 0.14.0 to be installed #3381

– Moved partial dependence functions from graph.py to a separate file #3404

– Pin click at 8.0.4 due to incompatibility with black #3413

• Documentation Changes
– Added automl user guide section covering search algorithms #3394

– Updated broken links and automated broken link detection #3398

– Upgraded nbconvert #3402, #3411

• Testing Changes
– Updated scheduled workflows to only run on Alteryx owned repos (#3395)
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– Exclude documentation versions other than latest from broken link check #3401

Warning:
Breaking Changes

• Moved partial dependence functions from graph.py to partial_dependence.py #3404

v0.47.0 Mar. 16, 2022
• Enhancements

– Added TimeSeriesFeaturizer into ARIMA-based pipelines #3313

– Added caching capability for ensemble training during AutoMLSearch #3257

– Added new error code for zero unique values in NoVarianceDataCheck #3372

• Fixes
– Fixed get_pipelines to reset pipeline threshold for binary cases #3360

• Changes
– Update maintainers #3365

– Revert pandas 1.3.0 compatibility patch #3378

• Documentation Changes
– Fixed documentation links to point to correct pages #3358

• Testing Changes
– Checkout main branch in build_conda_pkg job #3375

v0.46.0 Mar. 03, 2022
• Enhancements

– Added test_size parameter to ClassImbalanceDataCheck #3341

– Make target optional for NoVarianceDataCheck #3339

• Changes
– Removed python_version<3.9 environment marker from sktime dependency #3332

– Updated DatetimeFormatDataCheck to return all messages and not return early if NaNs are
detected #3354

• Documentation Changes
– Added in-line tabs and copy-paste functionality to documentation, overhauled Install page #3353

v0.45.0 Feb. 17, 2022
• Enhancements

– Added support for pandas >= 1.4.0 #3324

– Standardized feature importance for estimators #3305

– Replaced usage of private method with Woodwork’s public get_subset_schema method #3325

• Changes
– Added an is_cv property to the datasplitters used #3297
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– Changed SimpleImputer to ignore Natural Language columns #3324

– Added drop NaN component to some time series pipelines #3310

• Documentation Changes
– Update README.md with Alteryx link (#3319)

– Added formatting to the AutoML user guide to shorten result outputs #3328

• Testing Changes
– Add auto approve dependency workflow schedule for every 30 mins #3312

v0.44.0 Feb. 04, 2022
• Enhancements

– Updated DefaultAlgorithm to also limit estimator usage for long-running multiclass problems
#3099

– Added make_pipeline_from_data_check_output() utility method #3277

– Updated AutoMLSearch to use DefaultAlgorithm as the default automl algorithm #3261,
#3304

– Added more specific data check errors to DatetimeFormatDataCheck #3288

– Added features as a parameter for AutoMLSearch and add DFSTransformer to pipelines when
features are present #3309

• Fixes
– Updated the binary classification pipeline’s optimize_thresholds method to use Nelder-Mead

#3280

– Fixed bug where feature importance on time series pipelines only showed 0 for time index #3285

• Changes
– Removed DateTimeNaNDataCheck and NaturalLanguageNaNDataCheck in favor of
NullDataCheck #3260

– Drop support for Python 3.7 #3291

– Updated minimum version of woodwork to v0.12.0 #3290

• Documentation Changes
– Update documentation and docstring for validate_holdout_datasets for time series problems #3278

– Fixed mistake in documentation where wrong objective was used for calculating percent-better-
than-baseline #3285

Warning:
Breaking Changes

• Removed DateTimeNaNDataCheck and NaturalLanguageNaNDataCheck in favor of
NullDataCheck #3260

• Dropped support for Python 3.7 #3291

v0.43.0 Jan. 25, 2022
• Enhancements
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– Updated new NullDataCheck to return a warning and suggest an action to impute columns with
null values #3197

– Updated make_pipeline_from_actions to handle null column imputation #3237

– Updated data check actions API to return options instead of actions and add functionality to suggest
and take action on columns with null values #3182

• Fixes
– Fixed categorical data leaking into non-categorical sub-pipelines in DefaultAlgorithm #3209

– Fixed Python 3.9 installation for prophet by updating pmdarima version in requirements #3268

– Allowed DateTime columns to pass through PerColumnImputer without breaking #3267

• Changes
– Updated DataCheck validate() output to return a dictionary instead of list for actions #3142

– Updated DataCheck validate() API to use the new DataCheckActionOption class instead
of DataCheckAction #3152

– Uncapped numba version and removed it from requirements #3263

– Renamed HighlyNullDataCheck to NullDataCheck #3197

– Updated data check validate() output to return a list of warnings and errors instead of a dictio-
nary #3244

– Capped pandas at < 1.4.0 #3274

• Testing Changes
– Bumped minimum IPython version to 7.16.3 in test-requirements.txt based on dependabot

feedback #3269

Warning:
Breaking Changes

• Renamed HighlyNullDataCheck to NullDataCheck #3197

• Updated data check validate() output to return a list of warnings and errors instead of a dictionary.
See the Data Check or Data Check Actions pages (under User Guide) for examples. #3244

• Removed impute_all and default_impute_strategy parameters from the PerColumnImputer
#3267

• Updated PerColumnImputer such that columns not specified in impute_strategies dict will not be
imputed anymore #3267

v0.42.0 Jan. 18, 2022
• Enhancements

– Required the separation of training and test data by gap + 1 units to be verified by time_index
for time series problems #3208

– Added support for boolean features for ARIMARegressor #3187

– Updated dependency bot workflow to remove outdated description and add new configuration to
delete branches automatically #3212

– Added n_obs and n_splits to TimeSeriesParametersDataCheck error details #3246
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• Fixes
– Fixed classification pipelines to only accept target data with the appropriate number of classes

#3185

– Added support for time series in DefaultAlgorithm #3177

– Standardized names of featurization components #3192

– Removed empty cell in text_input.ipynb #3234

– Removed potential prediction explanations failure when pipelines predicted a class with probabil-
ity 1 #3221

– Dropped NaNs before partial dependence grid generation #3235

– Allowed prediction explanations to be json-serializable #3262

– Fixed bug where InvalidTargetDataCheck would not check time series regression targets
#3251

– Fixed bug in are_datasets_separated_by_gap_time_index #3256

• Changes
– Raised lowest compatible numpy version to 1.21.0 to address security concerns #3207

– Changed the default objective to MedianAE from R2 for time series regression #3205

– Removed all-nan Unknown to Double logical conversion in infer_feature_types #3196

– Checking the validity of holdout data for time series problems can be performed by calling
pipelines.utils.validate_holdout_datasets prior to calling predict #3208

• Testing Changes
– Update auto approve workflow trigger and delete branch after merge #3265

Warning:
Breaking Changes

• Renamed DateTime Featurizer Component to DateTime Featurizer and Natural Language
Featurization Component to Natural Language Featurizer #3192

v0.41.0 Jan. 06, 2022
• Enhancements

– Added string support for DataCheckActionCode #3167

– Added DataCheckActionOption class #3134

– Add issue templates for bugs, feature requests and documentation improvements for GitHub #3199

• Fixes
– Fix bug where prediction explanations class_name was shown as float for boolean targets #3179

– Fixed bug in nightly linux tests #3189

• Changes
– Removed usage of scikit-learn’s LabelEncoder in favor of ours #3161

– Removed nullable types checking from infer_feature_types #3156
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– Fixed mean_cv_data and validation_score values in AutoMLSearch.rankings to reflect cv
score or NaN when appropriate #3162

• Testing Changes
– Updated tests to use new pipeline API instead of defining custom pipeline classes #3172

– Add workflow to auto-merge dependency PRs if status checks pass #3184

v0.40.0 Dec. 22, 2021
• Enhancements

– Added TimeSeriesSplittingDataCheck to DefaultDataChecks to verify adequate class rep-
resentation in time series classification problems #3141

– Added the ability to accept serialized features and skip computation in DFSTransformer #3106

– Added support for known-in-advance features #3149

– Added Holt-Winters ExponentialSmoothingRegressor for time series regression problems
#3157

– Required the separation of training and test data by gap + 1 units to be verified by time_index
for time series problems #3160

• Fixes
– Fixed error caused when tuning threshold for time series binary classification #3140

• Changes
– TimeSeriesParametersDataCheck was added to DefaultDataChecks for time series prob-

lems #3139

– Renamed date_index to time_index in problem_configuration for time series problems
#3137

– Updated nlp-primitives minimum version to 2.1.0 #3166

– Updated minimum version of woodwork to v0.11.0 #3171

– Revert 3160 until uninferrable frequency can be addressed earlier in the process #3198

• Documentation Changes
– Added comments to provide clarity on doctests #3155

• Testing Changes
– Parameterized tests in test_datasets.py #3145

Warning:
Breaking Changes

• Renamed date_index to time_index in problem_configuration for time series problems #3137

v0.39.0 Dec. 9, 2021
• Enhancements

– Renamed DelayedFeatureTransformer to TimeSeriesFeaturizer and enhanced it to com-
pute rolling features #3028

– Added ability to impute only specific columns in PerColumnImputer #3123
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– Added TimeSeriesParametersDataCheck to verify the time series parameters are valid given
the number of splits in cross validation #3111

• Fixes
– Default parameters for RFRegressorSelectFromModel and RFClassifierSelectFromModel

has been fixed to avoid selecting all features #3110

• Changes
– Removed reliance on a datetime index for ARIMARegressor and ProphetRegressor #3104

– Included target leakage check when fitting ARIMARegressor to account for the lack of
TimeSeriesFeaturizer in ARIMARegressor based pipelines #3104

– Cleaned up and refactored InvalidTargetDataCheck implementation and docstring #3122

– Removed indices information from the output of HighlyNullDataCheck’s validate() method
#3092

– Added ReplaceNullableTypes component to prepare for handling pandas nullable types. #3090

– Updated make_pipeline for handling pandas nullable types in preprocessing pipeline. #3129

– Removed unused EnsembleMissingPipelinesError exception definition #3131

• Testing Changes
– Refactored tests to avoid using importorskip #3126

– Added skip_during_conda test marker to skip tests that are not supposed to run during conda
build #3127

– Added skip_if_39 test marker to skip tests that are not supposed to run during python 3.9 #3133

Warning:
Breaking Changes

• Renamed DelayedFeatureTransformer to TimeSeriesFeaturizer #3028

• ProphetRegressor now requires a datetime column in X represented by the date_index parameter
#3104

• Renamed module evalml.data_checks.invalid_target_data_check to evalml.
data_checks.invalid_targets_data_check #3122

• Removed unused EnsembleMissingPipelinesError exception definition #3131

v0.38.0 Nov. 27, 2021
• Enhancements

– Added data_check_name attribute to the data check action class #3034

– Added NumWords and NumCharacters primitives to TextFeaturizer and renamed
TextFeaturizer` to ``NaturalLanguageFeaturizer #3030

– Added support for scikit-learn > 1.0.0 #3051

– Required the date_index parameter to be specified for time series problems in AutoMLSearch
#3041

– Allowed time series pipelines to predict on test datasets whose length is less than or equal to the
forecast_horizon. Also allowed the test set index to start at 0. #3071
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– Enabled time series pipeline to predict on data with features that are not known-in-advanced #3094

• Fixes
– Added in error message when fit and predict/predict_proba data types are different #3036

– Fixed bug where ensembling components could not get converted to JSON format #3049

– Fixed bug where components with tuned integer hyperparameters could not get converted to JSON
format #3049

– Fixed bug where force plots were not displaying correct feature values #3044

– Included confusion matrix at the pipeline threshold for find_confusion_matrix_per_threshold
#3080

– Fixed bug where One Hot Encoder would error out if a non-categorical feature had a missing value
#3083

– Fixed bug where features created from categorical columns by Delayed Feature Transformer
would be inferred as categorical #3083

• Changes
– Delete predict_uses_y estimator attribute #3069

– Change DateTimeFeaturizer to use corresponding Featuretools primitives #3081

– Updated TargetDistributionDataCheck to return metadata details as floats rather strings
#3085

– Removed dependency on psutil package #3093

• Documentation Changes
– Updated docs to use data check action methods rather than manually cleaning data #3050

• Testing Changes
– Updated integration tests to use make_pipeline_from_actions instead of private method

#3047

Warning:
Breaking Changes

• Added data_check_name attribute to the data check action class #3034

• Renamed TextFeaturizer` to ``NaturalLanguageFeaturizer #3030

• Updated the Pipeline.graph_json function to return a dictionary of “from” and “to” edges instead
of tuples #3049

• Delete predict_uses_y estimator attribute #3069

• Changed time series problems in AutoMLSearch to need a not-None date_index #3041

• Changed the DelayedFeatureTransformer to throw a ValueError during fit if the date_index is
None #3041

• Passing X=None to DelayedFeatureTransformer is deprecated #3041

v0.37.0 Nov. 9, 2021
• Enhancements
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– Added find_confusion_matrix_per_threshold to Model Understanding #2972

– Limit computationally-intensive models during AutoMLSearch for certain multiclass problems,
allow for opt-in with parameter allow_long_running_models #2982

– Added support for stacked ensemble pipelines to prediction explanations module #2971

– Added integration tests for data checks and data checks actions workflow #2883

– Added a change in pipeline structure to handle categorical columns separately for pipelines in
DefaultAlgorithm #2986

– Added an algorithm to DelayedFeatureTransformer to select better lags #3005

– Added test to ensure pickling pipelines preserves thresholds #3027

– Added AutoML function to access ensemble pipeline’s input pipelines IDs #3011

– Added ability to define which class is “positive” for label encoder in binary classification case
#3033

• Fixes
– Fixed bug where Oversampler didn’t consider boolean columns to be categorical #2980

– Fixed permutation importance failing when target is categorical #3017

– Updated estimator and pipelines’ predict, predict_proba, transform, inverse_transform
methods to preserve input indices #2979

– Updated demo dataset link for daily min temperatures #3023

• Changes
– Updated OutliersDataCheck and UniquenessDataCheck and allow for the suspension of the

Nullable types error #3018

• Documentation Changes
– Fixed cost benefit matrix demo formatting #2990

– Update ReadMe.md with new badge links and updated installation instructions for conda #2998

– Added more comprehensive doctests #3002

v0.36.0 Oct. 27, 2021
• Enhancements

– Added LIME as an algorithm option for explain_predictions and
explain_predictions_best_worst #2905

– Standardized data check messages and added default “rows” and “columns” to data check message
details dictionary #2869

– Added rows_of_interest to pipeline utils #2908

– Added support for woodwork version 0.8.2 #2909

– Enhanced the DateTimeFeaturizer to handle NaNs in date features #2909

– Added support for woodwork logical types PostalCode, SubRegionCode, and CountryCode in
model understanding tools #2946

– Added Vowpal Wabbit regressor and classifiers #2846

– Added NoSplit data splitter for future unsupervised learning searches #2958

– Added method to convert actions into a preprocessing pipeline #2968
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• Fixes
– Fixed bug where partial dependence was not respecting the ww schema #2929

– Fixed calculate_permutation_importance for datetimes on StandardScaler #2938

– Fixed SelectColumns to only select available features for feature selection in
DefaultAlgorithm #2944

– Fixed DropColumns component not receiving parameters in DefaultAlgorithm #2945

– Fixed bug where trained binary thresholds were not being returned by get_pipeline or clone
#2948

– Fixed bug where Oversampler selected ww logical categorical instead of ww semantic category
#2946

• Changes
– Changed make_pipeline function to place the DateTimeFeaturizer prior to the Imputer so

that NaN dates can be imputed #2909

– Refactored OutliersDataCheck and HighlyNullDataCheck to add more descriptive metadata
#2907

– Bumped minimum version of dask from 2021.2.0 to 2021.10.0 #2978

• Documentation Changes
– Added back Future Release section to release notes #2927

– Updated CI to run doctest (docstring tests) and apply necessary fixes to docstrings #2933

– Added documentation for BinaryClassificationPipeline thresholding #2937

• Testing Changes
– Fixed dependency checker to catch full names of packages #2930

– Refactored build_conda_pkg to work from a local recipe #2925

– Refactored component test for different environments #2957

Warning:
Breaking Changes

• Standardized data check messages and added default “rows” and “columns” to data check message
details dictionary. This may change the number of messages returned from a data check. #2869

v0.35.0 Oct. 14, 2021
• Enhancements

– Added human-readable pipeline explanations to model understanding #2861

– Updated to support Featuretools 1.0.0 and nlp-primitives 2.0.0 #2848

• Fixes
– Fixed bug where long mode for the top level search method was not respected #2875

– Pinned cmdstan to 0.28.0 in cmdstan-builder to prevent future breaking of support for
Prophet #2880

– Added Jarque-Bera to the TargetDistributionDataCheck #2891
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• Changes
– Updated pipelines to use a label encoder component instead of doing encoding on the pipeline

level #2821

– Deleted scikit-learn ensembler #2819

– Refactored pipeline building logic out of AutoMLSearch and into IterativeAlgorithm #2854

– Refactored names for methods in ComponentGraph and PipelineBase #2902

• Documentation Changes
– Updated install.ipynb to reflect flexibility for cmdstan version installation #2880

– Updated the conda section of our contributing guide #2899

• Testing Changes
– Updated test_all_estimators to account for Prophet being allowed for Python 3.9 #2892

– Updated linux tests to use cmdstan-builder==0.0.8 #2880

Warning:
Breaking Changes

• Updated pipelines to use a label encoder component instead of doing encoding on the pipeline level.
This means that pipelines will no longer automatically encode non-numerical targets. Please use a label
encoder if working with classification problems and non-numeric targets. #2821

• Deleted scikit-learn ensembler #2819

• IterativeAlgorithm now requires X, y, problem_type as required arguments as well as sam-
pler_name, allowed_model_families, allowed_component_graphs, max_batches, and verbose as op-
tional arguments #2854

• Changed method names of fit_features and compute_final_component_features to
fit_and_transform_all_but_final and transform_all_but_final in ComponentGraph, and
compute_estimator_features to transform_all_but_final in pipeline classes #2902

v0.34.0 Sep. 30, 2021
• Enhancements

– Updated to work with Woodwork 0.8.1 #2783

– Added validation that training_data and training_target are not None in prediction expla-
nations #2787

– Added support for training-only components in pipelines and component graphs #2776

– Added default argument for the parameters value for ComponentGraph.instantiate #2796

– Added TIME_SERIES_REGRESSION to LightGBMRegressor's supported problem types #2793

– Provided a JSON representation of a pipeline’s DAG structure #2812

– Added validation to holdout data passed to predict and predict_proba for time series #2804

– Added information about which row indices are outliers in OutliersDataCheck #2818

– Added verbose flag to top level search() method #2813

– Added support for linting jupyter notebooks and clearing the executed cells and empty cells #2829
#2837
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– Added “DROP_ROWS” action to output of OutliersDataCheck.validate() #2820

– Added the ability of AutoMLSearch to accept a SequentialEngine instance as engine input
#2838

– Added new label encoder component to EvalML #2853

– Added our own partial dependence implementation #2834

• Fixes
– Fixed bug where calculate_permutation_importance was not calculating the right value for

pipelines with target transformers #2782

– Fixed bug where transformed target values were not used in fit for time series pipelines #2780

– Fixed bug where score_pipelines method of AutoMLSearch would not work for time series
problems #2786

– Removed TargetTransformer class #2833

– Added tests to verify ComponentGraph support by pipelines #2830

– Fixed incorrect parameter for baseline regression pipeline in AutoMLSearch #2847

– Fixed bug where the desired estimator family order was not respected in IterativeAlgorithm
#2850

• Changes
– Changed woodwork initialization to use partial schemas #2774

– Made Transformer.transform() an abstract method #2744

– Deleted EmptyDataChecks class #2794

– Removed data check for checking log distributions in make_pipeline #2806

– Changed the minimum woodwork version to 0.8.0 #2783

– Pinned woodwork version to 0.8.0 #2832

– Removed model_family attribute from ComponentBase and transformers #2828

– Limited scikit-learn until new features and errors can be addressed #2842

– Show DeprecationWarning when Sklearn Ensemblers are called #2859

• Testing Changes
– Updated matched assertion message regarding monotonic indices in polynomial detrender tests

#2811

– Added a test to make sure pip versions match conda versions #2851

Warning:
Breaking Changes

• Made Transformer.transform() an abstract method #2744

• Deleted EmptyDataChecks class #2794

• Removed data check for checking log distributions in make_pipeline #2806

v0.33.0 Sep. 15, 2021
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• Fixes
– Fixed bug where warnings during make_pipeline were not being raised to the user #2765

• Changes
– Refactored and removed SamplerBase class #2775

• Documentation Changes
– Added docstring linting packages pydocstyle and darglint to make-lint command #2670

v0.32.1 Sep. 10, 2021
• Enhancements

– Added verbose flag to AutoMLSearch to run search in silent mode by default #2645

– Added label encoder to XGBoostClassifier to remove the warning #2701

– Set eval_metric to logloss for XGBoostClassifier #2741

– Added support for woodwork versions 0.7.0 and 0.7.1 #2743

– Changed explain_predictions functions to display original feature values #2759

– Added X_train and y_train to graph_prediction_vs_actual_over_time and
get_prediction_vs_actual_over_time_data #2762

– Added forecast_horizon as a required parameter to time series pipelines and AutoMLSearch
#2697

– Added predict_in_sample and predict_proba_in_sample methods to time series pipelines
to predict on data where the target is known, e.g. cross-validation #2697

• Fixes
– Fixed bug where _catch_warnings assumed all warnings were PipelineNotUsed #2753

– Fixed bug where Imputer.transform would erase ww typing information prior to handing data
to the SimpleImputer #2752

– Fixed bug where Oversampler could not be copied #2755

• Changes
– Deleted drop_nan_target_rows utility method #2737

– Removed default logging setup and debugging log file #2645

– Changed the default n_jobs value for XGBoostClassifier and XGBoostRegressor to 12 #2757

– Changed TimeSeriesBaselineEstimator to only work on a time series pipeline with a
DelayedFeaturesTransformer #2697

– Added X_train and y_train as optional parameters to pipeline predict, predict_proba.
Only used for time series pipelines #2697

– Added training_data and training_target as optional parameters to
explain_predictions and explain_predictions_best_worst to support time series
pipelines #2697

– Changed time series pipeline predictions to no longer output series/dataframes padded with NaNs.
A prediction will be returned for every row in the X input #2697

• Documentation Changes
– Specified installation steps for Prophet #2713
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– Added documentation for data exploration on data check actions #2696

– Added a user guide entry for time series modelling #2697

• Testing Changes
– Fixed flaky TargetDistributionDataCheck test for very_lognormal distribution #2748

Warning:
Breaking Changes

• Removed default logging setup and debugging log file #2645

• Added X_train and y_train to graph_prediction_vs_actual_over_time and
get_prediction_vs_actual_over_time_data #2762

• Added forecast_horizon as a required parameter to time series pipelines and AutoMLSearch #2697

• Changed TimeSeriesBaselineEstimator to only work on a time series pipeline with a
DelayedFeaturesTransformer #2697

• Added X_train and y_train as required parameters for predict and predict_proba in time series
pipelines #2697

• Added training_data and training_target as required parameters to explain_predictions
and explain_predictions_best_worst for time series pipelines #2697

v0.32.0 Aug. 31, 2021
• Enhancements

– Allow string for engine parameter for AutoMLSearch#2667

– Add ProphetRegressor to AutoML #2619

– Integrated DefaultAlgorithm into AutoMLSearch #2634

– Removed SVM “linear” and “precomputed” kernel hyperparameter options, and improved default
parameters #2651

– Updated ComponentGraph initalization to raise ValueError when user attempts to use .y for a
component that does not produce a tuple output #2662

– Updated to support Woodwork 0.6.0 #2690

– Updated pipeline graph() to distingush X and y edges #2654

– Added DropRowsTransformer component #2692

– Added DROP_ROWS to _make_component_list_from_actions and clean up metadata #2694

– Add new ensembler component #2653

• Fixes
– Updated Oversampler logic to select best SMOTE based on component input instead of pipeline

input #2695

– Added ability to explicitly close DaskEngine resources to improve runtime and reduce Dask warn-
ings #2667

– Fixed partial dependence bug for ensemble pipelines #2714

– Updated TargetLeakageDataCheck to maintain user-selected logical types #2711
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• Changes
– Replaced SMOTEOversampler, SMOTENOversampler and SMOTENCOversampler with consoli-

dated Oversampler component #2695

– Removed LinearRegressor from the list of default AutoMLSearch estimators due to poor per-
formance #2660

• Documentation Changes
– Added user guide documentation for using ComponentGraph and added ComponentGraph to API

reference #2673

– Updated documentation to make parallelization of AutoML clearer #2667

• Testing Changes
– Removes the process-level parallelism from the test_cancel_job test #2666

– Installed numba 0.53 in windows CI to prevent problems installing version 0.54 #2710

Warning:
Breaking Changes

• Renamed the current top level search method to search_iterative and defined a new search
method for the DefaultAlgorithm #2634

• Replaced SMOTEOversampler, SMOTENOversampler and SMOTENCOversampler with consolidated
Oversampler component #2695

• Removed LinearRegressor from the list of default AutoMLSearch estimators due to poor perfor-
mance #2660

v0.31.0 Aug. 19, 2021
• Enhancements

– Updated the high variance check in AutoMLSearch to be robust to a variety of objectives and cv
scores #2622

– Use Woodwork’s outlier detection for the OutliersDataCheck #2637

– Added ability to utilize instantiated components when creating a pipeline #2643

– Sped up the all Nan and unknown check in infer_feature_types #2661

• Fixes

• Changes
– Deleted _put_into_original_order helper function #2639

– Refactored time series pipeline code using a time series pipeline base class #2649

– Renamed dask_tests to parallel_tests #2657

– Removed commented out code in pipeline_meta.py #2659

• Documentation Changes
– Add complete install command to README and Install section #2627

– Cleaned up documentation for MulticollinearityDataCheck #2664

• Testing Changes
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– Speed up CI by splitting Prophet tests into a separate workflow in GitHub #2644

Warning:
Breaking Changes

• TimeSeriesRegressionPipeline no longer inherits from TimeSeriesRegressionPipeline
#2649

v0.30.2 Aug. 16, 2021
• Fixes

– Updated changelog and version numbers to match the release. Release 0.30.1 was release erro-
neously without a change to the version numbers. 0.30.2 replaces it.

v0.30.1 Aug. 12, 2021
• Enhancements

– Added DatetimeFormatDataCheck for time series problems #2603

– Added ProphetRegressor to estimators #2242

– Updated ComponentGraph to handle not calling samplers’ transform during predict, and updated
samplers’ transform methods s.t. fit_transform is equivalent to fit(X, y).transform(X,
y) #2583

– Updated ComponentGraph _validate_component_dict logic to be stricter about input values
#2599

– Patched bug in xgboost estimators where predicting on a feature matrix of only booleans would
throw an exception. #2602

– Updated ARIMARegressor to use relative forecasting to predict values #2613

– Added support for creating pipelines without an estimator as the final component and added
transform(X, y) method to pipelines and component graphs #2625

– Updated to support Woodwork 0.5.1 #2610

• Fixes
– Updated AutoMLSearch to drop ARIMARegressor from allowed_estimators if an incompat-

ible frequency is detected #2632

– Updated get_best_sampler_for_data to consider all non-numeric datatypes as categorical for
SMOTE #2590

– Fixed inconsistent test results from TargetDistributionDataCheck #2608

– Adopted vectorized pd.NA checking for Woodwork 0.5.1 support #2626

– Pinned upper version of astroid to 2.6.6 to keep ReadTheDocs working. #2638

• Changes
– Renamed SMOTE samplers to SMOTE oversampler #2595

– Changed partial_dependence and graph_partial_dependence to raise a
PartialDependenceError instead of ValueError. This is not a breaking change because
PartialDependenceError is a subclass of ValueError #2604

– Cleaned up code duplication in ComponentGraph #2612

– Stored predict_proba results in .x for intermediate estimators in ComponentGraph #2629

2077

https://github.com/alteryx/evalml/pull/2644
https://github.com/alteryx/evalml/pull/2649
https://github.com/alteryx/evalml/pull/2603
https://github.com/alteryx/evalml/pull/2242
https://github.com/alteryx/evalml/pull/2583
https://github.com/alteryx/evalml/pull/2599
https://github.com/alteryx/evalml/pull/2602
https://github.com/alteryx/evalml/pull/2613
https://github.com/alteryx/evalml/pull/2625
https://github.com/alteryx/evalml/pull/2610
https://github.com/alteryx/evalml/pull/2632
https://github.com/alteryx/evalml/pull/2590
https://github.com/alteryx/evalml/pull/2608
https://github.com/alteryx/evalml/pull/2626
https://github.com/alteryx/evalml/pull/2638
https://github.com/alteryx/evalml/pull/2595
https://github.com/alteryx/evalml/pull/2604
https://github.com/alteryx/evalml/pull/2612
https://github.com/alteryx/evalml/pull/2629


EvalML Documentation, Release 0.80.0

• Documentation Changes
– To avoid local docs build error, only add warning disable and download headers on ReadTheDocs

builds, not locally #2617

• Testing Changes
– Updated partial_dependence tests to change the element-wise comparison per the Plotly 5.2.1

upgrade #2638

– Changed the lint CI job to only check against python 3.9 via the -t flag #2586

– Installed Prophet in linux nightlies test and fixed test_all_components #2598

– Refactored and fixed all make_pipeline tests to assert correct order and address new Woodwork
Unknown type inference #2572

– Removed component_graphs as a global variable in test_component_graphs.py #2609

Warning:
Breaking Changes

• Renamed SMOTE samplers to SMOTE oversampler. Please use SMOTEOversampler,
SMOTENCOversampler, SMOTENOversampler instead of SMOTESampler, SMOTENCSampler,
and SMOTENSampler #2595

v0.30.0 Aug. 3, 2021
• Enhancements

– Added LogTransformer and TargetDistributionDataCheck #2487

– Issue a warning to users when a pipeline parameter passed in isn’t used in the pipeline #2564

– Added Gini coefficient as an objective #2544

– Added repr to ComponentGraph #2565

– Added components to extract features from URL and EmailAddress Logical Types #2550

– Added support for NaN values in TextFeaturizer #2532

– Added SelectByType transformer #2531

– Added separate thresholds for percent null rows and columns in HighlyNullDataCheck #2562

– Added support for NaN natural language values #2577

• Fixes
– Raised error message for types URL, NaturalLanguage, and EmailAddress in
partial_dependence #2573

• Changes
– Updated PipelineBase implementation for creating pipelines from a list of components #2549

– Moved get_hyperparameter_ranges to PipelineBase class from automl/utils module #2546

– Renamed ComponentGraph’s get_parents to get_inputs #2540

– Removed ComponentGraph.linearized_component_graph and ComponentGraph.
from_list #2556
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– Updated ComponentGraph to enforce requiring .x and .y inputs for each component in the graph
#2563

– Renamed existing ensembler implementation from StackedEnsemblers to
SklearnStackedEnsemblers #2578

• Documentation Changes
– Added documentation for DaskEngine and CFEngine parallel engines #2560

– Improved detail of TextFeaturizer docstring and tutorial #2568

• Testing Changes
– Added test that makes sure split_data does not shuffle for time series problems #2552

Warning:
Breaking Changes

• Moved get_hyperparameter_ranges to PipelineBase class from automl/utils module #2546

• Renamed ComponentGraph’s get_parents to get_inputs #2540

• Removed ComponentGraph.linearized_component_graph and ComponentGraph.from_list
#2556

• Updated ComponentGraph to enforce requiring .x and .y inputs for each component in the graph #2563

v0.29.0 Jul. 21, 2021
• Enhancements

– Updated 1-way partial dependence support for datetime features #2454

– Added details on how to fix error caused by broken ww schema #2466

– Added ability to use built-in pickle for saving AutoMLSearch #2463

– Updated our components and component graphs to use latest features of ww 0.4.1, e.g.
concat_columns and drop in-place. #2465

– Added new, concurrent.futures based engine for parallel AutoML #2506

– Added support for new Woodwork Unknown type in AutoMLSearch #2477

– Updated our components with an attribute that describes if they modify features or targets and can
be used in list API for pipeline initialization #2504

– Updated ComponentGraph to accept X and y as inputs #2507

– Removed unused TARGET_BINARY_INVALID_VALUES from DataCheckMessageCode enum and
fixed formatting of objective documentation #2520

– Added EvalMLAlgorithm #2525

– Added support for NaN values in TextFeaturizer #2532

• Fixes
– Fixed FraudCost objective and reverted threshold optimization method for binary classification

to Golden #2450

– Added custom exception message for partial dependence on features with scales that are too small
#2455
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– Ensures the typing for Ordinal and Datetime ltypes are passed through _re-
tain_custom_types_and_initalize_woodwork #2461

– Updated to work with Pandas 1.3.0 #2442

– Updated to work with sktime 0.7.0 #2499

• Changes
– Updated XGBoost dependency to >=1.4.2 #2484, #2498

– Added a DeprecationWarning about deprecating the list API for ComponentGraph #2488

– Updated make_pipeline for AutoML to create dictionaries, not lists, to initialize pipelines #2504

– No longer installing graphviz on windows in our CI pipelines because release 0.17 breaks windows
3.7 #2516

• Documentation Changes
– Moved docstrings from __init__ to class pages, added missing docstrings for missing classes,

and updated missing default values #2452

– Build documentation with sphinx-autoapi #2458

– Change autoapi_ignore to only ignore files in evalml/tests/* #2530

• Testing Changes
– Fixed flaky dask tests #2471

– Removed shellcheck action from build_conda_pkg action #2514

– Added a tmp_dir fixture that deletes its contents after tests run #2505

– Added a test that makes sure all pipelines in AutoMLSearch get the same data splits #2513

– Condensed warning output in test logs #2521

Warning:
Breaking Changes

• NaN values in the Natural Language type are no longer supported by the Imputer with the pandas
upgrade. #2477

v0.28.0 Jul. 2, 2021
• Enhancements

– Added support for showing a Individual Conditional Expectations plot when graphing Partial De-
pendence #2386

– Exposed thread_count for Catboost estimators as n_jobs parameter #2410

– Updated Objectives API to allow for sample weighting #2433

• Fixes
– Deleted unreachable line from IterativeAlgorithm #2464

• Changes
– Pinned Woodwork version between 0.4.1 and 0.4.2 #2460

– Updated psutils minimum version in requirements #2438
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– Updated log_error_callback to not include filepath in logged message #2429

• Documentation Changes
– Sped up docs #2430

– Removed mentions of DataTable and DataColumn from the docs #2445

• Testing Changes
– Added slack integration for nightlies tests #2436

– Changed build_conda_pkg CI job to run only when dependencies are updates #2446

– Updated workflows to store pytest runtimes as test artifacts #2448

– Added AutoMLTestEnv test fixture for making it easy to mock automl tests #2406

v0.27.0 Jun. 22, 2021
• Enhancements

– Adds force plots for prediction explanations #2157

– Removed self-reference from AutoMLSearch #2304

– Added support for nonlinear pipelines for generate_pipeline_code #2332

– Added inverse_transform method to pipelines #2256

– Add optional automatic update checker #2350

– Added search_order to AutoMLSearch’s rankings and full_rankings tables #2345

– Updated threshold optimization method for binary classification #2315

– Updated demos to pull data from S3 instead of including demo data in package #2387

– Upgrade woodwork version to v0.4.1 #2379

• Fixes
– Preserve user-specified woodwork types throughout pipeline fit/predict #2297

– Fixed ComponentGraph appending target to final_component_features if there is a compo-
nent that returns both X and y #2358

– Fixed partial dependence graph method failing on multiclass problems when the class labels are
numeric #2372

– Added thresholding_objective argument to AutoMLSearch for binary classification prob-
lems #2320

– Added change for k_neighbors parameter in SMOTE Oversamplers to automatically handle
small samples #2375

– Changed naming for Logistic Regression Classifier file #2399

– Pinned pytest-timeout to fix minimum dependence checker #2425

– Replaced Elastic Net Classifier base class with Logistsic Regression to avoid NaN
outputs #2420

• Changes
– Cleaned up PipelineBase’s component_graph and _component_graph attributes. Updated
PipelineBase __repr__ and added __eq__ for ComponentGraph #2332

– Added and applied black linting package to the EvalML repo in place of autopep8 #2306
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– Separated custom_hyperparameters from pipelines and added them as an argument to
AutoMLSearch #2317

– Replaced allowed_pipelines with allowed_component_graphs #2364

– Removed private method _compute_features_during_fit from PipelineBase #2359

– Updated compute_order in ComponentGraph to be a read-only property #2408

– Unpinned PyZMQ version in requirements.txt #2389

– Uncapping LightGBM version in requirements.txt #2405

– Updated minimum version of plotly #2415

– Removed SensitivityLowAlert objective from core objectives #2418

• Documentation Changes
– Fixed lead scoring weights in the demos documentation #2315

– Fixed start page code and description dataset naming discrepancy #2370

• Testing Changes
– Update minimum unit tests to run on all pull requests #2314

– Pass token to authorize uploading of codecov reports #2344

– Add pytest-timeout. All tests that run longer than 6 minutes will fail. #2374

– Separated the dask tests out into separate github action jobs to isolate dask failures. #2376

– Refactored dask tests #2377

– Added the combined dask/non-dask unit tests back and renamed the dask only unit tests. #2382

– Sped up unit tests and split into separate jobs #2365

– Change CI job names, run lint for python 3.9, run nightlies on python 3.8 at 3am EST #2395 #2398

– Set fail-fast to false for CI jobs that run for PRs #2402

Warning:
Breaking Changes

• AutoMLSearch will accept allowed_component_graphs instead of allowed_pipelines #2364

• Removed PipelineBase’s _component_graph attribute. Updated PipelineBase __repr__ and
added __eq__ for ComponentGraph #2332

• pipeline_parameters will no longer accept skopt.space variables since hyperparameter ranges will now
be specified through custom_hyperparameters #2317

v0.25.0 Jun. 01, 2021
• Enhancements

– Upgraded minimum woodwork to version 0.3.1. Previous versions will not be supported #2181

– Added a new callback parameter for explain_predictions_best_worst #2308

• Fixes

• Changes
– Deleted the return_pandas flag from our demo data loaders #2181
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– Moved default_parameters to ComponentGraph from PipelineBase #2307

• Documentation Changes
– Updated the release procedure documentation #2230

• Testing Changes
– Ignoring test_saving_png_file while building conda package #2323

Warning:
Breaking Changes

• Deleted the return_pandas flag from our demo data loaders #2181

• Upgraded minimum woodwork to version 0.3.1. Previous versions will not be supported #2181

• Due to the weak-ref in woodwork, set the result of infer_feature_types to a variable before access-
ing woodwork #2181

v0.24.2 May. 24, 2021
• Enhancements

– Added oversamplers to AutoMLSearch #2213 #2286

– Added dictionary input functionality for Undersampler component #2271

– Changed the default parameter values for Elastic Net Classifier and Elastic Net
Regressor #2269

– Added dictionary input functionality for the Oversampler components #2288

• Fixes
– Set default n_jobs to 1 for StackedEnsembleClassifier and StackedEnsembleRegressor until fix for

text-based parallelism in sklearn stacking can be found #2295

• Changes
– Updated start_iteration_callback to accept a pipeline instance instead of a pipeline class

and no longer accept pipeline parameters as a parameter #2290

– Refactored calculate_permutation_importance method and add per-column permutation
importance method #2302

– Updated logging information in AutoMLSearch.__init__ to clarify pipeline generation #2263

• Documentation Changes
– Minor changes to the release procedure #2230

• Testing Changes
– Use codecov action to update coverage reports #2238

– Removed MarkupSafe dependency version pin from requirements.txt and moved instead into RTD
docs build CI #2261

Warning:
Breaking Changes
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• Updated start_iteration_callback to accept a pipeline instance instead of a pipeline class and no
longer accept pipeline parameters as a parameter #2290

• Moved default_parameters to ComponentGraph from PipelineBase. A pipeline’s
default_parameters is now accessible via pipeline.component_graph.default_parameters
#2307

v0.24.1 May. 16, 2021
• Enhancements

– Integrated ARIMARegressor into AutoML #2009

– Updated HighlyNullDataCheck to also perform a null row check #2222

– Set max_depth to 1 in calls to featuretools dfs #2231

• Fixes
– Removed data splitter sampler calls during training #2253

– Set minimum required version for for pyzmq, colorama, and docutils #2254

– Changed BaseSampler to return None instead of y #2272

• Changes
– Removed ensemble split and indices in AutoMLSearch #2260

– Updated pipeline repr() and generate_pipeline_code to return pipeline instances without
generating custom pipeline class #2227

• Documentation Changes
– Capped Sphinx version under 4.0.0 #2244

• Testing Changes
– Change number of cores for pytest from 4 to 2 #2266

– Add minimum dependency checker to generate minimum requirement files #2267

– Add unit tests with minimum dependencies #2277

v0.24.0 May. 04, 2021
• Enhancements

– Added date_index as a required parameter for TimeSeries problems #2217

– Have the OneHotEncoder return the transformed columns as booleans rather than floats #2170

– Added Oversampler transformer component to EvalML #2079

– Added Undersampler to AutoMLSearch, as well as arguments _sampler_method and
sampler_balanced_ratio #2128

– Updated prediction explanations functions to allow pipelines with XGBoost estimators #2162

– Added partial dependence for datetime columns #2180

– Update precision-recall curve with positive label index argument, and fix for 2d predicted proba-
bilities #2090

– Add pct_null_rows to HighlyNullDataCheck #2211

– Added a standalone AutoML search method for convenience, which runs data checks and then
runs automl #2152
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– Make the first batch of AutoML have a predefined order, with linear models first and complex
models last #2223 #2225

– Added sampling dictionary support to BalancedClassficationSampler #2235

• Fixes
– Fixed partial dependence not respecting grid resolution parameter for numerical features #2180

– Enable prediction explanations for catboost for multiclass problems #2224

• Changes
– Deleted baseline pipeline classes #2202

– Reverting user specified date feature PR #2155 until pmdarima installation fix is found #2214

– Updated pipeline API to accept component graph and other class attributes as instance parameters.
Old pipeline API still works but will not be supported long-term. #2091

– Removed all old datasplitters from EvalML #2193

– Deleted make_pipeline_from_components #2218

• Documentation Changes
– Renamed dataset to clarify that its gzipped but not a tarball #2183

– Updated documentation to use pipeline instances instead of pipeline subclasses #2195

– Updated contributing guide with a note about GitHub Actions permissions #2090

– Updated automl and model understanding user guides #2090

• Testing Changes
– Use machineFL user token for dependency update bot, and add more reviewers #2189

Warning:
Breaking Changes

• All baseline pipeline classes (BaselineBinaryPipeline, BaselineMulticlassPipeline,
BaselineRegressionPipeline, etc.) have been deleted #2202

• Updated pipeline API to accept component graph and other class attributes as instance parameters.
Old pipeline API still works but will not be supported long-term. Pipelines can now be initialized by
specifying the component graph as the first parameter, and then passing in optional arguments such
as custom_name, parameters, etc. For example, BinaryClassificationPipeline(["Random
Forest Classifier"], parameters={}). #2091

• Removed all old datasplitters from EvalML #2193

• Deleted utility method make_pipeline_from_components #2218

v0.23.0 Apr. 20, 2021
• Enhancements

– Refactored EngineBase and SequentialEngine api. Adding DaskEngine #1975.

– Added optional engine argument to AutoMLSearch #1975

– Added a warning about how time series support is still in beta when a user passes in a time series
problem to AutoMLSearch #2118
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– Added NaturalLanguageNaNDataCheck data check #2122

– Added ValueError to partial_dependence to prevent users from computing partial dependence
on columns with all NaNs #2120

– Added standard deviation of cv scores to rankings table #2154

• Fixes
– Fixed BalancedClassificationDataCVSplit, BalancedClassificationDataTVSplit,

and BalancedClassificationSampler to use minority:majority ratio instead of
majority:minority #2077

– Fixed bug where two-way partial dependence plots with categorical variables were not working
correctly #2117

– Fixed bug where hyperparameters were not displaying properly for pipelines with a list
component_graph and duplicate components #2133

– Fixed bug where pipeline_parameters argument in AutoMLSearch was not applied to
pipelines passed in as allowed_pipelines #2133

– Fixed bug where AutoMLSearch was not applying custom hyperparameters to pipelines with a
list component_graph and duplicate components #2133

• Changes
– Removed hyperparameter_ranges from Undersampler and renamed balanced_ratio to
sampling_ratio for samplers #2113

– Renamed TARGET_BINARY_NOT_TWO_EXAMPLES_PER_CLASS data check message code to
TARGET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS #2126

– Modified one-way partial dependence plots of categorical features to display data with a bar plot
#2117

– Renamed score column for automl.rankings as mean_cv_score #2135

– Remove ‘warning’ from docs tool output #2031

• Documentation Changes
– Fixed conf.py file #2112

– Added a sentence to the automl user guide stating that our support for time series problems is still
in beta. #2118

– Fixed documentation demos #2139

– Update test badge in README to use GitHub Actions #2150

• Testing Changes
– Fixed test_describe_pipeline for pandas v1.2.4 #2129

– Added a GitHub Action for building the conda package #1870 #2148

Warning:
Breaking Changes

• Renamed balanced_ratio to sampling_ratio for the BalancedClassificationDataCVSplit,
BalancedClassificationDataTVSplit, BalancedClassficationSampler, and Undersampler
#2113
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• Deleted the “errors” key from automl results #1975

• Deleted the raise_and_save_error_callback and the log_and_save_error_callback #1975

• Fixed BalancedClassificationDataCVSplit, BalancedClassificationDataTVSplit, and
BalancedClassificationSampler to use minority:majority ratio instead of majority:minority
#2077

v0.22.0 Apr. 06, 2021
• Enhancements

– Added a GitHub Action for linux_unit_tests#2013

– Added recommended actions for InvalidTargetDataCheck, updated
_make_component_list_from_actions to address new action, and added TargetImputer
component #1989

– Updated AutoMLSearch._check_for_high_variance to not emit RuntimeWarning #2024

– Added exception when pipeline passed to explain_predictions is a Stacked Ensemble
pipeline #2033

– Added sensitivity at low alert rates as an objective #2001

– Added Undersampler transformer component #2030

• Fixes
– Updated Engine’s train_batch to apply undersampling #2038

– Fixed bug in where Time Series Classification pipelines were not encoding targets in predict
and predict_proba #2040

– Fixed data splitting errors if target is float for classification problems #2050

– Pinned docutils to <0.17 to fix ReadtheDocs warning issues #2088

• Changes
– Removed lists as acceptable hyperparameter ranges in AutoMLSearch #2028

– Renamed “details” to “metadata” for data check actions #2008

• Documentation Changes
– Catch and suppress warnings in documentation #1991 #2097

– Change spacing in start.ipynb to provide clarity for AutoMLSearch #2078

– Fixed start code on README #2108

• Testing Changes

v0.21.0 Mar. 24, 2021
• Enhancements

– Changed AutoMLSearch to default optimize_thresholds to True #1943

– Added multiple oversampling and undersampling sampling methods as data splitters for imbal-
anced classification #1775

– Added params to balanced classification data splitters for visibility #1966

– Updated make_pipeline to not add Imputer if input data does not have numeric or categorical
columns #1967
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– Updated ClassImbalanceDataCheck to better handle multiclass imbalances #1986

– Added recommended actions for the output of data check’s validate method #1968

– Added error message for partial_dependence when features are mostly the same value #1994

– Updated OneHotEncoder to drop one redundant feature by default for features with two categories
#1997

– Added a PolynomialDecomposer component #1992

– Added DateTimeNaNDataCheck data check #2039

• Fixes
– Changed best pipeline to train on the entire dataset rather than just ensemble indices for ensemble

problems #2037

– Updated binary classification pipelines to use objective decision function during scoring of custom
objectives #1934

• Changes
– Removed data_checks parameter, data_check_results and data checks logic from
AutoMLSearch #1935

– Deleted random_state argument #1985

– Updated Woodwork version requirement to v0.0.11 #1996

• Documentation Changes

• Testing Changes
– Removed build_docs CI job in favor of RTD GH builder #1974

– Added tests to confirm support for Python 3.9 #1724

– Added tests to support Dask AutoML/Engine #1990

– Changed build_conda_pkg job to use latest_release_changes branch in the feedstock.
#1979

Warning:
Breaking Changes

• Changed AutoMLSearch to default optimize_thresholds to True #1943

• Removed data_checks parameter, data_check_results and data checks logic from
AutoMLSearch. To run the data checks which were previously run by default in AutoMLSearch, please
call DefaultDataChecks().validate(X_train, y_train) or take a look at our documentation
for more examples. #1935

• Deleted random_state argument #1985

v0.20.0 Mar. 10, 2021
• Enhancements

– Added a GitHub Action for Detecting dependency changes #1933

– Create a separate CV split to train stacked ensembler on for AutoMLSearch #1814

– Added a GitHub Action for Linux unit tests #1846
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– Added ARIMARegressor estimator #1894

– Added DataCheckAction class and DataCheckActionCode enum #1896

– Updated Woodwork requirement to v0.0.10 #1900

– Added BalancedClassificationDataCVSplit and BalancedClassificationDataTVSplit
to AutoMLSearch #1875

– Update default classification data splitter to use downsampling for highly imbalanced data #1875

– Updated describe_pipeline to return more information, including id of pipelines used for
ensemble models #1909

– Added utility method to create list of components from a list of DataCheckAction #1907

– Updated validate method to include a action key in returned dictionary for all
DataCheck``and ``DataChecks #1916

– Aggregating the shap values for predictions that we know the provenance of, e.g. OHE, text, and
date-time. #1901

– Improved error message when custom objective is passed as a string in pipeline.score #1941

– Added score_pipelines and train_pipelines methods to AutoMLSearch #1913

– Added support for pandas version 1.2.0 #1708

– Added score_batch and train_batch abstact methods to EngineBase and implementations
in SequentialEngine #1913

– Added ability to handle index columns in AutoMLSearch and DataChecks #2138

• Fixes
– Removed CI check for check_dependencies_updated_linux #1950

– Added metaclass for time series pipelines and fix binary classification pipeline predict not using
objective if it is passed as a named argument #1874

– Fixed stack trace in prediction explanation functions caused by mixed string/numeric pandas col-
umn names #1871

– Fixed stack trace caused by passing pipelines with duplicate names to AutoMLSearch #1932

– Fixed AutoMLSearch.get_pipelines returning pipelines with the same attributes #1958

• Changes
– Reversed GitHub Action for Linux unit tests until a fix for report generation is found #1920

– Updated add_results in AutoMLAlgorithm to take in entire pipeline results dictionary from
AutoMLSearch #1891

– Updated ClassImbalanceDataCheck to look for severe class imbalance scenarios #1905

– Deleted the explain_prediction function #1915

– Removed HighVarianceCVDataCheck and convered it to an AutoMLSearch method instead
#1928

– Removed warning in InvalidTargetDataCheck returned when numeric binary classification
targets are not (0, 1) #1959

• Documentation Changes
– Updated model_understanding.ipynb to demo the two-way partial dependence capability

#1919
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• Testing Changes

Warning:
Breaking Changes

• Deleted the explain_prediction function #1915

• Removed HighVarianceCVDataCheck and convered it to an AutoMLSearch method instead #1928

• Added score_batch and train_batch abstact methods to EngineBase. These need to be imple-
mented in Engine subclasses #1913

v0.19.0 Feb. 23, 2021
• Enhancements

– Added a GitHub Action for Python windows unit tests #1844

– Added a GitHub Action for checking updated release notes #1849

– Added a GitHub Action for Python lint checks #1837

– Adjusted explain_prediction, explain_predictions and
explain_predictions_best_worst to handle timeseries problems. #1818

– Updated InvalidTargetDataCheck to check for mismatched indices in target and features #1816

– Updated Woodwork structures returned from components to support Woodwork logical type over-
rides set by the user #1784

– Updated estimators to keep track of input feature names during fit() #1794

– Updated visualize_decision_tree to include feature names in output #1813

– Added is_bounded_like_percentage property for objectives. If true, the
calculate_percent_difference method will return the absolute difference rather than
relative difference #1809

– Added full error traceback to AutoMLSearch logger file #1840

– Changed TargetEncoder to preserve custom indices in the data #1836

– Refactored explain_predictions and explain_predictions_best_worst to only compute
features once for all rows that need to be explained #1843

– Added custom random undersampler data splitter for classification #1857

– Updated OutliersDataCheck implementation to calculate the probability of having no outliers
#1855

– Added Engines pipeline processing API #1838

• Fixes
– Changed EngineBase random_state arg to random_seed and same for user guide docs #1889

• Changes
– Modified calculate_percent_difference so that division by 0 is now inf rather than nan

#1809

– Removed text_columns parameter from LSA and TextFeaturizer components #1652

– Added random_seed as an argument to our automl/pipeline/component API. Using
random_state will raise a warning #1798
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– Added DataCheckError message in InvalidTargetDataCheck if input target is None and re-
moved exception raised #1866

• Documentation Changes

• Testing Changes
– Added back coverage for _get_feature_provenance in TextFeaturizer after
text_columns was removed #1842

– Pin graphviz version for windows builds #1847

– Unpin graphviz version for windows builds #1851

Warning:
Breaking Changes

• Added a deprecation warning to explain_prediction. It will be deleted in the next release. #1860

v0.18.2 Feb. 10, 2021
• Enhancements

– Added uniqueness score data check #1785

– Added “dataframe” output format for prediction explanations #1781

– Updated LightGBM estimators to handle pandas.MultiIndex #1770

– Sped up permutation importance for some pipelines #1762

– Added sparsity data check #1797

– Confirmed support for threshold tuning for binary time series classification problems #1803

• Fixes

• Changes

• Documentation Changes
– Added section on conda to the contributing guide #1771

– Updated release process to reflect freezing main before perf tests #1787

– Moving some prs to the right section of the release notes #1789

– Tweak README.md. #1800

– Fixed back arrow on install page docs #1795

– Fixed docstring for ClassImbalanceDataCheck.validate() #1817

• Testing Changes

v0.18.1 Feb. 1, 2021
• Enhancements

– Added graph_t_sne as a visualization tool for high dimensional data #1731

– Added the ability to see the linear coefficients of features in linear models terms #1738

– Added support for scikit-learn v0.24.0 #1733

– Added support for scipy v1.6.0 #1752
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– Added SVM Classifier and Regressor to estimators #1714 #1761

• Fixes
– Addressed bug with partial_dependence and categorical data with more categories than grid

resolution #1748

– Removed random_state arg from get_pipelines in AutoMLSearch #1719

– Pinned pyzmq at less than 22.0.0 till we add support #1756

• Changes
– Updated components and pipelines to return Woodwork data structures #1668

– Updated clone() for pipelines and components to copy over random state automatically #1753

– Dropped support for Python version 3.6 #1751

– Removed deprecated verbose flag from AutoMLSearch parameters #1772

• Documentation Changes
– Add Twitter and Github link to documentation toolbar #1754

– Added Open Graph info to documentation #1758

• Testing Changes

Warning:
Breaking Changes

• Components and pipelines return Woodwork data structures instead of pandas data structures #1668

• Python 3.6 will not be actively supported due to discontinued support from EvalML dependencies.

• Deprecated verbose flag is removed for AutoMLSearch #1772

v0.18.0 Jan. 26, 2021
• Enhancements

– Added RMSLE, MSLE, and MAPE to core objectives while checking for negative target values
in invalid_targets_data_check #1574

– Added validation checks for binary problems with regression-like datasets and multiclass problems
without true multiclass targets in invalid_targets_data_check #1665

– Added time series support for make_pipeline #1566

– Added target name for output of pipeline predict method #1578

– Added multiclass check to InvalidTargetDataCheck for two examples per class #1596

– Added support for graphviz v0.16 #1657

– Enhanced time series pipelines to accept empty features #1651

– Added KNN Classifier to estimators. #1650

– Added support for list inputs for objectives #1663

– Added support for AutoMLSearch to handle time series classification pipelines #1666

– Enhanced DelayedFeaturesTransformer to encode categorical features and targets before de-
laying them #1691
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– Added 2-way dependence plots. #1690

– Added ability to directly iterate through components within Pipelines #1583

• Fixes
– Fixed inconsistent attributes and added Exceptions to docs #1673

– Fixed TargetLeakageDataCheck to use Woodwork mutual_information rather than using
Pandas’ Pearson Correlation #1616

– Fixed thresholding for pipelines in AutoMLSearch to only threshold binary classification pipelines
#1622 #1626

– Updated load_data to return Woodwork structures and update default parameter value for index
to None #1610

– Pinned scipy at < 1.6.0 while we work on adding support #1629

– Fixed data check message formatting in AutoMLSearch #1633

– Addressed stacked ensemble component for scikit-learn v0.24 support by setting
shuffle=True for default CV #1613

– Fixed bug where Imputer reset the index on X #1590

– Fixed AutoMLSearch stacktrace when a cutom objective was passed in as a primary objective or
additional objective #1575

– Fixed custom index bug for MAPE objective #1641

– Fixed index bug for TextFeaturizer and LSA components #1644

– Limited load_fraud dataset loaded into automl.ipynb #1646

– add_to_rankings updates AutoMLSearch.best_pipeline when necessary #1647

– Fixed bug where time series baseline estimators were not receiving gap and max_delay in
AutoMLSearch #1645

– Fixed jupyter notebooks to help the RTD buildtime #1654

– Added positive_only objectives to non_core_objectives #1661

– Fixed stacking argument n_jobs for IterativeAlgorithm #1706

– Updated CatBoost estimators to return self in .fit() rather than the underlying model for con-
sistency #1701

– Added ability to initialize pipeline parameters in AutoMLSearch constructor #1676

• Changes
– Added labeling to graph_confusion_matrix #1632

– Rerunning search for AutoMLSearch results in a message thrown rather than failing the search,
and removed has_searched property #1647

– Changed tuner class to allow and ignore single parameter values as input #1686

– Capped LightGBM version limit to remove bug in docs #1711

– Removed support for np.random.RandomState in EvalML #1727

• Documentation Changes
– Update Model Understanding in the user guide to include visualize_decision_tree #1678
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– Updated docs to include information about AutoMLSearch callback parameters and methods
#1577

– Updated docs to prompt users to install graphiz on Mac #1656

– Added infer_feature_types to the start.ipynb guide #1700

– Added multicollinearity data check to API reference and docs #1707

• Testing Changes

Warning:
Breaking Changes

• Removed has_searched property from AutoMLSearch #1647

• Components and pipelines return Woodwork data structures instead of pandas data structures #1668

• Removed support for np.random.RandomState in EvalML. Rather than passing np.random.
RandomState as component and pipeline random_state values, we use int random_seed #1727

v0.17.0 Dec. 29, 2020
• Enhancements

– Added save_plot that allows for saving figures from different backends #1588

– Added LightGBM Regressor to regression components #1459

– Added visualize_decision_tree for tree visualization with
decision_tree_data_from_estimator and decision_tree_data_from_pipeline
to reformat tree structure output #1511

– Added DFS Transformer component into transformer components #1454

– Added MAPE to the standard metrics for time series problems and update objectives #1510

– Added graph_prediction_vs_actual_over_time and get_prediction_vs_actual_over_time_data
to the model understanding module for time series problems #1483

– Added a ComponentGraph class that will support future pipelines as directed acyclic graphs #1415

– Updated data checks to accept Woodwork data structures #1481

– Added parameter to InvalidTargetDataCheck to show only top unique values rather than all
unique values #1485

– Added multicollinearity data check #1515

– Added baseline pipeline and components for time series regression problems #1496

– Added more information to users about ensembling behavior in AutoMLSearch #1527

– Add woodwork support for more utility and graph methods #1544

– Changed DateTimeFeaturizer to encode features as int #1479

– Return trained pipelines from AutoMLSearch.best_pipeline #1547

– Added utility method so that users can set feature types without having to learn about Woodwork
directly #1555

– Added Linear Discriminant Analysis transformer for dimensionality reduction #1331

– Added multiclass support for partial_dependence and graph_partial_dependence #1554
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– Added TimeSeriesBinaryClassificationPipeline and TimeSeriesMulticlassClassificationPipeline
classes #1528

– Added make_data_splitter method for easier automl data split customization #1568

– Integrated ComponentGraph class into Pipelines for full non-linear pipeline support #1543

– Update AutoMLSearch constructor to take training data instead of search and
add_to_leaderboard #1597

– Update split_data helper args #1597

– Add problem type utils is_regression, is_classification, is_timeseries #1597

– Rename AutoMLSearch data_split arg to data_splitter #1569

• Fixes
– Fix AutoML not passing CV folds to DefaultDataChecks for usage by
ClassImbalanceDataCheck #1619

– Fix Windows CI jobs: install numba via conda, required for shap #1490

– Added custom-index support for reset-index-get_prediction_vs_actual_over_time_data #1494

– Fix generate_pipeline_code to account for boolean and None differences between Python and
JSON #1524 #1531

– Set max value for plotly and xgboost versions while we debug CI failures with newer versions
#1532

– Undo version pinning for plotly #1533

– Fix ReadTheDocs build by updating the version of setuptools #1561

– Set random_state of data splitter in AutoMLSearch to take int to keep consistency in the resulting
splits #1579

– Pin sklearn version while we work on adding support #1594

– Pin pandas at <1.2.0 while we work on adding support #1609

– Pin graphviz at < 0.16 while we work on adding support #1609

• Changes
– Reverting save_graph #1550 to resolve kaleido build issues #1585

– Update circleci badge to apply to main #1489

– Added script to generate github markdown for releases #1487

– Updated selection using pandas dtypes to selecting using Woodwork logical types #1551

– Updated dependencies to fix ImportError: cannot import name 'MaskedArray' from
'sklearn.utils.fixes' error and to address Woodwork and Featuretool dependencies #1540

– Made get_prediction_vs_actual_data() a public method #1553

– Updated Woodwork version requirement to v0.0.7 #1560

– Move data splitters from evalml.automl.data_splitters to evalml.preprocessing.
data_splitters #1597

– Rename “# Testing” in automl log output to “# Validation” #1597

• Documentation Changes
– Added partial dependence methods to API reference #1537
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– Updated documentation for confusion matrix methods #1611

• Testing Changes
– Set n_jobs=1 in most unit tests to reduce memory #1505

Warning:
Breaking Changes

• Updated minimal dependencies: numpy>=1.19.1, pandas>=1.1.0, scikit-learn>=0.23.1,
scikit-optimize>=0.8.1

• Updated AutoMLSearch.best_pipeline to return a trained pipeline. Pass in
train_best_pipeline=False to AutoMLSearch in order to return an untrained pipeline.

• Pipeline component instances can no longer be iterated through using Pipeline.component_graph
#1543

• Update AutoMLSearch constructor to take training data instead of search and add_to_leaderboard
#1597

• Update split_data helper args #1597

• Move data splitters from evalml.automl.data_splitters to evalml.preprocessing.
data_splitters #1597

• Rename AutoMLSearch data_split arg to data_splitter #1569

v0.16.1 Dec. 1, 2020
• Enhancements

– Pin woodwork version to v0.0.6 to avoid breaking changes #1484

– Updated Woodwork to >=0.0.5 in core-requirements.txt #1473

– Removed copy_dataframe parameter for Woodwork, updated Woodwork to >=0.0.6 in
core-requirements.txt #1478

– Updated detect_problem_type to use pandas.api.is_numeric_dtype #1476

• Changes
– Changed make clean to delete coverage reports as a convenience for developers #1464

– Set n_jobs=-1 by default for stacked ensemble components #1472

• Documentation Changes
– Updated pipeline and component documentation and demos to use Woodwork #1466

• Testing Changes
– Update dependency update checker to use everything from core and optional dependencies #1480

v0.16.0 Nov. 24, 2020
• Enhancements

– Updated pipelines and make_pipeline to accept Woodwork inputs #1393

– Updated components to accept Woodwork inputs #1423

– Added ability to freeze hyperparameters for AutoMLSearch #1284

– Added Target Encoder into transformer components #1401
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– Added callback for error handling in AutoMLSearch #1403

– Added the index id to the explain_predictions_best_worst output to help users identify
which rows in their data are included #1365

– The top_k features displayed in explain_predictions_* functions are now determined by the
magnitude of shap values as opposed to the top_k largest and smallest shap values. #1374

– Added a problem type for time series regression #1386

– Added a is_defined_for_problem_type method to ObjectiveBase #1386

– Added a random_state parameter to make_pipeline_from_components function #1411

– Added DelayedFeaturesTransformer #1396

– Added a TimeSeriesRegressionPipeline class #1418

– Removed core-requirements.txt from the package distribution #1429

– Updated data check messages to include a “code” and “details” fields #1451, #1462

– Added a TimeSeriesSplit data splitter for time series problems #1441

– Added a problem_configuration parameter to AutoMLSearch #1457

• Fixes
– Fixed IndexError raised in AutoMLSearch when ensembling = True but only one pipeline

to iterate over #1397

– Fixed stacked ensemble input bug and LightGBM warning and bug in AutoMLSearch #1388

– Updated enum classes to show possible enum values as attributes #1391

– Updated calls to Woodwork’s to_pandas() to to_series() and to_dataframe() #1428

– Fixed bug in OHE where column names were not guaranteed to be unique #1349

– Fixed bug with percent improvement of ExpVariance objective on data with highly skewed target
#1467

– Fix SimpleImputer error which occurs when all features are bool type #1215

• Changes
– Changed OutliersDataCheck to return the list of columns, rather than rows, that contain outliers

#1377

– Simplified and cleaned output for Code Generation #1371

– Reverted changes from #1337 #1409

– Updated data checks to return dictionary of warnings and errors instead of a list #1448

– Updated AutoMLSearch to pass Woodwork data structures to every pipeline (instead of pandas
DataFrames) #1450

– Update AutoMLSearch to default to max_batches=1 instead of max_iterations=5 #1452

– Updated _evaluate_pipelines to consolidate side effects #1410

• Documentation Changes
– Added description of CLA to contributing guide, updated description of draft PRs #1402

– Updated documentation to include all data checks, DataChecks, and usage of data checks in
AutoML #1412
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– Updated docstrings from np.array to np.ndarray #1417

– Added section on stacking ensembles in AutoMLSearch documentation #1425

• Testing Changes
– Removed category_encoders from test-requirements.txt #1373

– Tweak codecov.io settings again to avoid flakes #1413

– Modified make lint to check notebook versions in the docs #1431

– Modified make lint-fix to standardize notebook versions in the docs #1431

– Use new version of pull request Github Action for dependency check (#1443)

– Reduced number of workers for tests to 4 #1447

Warning:
Breaking Changes

• The top_k and top_k_features parameters in explain_predictions_* functions now return k
features as opposed to 2 * k features #1374

• Renamed problem_type to problem_types in RegressionObjective,
BinaryClassificationObjective, and MulticlassClassificationObjective #1319

• Data checks now return a dictionary of warnings and errors instead of a list #1448

v0.15.0 Oct. 29, 2020
• Enhancements

– Added stacked ensemble component classes (StackedEnsembleClassifier,
StackedEnsembleRegressor) #1134

– Added stacked ensemble components to AutoMLSearch #1253

– Added DecisionTreeClassifier and DecisionTreeRegressor to AutoML #1255

– Added graph_prediction_vs_actual in model_understanding for regression problems
#1252

– Added parameter to OneHotEncoder to enable filtering for features to encode for #1249

– Added percent-better-than-baseline for all objectives to automl.results #1244

– Added HighVarianceCVDataCheck and replaced synonymous warning in AutoMLSearch
#1254

– Added PCA Transformer component for dimensionality reduction #1270

– Added generate_pipeline_code and generate_component_code to allow for code genera-
tion given a pipeline or component instance #1306

– Added PCA Transformer component for dimensionality reduction #1270

– Updated AutoMLSearch to support Woodwork data structures #1299

– Added cv_folds to ClassImbalanceDataCheck and added this check to DefaultDataChecks
#1333

– Make max_batches argument to AutoMLSearch.search public #1320

– Added text support to automl search #1062
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– Added _pipelines_per_batch as a private argument to AutoMLSearch #1355

• Fixes
– Fixed ML performance issue with ordered datasets: always shuffle data in automl’s default CV

splits #1265

– Fixed broken evalml info CLI command #1293

– Fixed boosting type='rf' for LightGBM Classifier, as well as num_leaves error #1302

– Fixed bug in explain_predictions_best_worst where a custom index in the target variable
would cause a ValueError #1318

– Added stacked ensemble estimators to to evalml.pipelines.__init__ file #1326

– Fixed bug in OHE where calls to transform were not deterministic if top_n was less than the
number of categories in a column #1324

– Fixed LightGBM warning messages during AutoMLSearch #1342

– Fix warnings thrown during AutoMLSearch in HighVarianceCVDataCheck #1346

– Fixed bug where TrainingValidationSplit would return invalid location indices for dataframes with
a custom index #1348

– Fixed bug where the AutoMLSearch random_state was not being passed to the created pipelines
#1321

• Changes
– Allow add_to_rankings to be called before AutoMLSearch is called #1250

– Removed Graphviz from test-requirements to add to requirements.txt #1327

– Removed max_pipelines parameter from AutoMLSearch #1264

– Include editable installs in all install make targets #1335

– Made pip dependencies featuretools and nlp_primitives core dependencies #1062

– Removed PartOfSpeechCount from TextFeaturizer transform primitives #1062

– Added warning for partial_dependency when the feature includes null values #1352

• Documentation Changes
– Fixed and updated code blocks in Release Notes #1243

– Added DecisionTree estimators to API Reference #1246

– Changed class inheritance display to flow vertically #1248

– Updated cost-benefit tutorial to use a holdout/test set #1159

– Added evalml info command to documentation #1293

– Miscellaneous doc updates #1269

– Removed conda pre-release testing from the release process document #1282

– Updates to contributing guide #1310

– Added Alteryx footer to docs with Twitter and Github link #1312

– Added documentation for evalml installation for Python 3.6 #1322

– Added documentation changes to make the API Docs easier to understand #1323

– Fixed documentation for feature_importance #1353
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– Added tutorial for running AutoML with text data #1357

– Added documentation for woodwork integration with automl search #1361

• Testing Changes
– Added tests for jupyter_check to handle IPython #1256

– Cleaned up make_pipeline tests to test for all estimators #1257

– Added a test to check conda build after merge to main #1247

– Removed code that was lacking codecov for __main__.py and unnecessary #1293

– Codecov: round coverage up instead of down #1334

– Add DockerHub credentials to CI testing environment #1356

– Add DockerHub credentials to conda testing environment #1363

Warning:
Breaking Changes

• Renamed LabelLeakageDataCheck to TargetLeakageDataCheck #1319

• max_pipelines parameter has been removed from AutoMLSearch. Please use max_iterations
instead. #1264

• AutoMLSearch.search() will now log a warning if the input is not a Woodwork data structure
(pandas, numpy) #1299

• Make max_batches argument to AutoMLSearch.search public #1320

• Removed unused argument feature_types from AutoMLSearch.search #1062

v0.14.1 Sep. 29, 2020
• Enhancements

– Updated partial dependence methods to support calculating numeric columns in a dataset with
non-numeric columns #1150

– Added get_feature_names on OneHotEncoder #1193

– Added detect_problem_type to problem_type/utils.py to automatically detect the prob-
lem type given targets #1194

– Added LightGBM to AutoMLSearch #1199

– Updated scikit-learn and scikit-optimize to use latest versions - 0.23.2 and 0.8.1 respec-
tively #1141

– Added __str__ and __repr__ for pipelines and components #1218

– Included internal target check for both training and validation data in AutoMLSearch #1226

– Added ProblemTypes.all_problem_types helper to get list of supported problem types #1219

– Added DecisionTreeClassifier and DecisionTreeRegressor classes #1223

– Added ProblemTypes.all_problem_types helper to get list of supported problem types #1219

– DataChecks can now be parametrized by passing a list of DataCheck classes and a parameter
dictionary #1167

– Added first CV fold score as validation score in AutoMLSearch.rankings #1221
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– Updated flake8 configuration to enable linting on __init__.py files #1234

– Refined make_pipeline_from_components implementation #1204

• Fixes
– Updated GitHub URL after migration to Alteryx GitHub org #1207

– Changed Problem Type enum to be more similar to the string name #1208

– Wrapped call to scikit-learn’s partial dependence method in a try/finally block #1232

• Changes
– Added allow_writing_files as a named argument to CatBoost estimators. #1202

– Added solver and multi_class as named arguments to LogisticRegressionClassifier
#1202

– Replaced pipeline’s ._transform method to evaluate all the preprocessing steps of a pipeline
with .compute_estimator_features #1231

– Changed default large dataset train/test splitting behavior #1205

• Documentation Changes
– Included description of how to access the component instances and features for pipeline user guide

#1163

– Updated API docs to refer to target as “target” instead of “labels” for non-classification tasks and
minor docs cleanup #1160

– Added Class Imbalance Data Check to api_reference.rst #1190 #1200

– Added pipeline properties to API reference #1209

– Clarified what the objective parameter in AutoML is used for in AutoML API reference and Au-
toML user guide #1222

– Updated API docs to include skopt.space.Categorical option for component hyperparameter
range definition #1228

– Added install documentation for libomp in order to use LightGBM on Mac #1233

– Improved description of max_iterations in documentation #1212

– Removed unused code from sphinx conf #1235

• Testing Changes

Warning:
Breaking Changes

• DefaultDataChecks now accepts a problem_type parameter that must be specified #1167

• Pipeline’s ._transform method to evaluate all the preprocessing steps of a pipeline has been replaced
with .compute_estimator_features #1231

• get_objectives has been renamed to get_core_objectives. This function will now return a list
of valid objective instances #1230

v0.13.2 Sep. 17, 2020
• Enhancements
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– Added output_format field to explain predictions functions #1107

– Modified get_objective and get_objectives to be able to return any objective in evalml.
objectives #1132

– Added a return_instance boolean parameter to get_objective #1132

– Added ClassImbalanceDataCheck to determine whether target imbalance falls below a given
threshold #1135

– Added label encoder to LightGBM for binary classification #1152

– Added labels for the row index of confusion matrix #1154

– Added AutoMLSearch object as another parameter in search callbacks #1156

– Added the corresponding probability threshold for each point displayed in graph_roc_curve
#1161

– Added __eq__ for ComponentBase and PipelineBase #1178

– Added support for multiclass classification for roc_curve #1164

– Added categories accessor to OneHotEncoder for listing the categories associated with a fea-
ture #1182

– Added utility function to create pipeline instances from a list of component instances #1176

• Fixes
– Fixed XGBoost column names for partial dependence methods #1104

– Removed dead code validating column type from TextFeaturizer #1122

– Fixed issue where Imputer cannot fit when there is None in a categorical or boolean column
#1144

– OneHotEncoder preserves the custom index in the input data #1146

– Fixed representation for ModelFamily #1165

– Removed duplicate nbsphinx dependency in dev-requirements.txt #1168

– Users can now pass in any valid kwargs to all estimators #1157

– Remove broken accessor OneHotEncoder.get_feature_names and unneeded base class #1179

– Removed LightGBM Estimator from AutoML models #1186

• Changes
– Pinned scikit-optimize version to 0.7.4 #1136

– Removed tqdm as a dependency #1177

– Added lightgbm version 3.0.0 to latest_dependency_versions.txt #1185

– Rename max_pipelines to max_iterations #1169

• Documentation Changes
– Fixed API docs for AutoMLSearch add_result_callback #1113

– Added a step to our release process for pushing our latest version to conda-forge #1118

– Added warning for missing ipywidgets dependency for using PipelineSearchPlots on Jupyter-
lab #1145

– Updated README.md example to load demo dataset #1151
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– Swapped mapping of breast cancer targets in model_understanding.ipynb #1170

• Testing Changes
– Added test confirming TextFeaturizer never outputs null values #1122

– Changed Python version of Update Dependencies action to 3.8.x #1137

– Fixed release notes check-in test for Update Dependencies actions #1172

Warning:
Breaking Changes

• get_objective will now return a class definition rather than an instance by default #1132

• Deleted OPTIONS dictionary in evalml.objectives.utils.py #1132

• If specifying an objective by string, the string must now match the objective’s name field, case-
insensitive #1132

• Passing “Cost Benefit Matrix”, “Fraud Cost”, “Lead Scoring”, “Mean Squared Log Error”,
“Recall”, “Recall Macro”, “Recall Micro”, “Recall Weighted”, or “Root Mean Squared Log Error”
to AutoMLSearch will now result in a ValueError rather than an ObjectiveNotFoundError
#1132

• Search callbacks start_iteration_callback and add_results_callback have changed to in-
clude a copy of the AutoMLSearch object as a third parameter #1156

• Deleted OneHotEncoder.get_feature_names method which had been broken for a while, in favor
of pipelines’ input_feature_names #1179

• Deleted empty base class CategoricalEncoder which OneHotEncoder component was inheriting
from #1176

• Results from roc_curve will now return as a list of dictionaries with each dictionary representing a
class #1164

• max_pipelines now raises a DeprecationWarning and will be removed in the next release.
max_iterations should be used instead. #1169

v0.13.1 Aug. 25, 2020
• Enhancements

– Added Cost-Benefit Matrix objective for binary classification #1038

– Split fill_value into categorical_fill_value and numeric_fill_value for Imputer
#1019

– Added explain_predictions and explain_predictions_best_worst for explaining mul-
tiple predictions with SHAP #1016

– Added new LSA component for text featurization #1022

– Added guide on installing with conda #1041

– Added a “cost-benefit curve” util method to graph cost-benefit matrix scores vs. binary classifica-
tion thresholds #1081

– Standardized error when calling transform/predict before fit for pipelines #1048

– Added percent_better_than_baseline to AutoML search rankings and full rankings table
#1050
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– Added one-way partial dependence and partial dependence plots #1079

– Added “Feature Value” column to prediction explanation reports. #1064

– Added LightGBM classification estimator #1082, #1114

– Added max_batches parameter to AutoMLSearch #1087

• Fixes
– Updated TextFeaturizer component to no longer require an internet connection to run #1022

– Fixed non-deterministic element of TextFeaturizer transformations #1022

– Added a StandardScaler to all ElasticNet pipelines #1065

– Updated cost-benefit matrix to normalize score #1099

– Fixed logic in calculate_percent_difference so that it can handle negative values #1100

• Changes
– Added needs_fitting property to ComponentBase #1044

– Updated references to data types to use datatype lists defined in evalml.utils.gen_utils
#1039

– Remove maximum version limit for SciPy dependency #1051

– Moved all_components and other component importers into runtime methods #1045

– Consolidated graphing utility methods under evalml.utils.graph_utils #1060

– Made slight tweaks to how TextFeaturizer uses featuretools, and did some refactoring of
that and of LSA #1090

– Changed show_all_features parameter into importance_threshold, which allows for
thresholding feature importance #1097, #1103

• Documentation Changes
– Update setup.py URL to point to the github repo #1037

– Added tutorial for using the cost-benefit matrix objective #1088

– Updated model_understanding.ipynb to include documentation for using plotly on Jupyter
Lab #1108

• Testing Changes
– Refactor CircleCI tests to use matrix jobs (#1043)

– Added a test to check that all test directories are included in evalml package #1054

Warning:
Breaking Changes

• confusion_matrix and normalize_confusion_matrix have been moved to evalml.utils #1038

• All graph utility methods previously under evalml.pipelines.graph_utils have been moved to
evalml.utils.graph_utils #1060

v0.12.2 Aug. 6, 2020
• Enhancements
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– Add save/load method to components #1023

– Expose pickle protocol as optional arg to save/load #1023

– Updated estimators used in AutoML to include ExtraTrees and ElasticNet estimators #1030

• Fixes

• Changes
– Removed DeprecationWarning for SimpleImputer #1018

• Documentation Changes
– Add note about version numbers to release process docs #1034

• Testing Changes
– Test files are now included in the evalml package #1029

v0.12.0 Aug. 3, 2020
• Enhancements

– Added string and categorical targets support for binary and multiclass pipelines and check for
numeric targets for DetectLabelLeakage data check #932

– Added clear exception for regression pipelines if target datatype is string or categorical #960

– Added target column names and class labels in predict and predict_proba output for pipelines
#951

– Added _compute_shap_values and normalize_values to pipelines/explanations mod-
ule #958

– Added explain_prediction feature which explains single predictions with SHAP #974

– Added Imputer to allow different imputation strategies for numerical and categorical dtypes #991

– Added support for configuring logfile path using env var, and don’t create logger if there are filesys-
tem errors #975

– Updated catboost estimators’ default parameters and automl hyperparameter ranges to speed up
fit time #998

• Fixes
– Fixed ReadtheDocs warning failure regarding embedded gif #943

– Removed incorrect parameter passed to pipeline classes in _add_baseline_pipelines #941

– Added universal error for calling predict, predict_proba, transform, and
feature_importances before fitting #969, #994

– Made TextFeaturizer component and pip dependencies featuretools and nlp_primitives
optional #976

– Updated imputation strategy in automl to no longer limit impute strategy to most_frequent for
all features if there are any categorical columns #991

– Fixed UnboundLocalError for cv_pipeline when automl search errors #996

– Fixed Imputer to reset dataframe index to preserve behavior expected from SimpleImputer
#1009

• Changes
– Moved get_estimators to evalml.pipelines.components.utils #934
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– Modified Pipelines to raise PipelineScoreError when they encounter an error during scoring
#936

– Moved evalml.model_families.list_model_families to evalml.pipelines.
components.allowed_model_families #959

– Renamed DateTimeFeaturization to DateTimeFeaturizer #977

– Added check to stop search and raise an error if all pipelines in a batch return NaN scores #1015

• Documentation Changes
– Updated README.md #963

– Reworded message when errors are returned from data checks in search #982

– Added section on understanding model predictions with explain_prediction to User Guide
#981

– Added a section to the user guide and api reference about how XGBoost and CatBoost are not
fully supported. #992

– Added custom components section in user guide #993

– Updated FAQ section formatting #997

– Updated release process documentation #1003

• Testing Changes
– Moved predict_proba and predict tests regarding string / categorical targets to
test_pipelines.py #972

– Fixed dependency update bot by updating python version to 3.7 to avoid frequent github version
updates #1002

Warning:
Breaking Changes

• get_estimators has been moved to evalml.pipelines.components.utils (previously was un-
der evalml.pipelines.utils) #934

• Removed the raise_errors flag in AutoML search. All errors during pipeline evaluation will be
caught and logged. #936

• evalml.model_families.list_model_families has been moved to evalml.pipelines.
components.allowed_model_families #959

• TextFeaturizer: the featuretools and nlp_primitives packages must be installed after in-
stalling evalml in order to use this component #976

• Renamed DateTimeFeaturization to DateTimeFeaturizer #977

v0.11.2 July 16, 2020
• Enhancements

– Added NoVarianceDataCheck to DefaultDataChecks #893

– Added text processing and featurization component TextFeaturizer #913, #924

– Added additional checks to InvalidTargetDataCheck to handle invalid target data types #929

– AutoMLSearch will now handle KeyboardInterrupt and prompt user for confirmation #915
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• Fixes
– Makes automl results a read-only property #919

• Changes
– Deleted static pipelines and refactored tests involving static pipelines, removed
all_pipelines() and get_pipelines() #904

– Moved list_model_families to evalml.model_family.utils #903

– Updated all_pipelines, all_estimators, all_components to use the same mechanism for
dynamically generating their elements #898

– Rename master branch to main #918

– Add pypi release github action #923

– Updated AutoMLSearch.search stdout output and logging and removed tqdm progress bar #921

– Moved automl config checks previously in search() to init #933

• Documentation Changes
– Reorganized and rewrote documentation #937

– Updated to use pydata sphinx theme #937

– Updated docs to use release_notes instead of changelog #942

• Testing Changes
– Cleaned up fixture names and usages in tests #895

Warning:
Breaking Changes

• list_model_families has been moved to evalml.model_family.utils (previously was under
evalml.pipelines.utils) #903

• get_estimators has been moved to evalml.pipelines.components.utils (previously was un-
der evalml.pipelines.utils) #934

• Static pipeline definitions have been removed, but similar pipelines can still be constructed via creating
an instance of PipelineBase #904

• all_pipelines() and get_pipelines() utility methods have been removed #904

v0.11.0 June 30, 2020
• Enhancements

– Added multiclass support for ROC curve graphing #832

– Added preprocessing component to drop features whose percentage of NaN values exceeds a spec-
ified threshold #834

– Added data check to check for problematic target labels #814

– Added PerColumnImputer that allows imputation strategies per column #824

– Added transformer to drop specific columns #827

– Added support for categories, handle_error, and drop parameters in OneHotEncoder #830
#897
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– Added preprocessing component to handle DateTime columns featurization #838

– Added ability to clone pipelines and components #842

– Define getter method for component parameters #847

– Added utility methods to calculate and graph permutation importances #860, #880

– Added new utility functions necessary for generating dynamic preprocessing pipelines #852

– Added kwargs to all components #863

– Updated AutoSearchBase to use dynamically generated preprocessing pipelines #870

– Added SelectColumns transformer #873

– Added ability to evaluate additional pipelines for automl search #874

– Added default_parameters class property to components and pipelines #879

– Added better support for disabling data checks in automl search #892

– Added ability to save and load AutoML objects to file #888

– Updated AutoSearchBase.get_pipelines to return an untrained pipeline instance #876

– Saved learned binary classification thresholds in automl results cv data dict #876

• Fixes
– Fixed bug where SimpleImputer cannot handle dropped columns #846

– Fixed bug where PerColumnImputer cannot handle dropped columns #855

– Enforce requirement that builtin components save all inputted values in their parameters dict #847

– Don’t list base classes in all_components output #847

– Standardize all components to output pandas data structures, and accept either pandas or numpy
#853

– Fixed rankings and full_rankings error when search has not been run #894

• Changes
– Update all_pipelines and all_components to try initializing pipelines/components, and on

failure exclude them #849

– Refactor handle_components to handle_components_class, standardize to ComponentBase
subclass instead of instance #850

– Refactor “blacklist”/”whitelist” to “allow”/”exclude” lists #854

– Replaced AutoClassificationSearch and AutoRegressionSearch with AutoMLSearch
#871

– Renamed feature_importances and permutation_importances methods to use singular names (fea-
ture_importance and permutation_importance) #883

– Updated automl default data splitter to train/validation split for large datasets #877

– Added open source license, update some repo metadata #887

– Removed dead code in _get_preprocessing_components #896

• Documentation Changes
– Fix some typos and update the EvalML logo #872

• Testing Changes
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– Update the changelog check job to expect the new branching pattern for the deps update bot #836

– Check that all components output pandas datastructures, and can accept either pandas or numpy
#853

– Replaced AutoClassificationSearch and AutoRegressionSearch with AutoMLSearch
#871

Warning:
Breaking Changes

• Pipelines’ static component_graph field must contain either ComponentBase subclasses or str, in-
stead of ComponentBase subclass instances #850

• Rename handle_component to handle_component_class. Now standardizes to ComponentBase
subclasses instead of ComponentBase subclass instances #850

• Renamed automl’s cv argument to data_split #877

• Pipelines’ and classifiers’ feature_importances is renamed feature_importance,
graph_feature_importances is renamed graph_feature_importance #883

• Passing data_checks=None to automl search will not perform any data checks as opposed to default
checks. #892

• Pipelines to search for in AutoML are now determined automatically, rather than using the statically-
defined pipeline classes. #870

• Updated AutoSearchBase.get_pipelines to return an untrained pipeline instance, instead of one
which happened to be trained on the final cross-validation fold #876

v0.10.0 May 29, 2020
• Enhancements

– Added baseline models for classification and regression, add functionality to calculate baseline
models before searching in AutoML #746

– Port over highly-null guardrail as a data check and define DefaultDataChecks and
DisableDataChecks classes #745

– Update Tuner classes to work directly with pipeline parameters dicts instead of flat parameter lists
#779

– Add Elastic Net as a pipeline option #812

– Added new Pipeline option ExtraTrees #790

– Added precicion-recall curve metrics and plot for binary classification problems in evalml.
pipeline.graph_utils #794

– Update the default automl algorithm to search in batches, starting with default parameters for each
pipeline and iterating from there #793

– Added AutoMLAlgorithm class and IterativeAlgorithm impl, separated from
AutoSearchBase #793

• Fixes
– Update pipeline score to return nan score for any objective which throws an exception during

scoring #787
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– Fixed bug introduced in #787 where binary classification metrics requiring predicted probabilities
error in scoring #798

– CatBoost and XGBoost classifiers and regressors can no longer have a learning rate of 0 #795

• Changes
– Cleanup pipeline score code, and cleanup codecov #711

– Remove pass for abstract methods for codecov #730

– Added __str__ for AutoSearch object #675

– Add util methods to graph ROC and confusion matrix #720

– Refactor AutoBase to AutoSearchBase #758

– Updated AutoBase with data_checks parameter, removed previous detect_label_leakage
parameter, and added functionality to run data checks before search in AutoML #765

– Updated our logger to use Python’s logging utils #763

– Refactor most of AutoSearchBase._do_iteration impl into AutoSearchBase._evaluate
#762

– Port over all guardrails to use the new DataCheck API #789

– Expanded import_or_raise to catch all exceptions #759

– Adds RMSE, MSLE, RMSLE as standard metrics #788

– Don’t allow Recall to be used as an objective for AutoML #784

– Removed feature selection from pipelines #819

– Update default estimator parameters to make automl search faster and more accurate #793

• Documentation Changes
– Add instructions to freeze master on release.md #726

– Update release instructions with more details #727 #733

– Add objective base classes to API reference #736

– Fix components API to match other modules #747

• Testing Changes
– Delete codecov yml, use codecov.io’s default #732

– Added unit tests for fraud cost, lead scoring, and standard metric objectives #741

– Update codecov client #782

– Updated AutoBase __str__ test to include no parameters case #783

– Added unit tests for ExtraTrees pipeline #790

– If codecov fails to upload, fail build #810

– Updated Python version of dependency action #816

– Update the dependency update bot to use a suffix when creating branches #817

Warning:
Breaking Changes
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• The detect_label_leakage parameter for AutoML classes has been removed and replaced by a
data_checks parameter #765

• Moved ROC and confusion matrix methods from evalml.pipeline.plot_utils to evalml.
pipeline.graph_utils #720

• Tuner classes require a pipeline hyperparameter range dict as an init arg instead of a space definition
#779

• Tuner.propose and Tuner.add work directly with pipeline parameters dicts instead of flat parameter
lists #779

• PipelineBase.hyperparameters and custom_hyperparameters use pipeline parameters dict for-
mat instead of being represented as a flat list #779

• All guardrail functions previously under evalml.guardrails.utils will be removed and replaced
by data checks #789

• Recall disallowed as an objective for AutoML #784

• AutoSearchBase parameter tuner has been renamed to tuner_class #793

• AutoSearchBase parameter possible_pipelines and possible_model_families have been re-
named to allowed_pipelines and allowed_model_families #793

v0.9.0 Apr. 27, 2020
• Enhancements

– Added Accuracy as an standard objective #624

– Added verbose parameter to load_fraud #560

– Added Balanced Accuracy metric for binary, multiclass #612 #661

– Added XGBoost regressor and XGBoost regression pipeline #666

– Added Accuracy metric for multiclass #672

– Added objective name in AutoBase.describe_pipeline #686

– Added DataCheck and DataChecks, Message classes and relevant subclasses #739

• Fixes
– Removed direct access to cls.component_graph #595

– Add testing files to .gitignore #625

– Remove circular dependencies from Makefile #637

– Add error case for normalize_confusion_matrix() #640

– Fixed XGBoostClassifier and XGBoostRegressor bug with feature names that contain [, ], or
< #659

– Update make_pipeline_graph to not accidentally create empty file when testing if path is valid
#649

– Fix pip installation warning about docsutils version, from boto dependency #664

– Removed zero division warning for F1/precision/recall metrics #671

– Fixed summary for pipelines without estimators #707

• Changes
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– Updated default objective for binary/multiclass classification to log loss #613

– Created classification and regression pipeline subclasses and removed objective as an attribute of
pipeline classes #405

– Changed the output of score to return one dictionary #429

– Created binary and multiclass objective subclasses #504

– Updated objectives API #445

– Removed call to get_plot_data from AutoML #615

– Set raise_error to default to True for AutoML classes #638

– Remove unnecessary “u” prefixes on some unicode strings #641

– Changed one-hot encoder to return uint8 dtypes instead of ints #653

– Pipeline _name field changed to custom_name #650

– Removed graphs.py and moved methods into PipelineBase #657, #665

– Remove s3fs as a dev dependency #664

– Changed requirements-parser to be a core dependency #673

– Replace supported_problem_types field on pipelines with problem_type attribute on base
classes #678

– Changed AutoML to only show best results for a given pipeline template in rankings, added
full_rankings property to show all #682

– Update ModelFamily values: don’t list xgboost/catboost as classifiers now that we have regression
pipelines for them #677

– Changed AutoML’s describe_pipeline to get problem type from pipeline instead #685

– Standardize import_or_raise error messages #683

– Updated argument order of objectives to align with sklearn’s #698

– Renamed pipeline.feature_importance_graph to pipeline.
graph_feature_importances #700

– Moved ROC and confusion matrix methods to evalml.pipelines.plot_utils #704

– Renamed MultiClassificationObjective to MulticlassClassificationObjective, to
align with pipeline naming scheme #715

• Documentation Changes
– Fixed some sphinx warnings #593

– Fixed docstring for AutoClassificationSearch with correct command #599

– Limit readthedocs formats to pdf, not htmlzip and epub #594 #600

– Clean up objectives API documentation #605

– Fixed function on Exploring search results page #604

– Update release process doc #567

– AutoClassificationSearch and AutoRegressionSearch show inherited methods in API
reference #651

– Fixed improperly formatted code in breaking changes for changelog #655

2112 Chapter 6. Release Notes

https://github.com/alteryx/evalml/pull/613
https://github.com/alteryx/evalml/pull/405
https://github.com/alteryx/evalml/pull/429
https://github.com/alteryx/evalml/pull/504
https://github.com/alteryx/evalml/pull/445
https://github.com/alteryx/evalml/pull/615
https://github.com/alteryx/evalml/pull/638
https://github.com/alteryx/evalml/pull/641
https://github.com/alteryx/evalml/pull/653
https://github.com/alteryx/evalml/pull/650
https://github.com/alteryx/evalml/pull/657
https://github.com/alteryx/evalml/pull/665
https://github.com/alteryx/evalml/pull/664
https://github.com/alteryx/evalml/pull/673
https://github.com/alteryx/evalml/pull/678
https://github.com/alteryx/evalml/pull/682
https://github.com/alteryx/evalml/pull/677
https://github.com/alteryx/evalml/pull/685
https://github.com/alteryx/evalml/pull/683
https://github.com/alteryx/evalml/pull/698
https://github.com/alteryx/evalml/pull/700
https://github.com/alteryx/evalml/pull/704
https://github.com/alteryx/evalml/pull/715
https://github.com/alteryx/evalml/pull/593
https://github.com/alteryx/evalml/pull/599
https://github.com/alteryx/evalml/pull/594
https://github.com/alteryx/evalml/pull/600
https://github.com/alteryx/evalml/pull/605
https://github.com/alteryx/evalml/pull/604
https://github.com/alteryx/evalml/pull/567
https://github.com/alteryx/evalml/pull/651
https://github.com/alteryx/evalml/pull/655


EvalML Documentation, Release 0.80.0

– Added configuration to treat Sphinx warnings as errors #660

– Removed separate plotting section for pipelines in API reference #657, #665

– Have leads example notebook load S3 files using https, so we can delete s3fs dev dependency #664

– Categorized components in API reference and added descriptions for each category #663

– Fixed Sphinx warnings about BalancedAccuracy objective #669

– Updated API reference to include missing components and clean up pipeline docstrings #689

– Reorganize API ref, and clarify pipeline sub-titles #688

– Add and update preprocessing utils in API reference #687

– Added inheritance diagrams to API reference #695

– Documented which default objective AutoML optimizes for #699

– Create seperate install page #701

– Include more utils in API ref, like import_or_raise #704

– Add more color to pipeline documentation #705

• Testing Changes
– Matched install commands of check_latest_dependencies test and it’s GitHub action #578

– Added Github app to auto assign PR author as assignee #477

– Removed unneeded conda installation of xgboost in windows checkin tests #618

– Update graph tests to always use tmpfile dir #649

– Changelog checkin test workaround for release PRs: If ‘future release’ section is empty of PR refs,
pass check #658

– Add changelog checkin test exception for dep-update branch #723

Warning: Breaking Changes
• Pipelines will now no longer take an objective parameter during instantiation, and will no longer have an

objective attribute.

• fit() and predict() now use an optional objective parameter, which is only used in binary classification
pipelines to fit for a specific objective.

• score() will now use a required objectives parameter that is used to determine all the objectives to score
on. This differs from the previous behavior, where the pipeline’s objective was scored on regardless.

• score() will now return one dictionary of all objective scores.

• ROC and ConfusionMatrix plot methods via Auto(*).plot have been removed by #615 and are replaced
by roc_curve and confusion_matrix in evamlm.pipelines.plot_utils in #704

• normalize_confusion_matrix has been moved to evalml.pipelines.plot_utils #704

• Pipelines _name field changed to custom_name

• Pipelines supported_problem_types field is removed because it is no longer necessary #678

• Updated argument order of objectives’ objective_function to align with sklearn #698

• pipeline.feature_importance_graph has been renamed to pipeline.
graph_feature_importances in #700
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• Removed unsupported MSLE objective #704

v0.8.0 Apr. 1, 2020
• Enhancements

– Add normalization option and information to confusion matrix #484

– Add util function to drop rows with NaN values #487

– Renamed PipelineBase.name as PipelineBase.summary and redefined PipelineBase.
name as class property #491

– Added access to parameters in Pipelines with PipelineBase.parameters (used to be return of
PipelineBase.describe) #501

– Added fill_value parameter for SimpleImputer #509

– Added functionality to override component hyperparameters and made pipelines take hyper-
paremeters from components #516

– Allow numpy.random.RandomState for random_state parameters #556

• Fixes
– Removed unused dependency matplotlib, and move category_encoders to test reqs #572

• Changes
– Undo version cap in XGBoost placed in #402 and allowed all released of XGBoost #407

– Support pandas 1.0.0 #486

– Made all references to the logger static #503

– Refactored model_type parameter for components and pipelines to model_family #507

– Refactored problem_types for pipelines and components into supported_problem_types
#515

– Moved pipelines/utils.save_pipeline and pipelines/utils.load_pipeline to
PipelineBase.save and PipelineBase.load #526

– Limit number of categories encoded by OneHotEncoder #517

• Documentation Changes
– Updated API reference to remove PipelinePlot and added moved PipelineBase plotting

methods #483

– Add code style and github issue guides #463 #512

– Updated API reference for to surface class variables for pipelines and components #537

– Fixed README documentation link #535

– Unhid PR references in changelog #656

• Testing Changes
– Added automated dependency check PR #482, #505

– Updated automated dependency check comment #497

– Have build_docs job use python executor, so that env vars are set properly #547
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– Added simple test to make sure OneHotEncoder’s top_n works with large number of categories
#552

– Run windows unit tests on PRs #557

Warning: Breaking Changes
• AutoClassificationSearch and AutoRegressionSearch’s model_types parameter has been refac-

tored into allowed_model_families

• ModelTypes enum has been changed to ModelFamily

• Components and Pipelines now have a model_family field instead of model_type

• get_pipelines utility function now accepts model_families as an argument instead of model_types

• PipelineBase.name no longer returns structure of pipeline and has been replaced by PipelineBase.
summary

• PipelineBase.problem_types and Estimator.problem_types has been renamed to
supported_problem_types

• pipelines/utils.save_pipeline and pipelines/utils.load_pipelinemoved to PipelineBase.
save and PipelineBase.load

v0.7.0 Mar. 9, 2020
• Enhancements

– Added emacs buffers to .gitignore #350

– Add CatBoost (gradient-boosted trees) classification and regression components and pipelines
#247

– Added Tuner abstract base class #351

– Added n_jobs as parameter for AutoClassificationSearch and AutoRegressionSearch
#403

– Changed colors of confusion matrix to shades of blue and updated axis order to match scikit-learn’s
#426

– Added PipelineBase .graph and .feature_importance_graph methods, moved from pre-
vious location #423

– Added support for python 3.8 #462

• Fixes
– Fixed ROC and confusion matrix plots not being calculated if user passed own addi-

tional_objectives #276

– Fixed ReadtheDocs FileNotFoundError exception for fraud dataset #439

• Changes
– Added n_estimators as a tunable parameter for XGBoost #307

– Remove unused parameter ObjectiveBase.fit_needs_proba #320

– Remove extraneous parameter component_type from all components #361

– Remove unused rankings.csv file #397

– Downloaded demo and test datasets so unit tests can run offline #408
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– Remove _needs_fitting attribute from Components #398

– Changed plot.feature_importance to show only non-zero feature importances by default, added
optional parameter to show all #413

– Refactored PipelineBase to take in parameter dictionary and moved pipeline metadata to class
attribute #421

– Dropped support for Python 3.5 #438

– Removed unused apply.py file #449

– Clean up requirements.txt to remove unused deps #451

– Support installation without all required dependencies #459

• Documentation Changes
– Update release.md with instructions to release to internal license key #354

• Testing Changes
– Added tests for utils (and moved current utils to gen_utils) #297

– Moved XGBoost install into it’s own separate step on Windows using Conda #313

– Rewind pandas version to before 1.0.0, to diagnose test failures for that version #325

– Added dependency update checkin test #324

– Rewind XGBoost version to before 1.0.0 to diagnose test failures for that version #402

– Update dependency check to use a whitelist #417

– Update unit test jobs to not install dev deps #455

Warning: Breaking Changes
• Python 3.5 will not be actively supported.

v0.6.0 Dec. 16, 2019
• Enhancements

– Added ability to create a plot of feature importances #133

– Add early stopping to AutoML using patience and tolerance parameters #241

– Added ROC and confusion matrix metrics and plot for classification problems and introduce
PipelineSearchPlots class #242

– Enhanced AutoML results with search order #260

– Added utility function to show system and environment information #300

• Fixes
– Lower botocore requirement #235

– Fixed decision_function calculation for FraudCost objective #254

– Fixed return value of Recall metrics #264

– Components return self on fit #289

• Changes
– Renamed automl classes to AutoRegressionSearch and AutoClassificationSearch #287
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– Updating demo datasets to retain column names #223

– Moving pipeline visualization to PipelinePlot class #228

– Standarizing inputs as pd.Dataframe / pd.Series #130

– Enforcing that pipelines must have an estimator as last component #277

– Added ipywidgets as a dependency in requirements.txt #278

– Added Random and Grid Search Tuners #240

• Documentation Changes
– Adding class properties to API reference #244

– Fix and filter FutureWarnings from scikit-learn #249, #257

– Adding Linear Regression to API reference and cleaning up some Sphinx warnings #227

• Testing Changes
– Added support for testing on Windows with CircleCI #226

– Added support for doctests #233

Warning: Breaking Changes
• The fit() method for AutoClassifier and AutoRegressor has been renamed to search().

• AutoClassifier has been renamed to AutoClassificationSearch

• AutoRegressor has been renamed to AutoRegressionSearch

• AutoClassificationSearch.results and AutoRegressionSearch.results now is a dictionary with
pipeline_results and search_order keys. pipeline_results can be used to access a dictionary that
is identical to the old .results dictionary. Whereas, search_order returns a list of the search order in
terms of pipeline_id.

• Pipelines now require an estimator as the last component in component_list. Slicing pipelines now throws
an NotImplementedError to avoid returning pipelines without an estimator.

v0.5.2 Nov. 18, 2019
• Enhancements

– Adding basic pipeline structure visualization #211

• Documentation Changes
– Added notebooks to build process #212

v0.5.1 Nov. 15, 2019
• Enhancements

– Added basic outlier detection guardrail #151

– Added basic ID column guardrail #135

– Added support for unlimited pipelines with a max_time limit #70

– Updated .readthedocs.yaml to successfully build #188

• Fixes
– Removed MSLE from default additional objectives #203
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– Fixed random_state passed in pipelines #204

– Fixed slow down in RFRegressor #206

• Changes
– Pulled information for describe_pipeline from pipeline’s new describe method #190

– Refactored pipelines #108

– Removed guardrails from Auto(*) #202, #208

• Documentation Changes
– Updated documentation to show max_time enhancements #189

– Updated release instructions for RTD #193

– Added notebooks to build process #212

– Added contributing instructions #213

– Added new content #222

v0.5.0 Oct. 29, 2019
• Enhancements

– Added basic one hot encoding #73

– Use enums for model_type #110

– Support for splitting regression datasets #112

– Auto-infer multiclass classification #99

– Added support for other units in max_time #125

– Detect highly null columns #121

– Added additional regression objectives #100

– Show an interactive iteration vs. score plot when using fit() #134

• Fixes
– Reordered describe_pipeline #94

– Added type check for model_type #109

– Fixed s units when setting string max_time #132

– Fix objectives not appearing in API documentation #150

• Changes
– Reorganized tests #93

– Moved logging to its own module #119

– Show progress bar history #111

– Using cloudpickle instead of pickle to allow unloading of custom objectives #113

– Removed render.py #154

• Documentation Changes
– Update release instructions #140

– Include additional_objectives parameter #124
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– Added Changelog #136

• Testing Changes
– Code coverage #90

– Added CircleCI tests for other Python versions #104

– Added doc notebooks as tests #139

– Test metadata for CircleCI and 2 core parallelism #137

v0.4.1 Sep. 16, 2019
• Enhancements

– Added AutoML for classification and regressor using Autobase and Skopt #7 #9

– Implemented standard classification and regression metrics #7

– Added logistic regression, random forest, and XGBoost pipelines #7

– Implemented support for custom objectives #15

– Feature importance for pipelines #18

– Serialization for pipelines #19

– Allow fitting on objectives for optimal threshold #27

– Added detect label leakage #31

– Implemented callbacks #42

– Allow for multiclass classification #21

– Added support for additional objectives #79

• Fixes
– Fixed feature selection in pipelines #13

– Made random_seed usage consistent #45

• Documentation Changes
– Documentation Changes

– Added docstrings #6

– Created notebooks for docs #6

– Initialized readthedocs EvalML #6

– Added favicon #38

• Testing Changes
– Added testing for loading data #39

v0.2.0 Aug. 13, 2019
• Enhancements

– Created fraud detection objective #4

v0.1.0 July. 31, 2019
• First Release

• Enhancements
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– Added lead scoring objecitve #1

– Added basic classifier #1

• Documentation Changes
– Initialized Sphinx for docs #1
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461
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evalml.pipelines.components.estimators.classifiers.catboost_classifier),
720

CatBoostRegressor (class in evalml.pipelines), 1765
CatBoostRegressor (class in
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evalml.pipelines.components), 1445
CatBoostRegressor (class in

evalml.pipelines.components.estimators),
960

CatBoostRegressor (class in
evalml.pipelines.components.estimators.regressors),
890

CatBoostRegressor (class in
evalml.pipelines.components.estimators.regressors.catboost_regressor),
823

categories() (evalml.pipelines.components.OneHotEncoder
method), 1536

categories() (evalml.pipelines.components.OrdinalEncoder
method), 1539

categories() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder
method), 1067

categories() (evalml.pipelines.components.transformers.encoders.OneHotEncoder
method), 1082

categories() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder
method), 1071

categories() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder
method), 1085

categories() (evalml.pipelines.components.transformers.OneHotEncoder
method), 1346

categories() (evalml.pipelines.components.transformers.OrdinalEncoder
method), 1349

categories() (evalml.pipelines.OneHotEncoder
method), 1851

categories() (evalml.pipelines.OrdinalEncoder
method), 1854

CFClient (class in evalml.automl.engine.cf_engine), 296
CFComputation (class in

evalml.automl.engine.cf_engine), 296
CFEngine (class in evalml.automl.engine), 307
CFEngine (class in evalml.automl.engine.cf_engine), 297
check_all_pipeline_names_unique() (in module

evalml.automl.utils), 329
check_distribution() (in module

evalml.model_understanding.metrics), 472
check_for_fit() (evalml.pipelines.components.component_base_meta.ComponentBaseMeta

class method), 1421
check_for_fit() (evalml.pipelines.components.ComponentBaseMeta

class method), 1451
check_for_fit() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoderMeta

class method), 1069
check_for_fit() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoderMeta

class method), 1074
check_for_fit() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta

class method), 1142
check_for_fit() (evalml.pipelines.pipeline_meta.PipelineBaseMeta

class method), 1697
classes_ (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

property), 1657
classes_ (evalml.pipelines.BinaryClassificationPipeline

property), 1758
classes_ (evalml.pipelines.classification_pipeline.ClassificationPipeline

property), 1665
classes_ (evalml.pipelines.ClassificationPipeline prop-

erty), 1771
classes_ (evalml.pipelines.components.BaselineClassifier

property), 1436
classes_ (evalml.pipelines.components.estimators.BaselineClassifier

property), 951
classes_ (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

property), 717
classes_ (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

property), 770
classes_ (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

property), 1678
classes_ (evalml.pipelines.MulticlassClassificationPipeline

property), 1838
classes_ (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

property), 1707
classes_ (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

property), 1715
classes_ (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1723
classes_ (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

property), 1913
classes_ (evalml.pipelines.TimeSeriesClassificationPipeline

property), 1921
classes_ (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1934
ClassificationPipeline (class in evalml.pipelines),

1768
ClassificationPipeline (class in

evalml.pipelines.classification_pipeline),
1663

ClassImbalanceDataCheck (class in
evalml.data_checks), 402

ClassImbalanceDataCheck (class in
evalml.data_checks.class_imbalance_data_check),
345

classproperty (class in evalml.utils), 2033
classproperty (class in evalml.utils.gen_utils), 2025
clone() (evalml.pipelines.ARIMARegressor method),

1753
clone() (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

method), 1657
clone() (evalml.pipelines.BinaryClassificationPipeline

method), 1758
clone() (evalml.pipelines.CatBoostClassifier method),

1763
clone() (evalml.pipelines.CatBoostRegressor method),

1766
clone() (evalml.pipelines.classification_pipeline.ClassificationPipeline

method), 1665
clone() (evalml.pipelines.ClassificationPipeline
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method), 1771
clone() (evalml.pipelines.components.ARIMARegressor

method), 1433
clone() (evalml.pipelines.components.BaselineClassifier

method), 1436
clone() (evalml.pipelines.components.BaselineRegressor

method), 1439
clone() (evalml.pipelines.components.CatBoostClassifier

method), 1443
clone() (evalml.pipelines.components.CatBoostRegressor

method), 1446
clone() (evalml.pipelines.components.component_base.ComponentBase

method), 1418
clone() (evalml.pipelines.components.ComponentBase

method), 1449
clone() (evalml.pipelines.components.DateTimeFeaturizer

method), 1452
clone() (evalml.pipelines.components.DecisionTreeClassifier

method), 1455
clone() (evalml.pipelines.components.DecisionTreeRegressor

method), 1459
clone() (evalml.pipelines.components.DFSTransformer

method), 1462
clone() (evalml.pipelines.components.DropColumns

method), 1465
clone() (evalml.pipelines.components.DropNaNRowsTransformer

method), 1467
clone() (evalml.pipelines.components.DropNullColumns

method), 1470
clone() (evalml.pipelines.components.DropRowsTransformer

method), 1472
clone() (evalml.pipelines.components.ElasticNetClassifier

method), 1475
clone() (evalml.pipelines.components.ElasticNetRegressor

method), 1478
clone() (evalml.pipelines.components.EmailFeaturizer

method), 1481
clone() (evalml.pipelines.components.ensemble.stacked_ensemble_base.StackedEnsembleBase

method), 694
clone() (evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier

method), 698
clone() (evalml.pipelines.components.ensemble.stacked_ensemble_regressor.StackedEnsembleRegressor

method), 702
clone() (evalml.pipelines.components.ensemble.StackedEnsembleBase

method), 705
clone() (evalml.pipelines.components.ensemble.StackedEnsembleClassifier

method), 709
clone() (evalml.pipelines.components.ensemble.StackedEnsembleRegressor

method), 713
clone() (evalml.pipelines.components.Estimator

method), 1484
clone() (evalml.pipelines.components.estimators.ARIMARegressor

method), 948
clone() (evalml.pipelines.components.estimators.BaselineClassifier

method), 951
clone() (evalml.pipelines.components.estimators.BaselineRegressor

method), 954
clone() (evalml.pipelines.components.estimators.CatBoostClassifier

method), 958
clone() (evalml.pipelines.components.estimators.CatBoostRegressor

method), 961
clone() (evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier

method), 717
clone() (evalml.pipelines.components.estimators.classifiers.BaselineClassifier

method), 770
clone() (evalml.pipelines.components.estimators.classifiers.catboost_classifier.CatBoostClassifier

method), 721
clone() (evalml.pipelines.components.estimators.classifiers.CatBoostClassifier

method), 773
clone() (evalml.pipelines.components.estimators.classifiers.decision_tree_classifier.DecisionTreeClassifier

method), 725
clone() (evalml.pipelines.components.estimators.classifiers.DecisionTreeClassifier

method), 777
clone() (evalml.pipelines.components.estimators.classifiers.elasticnet_classifier.ElasticNetClassifier

method), 729
clone() (evalml.pipelines.components.estimators.classifiers.ElasticNetClassifier

method), 780
clone() (evalml.pipelines.components.estimators.classifiers.et_classifier.ExtraTreesClassifier

method), 733
clone() (evalml.pipelines.components.estimators.classifiers.ExtraTreesClassifier

method), 784
clone() (evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier

method), 737
clone() (evalml.pipelines.components.estimators.classifiers.KNeighborsClassifier

method), 788
clone() (evalml.pipelines.components.estimators.classifiers.lightgbm_classifier.LightGBMClassifier

method), 741
clone() (evalml.pipelines.components.estimators.classifiers.LightGBMClassifier

method), 791
clone() (evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier.LogisticRegressionClassifier

method), 745
clone() (evalml.pipelines.components.estimators.classifiers.LogisticRegressionClassifier

method), 795
clone() (evalml.pipelines.components.estimators.classifiers.RandomForestClassifier

method), 798
clone() (evalml.pipelines.components.estimators.classifiers.rf_classifier.RandomForestClassifier

method), 749
clone() (evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier

method), 753
clone() (evalml.pipelines.components.estimators.classifiers.SVMClassifier

method), 801
clone() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBaseClassifier

method), 756
clone() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitBinaryClassifier

method), 759
clone() (evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers.VowpalWabbitMulticlassClassifier

method), 763
clone() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitBinaryClassifier
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method), 805
clone() (evalml.pipelines.components.estimators.classifiers.VowpalWabbitMulticlassClassifier

method), 808
clone() (evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier

method), 766
clone() (evalml.pipelines.components.estimators.classifiers.XGBoostClassifier

method), 811
clone() (evalml.pipelines.components.estimators.DecisionTreeClassifier

method), 965
clone() (evalml.pipelines.components.estimators.DecisionTreeRegressor

method), 969
clone() (evalml.pipelines.components.estimators.ElasticNetClassifier

method), 972
clone() (evalml.pipelines.components.estimators.ElasticNetRegressor

method), 975
clone() (evalml.pipelines.components.estimators.Estimator

method), 978
clone() (evalml.pipelines.components.estimators.estimator.Estimator

method), 943
clone() (evalml.pipelines.components.estimators.ExponentialSmoothingRegressor

method), 982
clone() (evalml.pipelines.components.estimators.ExtraTreesClassifier

method), 986
clone() (evalml.pipelines.components.estimators.ExtraTreesRegressor

method), 989
clone() (evalml.pipelines.components.estimators.KNeighborsClassifier

method), 993
clone() (evalml.pipelines.components.estimators.LightGBMClassifier

method), 997
clone() (evalml.pipelines.components.estimators.LightGBMRegressor

method), 1000
clone() (evalml.pipelines.components.estimators.LinearRegressor

method), 1003
clone() (evalml.pipelines.components.estimators.LogisticRegressionClassifier

method), 1007
clone() (evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor

method), 1010
clone() (evalml.pipelines.components.estimators.ProphetRegressor

method), 1014
clone() (evalml.pipelines.components.estimators.RandomForestClassifier

method), 1017
clone() (evalml.pipelines.components.estimators.RandomForestRegressor

method), 1020
clone() (evalml.pipelines.components.estimators.regressors.arima_regressor.ARIMARegressor

method), 817
clone() (evalml.pipelines.components.estimators.regressors.ARIMARegressor

method), 885
clone() (evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor

method), 820
clone() (evalml.pipelines.components.estimators.regressors.BaselineRegressor

method), 888
clone() (evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor

method), 824
clone() (evalml.pipelines.components.estimators.regressors.CatBoostRegressor

method), 892
clone() (evalml.pipelines.components.estimators.regressors.decision_tree_regressor.DecisionTreeRegressor

method), 828
clone() (evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor

method), 895
clone() (evalml.pipelines.components.estimators.regressors.elasticnet_regressor.ElasticNetRegressor

method), 832
clone() (evalml.pipelines.components.estimators.regressors.ElasticNetRegressor

method), 899
clone() (evalml.pipelines.components.estimators.regressors.et_regressor.ExtraTreesRegressor

method), 836
clone() (evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor

method), 841
clone() (evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor

method), 903
clone() (evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor

method), 906
clone() (evalml.pipelines.components.estimators.regressors.lightgbm_regressor.LightGBMRegressor

method), 844
clone() (evalml.pipelines.components.estimators.regressors.LightGBMRegressor

method), 910
clone() (evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor

method), 848
clone() (evalml.pipelines.components.estimators.regressors.LinearRegressor

method), 913
clone() (evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor.MultiseriesTimeSeriesBaselineRegressor

method), 851
clone() (evalml.pipelines.components.estimators.regressors.MultiseriesTimeSeriesBaselineRegressor

method), 916
clone() (evalml.pipelines.components.estimators.regressors.prophet_regressor.ProphetRegressor

method), 857
clone() (evalml.pipelines.components.estimators.regressors.ProphetRegressor

method), 920
clone() (evalml.pipelines.components.estimators.regressors.RandomForestRegressor

method), 923
clone() (evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor

method), 861
clone() (evalml.pipelines.components.estimators.regressors.svm_regressor.SVMRegressor

method), 864
clone() (evalml.pipelines.components.estimators.regressors.SVMRegressor

method), 926
clone() (evalml.pipelines.components.estimators.regressors.time_series_baseline_estimator.TimeSeriesBaselineEstimator

method), 868
clone() (evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator

method), 929
clone() (evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor

method), 872
clone() (evalml.pipelines.components.estimators.regressors.VARMAXRegressor

method), 933
clone() (evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.VowpalWabbitRegressor

method), 876
clone() (evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor

method), 936
clone() (evalml.pipelines.components.estimators.regressors.xgboost_regressor.XGBoostRegressor
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method), 880
clone() (evalml.pipelines.components.estimators.regressors.XGBoostRegressor

method), 939
clone() (evalml.pipelines.components.estimators.SVMClassifier

method), 1023
clone() (evalml.pipelines.components.estimators.SVMRegressor

method), 1026
clone() (evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator

method), 1029
clone() (evalml.pipelines.components.estimators.VARMAXRegressor

method), 1033
clone() (evalml.pipelines.components.estimators.VowpalWabbitBinaryClassifier

method), 1036
clone() (evalml.pipelines.components.estimators.VowpalWabbitMulticlassClassifier

method), 1039
clone() (evalml.pipelines.components.estimators.VowpalWabbitRegressor

method), 1042
clone() (evalml.pipelines.components.estimators.XGBoostClassifier

method), 1045
clone() (evalml.pipelines.components.estimators.XGBoostRegressor

method), 1048
clone() (evalml.pipelines.components.ExponentialSmoothingRegressor

method), 1487
clone() (evalml.pipelines.components.ExtraTreesClassifier

method), 1491
clone() (evalml.pipelines.components.ExtraTreesRegressor

method), 1494
clone() (evalml.pipelines.components.FeatureSelector

method), 1497
clone() (evalml.pipelines.components.Imputer method),
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clone() (evalml.pipelines.components.KNeighborsClassifier

method), 1503
clone() (evalml.pipelines.components.LabelEncoder

method), 1506
clone() (evalml.pipelines.components.LightGBMClassifier

method), 1509
clone() (evalml.pipelines.components.LightGBMRegressor

method), 1513
clone() (evalml.pipelines.components.LinearDiscriminantAnalysis

method), 1516
clone() (evalml.pipelines.components.LinearRegressor

method), 1518
clone() (evalml.pipelines.components.LogisticRegressionClassifier

method), 1522
clone() (evalml.pipelines.components.LogTransformer

method), 1525
clone() (evalml.pipelines.components.LSA method),

1527
clone() (evalml.pipelines.components.MultiseriesTimeSeriesBaselineRegressor

method), 1530
clone() (evalml.pipelines.components.NaturalLanguageFeaturizer

method), 1533
clone() (evalml.pipelines.components.OneHotEncoder

method), 1536
clone() (evalml.pipelines.components.OrdinalEncoder

method), 1539
clone() (evalml.pipelines.components.Oversampler

method), 1542
clone() (evalml.pipelines.components.PCA method),

1544
clone() (evalml.pipelines.components.PerColumnImputer

method), 1547
clone() (evalml.pipelines.components.PolynomialDecomposer

method), 1550
clone() (evalml.pipelines.components.ProphetRegressor

method), 1555
clone() (evalml.pipelines.components.RandomForestClassifier

method), 1558
clone() (evalml.pipelines.components.RandomForestRegressor

method), 1561
clone() (evalml.pipelines.components.ReplaceNullableTypes

method), 1564
clone() (evalml.pipelines.components.RFClassifierRFESelector

method), 1567
clone() (evalml.pipelines.components.RFClassifierSelectFromModel

method), 1570
clone() (evalml.pipelines.components.RFRegressorRFESelector

method), 1573
clone() (evalml.pipelines.components.RFRegressorSelectFromModel

method), 1576
clone() (evalml.pipelines.components.SelectByType

method), 1578
clone() (evalml.pipelines.components.SelectColumns

method), 1581
clone() (evalml.pipelines.components.SimpleImputer

method), 1583
clone() (evalml.pipelines.components.StackedEnsembleBase

method), 1586
clone() (evalml.pipelines.components.StackedEnsembleClassifier

method), 1590
clone() (evalml.pipelines.components.StackedEnsembleRegressor

method), 1594
clone() (evalml.pipelines.components.StandardScaler

method), 1596
clone() (evalml.pipelines.components.STLDecomposer

method), 1599
clone() (evalml.pipelines.components.SVMClassifier

method), 1604
clone() (evalml.pipelines.components.SVMRegressor

method), 1607
clone() (evalml.pipelines.components.TargetEncoder

method), 1610
clone() (evalml.pipelines.components.TargetImputer

method), 1613
clone() (evalml.pipelines.components.TimeSeriesBaselineEstimator

method), 1616
clone() (evalml.pipelines.components.TimeSeriesFeaturizer
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method), 1619
clone() (evalml.pipelines.components.TimeSeriesImputer

method), 1622
clone() (evalml.pipelines.components.TimeSeriesRegularizer

method), 1625
clone() (evalml.pipelines.components.Transformer

method), 1628
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method), 1296
clone() (evalml.pipelines.components.transformers.column_selectors.DropColumns

method), 1298
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method), 1301
clone() (evalml.pipelines.components.transformers.column_selectors.SelectColumns

method), 1303
clone() (evalml.pipelines.components.transformers.DateTimeFeaturizer

method), 1310
clone() (evalml.pipelines.components.transformers.DFSTransformer

method), 1313
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.lda.LinearDiscriminantAnalysis

method), 1052
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.LinearDiscriminantAnalysis

method), 1058
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.PCA

method), 1060
clone() (evalml.pipelines.components.transformers.dimensionality_reduction.pca.PCA

method), 1055
clone() (evalml.pipelines.components.transformers.DropColumns

method), 1316
clone() (evalml.pipelines.components.transformers.DropNaNRowsTransformer

method), 1318
clone() (evalml.pipelines.components.transformers.DropNullColumns

method), 1320
clone() (evalml.pipelines.components.transformers.DropRowsTransformer

method), 1323
clone() (evalml.pipelines.components.transformers.EmailFeaturizer

method), 1325
clone() (evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder

method), 1063
clone() (evalml.pipelines.components.transformers.encoders.LabelEncoder

method), 1079
clone() (evalml.pipelines.components.transformers.encoders.onehot_encoder.OneHotEncoder

method), 1067
clone() (evalml.pipelines.components.transformers.encoders.OneHotEncoder

method), 1082
clone() (evalml.pipelines.components.transformers.encoders.ordinal_encoder.OrdinalEncoder

method), 1072
clone() (evalml.pipelines.components.transformers.encoders.OrdinalEncoder

method), 1086
clone() (evalml.pipelines.components.transformers.encoders.target_encoder.TargetEncoder

method), 1076
clone() (evalml.pipelines.components.transformers.encoders.TargetEncoder

method), 1088
clone() (evalml.pipelines.components.transformers.feature_selection.feature_selector.FeatureSelector

method), 1091
clone() (evalml.pipelines.components.transformers.feature_selection.FeatureSelector

method), 1111
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method), 1095
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method), 1098
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method), 1101
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method), 1105
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method), 1108
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method), 1115
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method), 1118
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method), 1121
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method), 1124
clone() (evalml.pipelines.components.transformers.FeatureSelector

method), 1328
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method), 1331
clone() (evalml.pipelines.components.transformers.imputers.Imputer

method), 1147
clone() (evalml.pipelines.components.transformers.imputers.imputer.Imputer

method), 1128
clone() (evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer

method), 1131
clone() (evalml.pipelines.components.transformers.imputers.KNNImputer

method), 1149
clone() (evalml.pipelines.components.transformers.imputers.per_column_imputer.PerColumnImputer

method), 1134
clone() (evalml.pipelines.components.transformers.imputers.PerColumnImputer

method), 1152
clone() (evalml.pipelines.components.transformers.imputers.simple_imputer.SimpleImputer

method), 1137
clone() (evalml.pipelines.components.transformers.imputers.SimpleImputer

method), 1154
clone() (evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer

method), 1140
clone() (evalml.pipelines.components.transformers.imputers.TargetImputer

method), 1157
clone() (evalml.pipelines.components.transformers.imputers.time_series_imputer.TimeSeriesImputer

method), 1144
clone() (evalml.pipelines.components.transformers.imputers.TimeSeriesImputer

method), 1160
clone() (evalml.pipelines.components.transformers.LabelEncoder

method), 1333
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method), 1336
clone() (evalml.pipelines.components.transformers.LogTransformer
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method), 1338
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method), 1163
clone() (evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer

method), 1223
clone() (evalml.pipelines.components.transformers.preprocessing.Decomposer

method), 1226
clone() (evalml.pipelines.components.transformers.preprocessing.decomposer.Decomposer

method), 1167
clone() (evalml.pipelines.components.transformers.preprocessing.DFSTransformer

method), 1230
clone() (evalml.pipelines.components.transformers.preprocessing.drop_nan_rows_transformer.DropNaNRowsTransformer

method), 1171
clone() (evalml.pipelines.components.transformers.preprocessing.drop_null_columns.DropNullColumns

method), 1174
clone() (evalml.pipelines.components.transformers.preprocessing.drop_rows_transformer.DropRowsTransformer

method), 1177
clone() (evalml.pipelines.components.transformers.preprocessing.DropNaNRowsTransformer

method), 1233
clone() (evalml.pipelines.components.transformers.preprocessing.DropNullColumns

method), 1235
clone() (evalml.pipelines.components.transformers.preprocessing.DropRowsTransformer

method), 1238
clone() (evalml.pipelines.components.transformers.preprocessing.EmailFeaturizer

method), 1240
clone() (evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer

method), 1180
clone() (evalml.pipelines.components.transformers.preprocessing.log_transformer.LogTransformer

method), 1183
clone() (evalml.pipelines.components.transformers.preprocessing.LogTransformer

method), 1242
clone() (evalml.pipelines.components.transformers.preprocessing.LSA

method), 1245
clone() (evalml.pipelines.components.transformers.preprocessing.lsa.LSA

method), 1186
clone() (evalml.pipelines.components.transformers.preprocessing.natural_language_featurizer.NaturalLanguageFeaturizer

method), 1189
clone() (evalml.pipelines.components.transformers.preprocessing.NaturalLanguageFeaturizer

method), 1247
clone() (evalml.pipelines.components.transformers.preprocessing.polynomial_decomposer.PolynomialDecomposer

method), 1193
clone() (evalml.pipelines.components.transformers.preprocessing.PolynomialDecomposer

method), 1251
clone() (evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes

method), 1198
clone() (evalml.pipelines.components.transformers.preprocessing.ReplaceNullableTypes

method), 1255
clone() (evalml.pipelines.components.transformers.preprocessing.stl_decomposer.STLDecomposer

method), 1202
clone() (evalml.pipelines.components.transformers.preprocessing.STLDecomposer

method), 1258
clone() (evalml.pipelines.components.transformers.preprocessing.text_transformer.TextTransformer

method), 1207
clone() (evalml.pipelines.components.transformers.preprocessing.TextTransformer

method), 1263
clone() (evalml.pipelines.components.transformers.preprocessing.time_series_featurizer.TimeSeriesFeaturizer

method), 1211
clone() (evalml.pipelines.components.transformers.preprocessing.time_series_regularizer.TimeSeriesRegularizer

method), 1214
clone() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesFeaturizer

method), 1266
clone() (evalml.pipelines.components.transformers.preprocessing.TimeSeriesRegularizer

method), 1269
clone() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.EmailFeaturizer

method), 1217
clone() (evalml.pipelines.components.transformers.preprocessing.transform_primitive_components.URLFeaturizer

method), 1220
clone() (evalml.pipelines.components.transformers.preprocessing.URLFeaturizer

method), 1272
clone() (evalml.pipelines.components.transformers.ReplaceNullableTypes

method), 1365
clone() (evalml.pipelines.components.transformers.RFClassifierRFESelector

method), 1368
clone() (evalml.pipelines.components.transformers.RFClassifierSelectFromModel

method), 1371
clone() (evalml.pipelines.components.transformers.RFRegressorRFESelector

method), 1374
clone() (evalml.pipelines.components.transformers.RFRegressorSelectFromModel

method), 1377
clone() (evalml.pipelines.components.transformers.samplers.base_sampler.BaseSampler

method), 1275
clone() (evalml.pipelines.components.transformers.samplers.Oversampler

method), 1284
clone() (evalml.pipelines.components.transformers.samplers.oversampler.Oversampler

method), 1278
clone() (evalml.pipelines.components.transformers.samplers.Undersampler

method), 1287
clone() (evalml.pipelines.components.transformers.samplers.undersampler.Undersampler

method), 1281
clone() (evalml.pipelines.components.transformers.scalers.standard_scaler.StandardScaler

method), 1290
clone() (evalml.pipelines.components.transformers.scalers.StandardScaler
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method), 1293
clone() (evalml.pipelines.components.transformers.SelectByType

method), 1380
clone() (evalml.pipelines.components.transformers.SelectColumns

method), 1382
clone() (evalml.pipelines.components.transformers.SimpleImputer

method), 1384
clone() (evalml.pipelines.components.transformers.StandardScaler

method), 1387
clone() (evalml.pipelines.components.transformers.STLDecomposer

method), 1390
clone() (evalml.pipelines.components.transformers.TargetEncoder

method), 1395
clone() (evalml.pipelines.components.transformers.TargetImputer

method), 1398
clone() (evalml.pipelines.components.transformers.TimeSeriesFeaturizer

method), 1401
clone() (evalml.pipelines.components.transformers.TimeSeriesImputer

method), 1404
clone() (evalml.pipelines.components.transformers.TimeSeriesRegularizer

method), 1407
clone() (evalml.pipelines.components.transformers.Transformer

method), 1410
clone() (evalml.pipelines.components.transformers.transformer.Transformer

method), 1306
clone() (evalml.pipelines.components.transformers.Undersampler

method), 1413
clone() (evalml.pipelines.components.transformers.URLFeaturizer

method), 1415
clone() (evalml.pipelines.components.Undersampler

method), 1631
clone() (evalml.pipelines.components.URLFeaturizer

method), 1633
clone() (evalml.pipelines.components.VARMAXRegressor

method), 1636
clone() (evalml.pipelines.components.VowpalWabbitBinaryClassifier

method), 1639
clone() (evalml.pipelines.components.VowpalWabbitMulticlassClassifier

method), 1642
clone() (evalml.pipelines.components.VowpalWabbitRegressor

method), 1645
clone() (evalml.pipelines.components.XGBoostClassifier

method), 1648
clone() (evalml.pipelines.components.XGBoostRegressor

method), 1651
clone() (evalml.pipelines.DecisionTreeClassifier

method), 1782
clone() (evalml.pipelines.DecisionTreeRegressor

method), 1786
clone() (evalml.pipelines.DFSTransformer method),

1789
clone() (evalml.pipelines.DropNaNRowsTransformer

method), 1791
clone() (evalml.pipelines.ElasticNetClassifier method),

1794
clone() (evalml.pipelines.ElasticNetRegressor method),

1797
clone() (evalml.pipelines.Estimator method), 1800
clone() (evalml.pipelines.ExponentialSmoothingRegressor

method), 1804
clone() (evalml.pipelines.ExtraTreesClassifier method),

1807
clone() (evalml.pipelines.ExtraTreesRegressor method),

1811
clone() (evalml.pipelines.FeatureSelector method),

1814
clone() (evalml.pipelines.Imputer method), 1817
clone() (evalml.pipelines.KNeighborsClassifier

method), 1820
clone() (evalml.pipelines.LightGBMClassifier method),

1823
clone() (evalml.pipelines.LightGBMRegressor method),

1827
clone() (evalml.pipelines.LinearRegressor method),

1830
clone() (evalml.pipelines.LogisticRegressionClassifier

method), 1833
clone() (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline

method), 1678
clone() (evalml.pipelines.MulticlassClassificationPipeline

method), 1838
clone() (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline

method), 1684
clone() (evalml.pipelines.MultiseriesRegressionPipeline

method), 1844
clone() (evalml.pipelines.OneHotEncoder method),

1851
clone() (evalml.pipelines.OrdinalEncoder method),

1854
clone() (evalml.pipelines.PerColumnImputer method),

1857
clone() (evalml.pipelines.pipeline_base.PipelineBase

method), 1692
clone() (evalml.pipelines.PipelineBase method), 1860
clone() (evalml.pipelines.ProphetRegressor method),

1866
clone() (evalml.pipelines.RandomForestClassifier

method), 1869
clone() (evalml.pipelines.RandomForestRegressor

method), 1872
clone() (evalml.pipelines.regression_pipeline.RegressionPipeline

method), 1700
clone() (evalml.pipelines.RegressionPipeline method),

1876
clone() (evalml.pipelines.RFClassifierSelectFromModel

method), 1881
clone() (evalml.pipelines.RFRegressorSelectFromModel

method), 1884
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clone() (evalml.pipelines.SimpleImputer method), 1887
clone() (evalml.pipelines.StackedEnsembleBase

method), 1890
clone() (evalml.pipelines.StackedEnsembleClassifier

method), 1894
clone() (evalml.pipelines.StackedEnsembleRegressor

method), 1898
clone() (evalml.pipelines.StandardScaler method),

1900
clone() (evalml.pipelines.SVMClassifier method), 1903
clone() (evalml.pipelines.SVMRegressor method), 1906
clone() (evalml.pipelines.TargetEncoder method), 1909
clone() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

method), 1707
clone() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

method), 1715
clone() (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1723
clone() (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

method), 1731
clone() (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

method), 1738
clone() (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

method), 1914
clone() (evalml.pipelines.TimeSeriesClassificationPipeline

method), 1921
clone() (evalml.pipelines.TimeSeriesFeaturizer

method), 1928
clone() (evalml.pipelines.TimeSeriesImputer method),

1930
clone() (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

method), 1934
clone() (evalml.pipelines.TimeSeriesRegressionPipeline

method), 1942
clone() (evalml.pipelines.TimeSeriesRegularizer

method), 1949
clone() (evalml.pipelines.Transformer method), 1952
clone() (evalml.pipelines.VARMAXRegressor method),

1955
clone() (evalml.pipelines.VowpalWabbitBinaryClassifier

method), 1958
clone() (evalml.pipelines.VowpalWabbitMulticlassClassifier

method), 1961
clone() (evalml.pipelines.VowpalWabbitRegressor

method), 1964
clone() (evalml.pipelines.XGBoostClassifier method),

1967
clone() (evalml.pipelines.XGBoostRegressor method),

1970
close() (evalml.automl.engine.cf_engine.CFClient

method), 296
close() (evalml.automl.engine.cf_engine.CFEngine

method), 297
close() (evalml.automl.engine.CFEngine method), 308

close() (evalml.automl.engine.dask_engine.DaskEngine
method), 299

close() (evalml.automl.engine.DaskEngine method),
309

close() (evalml.automl.engine.sequential_engine.SequentialEngine
method), 306

close() (evalml.automl.engine.SequentialEngine
method), 312

close() (evalml.automl.SequentialEngine method), 343
close_engine() (evalml.automl.automl_search.AutoMLSearch

method), 319
close_engine() (evalml.automl.AutoMLSearch

method), 336
close_engine() (evalml.AutoMLSearch method), 2041
ColumnSelector (class in

evalml.pipelines.components.transformers.column_selectors),
1295

ComponentBase (class in evalml.pipelines.components),
1448

ComponentBase (class in
evalml.pipelines.components.component_base),
1418

ComponentBaseMeta (class in
evalml.pipelines.components), 1450

ComponentBaseMeta (class in
evalml.pipelines.components.component_base_meta),
1420

ComponentGraph (class in evalml.pipelines), 1775
ComponentGraph (class in

evalml.pipelines.component_graph), 1669
ComponentNotYetFittedError, 451, 454
compute_order (evalml.pipelines.component_graph.ComponentGraph

property), 1671
compute_order (evalml.pipelines.ComponentGraph

property), 1777
CONDA_TO_PIP_NAME (in module evalml.utils.cli_utils),

2022
confusion_matrix() (in module

evalml.model_understanding), 488
confusion_matrix() (in module

evalml.model_understanding.metrics), 472
contains_all_ts_parameters() (in module

evalml.utils.gen_utils), 2026
contains_pre_existing_features()

(evalml.pipelines.components.DFSTransformer
static method), 1462

contains_pre_existing_features()
(evalml.pipelines.components.transformers.DFSTransformer
static method), 1313

contains_pre_existing_features()
(evalml.pipelines.components.transformers.preprocessing.DFSTransformer
static method), 1230

contains_pre_existing_features()
(evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer
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static method), 1180
contains_pre_existing_features()

(evalml.pipelines.DFSTransformer static
method), 1789

convert_bool_to_double() (in module
evalml.pipelines.components.utils), 1422

convert_dict_to_action()
(evalml.data_checks.data_check_action.DataCheckAction
static method), 349

convert_dict_to_action()
(evalml.data_checks.DataCheckAction static
method), 405

convert_dict_to_option()
(evalml.data_checks.data_check_action_option.DataCheckActionOption
static method), 351

convert_dict_to_option()
(evalml.data_checks.DataCheckActionOption
static method), 406

convert_to_seconds() (in module evalml.utils), 2033
convert_to_seconds() (in module

evalml.utils.gen_utils), 2026
CostBenefitMatrix (class in evalml.objectives), 619
CostBenefitMatrix (class in

evalml.objectives.cost_benefit_matrix), 503
create_objectives()

(evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
static method), 1657

create_objectives()
(evalml.pipelines.BinaryClassificationPipeline
static method), 1758

create_objectives()
(evalml.pipelines.classification_pipeline.ClassificationPipeline
static method), 1665

create_objectives()
(evalml.pipelines.ClassificationPipeline static
method), 1771

create_objectives()
(evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
static method), 1678

create_objectives()
(evalml.pipelines.MulticlassClassificationPipeline
static method), 1838

create_objectives()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
static method), 1684

create_objectives()
(evalml.pipelines.MultiseriesRegressionPipeline
static method), 1844

create_objectives()
(evalml.pipelines.pipeline_base.PipelineBase
static method), 1693

create_objectives() (evalml.pipelines.PipelineBase
static method), 1861

create_objectives()

(evalml.pipelines.regression_pipeline.RegressionPipeline
static method), 1701

create_objectives()
(evalml.pipelines.RegressionPipeline static
method), 1877

create_objectives()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
static method), 1707

create_objectives()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
static method), 1715

create_objectives()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
static method), 1723

create_objectives()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
static method), 1731

create_objectives()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
static method), 1738

create_objectives()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
static method), 1914

create_objectives()
(evalml.pipelines.TimeSeriesClassificationPipeline
static method), 1921

create_objectives()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
static method), 1934

create_objectives()
(evalml.pipelines.TimeSeriesRegressionPipeline
static method), 1942

cross_entropy() (in module
evalml.model_understanding.prediction_explanations.explainers),
462

custom_name (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline
property), 1657

custom_name (evalml.pipelines.BinaryClassificationPipeline
property), 1758

custom_name (evalml.pipelines.classification_pipeline.ClassificationPipeline
property), 1665

custom_name (evalml.pipelines.ClassificationPipeline
property), 1771

custom_name (evalml.pipelines.multiclass_classification_pipeline.MulticlassClassificationPipeline
property), 1678

custom_name (evalml.pipelines.MulticlassClassificationPipeline
property), 1838

custom_name (evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
property), 1684

custom_name (evalml.pipelines.MultiseriesRegressionPipeline
property), 1844

custom_name (evalml.pipelines.pipeline_base.PipelineBase
property), 1693

custom_name (evalml.pipelines.PipelineBase property),
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1861
custom_name (evalml.pipelines.regression_pipeline.RegressionPipeline

property), 1701
custom_name (evalml.pipelines.RegressionPipeline

property), 1877
custom_name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline

property), 1708
custom_name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline

property), 1715
custom_name (evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1723
custom_name (evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase

property), 1731
custom_name (evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline

property), 1738
custom_name (evalml.pipelines.TimeSeriesBinaryClassificationPipeline

property), 1914
custom_name (evalml.pipelines.TimeSeriesClassificationPipeline

property), 1921
custom_name (evalml.pipelines.TimeSeriesMulticlassClassificationPipeline

property), 1935
custom_name (evalml.pipelines.TimeSeriesRegressionPipeline

property), 1942

D
DaskComputation (class in

evalml.automl.engine.dask_engine), 299
DaskEngine (class in evalml.automl.engine), 309
DaskEngine (class in evalml.automl.engine.dask_engine),

299
DataCheck (class in evalml.data_checks), 404
DataCheck (class in evalml.data_checks.data_check),

348
DataCheckAction (class in evalml.data_checks), 404
DataCheckAction (class in

evalml.data_checks.data_check_action),
349

DataCheckActionCode (class in evalml.data_checks),
405

DataCheckActionCode (class in
evalml.data_checks.data_check_action_code),
350

DataCheckActionOption (class in
evalml.data_checks), 405

DataCheckActionOption (class in
evalml.data_checks.data_check_action_option),
351

DataCheckError (class in evalml.data_checks), 407
DataCheckError (class in

evalml.data_checks.data_check_message),
354

DataCheckInitError, 451, 454
DataCheckMessage (class in evalml.data_checks), 407

DataCheckMessage (class in
evalml.data_checks.data_check_message),
354

DataCheckMessageCode (class in evalml.data_checks),
407

DataCheckMessageCode (class in
evalml.data_checks.data_check_message_code),
355

DataCheckMessageType (class in evalml.data_checks),
409

DataCheckMessageType (class in
evalml.data_checks.data_check_message_type),
357

DataChecks (class in evalml.data_checks), 410
DataChecks (class in evalml.data_checks.data_checks),

358
DataCheckWarning (class in evalml.data_checks), 410
DataCheckWarning (class in

evalml.data_checks.data_check_message),
354

dates_needed_for_prediction()
(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1684

dates_needed_for_prediction()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1844

dates_needed_for_prediction()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1708

dates_needed_for_prediction()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1715

dates_needed_for_prediction()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1723

dates_needed_for_prediction()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1731

dates_needed_for_prediction()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1738

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1914

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1921

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1935

dates_needed_for_prediction()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1942

dates_needed_for_prediction_range()
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(evalml.pipelines.multiseries_regression_pipeline.MultiseriesRegressionPipeline
method), 1684

dates_needed_for_prediction_range()
(evalml.pipelines.MultiseriesRegressionPipeline
method), 1844

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesBinaryClassificationPipeline
method), 1708

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesClassificationPipeline
method), 1715

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_classification_pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1723

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_pipeline_base.TimeSeriesPipelineBase
method), 1731

dates_needed_for_prediction_range()
(evalml.pipelines.time_series_regression_pipeline.TimeSeriesRegressionPipeline
method), 1738

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesBinaryClassificationPipeline
method), 1914

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesClassificationPipeline
method), 1921

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesMulticlassClassificationPipeline
method), 1935

dates_needed_for_prediction_range()
(evalml.pipelines.TimeSeriesRegressionPipeline
method), 1942

DateTimeFeaturizer (class in
evalml.pipelines.components), 1451

DateTimeFeaturizer (class in
evalml.pipelines.components.transformers),
1309

DateTimeFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing),
1222

DateTimeFeaturizer (class in
evalml.pipelines.components.transformers.preprocessing.datetime_featurizer),
1162

DateTimeFormatDataCheck (class in
evalml.data_checks), 410

DateTimeFormatDataCheck (class in
evalml.data_checks.datetime_format_data_check),
359

DCAOParameterAllowedValuesType (class in
evalml.data_checks), 417

DCAOParameterAllowedValuesType (class in
evalml.data_checks.data_check_action_option),
352

DCAOParameterType (class in evalml.data_checks), 418

DCAOParameterType (class in
evalml.data_checks.data_check_action_option),
352

debug() (evalml.automl.engine.engine_base.JobLogger
method), 303

decision_function()
(evalml.objectives.AccuracyBinary method),
602

decision_function() (evalml.objectives.AUC
method), 606

decision_function()
(evalml.objectives.BalancedAccuracyBinary
method), 613

decision_function()
(evalml.objectives.binary_classification_objective.BinaryClassificationObjective
method), 500

decision_function()
(evalml.objectives.BinaryClassificationObjective
method), 617

decision_function()
(evalml.objectives.cost_benefit_matrix.CostBenefitMatrix
method), 504

decision_function()
(evalml.objectives.CostBenefitMatrix method),
620

decision_function() (evalml.objectives.F1 method),
624

decision_function()
(evalml.objectives.fraud_cost.FraudCost
method), 507

decision_function() (evalml.objectives.FraudCost
method), 632

decision_function() (evalml.objectives.Gini
method), 636

decision_function()
(evalml.objectives.lead_scoring.LeadScoring
method), 510

decision_function() (evalml.objectives.LeadScoring
method), 639

decision_function()
(evalml.objectives.LogLossBinary method),
641

decision_function() (evalml.objectives.MCCBinary
method), 652

decision_function() (evalml.objectives.Precision
method), 666

decision_function() (evalml.objectives.Recall
method), 676

decision_function()
(evalml.objectives.sensitivity_low_alert.SensitivityLowAlert
method), 521

decision_function()
(evalml.objectives.SensitivityLowAlert
method), 689
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decision_function()
(evalml.objectives.standard_metrics.AccuracyBinary
method), 524

decision_function()
(evalml.objectives.standard_metrics.AUC
method), 528

decision_function()
(evalml.objectives.standard_metrics.BalancedAccuracyBinary
method), 536

decision_function()
(evalml.objectives.standard_metrics.F1
method), 541

decision_function()
(evalml.objectives.standard_metrics.Gini
method), 549

decision_function()
(evalml.objectives.standard_metrics.LogLossBinary
method), 551

decision_function()
(evalml.objectives.standard_metrics.MCCBinary
method), 562

decision_function()
(evalml.objectives.standard_metrics.Precision
method), 571

decision_function()
(evalml.objectives.standard_metrics.Recall
method), 581

decision_tree_data_from_estimator() (in module
evalml.model_understanding.visualizations),
481

decision_tree_data_from_pipeline() (in module
evalml.model_understanding.visualizations),
481

DecisionTreeClassifier (class in evalml.pipelines),
1780

DecisionTreeClassifier (class in
evalml.pipelines.components), 1454

DecisionTreeClassifier (class in
evalml.pipelines.components.estimators),
963

DecisionTreeClassifier (class in
evalml.pipelines.components.estimators.classifiers),
775

DecisionTreeClassifier (class in
evalml.pipelines.components.estimators.classifiers.decision_tree_classifier),
723

DecisionTreeRegressor (class in evalml.pipelines),
1784

DecisionTreeRegressor (class in
evalml.pipelines.components), 1457

DecisionTreeRegressor (class in
evalml.pipelines.components.estimators),
967

DecisionTreeRegressor (class in

evalml.pipelines.components.estimators.regressors),
894

DecisionTreeRegressor (class in
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449
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evalml.pipelines), 1832
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evalml.pipelines.components), 1520
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evalml.pipelines.components.estimators),
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LogisticRegressionClassifier (class in
evalml.pipelines.components.estimators.classifiers),
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evalml.pipelines.components.transformers.preprocessing),
1242
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M
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make_data_splitter() (in module
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make_pipeline() (in module evalml.pipelines.utils),
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evalml.pipelines.utils), 1747
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module evalml.pipelines.utils), 1747
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MASE (class in evalml.objectives.standard_metrics), 557
match_indices() (in module

evalml.pipelines.components.utils), 1425
MaxError (class in evalml.objectives), 649
MaxError (class in evalml.objectives.standard_metrics),

559
MCCBinary (class in evalml.objectives), 651
MCCBinary (class in evalml.objectives.standard_metrics),

561
MCCMulticlass (class in evalml.objectives), 653
MCCMulticlass (class in

evalml.objectives.standard_metrics), 563
MeanSquaredLogError (class in evalml.objectives), 655
MeanSquaredLogError (class in

evalml.objectives.standard_metrics), 565
MedianAE (class in evalml.objectives), 656
MedianAE (class in evalml.objectives.standard_metrics),

566
method (in module evalml.utils.update_checker), 2030
MethodPropertyNotFoundError, 451, 454
MissingComponentError, 452, 454
model_family (evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

property), 1659
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