EvalML Documentation
Release 0.9.0

Feature Labs, Inc.

Apr 27, 2020

GETTING STARTED

1 Quick Start 3

Index 191

EvalML Documentation, Release 0.9.0

< EValML

EvalML is an AutoML library that builds, optimizes, and evaluates machine learning pipelines using domain-specific
objective functions.

Combined with Featuretools and Compose, EvalML can be used to create end-to-end machine learning solutions for
classification and regression problems.

GETTING STARTED 1

https://featuretools.featurelabs.com
https://compose.featurelabs.com

EvalML Documentation, Release 0.9.0

2 GETTING STARTED

CHAPTER
ONE

QUICK START

import evalml
from evalml import AutoClassificationSearch

1.1 Load Data

First, we load in the features and outcomes we want to use to train our model

: X, v = evalml.demos.load_breast_cancer ()

1.2 Configure search

EvalML has many options to configure the pipeline search. At the minimum, we need to define an objective function.
For simplicity, we will use the F1 score in this example. However, the real power of EvalML is in using domain-
specific objective functions or building your own.

Below EvalML utilizes Bayesian optimization (EvalML’s default optimizer) to search and find the best pipeline defined
by the given objective.

automl = AutoClassificationSearch (objective="f1",
max_pipelines=5)

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set.

: X_train, X _holdout, y_train, y_holdout = evalml.preprocessing.split_data (X, y, test_

<.size=.2)

When we call . search (), the search for the best pipeline will begin. There is no need to wrangle with missing data
or categorical variables as EvaIML includes various preprocessing steps (like imputation, one-hot encoding, feature
selection) to ensure you’re getting the best results. As long as your data is in a single table, EvalML can handle it. If
not, you can reduce your data to a single table by utilizing Featuretools and its Entity Sets.

You can find more information on pipeline components and how to integrate your own custom pipelines into EvalML
here.

automl.search (X_train, y_train)

https://featuretools.featurelabs.com

EvalML Documentation, Release 0.9.0

Khkkhkkkkkkhhhhkkkkhkkhkhhkkkkhkk
* Beginning pipeline search =*
Ahkkhkkkkkkhhhhhhrkkrkhrkhhhkrkkrkx

Optimizing for Fl. Greater score is better.

Searching up to 5 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',

'name': 'Best Score',

'type'...
XGBoost Binary Classification Pipel... 20% | | Elapsed:00:05
Random Forest Binary Classification... 40% | | Elapsed:00:17
Logistic Regression Binary Pipeline: 60% | | Elapsed:00:18
XGBoost Binary Classification Pipel... 80% | | Elapsed:00:25
XGBoost Binary Classification Pipel... 100%|| Elapsed:00:31
Optimization finished 100%|| Elapsed:00:31

1.3 See Pipeline Rankings

After the search is finished we can view all of the pipelines searched, ranked by score. Internally, EvalML per-
forms cross validation to score the pipelines. If it notices a high variance across cross validation folds, it will warn
you. EvalML also provides additional guardrails to analyze your data to assist you in producing the best performing
pipeline.

automl.rankings

id pipeline_name score \
0 2 Logistic Regression Binary Pipeline 0.969444
1 0 XGBoost Binary Classification Pipeline 0.961592
2 1 Random Forest Binary Classification Pipeline 0.954699
high_variance_cv parameters
0 False {'impute_strategy': 'mean', 'penalty': '12', '...
1 False {'impute_strategy': 'most_frequent', 'percent_...
2 False {'impute_strategy': 'median', 'percent_feature...

1.4 Describe pipeline

If we are interested in see more details about the pipeline, we can describe it using the id from the rankings table:

automl.describe_pipeline (3)

khkkhkkkkhkhkhkkhkhkkkhkhkhkkhkhkkkhkhkhkhkhkhkkkhkhkhkhkhkhkkkhkhkhkhkkhkxkx
* XGBoost Binary Classification Pipeline x
khkkhkhkkkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkk

Problem Type: Binary Classification
Model Family: XGBoost
Number of features: 4

Pipeline Steps
(continues on next page)

4 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

(continued from previous page)

1. One Hot Encoder
* top_n : 10
2. Simple Imputer
* impute_strategy : most_frequent
* fill_value : None
3. RF Classifier Select From Model
* percent_features : 0.14894727260851873
* threshold : -inf
4. XGBoost Classifier
* eta : 0.4736080452737106
* max_depth : 18
* min_child _weight : 5.153314260276387
* n_estimators : 660

Training

Training for Binary Classification problems.
Total training time (including CV): 6.4 seconds

Cross Validation
Fl Accuracy Binary Balanced Accuracy Binary Precision Recall AUC
— Log Loss Binary MCC Binary # Training # Testing

0 0.938 0.921 0.909 0.919 0.958 0.973_
— 0.235 0.831 303.000 152.000
1 0.944 0.928 0.911 0.912 0.979 0.984
— 0.161 0.846 303.000 152.000
2 0.930 0.914 0.913 0.946 0.916 0.987_
— 0.173 0.818 304.000 151.000
mean 0.938 0.921 0.911 0.926 0.951 0.981_
— 0.190 0.832 - -
std 0.007 0.007 0.002 0.018 0.032 0.007_
— 0.040 0.014 - -
coef of var 0.007 0.007 0.002 0.019 0.034 0.008_
— 0.210 0.017 - -

1.5 Select Best pipeline

We can now select best pipeline and score it on our holdout data:

: pipeline = automl.best_pipeline

pipeline.score (X_holdout, y_holdout, ["£f1"])

OrderedDict ([('F1', 0.9863013698630138)1])

We can also visualize the structure of our pipeline:

: pipeline.graph ()

1.5. Select Best pipeline 5

EvalML Documentation, Release 0.9.0

1.6 Whats next?

Head into the more in-depth automated walkthrough /ere or any advanced topics below.

1.6.1 Install

EvalML is available for Python 3.6+. It can be installed by running the following command:

pip install evaml --extra-index-url https://install.featurelabs.com/<license>/

Dependencies

Optional Dependencies

EvalML includes several dependencies in requirements.txt by default: xgboost and catboost support
pipelines built around those modeling libraries, and plotly and ipywidgets support plotting functionality in
automl searches. These dependencies are recommended but are not required in order to install and use EvalML. To
install these additional dependencies run pip install -r requirements.txt.

Core Dependencies

If you wish to install EvalML with only the core required dependencies, include —-no-dependencies
in your EvalML pip install command, and then install all core dependencies with pip install -r
core-requirements.txt.

Windows

The XGBoost library may not be pip-installable in some Windows environments. If you are encountering installation
issues, please try installing XGBoost from Github before installing EvalML.

1.6.2 Objective Functions

The objective function is what EvalML maximizes (or minimizes) as it completes the pipeline search. As it gets
feedback from building pipelines, it tunes the hyperparameters to build optimized models. Therefore, it is critical to
have an objective function that captures the how the model’s predictions will be used in a business setting.

List of Available Objective Functions
Most AutoML libraries optimize for generic machine learning objective functions. Frequently, the scores produced by
the generic machine learning objective diverge from how the model will be evaluated in the real world.

In EvalML, we can train and optimize the model for a specific problem by optimizing a domain-specific objectives
functions or by defining our own custom objective function.

Currently, EvalML has two domain specific objective functions with more being developed. For more information on
these objective functions click on the links below.

6 Chapter 1. Quick Start

https://pypi.org/project/xgboost/
https://xgboost.readthedocs.io/en/latest/build.html

EvalML Documentation, Release 0.9.0

e Fraud Detection

* Lead Scoring

Build your own objective Functions

Often times, the objective function is very specific to the use-case or business problem. To get the right objective
to optimize requires thinking through the decisions or actions that will be taken using the model and assigning the
cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a
custom objective function. Read more /ere.

1.6.3 Building a Fraud Prediction Model with EvalML

In this demo, we will build an optimized fraud prediction model using EvalML. To optimize the pipeline, we will set
up an objective function to minimize the percentage of total transaction value lost to fraud. At the end of this demo, we
also show you how introducing the right objective during the training is over 4x better than using a generic machine
learning metric like AUC.

: import evalml

from evalml import AutoClassificationSearch
from evalml.objectives import FraudCost

Configure “Cost of Fraud”
To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for the
cost of fraud. These parameters are

* retry_percentage - what percentage of customers will retry a transaction if it is declined?

* interchange_fee - how much of each successful transaction do you collect?

* fraud_payout_percentage - the percentage of fraud will you be unable to collect

e amount_col - the column in the data the represents the transaction amount

Using these parameters, EvalML determines attempt to build a pipeline that will minimize the financial loss due to
fraud.

fraud_objective = FraudCost (retry_percentage=.5,
interchange_fee=.02,
fraud_payout_percentage=.75,
amount_col="amount"')

Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set

: X, v = evalml.demos.load_fraud(n_rows=2500)

1.6. Whats next? 7

EvalML Documentation, Release 0.9.0

Number of Features

Boolean 1
Categorical 6
Numeric 5

Number of training examples: 2500

Labels
False 85.92%
True 14.08%

Name: fraud, dtype: object

EvalML natively supports one-hot encoding. Here we keep 1 out of the 6 categorical columns to decrease computation
time.

X = X.drop(['datetime', 'expiration_date', 'country', 'region', 'provider'], axis=1)

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, test_
—size=0.2, random_state=0)

print (X.dtypes)

card_id int64
store_id into64
amount int64
currency object
customer_present bool
lat floato4d
1ng floato64

dtype: object

Because the fraud labels are binary, we will use AutoClassificationSearch. When wecall . search (), the
search for the best pipeline will begin.

automl = AutoClassificationSearch (objective=fraud_objective,
additional_objectives=['auc', 'recall', 'precision
‘ﬁ'Jr
max_pipelines=5,
optimize_thresholds=True)

automl.search (X_train, y_train)

ddk ok ke ke ok ko ko ke ke ko ke ok
* Beginning pipeline search =*
khkkhkkhkkkhkkhkhkkhkkhkhkkhkkkhkkhkkkhkkk

Optimizing for Fraud Cost. Lower score is better.

Searching up to 5 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',

'name': 'Best Score',

'type'...
XGBoost Binary Classification Pipel... 20% | | Elapsed:00:06
Random Forest Binary Classification... 40% | | Elapsed:00:21
Logistic Regression Binary Pipeline: 60% | | Elapsed:00:23
XGBoost Binary Classification Pipel... 80% | | Elapsed:00:32
XGBoost Binary Classification Pipel... 100%|| Elapsed:00:40

(continues on next page)

8 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

Optimization finished 100% |

View rankings and select pipeline

(continued from previous page)

Elapsed:00:40

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the fraud

detection objective we defined

automl.rankings

id pipeline_name score \
0 1 Random Forest Binary Classification Pipeline 0.007838
1 3 XGBoost Binary Classification Pipeline 0.007838
2 2 Logistic Regression Binary Pipeline 0.007847
high_variance_cv parameters
0 False {'impute_strategy': 'median', 'percent_feature...
1 False {'impute_strategy': 'most_frequent', 'percent_...
2 False {'impute_strategy': 'mean', 'penalty': '12', '...

to select the best pipeline we can run

best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline. Including how it performed on other objective functions.

automl.describe_pipeline (automl.rankings.iloc[0] ["1d"])

T T T T
* Random Forest Binary Classification Pipeline *
2 L T T T T

Problem Type: Binary Classification
Model Family: Random Forest

Number of features: 1

Pipeline Steps

1. One Hot Encoder
* top_n : 10
2. Simple Imputer
* impute_strategy
+ fill_value None
3. RF Classifier Select From Model
* percent_features 0.8140470414877383
* threshold
4. Random Forest Classifier
* n_estimators 859
* max_depth : 6

median

mean

Training

Training for Binary Classification problems.

(continues on next page)

1.6. Whats next?

EvalML Documentation, Release 0.9.0

(continued from previous page)

Objective to optimize binary classification pipeline thresholds for: <evalml.
—objectives.fraud_cost.FraudCost object at 0x7£292826b208>
Total training time (including CV): 14.7 seconds

Cross Validation

Fraud Cost AUC Recall Precision # Training # Testing

0 0.008 0.866 1.000 0.141 1066.000 667.000
1 0.008 0.846 1.000 0.141 1066.000 667.000
2 0.008 0.824 1.000 0.141 1067.000 666.000
mean 0.008 0.845 1.000 0.141 - -
std 0.000 0.021 0.000 0.000 - -
coef of var 0.007 0.025 0.000 0.001 - -

Evaluate on hold out

Finally, we retrain the best pipeline on all of the training data and evaluate on the holdout

best_pipeline.fit (X_train, y_train)
<evalml.pipelines.classification.random_forest_binary.RFBinaryClassificationPipeline,,

—at 0x7£28d6c2bell>

Now, we can score the pipeline on the hold out data using both the fraud cost score and the AUC.

best_pipeline.score (X_holdout, y_holdout, objectives=["auc", fraud_objective])

OrderedDict ([('AUC', 0.8402823920265778),
('"Fraud Cost', 0.007766323050145169)1])

Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the fraud cost objective to see how
the best pipelines compare.

automl_auc = AutoClassificationSearch (objective='auc',
additional_objectives=['recall', 'precision'],
max_pipelines=5,
optimize_thresholds=True)

automl_auc.search(X_train, y_train)

hhkhkhkhkhkkkkhkkkkkkkkkkkhkhkhkhkhkhkhkhkkk
* Beginning pipeline search =*
hhkkkkhkkkkkhkkkhkkkkkkkhkkhkhkhkhkhkhkhhkkk

Optimizing for AUC. Greater score 1is better.

Searching up to 5 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',
'name': 'Best Score',
'type'...

10 Chapter 1. Quick Start

[13]:

EvalML Documentation, Release 0.9.0

XGBoost Binary Classification Pipel... 20% | | Elapsed:00:06
Random Forest Binary Classification... 40% | | Elapsed:00:19
Logistic Regression Binary Pipeline: 60% | | Elapsed:00:20
XGBoost Binary Classification Pipel... 80% | | Elapsed:00:28
XGBoost Binary Classification Pipel... 100%|| Elapsed:00:36
Optimization finished 100%|| Elapsed:00:36

like before, we can look at the rankings and pick the best pipeline

automl_auc.rankings

id pipeline_name score \
0 4 XGBoost Binary Classification Pipeline 0.863982
3 1 Random Forest Binary Classification Pipeline 0.850172
4 2 Logistic Regression Binary Pipeline 0.807842
high_variance_cv parameters
0 False {'impute_strategy': 'mean', 'percent_features'...
3 False {'impute_strategy': 'median', 'percent_feature...
4 False {'impute_strategy': 'mean', 'penalty': '12', '...
best_pipeline_auc = automl_auc.best_pipeline

train on the full training data
best_pipeline_auc.fit (X_train, y_train)

<evalml.pipelines.classification.xgboost_binary.XGBoostBinaryPipeline at_,
—0x7£28d57£95£8>

get the fraud score on holdout data
best_pipeline_auc.score (X_holdout, y_holdout, objectives=["auc", fraud_objective])

OrderedDict ([('AUC', 0.8268272425249169),
('Fraud Cost', 0.007669676738284303) 1)

fraud score on fraud optimized again
best_pipeline.score (X_holdout, y_holdout, objectives=["auc", fraud_objective])

OrderedDict ([('AUC', 0.8402823920265778),
('Fraud Cost', 0.007766323050145169)1])

When we optimize for AUC, we can see that the AUC score from this pipeline is better than the AUC score from
the pipeline optimized for fraud cost. However, the losses due to fraud are over 3% of the total transaction amount
when optimized for AUC and under 1% when optimized for fraud cost. As a result, we lose more than 2% of the total
transaction amount by not optimizing for fraud cost specifically.

This happens because optimizing for AUC does not take into account the user-specified retry_percentage,
interchange_fee, fraud_payout_percentage values. Thus, the best pipelines may produce the highest
AUC but may not actually reduce the amount loss due to your specific type fraud.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

1.6.4 Building a Lead Scoring Model with EvalML

In this demo, we will build an optimized lead scoring model using EvalML. To optimize the pipeline, we will set up
an objective function to maximize the revenue generated with true positives while taking into account the cost of false
positives. At the end of this demo, we also show you how introducing the right objective during the training is over 6x
better than using a generic machine learning metric like AUC.

1.6. Whats next? 11

EvalML Documentation, Release 0.9.0

import evalml
from evalml import AutoClassificationSearch
from evalml.objectives import LeadScoring

Configure LeadScoring

To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for how
much value is gained through true positives and the cost associated with false positives. These parameters are

* true_positive - dollar amount to be gained with a successful lead
e false_positive - dollar amount to be lost with an unsuccessful lead

Using these parameters, EvalML builds a pileline that will maximize the amount of revenue per lead generated.

lead_scoring_objective = LeadScoring(
true_positives=1000,
false_positives=-10

Dataset

We will be utilizing a dataset detailing a customer’s job, country, state, zip, online action, the dollar amount of that
action and whether they were a successful lead.

from urllib.request import urlopen
import pandas as pd

customers_data = urlopen('https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_
—apps/customers.csv')

interactions_data = urlopen('https://featurelabs-static.s3.amazonaws.com/lead_scoring_
—ml_apps/interactions.csv')

leads_data = urlopen('https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_
—apps/previous_leads.csv')

customers = pd.read_csv(customers_data)

interactions = pd.read_csv(interactions_data)

leads = pd.read_csv(leads_data)

X = customers.merge (interactions, on='customer_id') .merge (leads, on='customer_id")
y = X['label']

X = X.drop(['customer_id', 'date_registered', 'birthday', 'phone', 'email',
'owner', 'company', 'id', 'time_x',

'session', 'referrer', 'time_y', 'label'], axis=1)

display (X.head())

job country state zip action amount
0 Engineer, mining NaN NY 60091.0 page_view NaN
1 Psychologist, forensic Us CA NaN purchase 135.23
2 Psychologist, forensic Us CA NaN page_view NaN
3 Air cabin crew Us NaN 60091.0 download NaN
4 Air cabin crew Us NaN 60091.0 page_view NaN

12 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a
holdout set

EvalML natively supports one-hot encoding and imputation so the above NaN and categorical values will be taken
care of.

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, test_
—size=0.2, random_state=0)

print (X.dtypes)

job object
country object
state object
zip float64
action object
amount floato64

dtype: object

Because the lead scoring labels are binary, we will use AutoClassificationSearch. When we call .
search (), the search for the best pipeline will begin.

automl = AutoClassificationSearch (objective=lead_scoring_objective,
additional_objectives=['auc'],
max_pipelines=5,
optimize_thresholds=True)

automl.search(X_train, y_train)

khkkkhkkkhkhkkkhkhkkhkhkkkhkhkhkkkhkhkkkkkkxkx
* Beginning pipeline search =*
Ihkkhkkhkkkhhhhkhhkkhhhhhhkkhkkrkk

Optimizing for Lead Scoring. Greater score is better.

Searching up to 5 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',

'name': 'Best Score',

'type'...
XGBoost Binary Classification Pipel... 20% | | Elapsed:00:08
Random Forest Binary Classification... 40% | | Elapsed:00:23
Logistic Regression Binary Pipeline: 60% | | Elapsed:00:26
XGBoost Binary Classification Pipel... 80% | | Elapsed:00:35
XGBoost Binary Classification Pipel... 100%|| Elapsed:00:46
Optimization finished 100%|| Elapsed:00:46

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the lead
scoring objective we defined

automl.rankings

1.6. Whats next? 13

EvalML Documentation, Release 0.9.0

id pipeline_name score \
0 3 XGBoost Binary Classification Pipeline 15.095733
3 2 Logistic Regression Binary Pipeline 13.158047
4 1 Random Forest Binary Classification Pipeline 11.239462
high_variance_cv parameters
0 False {'impute_strategy': 'most_frequent', 'percent_...
3 True {'impute_strategy': 'mean', 'penalty': '12', '...
4 True {'impute_strategy': 'median', 'percent_feature...

to select the best pipeline we can run

best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline. Including how it performed on other objective functions.

automl.describe_pipeline (automl.rankings.iloc[0] ["1id"])

khkkkhkkkhkhkhkkhkhkkkhkhkhkkhkhkkkhkhkhkkhkhkhkkhkhkhkhkhkhkkkhkhkkkhkkxkx
* XGBoost Binary Classification Pipeline *
LR 2 T T T ey

Problem Type: Binary Classification
Model Family: XGBoost
Number of features: 1

Pipeline Steps

1. One Hot Encoder
* top_n : 10
2. Simple Imputer
* impute_strategy
* £ill value None
3. RF Classifier Select From Model
* percent_features 0.14894727260851873
* threshold —-inf
4. XGBoost Classifier
* eta 0.4736080452737106
* max_depth : 18
* min_child_weight
* n_estimators 660

most__frequent

5.153314260276387

Training

Training for Binary Classification problems.

Objective to optimize binary classification pipeline thresholds for:

—objectives.lead_scoring.LeadScoring object at 0x7£3d99b83780>
Total training time (including CV): 9.6 seconds

Cross Validation

Lead Scoring AUC # Training # Testing

<evalml.

0 15.606 0.519 2479.000 1550.000
1 14.523 0.502 2479.000 1550.000

(continues on next page)
14 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

(continued from previous page)

2 15.158 0.536 2480.000 1549.000
mean 15.096 0.519 - -
std 0.545 0.017 - -
coef of var 0.036 0.033 - -

Evaluate on hold out

Finally, we retrain the best pipeline on all of the training data and evaluate on the holdout

best_pipeline.fit (X_train, y_train)
<evalml.pipelines.classification.xgboost_binary.XGBoostBinaryPipeline at_,

—0x7£3d7c2a9940>

Now, we can score the pipeline on the hold out data using both the lead scoring score and the AUC.

best_pipeline.score (X_holdout, y_holdout, objectives=["auc", lead_scoring_objectivel])

OrderedDict ([('AUC', 0.4454215775158658),
('Lead Scoring', 12.218400687876182)1)

Why optimize for a problem-specific objective?

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a
common machine learning metric. After that, we will score the holdout data using the lead scoring objective to see
how the best pipelines compare.

automl_auc = evalml.AutoClassificationSearch (objective="'auc',
additional_objectives=][],
max_pipelines=5,
optimize_thresholds=True)

automl_auc.search(X_train, y_train)

hhkhkhkhkhkkkkkhkkhkkkkkhkkhkkhkhkhkhkhkhkhhkkk
* Beginning pipeline search =*
hhkkkkkkkkhkkkkkkkkkkkhkhkhkhkhkhkhhkkk

Optimizing for AUC. Greater score 1is better.

Searching up to 5 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',

'name': 'Best Score',

'type'...
XGBoost Binary Classification Pipel... 20% | | Elapsed:00:05
Random Forest Binary Classification... 40% | | Elapsed:00:17
Logistic Regression Binary Pipeline: 60% | | Elapsed:00:17
XGBoost Binary Classification Pipel... 80% | | Elapsed:00:25
XGBoost Binary Classification Pipel... 100%|| Elapsed:00:32
Optimization finished 100%|| Elapsed:00:32

like before, we can look at the rankings and pick the best pipeline

1.6. Whats next? 15

[12]:

[12]:

[14]:

EvalML Documentation, Release 0.9.0

automl_auc.rankings

id pipeline_name score \
0 2 Logistic Regression Binary Pipeline 0.695618
1 1 Random Forest Binary Classification Pipeline 0.591495
2 0 XGBoost Binary Classification Pipeline 0.571654
high_variance_cv parameters
0 False {'impute_strategy': 'mean', 'penalty': '12', '...
1 False {'impute_strategy': 'median', 'percent_feature...
2 False {'impute_strategy': 'most_frequent', 'percent_

: best_pipeline_auc = automl_auc.best_pipeline

train on the full training data
best_pipeline_auc.fit (X_train, y_train)

<evalml.pipelines.classification.logistic_regression_binary.
—LogisticRegressionBinaryPipeline at 0x7£3d7c609d30>

get the auc and lead scoring score on holdout data
best_pipeline_auc.score (X_holdout, y_holdout, objectives=["auc", lead_scoring_
—objectivel])

OrderedDict ([('AUC', 0.6510350559081293), ('Lead Scoring', 0.0)17)

When we optimize for AUC, we can see that the AUC score from this pipeline is better than the AUC score from the
pipeline optimized for lead scoring. However, the revenue per lead gained was only $7 per lead when optimized for
AUC and was $45 when optimized for lead scoring. As a result, we would gain up to 6x the amount of revenue if we
optimized for lead scoring.

This happens because optimizing for AUC does not take into account the user-specified true_positive (dollar amount
to be gained with a successful lead) and false_positive (dollar amount to be lost with an unsuccessful lead) values.
Thus, the best pipelines may produce the highest AUC but may not actually generate the most revenue through lead
scoring.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.

1.6.5 Custom Objective Functions

Often times, the objective function is very specific to the use-case or business problem. To get the right objective
to optimize requires thinking through the decisions or actions that will be taken using the model and assigning a
cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a
custom objective function.

How to Create a Objective Function

To create a custom objective function, we must define 2 functions

* The “objective function”: this function takes the predictions, true labels, and any other information about the
future and returns a score of how well the model performed.

* The ““decision function”: this function takes prediction probabilities that were output from the model and a
threshold and returns a prediction.

16 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

To evaluate a particular model, EvaIML automatically finds the best threshold to pass to the decision function to
generate predictions and then scores the resulting predictions using the objective function. The score from the objective
function determines which set of pipeline hyperparameters EvalML will try next.

To give a concrete example, let’s look at how the fraud detection objective function is built.

[1]: from evalml.objectives.binary classification_objective import
—BinaryClassificationObjective
import pandas as pd

class FraudCost (BinaryClassificationObjective) :

"""Score the percentage of money lost of the total transaction amount process due_,
—~to fraud"""

name = "Fraud Cost"

greater_is_better = False

score_needs_proba = False

def _ init__ (self, retry_percentage=.5, interchange_fee=.02,
fraud_payout_percentage=1.0, amount_col="amount"') :
"""Create instance of FraudCost

Arguments:
retry_percentage (float): What percentage of customers that will retry a,,
—transaction 1f it
is declined. Between 0 and 1. Defaults to .5

interchange fee (float): How much of each successful transaction you can,
—collect.
Between 0 and 1. Defaults to .02

fraud_payout_percentage (float): Percentage of fraud you will not be able,
—to collect.
Between 0 and 1. Defaults to 1.0

amount_col (str): Name of column in data that contains the amount.
—Defaults to "amount"
mmmn
self.retry_percentage = retry_percentage
self.interchange_fee = interchange_fee
self.fraud_payout_percentage = fraud_payout_percentage
self.amount_col = amount_col

def decision_function(self, ypred_proba, threshold=0.0, X=None) :
"""Determine if a transaction is fraud given predicted probabilities,
—~threshold, and dataframe with transaction amount

Arguments:
ypred_proba (pd.Series): Predicted probablities
X (pd.DataFrame): Dataframe containing transaction amount
threshold (float): Dollar threshold to determine if transaction 1is_,
—fraud

Returns:
pd.Series: Series of predicted fraud labels using X and threshold
mmmn
if not isinstance (X, pd.DataFrame) :
X = pd.DataFrame (X)
(continues on next page)

1.6. Whats next? 17

EvalML Documentation, Release 0.9.0

(continued from previous page)

if not isinstance (ypred_proba, pd.Series):
ypred_proba = pd.Series (ypred_proba)

transformed_probs = (ypred_proba.values » X[self.amount_col])
return transformed_probs > threshold

def objective_function(self, y_true, y_predicted, X):
"""Calculate amount lost to fraud per transaction given predictions, true,
—~values, and dataframe with transaction amount

Arguments:
yv_predicted (pd.Series): predicted fraud labels
y_true (pd.Series): true fraud labels
X (pd.DataFrame): dataframe with transaction amounts

Returns:
float: amount lost to fraud per transaction
mmmn
if not isinstance (X, pd.DataFrame) :
X = pd.DataFrame (X)

if not isinstance(y_predicted, pd.Series):
y_predicted = pd.Series(y_predicted)

if not isinstance(y_true, pd.Series):
y_true = pd.Series(y_true)

extract transaction using the amount columns in users data
try:
transaction_amount = X[self.amount_col]
except KeyError:
raise ValueError (" {}° 1s not a valid column in X.".format (self.amount_

—col))

amount paid if transaction is fraud
fraud_cost = transaction_amount x self.fraud_payout_percentage

money made from interchange fees on transaction
interchange_cost = transaction_amount * (1 - self.retry_percentage) = self.

—interchange_fee

calculate cost of missing fraudulent transactions
false_negatives = (y_true & ~y_predicted) =» fraud_cost

calculate money lost from fees
false_positives = (~y_true & y_predicted) » interchange_cost

loss = false_negatives.sum() + false_positives.sum()
loss_per_total_processed = loss / transaction_amount.sum/()

return loss_per_total_processed

18 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

1.6.6 Setting up pipeline search

Designing the right machine learning pipeline and picking the best parameters is a time-consuming process that relies
on a mix of data science intuition as well as trial and error. EvalML streamlines the process of selecting the best
modeling algorithms and parameters, so data scientists can focus their energy where it is most needed.

How it works

EvalML selects and tunes machine learning pipelines built of numerous steps. This includes encoding categorical data,
missing value imputation, feature selection, feature scaling, and finally machine learning. As EvalML tunes pipelines,
it uses the objective function selected and configured by the user to guide its search.

At each iteration, EvalML uses cross-validation to generate an estimate of the pipeline’s performances. If a pipeline
has high variance across cross-validation folds, it will provide a warning. In this case, the pipeline may not perform
reliably in the future.

EvalML is designed to work well out of the box. However, it provides numerous methods for you to control the search
described below.

Selecting problem type

EvalML supports both classification and regression problems. You select your problem type by importing the appro-
priate class.

import evalml
from evalml import AutoClassificationSearch, AutoRegressionSearch

: AutoClassificationSearch()

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7fcdc2b3c5£8>

: AutoRegressionSearch ()

<evalml.automl.auto_regression_search.AutoRegressionSearch at 0x7fcdabb4d5c0>

Setting the Objective Function

The only required parameter to start searching for pipelines is the objective function. Most domain-specific objective
functions require you to specify parameters based on your business assumptions. You can do this before you initialize
your pipeline search. For example

from evalml.objectives import FraudCost

fraud_objective = FraudCost (
retry_percentage=.5,
interchange_fee=.02,
fraud_payout_percentage=.75,
amount_col="amount'

AutoClassificationSearch (objective=fraud_objective, optimize_thresholds=True)

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7fcdabb60b70>

1.6. Whats next? 19

EvalML Documentation, Release 0.9.0

Evaluate on Additional Objectives

Additional objectives can be scored on during the evaluation process. To add another objective, use the
additional_objectives parameter in AutoClassificationSearch or AutoRegressionSearch. The results of these
additional objectives will then appear in the results of describe_pipeline.

from evalml.objectives import FraudCost

fraud_objective = FraudCost (
retry_ percentage=.5,
interchange_fee=.02,
fraud_payout_percentage=.75,
amount_col="amount'

AutoClassificationSearch (objective="AUC', additional_objectives=[fraud_objective]
—optimize_thresholds=False)

[

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7fcdabb6ae80>

Selecting Model Types

By default, all model types are considered. @ You can control which model types to search with the
allowed_model_families parameters

automl = AutoClassificationSearch (objective="£f1",
allowed_model_families=["random_ forest"])

you can see the possible pipelines that will be searched after initialization

automl.possible_pipelines

[evalml.pipelines.classification.random_forest_binary.RFBinaryClassificationPipeline]

you can see a list of all supported models like this

evalml.list_model_families ("binary") # ‘binary for binary classification and_,
— multiclass’ for multiclass classification

[<ModelFamily.RANDOM_FOREST: 'random_forest'>,
<ModelFamily.XGBOOST: 'xgboost'>,
<ModelFamily.CATBOOST: 'catboost'>,
<ModelFamily.LINEAR_MODEL: 'linear_model'>]

evalml.list_model_families ("regression")

[<ModelFamily.RANDOM_FOREST: 'random_forest'>,
<ModelFamily.XGBOOST: 'xgboost'>,
<ModelFamily.CATBOOST: 'catboost'>,
<ModelFamily.LINEAR_MODEL: 'linear_model'>]

Limiting Search Time
You can limit the search time by specifying a maximum number of pipelines and/or a maximum amount of time.

EvalML won’t build new pipelines after the maximum time has passed or the maximum number of pipelines have
been built. If a limit is not set, then a maximum of 5 pipelines will be built.

20 Chapter 1. Quick Start

[107]:

[11]:

[12]:

[12]:

EvalML Documentation, Release 0.9.0

The maximum search time can be specified as a integer in seconds or as a string in seconds, minutes, or hours.

AutoClassificationSearch (objective="f1",
max_pipelines=5,
max_time=60)

AutoClassificationSearch (objective="£f1",
max_time="1 minute")

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7fcdabb091d0>

To start, EvalML samples 10 sets of hyperparameters chosen randomly for each possible pipeline. Therefore, we
recommend setting max_pipelines atleast 10 times the number of possible pipelines.

n_possible_pipelines = len(AutoClassificationSearch (objective="f1") .possible_
—pipelines)

AutoClassificationSearch (objective="£f1",
max_time=60)

<evalml.automl.auto_classification_search.AutoClassificationSearch at 0x7fcdabbled68>

Early Stopping

You can also limit search time by providing a patience value for early stopping. With a patience value, EvaIML will
stop searching when the best objective score has not been improved upon for n iterations. The patience value must be
a positive integer. You can also provide a tolerance value where EvalML will only consider a score as an improvement
over the best score if the difference was greater than the tolerance percentage.

from evalml.demos import load_diabetes

X, v = load_diabetes|()

automl = AutoRegressionSearch (objective="MSE", patience=2, tolerance=0.01, max_
—pipelines=10)

automl.search (X, vy)

khkkkhkkkhkkkkhkhkkhkhkkkhkhkhkkkhkhkkkkkkxkx
* Beginning pipeline search =*
Khkkhkkhkhkkkhhhhkhkkhkhhhhhkkkkhkk

Optimizing for MSE. Lower score 1is better.

Searching up to 10 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',
'name': 'Best Score',
'type'...
XGBoost Regression Pipeline: 10%| | Elapsed:00:03
Cat Boost Regression Pipeline: 20% | | Elapsed:00:12
Random Forest Regression Pipeline: 30%| | Elapsed:00:15
XGBoost Regression Pipeline: 40% | | Elapsed:00:20

2 iterations without improvement. Stopping search early...
Optimization finished 40% | | Elapsed:00:20

1.6. Whats next? 21

[15]:

EvalML Documentation, Release 0.9.0

automl.rankings

id
0 1
1 0
2 2

0 {'impute_strategy':
1 {'impute_strategy':
2 {'impute_strategy':

Control Cross Validation

pipeline_name

Cat Boost Regression Pipeline
XGBoost Regression Pipeline
Random Forest Regression Pipeline

'most_frequent',
'most_frequent',
'most_frequent',

high_variance_cv \
False
False
False

score
3566.688649
4443.846724
5615.790436

parameters
'n_estima...
'percent_...
'percent_...

EvalML cross-validates each model it tests during its search. By default it uses 3-fold cross-validation. You can
optionally provide your own cross-validation method.

from sklearn.model_selection import StratifiedKFold

automl =

AutoClassificationSearch(objective="£f1",

cv=StratifiedKFold(5))

1.6.7 Exploring search results

After finishing a pipeline search, we can inspect the results. First, let’s build a search of 10 different pipelines to

explore.

import evalml

from evalml import AutoClassificationSearch

X, y = evalml.demos.load_breast_cancer ()

automl =

automl.search (X, vy)

AutoClassificationSearch (objective="£f1",

max_pipelines=5)

hhkhkhkhkhkkkkhkkkhkkkkkkkhkkhkhkhkhkhkhkhhkkhk

* Beginning pipeline search =*
*khkkkkkkhkkkhkhkkkhkhkkkhkhkhkkkhkhkkkhkkkxk

Optimizing for F1.

Searching up to 5 pipelines.

FigureWidget ({
'data': [{'mode':
'name’' :

'lines+markers’',
'Best Score',

'type'...

XGBoost Binary Classification Pipel...
Random Forest Binary Classification...
Logistic Regression Binary Pipeline:

XGBoost Binary Classification Pipel...
XGBoost Binary Classification Pipel...

Optimization finished

Greater score is better.

20% | | Elapsed:00:05
40% | | Elapsed:00:18
60% | | Elapsed:00:19

80% | | Elapsed:00:26
100%|| Elapsed:00:32
100%| | Elapsed:00:32

22

Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

View Rankings

A summary of all the pipelines built can be returned as a pandas DataFrame. It is sorted by score. EvaIML knows

based on our objective function whether higher or lower is better.

automl.rankings

id pipeline_name score \
0 2 Logistic Regression Binary Pipeline 0.982042
1 0 XGBoost Binary Classification Pipeline 0.976191

2 1 Random Forest Binary Classification Pipeline 0.958032

high_variance_cv parameters
0 False {'impute_strategy': 'mean', 'penalty': '12', '...
1 False {'impute_strategy': 'most_frequent', 'percent_...
2 False {'impute_strategy': 'median', 'percent_feature...

Describe Pipeline

Each pipeline is given an 1d. We can get more information about any particular pipeline using that i d. Here, we will

get more information about the pipeline with id = 0.

automl.describe_pipeline (0)

khkkhkhkkkhkhkkhkhkkkhkhkhkkhkhkkkhkhkhkkhkhkhkkhkhkhkhkhkhkkkhkhkkkhkkkx
* XGBoost Binary Classification Pipeline *
LR 2 s T e Ty

Problem Type: Binary Classification
Model Family: XGBoost

Number of features: 25

Pipeline Steps

1. One Hot Encoder
* top_n : 10
2. Simple Imputer
* impute_strategy : most_frequent
* f£fill value : None
3. RF Classifier Select From Model
* percent_features : 0.8487792213962843
* threshold : -inf
4. XGBoost Classifier
* eta : 0.38438170729269994
* max_depth : 7
* min_child _weight : 1.5104167958569887
* n_estimators : 397

Training

Training for Binary Classification problems.
Total training time (including CV): 5.4 seconds

Cross Validation

F1 Accuracy Binary Balanced Accuracy Binary Precision
— Log Loss Binary MCC Binary # Training # Testing

Recall AUC

[

(continues on next page)

1.6. Whats next?

23

EvalML Documentation, Release 0.9.0

0 0.962

. 0.138 0.
1 0.979

. 0.071 0.
2 0.987

. 0.075 0.
mean 0.976

. 0.095 0.
std 0.013

o 0.037 0.
coef of var 0.013

. 0.395 0.
Get Pipeline

We can get the object of any pipeline via their id as well:

automl.get_pipeline (0)

900

945

966

937

034

036

.953
379.000
.974
379.000
.984
380.000
.970

.016

.017

190.000

190.000

189.000

.954

. 965

.982

.967

.014

.015

(continued from previous page)

0.950 0.988_,

.974

. 960

.983

.972

.012

.012

1.000 0.997

0.992

0.980

0.027

0.028

<evalml.pipelines.classification.xgboost_binary.XGBoostBinaryPipeline at_,

—0x7£5c40£f£2a20>

Get best pipeline

If we specifically want to get the best pipeline, there is a convenient access

automl .best_pipeline

<evalml.pipelines.classification.logistic_regression_binary.

—LogisticRegressionBinaryPipeline at 0x7£5c4065c358>

Feature Importances

We can get the feature importances of the resulting pipeline

pipeline. feature_importance

S

: pipeline = automl.get_pipeline (0)

.997

.994

[

.005

.006

feature importance
0 mean concave points 0.465049
1 worst concave points 0.246494
2 worst radius 0.089427
3 worst area 0.045472
4 mean texture 0.029848
5 worst concavity 0.020971
6 area error 0.020298
7 radius error 0.018571
8 worst texture 0.014910
9 worst smoothness 0.010209
10 mean area 0.006383
11 mean concavity 0.004976
12 mean smoothness 0.004681
13 worst perimeter 0.004660

(continues on next page)

24 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

14
15
16
17
18
19
20
21
22
23
24

worst symmetry
concavity error

mean compactness

worst fractal dimension
smoothness error
fractal dimension error
symmetry error
perimeter error

mean radius

mean perimeter

worst compactness

.004073
.003436
.003422
.002782
.001911
.001905
.000420
.000101
.000000
.000000
.000000

O O O O OO O oo oo

(continued from previous page)

We can also create a bar plot of the feature importances

pipeline.graph_feature_importance ()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Access raw results

You can also get access to all the underlying data, like this:

automl.results

{'pipeline_results': {0: {'id': O,
'pipeline_name': 'XGBoost Binary Classification Pipeline’',
'pipeline_summary': 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF_
—~Classifier Select From Model',

'parameters': {'impute_strategy':

'most_frequent',

'percent_features': 0.8487792213962843,

'threshold': -inf,

'eta': 0.38438170729269994,

'max_depth': 7,

'min_child _weight': 1.5104167958569887,

'n_estimators': 397},

'score': 0.9761912315723671,

'high_variance_cv': False,

'training_time': 5.40069317817688,
'cv_data': [{'all_objective_scores':
0.9617021276595743),

('"Accuracy

Binary', O.

OrderedDict ([('F1',

9526315789473684),

('Balanced Accuracy Binary', 0.9536631554030062),

('"Precision',

('Recall"',

('Log Loss

('"MCC Binary',

0.9741379310344828),

0.9495798319327731),
('AUC', 0.9876908509882827),

Binary', O.
0.9001633057441626),

('# Training', 379),

('# Testing', 190)1),
'score': 0.9617021276595743},
OrderedDict ([('F1l', 0.9794238683127572),

{'all_objective_scores':
("Accuracy

Binary', O.

13808748615334288),

9736842105263158),

('Balanced Accuracy Binary', 0.9647887323943662),

(continues on next page)

1.6. Whats next?

25

EvalML Documentation, Release 0.9.0

(continued from previous page)

("Precision', 0.9596774193548387),
('"Recall', 1.0),
('AUC', 0.9973961415552136),
('Log Loss Binary', 0.07131786501827025),
('MCC Binary', 0.9445075449666159),
('# Training', 379),
("# Testing', 190)1),
'score': 0.9794238683127572},
{'all_objective_scores': OrderedDict ([('F1l', 0.9874476987447698),
('"Accuracy Binary', 0.9841269841269841),
('Balanced Accuracy Binary', 0.9815126050420169),
('"Precision', 0.9833333333333333),
('"Recall', 0.9915966386554622),
('AUC', 0.996998799519808),
('Log Loss Binary', 0.07531116866342562),
('MCC Binary', 0.9659285184801715),
('# Training', 380),
("# Testing', 189)1),
'score': 0.9874476987447698}11},
1: {'id': 1,

'pipeline_name': 'Random Forest Binary Classification Pipeline’',

'pipeline_summary': 'Random Forest Classifier w/ One Hot Encoder + Simple Imputer
—~+ RF Classifier Select From Model',

'parameters': {'impute_strategy': 'median',

'percent_features': 0.8140470414877383,

'threshold': 'mean',

'n_estimators': 859,

'max_depth': 6},

'score': 0.9580315415303952,

'high_variance_cv': False,

'training_time': 12.612428903579712,

'cv_data': [{'all_objective_scores': OrderedDict ([('F1',
0.9361702127659575),
("Accuracy Binary', 0.9210526315789473),
('Balanced Accuracy Binary', 0.9199313528228192),
('"Precision', 0.9482758620689655),
('Recall', 0.9243697478991597),
('AUC', 0.9766836311989585),
('Log Loss Binary', 0.204551604845188006),
('MCC Binary', 0.833232300751445),
('# Training', 379),
('# Testing', 190)1),

'score': 0.9361702127659575},

{'all_objective_scores': OrderedDict ([('F1l', 0.9672131147540983),
('Accuracy Binary', 0.9578947368421052),
('Balanced Accuracy Binary', 0.9465025446798438),
('Precision', 0.944),
("Recall', 0.9915966386554622),
('AUC', 0.9838442419221209),
('Log Loss Binary', 0.14826817405619716),
('MCC Binary', 0.9106361866954563),
('# Training', 379),
('# Testing', 190)1),

'score': 0.9672131147540983},

{'all_objective_scores': OrderedDict ([('F1l', 0.9707112970711297),
("Accuracy Binary', 0.9629629629629629),
('Balanced Accuracy Binary', 0.9588235294117646),

(continues on next page)

26 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

(continued from previous page)

('"Precision', 0.9666666666666667),
('Recall', 0.9747899159663865),
("AUC', 0.9942376950780312),
('Log Loss Binary', 0.10344817959803934),
('MCC Binary', 0.9204135621119959),
('# Training', 380),
("# Testing', 189)1),
'score': 0.9707112970711297}11},
2: {'id': 2,
'pipeline_name': 'Logistic Regression Binary Pipeline',
'pipeline_summary': 'Logistic Regression Classifier w/ One Hot Encoder + Simple
—Imputer + Standard Scaler',
'parameters': {'impute_strategy': 'mean',
'penalty': '12"',
'C': 0.21198179042885398},
'score': 0.9820415596969072,
'high_variance_cv': False,
'training_time': 1.3641350269317627,
'cv_data': [{'all_objective_scores': OrderedDict ([('F1', 0.979253112033195),
("Accuracy Binary', 0.9736842105263158),
('Balanced Accuracy Binary', 0.9676293052432241),
("Precision', 0.9672131147540983),
('Recall', 0.9915966386554622),
("AUC', 0.9904130666351048),
('Log Loss Binary', 0.10058063355386729),
('MCC Binary', 0.943843520216036),
('# Training', 379),
('# Testing', 190)1),
'score': 0.979253112033195},
{'all_objective_scores': OrderedDict ([('F1l', 0.9794238683127572),
('"Accuracy Binary', 0.9736842105263158),
('Balanced Accuracy Binary', 0.9647887323943662),
('"Precision', 0.9596774193548387),
('"Recall', 1.0),
('AUC', 0.9989347851816782),
('Log Loss Binary', 0.07682029301742287),
('MCC Binary', 0.9445075449666159),
('# Training', 379),
("# Testing', 190)1),
'score': 0.9794238683127572},
{'all_objective_scores': OrderedDict ([('F1l', 0.9874476987447698),
('Accuracy Binary', 0.9841269841269841),
('Balanced Accuracy Binary', 0.9815126050420169),
('"Precision', 0.9833333333333333),
("Recall', 0.9915966386554622),
('AUC', 0.997358943577431),
('Log Loss Binary', 0.08090403408994591),
('MCC Binary', 0.9659285184801715),
('# Training', 380),
('# Testing', 189)1),
'score': 0.9874476987447698}11},
3: {'id': 3,
'pipeline_name': 'XGBoost Binary Classification Pipeline’',
'pipeline_summary': 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF
—~Classifier Select From Model',
'parameters': {'impute_strategy': 'most_frequent',
'percent_features': 0.14894727260851873,
(continues on next page)

1.6. Whats next? 27

EvalML Documentation, Release 0.9.0

(continued from previous page)

'threshold': -inf,
'eta': 0.4736080452737106,
'max_depth': 18,
'min_child _weight': 5.153314260276387,
'n_estimators': 660},
'score': 0.941255546698183,
'high_variance_cv': False,
'training_time': 6.766803026199341,
'cv_data': [{'all_objective_scores': OrderedDict ([('F1l"',
0.9264069264069265),
("Accuracy Binary', 0.9105263157894737),
('Balanced Accuracy Binary', 0.9143685643271393),
("Precision', 0.9553571428571429),
('Recall', 0.8991596638655462),
("AUC', 0.9715942715114214),
('Log Loss Binary', 0.2351054900534157),
('MCC Binary', 0.8150103776135726),
('# Training', 379),
('# Testing', 190)1),
'score': 0.9264069264069265},
{'all_objective_scores': OrderedDict ([('F1l', 0.9482071713147411),
('"Accuracy Binary', 0.9315789473684211),
('Balanced Accuracy Binary', 0.9084507042253521),
('"Precision', 0.9015151515151515),
('"Recall', 1.0),
('AUC', 0.9784589892294940),
('Log Loss Binary', 0.18131056035061574),
('MCC Binary', 0.858166066103978),
('# Training', 379),
("# Testing', 190)1),
'score': 0.9482071713147411},
{'all_objective_scores': OrderedDict ([('F1l', 0.9491525423728814),
('Accuracy Binary', 0.9365079365079365),
('Balanced Accuracy Binary', 0.9348739495798319),
('Precision', 0.9572649572649573),
('"Recall', 0.9411764705882353),
('AUC', 0.9841536614645858),
('Log Loss Binary', 0.16492396169563844),
('MCC Binary', 0.8648817040445186),
('# Training', 380),
('# Testing', 189)1),
'score': 0.9491525423728814}1},
4: {'id': 4,
'pipeline_name': 'XGBoost Binary Classification Pipeline’',
'pipeline_summary': 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF
—~Classifier Select From Model',
'parameters': {'impute_strategy': 'mean',
'percent_features': 0.6435218111142487,
'threshold': 'mean',
'eta': 0.9446689170495841,
'max_depth': 11,
'min_child_weight': 4.731957459914713,
'n_estimators': 676},
'score': 0.9486606279409701,
'high_variance_cv': False,
'training_time': 6.595508098602295,
'cv_data': [{'all_objective_scores': OrderedDict ([('F1l"',
(continues on next page)

28 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

(continued from previous page)

0.9210526315789473),
('"Accuracy Binary', 0.9052631578947369),
('Balanced Accuracy Binary', 0.9130074565037283),
('"Precision', 0.963302752293578),
('Recall', 0.8823529411764706),
('AUC', 0.975085808971476),
('Log Loss Binary', 0.2385086150043016),
('MCC Binary', 0.8080435814236837),
('# Training', 379),
('# Testing', 190)1),

'score': 0.9210526315789473},

{'all_objective_scores': OrderedDict ([('F1l', 0.9709543568464729),

('"Accuracy Binary', 0.9631578947368421),
('Balanced Accuracy Binary', 0.9563853710498283),
('"Precision', 0.9590163934426229),
('Recall', 0.9831932773109243),
('AUC', 0.9697597348798673),
('Log Loss Binary', 0.13901819948468505),
('MCC Binary', 0.9211492315750531),
('# Training', 379),
('# Testing', 190)1),

'score': 0.9709543568464729},

{'all_objective_scores': OrderedDict ([('F1l', 0.953974895397489¢),

('Accuracy Binary', 0.9417989417989417),
('Balanced Accuracy Binary', 0.9361344537815126),
('"Precision', 0.95),
('"Recall', 0.957983193277311),
('AUC', 0.9845738295318127),
('Log Loss Binary', 0.13538144654258666),
('MCC Binary', 0.8748986057438203),
('# Training', 380),
('# Testing', 189)1),

'score': 0.9539748953974896}11}1},

'search_order': [0, 1, 2, 3, 41}

1.6.8 Regression Example

import evalml

from evalml import AutoRegressionSearch

from evalml.demos import load_diabetes

from evalml.pipelines import PipelineBase, get_pipelines

X, v = evalml.demos.load_diabetes ()

automl = AutoRegressionSearch (objective="R2", max_pipelines=5)

automl.search (X, vy)

khkkkhkkkhkhkkkhkkkhkhkkkhkhkhkkkhkhkkkkkkxkx
* Beginning pipeline search =*
hhkhkhkhkhkhkkkhkkhkkhkkkkkhkhkhkkhkhkhkhkhkhkhhkk

Optimizing for R2. Greater score is better.

(continues on next page)

1.6. Whats next? 29

EvalML Documentation, Release 0.9.0

(continued from previous page)

Searching up to 5 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',

'name': 'Best Score',

'type'...
XGBoost Regression Pipeline: 20% | | Elapsed:00:03
Cat Boost Regression Pipeline: 40% | | Elapsed:00:12
Random Forest Regression Pipeline: 60% | | Elapsed:00:15
XGBoost Regression Pipeline: 80% | | Elapsed:00:21
XGBoost Regression Pipeline: 100%|| Elapsed:00:26
Optimization finished 100%| | Elapsed:00:26

automl.rankings

id pipeline_name score high_variance_cv \

0 1 Cat Boost Regression Pipeline 0.397415 False

1 0 XGBoost Regression Pipeline 0.245869 True

3 2 Random Forest Regression Pipeline 0.051449 True
parameters

0 {'impute_strategy': 'most_frequent', 'n_estima...

1 {'impute_strategy': 'most_frequent', 'percent_

3 {'impute_strategy': 'most_frequent', 'percent_

automl .best_pipeline

<evalml.pipelines.regression.catboost.CatBoostRegressionPipeline at Ox7fea77afae48>

automl.get_pipeline (0)

<evalml.pipelines.regression.xgboost_regression.XGBoostRegressionPipeline at,
—0x7fea7832bba8>

automl.describe_pipeline (0)

khkkkhkkkhkkkhkhkkkhkhkhkkkhkhkhkkhkhkkhkhkhkkkkx
* XGBoost Regression Pipeline *
hhkhkhkhkhkkkkhkkkhkkhkkkkhkhkhkkhkhkhkhkhkhkhhkhkhkkk

Problem Type: Regression
Model Family: XGBoost
Number of features: 8

Pipeline Steps

1. One Hot Encoder
* top_n : 10
2. Simple Imputer
* impute_strategy : most_frequent
* fill value : None
3. RF Regressor Select From Model
* percent_features : 0.8487792213962843
* threshold : -inf
4. XGBoost Regressor
* eta : 0.38438170729269994
* max_depth : 7

(continues on next page)

30 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

(continued from previous page)

* min_child_weight : 1.5104167958569887
* n_estimators : 397

Training

Training for Regression problems.
Total training time (including CV): 3.8 seconds

Cross Validation
Warning! High variance within cross validation scores. Model may not perform as,,
—estimated on unseen data.

R2 MAE MSE MedianAE MaxError ExpVariance # Training #_,
—Testing
0 0.265 51.909 4204.782 45.175 174.089 0.266 294.000 148.
—000
1 0.339 50.432 4190.876 40.601 162.048 0.340 295.000 147.
000
2 0.134 56.410 4935.882 47.643 206.828 0.135 295.000 147.
—000
mean 0.246 52.917 4443.847 44.473 180.989 0.247 - o
std 0.104 3.114 426.172 3.573 23.174 0.104 - o
coef of var 0.424 0.059 0.096 0.080 0.128 0.419 -

y—

1.6.9 EvalML Components and Pipelines

EvalML searches and trains multiple machine learnining pipelines in order to find the best one for your data. Each
pipeline is made up of various components that can learn from the data, transform the data and ultimately predict
labels given new data. Below we’ll show an example of an EvalML pipeline. You can find a more in-depth look into
components or learn how you can construct and use your own pipelines.

XGBoost Pipeline

The EvalML XGBoost Pipeline is made up of four different components: a one-hot encoder, a missing value
imputer, a feature selector and an XGBoost estimator. To initialize a pipeline you need a parameters dictionary.

Parameters

The parameters dictionary needs to be in the format of a two-layered dictionary where the first key-value pair is the
component name and component parameters dictionary. The component parameters dictionary consists of a key value
pair of parameter name and parameter values. An example will be shown below and component parameters can be
found /ere.

from evalml.demos import load breast_cancer
from evalml.pipelines import XGBoostBinaryPipeline

X, y = load_breast_cancer ()

parameters = {
(continues on next page)

1.6. Whats next? 31

EvalML Documentation, Release 0.9.0

(continued from previous page)
'Simple Imputer': {
'impute_strategy': 'mean'

by
'RF Classifier Select From Model': {

"percent_features": 0.5,
"number_features": X.shapel[l],
"n_estimators": 20,

"max_depth": 5

}I

'XGBoost Classifier': {
"n_estimators": 20,
"eta": 0.5,
"min_child_weight": 5,
"max_depth": 10,

xgp = XGBoostBinaryPipeline (parameters=parameters, random_state=5)
xgp.graph ()

From the above graph we can see each component and its parameters. Each component takes in data and feeds it to
the next. You can see more detailed information by calling . describe ():

xgp .describe ()

khkkhkkhkhkkhkkhkhkkhkkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkkhkkkxk
* XGBoost Binary Classification Pipeline «x
khkkhkkhkkkhkkhkhkkhkkhkhkkhkhkhkhkkhkkhkhkkhkhkhkhkkhkhkkhkkhkkkk

Problem Type: Binary Classification
Model Family: XGBoost

Pipeline Steps

1. One Hot Encoder
* top_n : 10

2. Simple Imputer
* impute_strategy : mean
* fill value : None

3. RF Classifier Select From Model
* percent_features : 0.5
* threshold : -inf

4. XGBoost Classifier
* eta : 0.5
* max_depth : 10
* min_child _weight : 5
* n_estimators : 20

You can then fit and score an individual pipeline with an objective. An objective can either be a string representation
of an EvalML objective or an EvalML objective class. You can find more objectives /ere.

xgp.fit (X, vy)
xXgp.score (X, y, objectives=['recall'])

OrderedDict ([('Recall', 0.9971988795518207)1)

32 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

1.6.10 EvalML Components

From the overview, we see how each machine learning pipeline consists of individual components that process data
before the data is ultimately sent to an estimator. Below we will describe each type of component in an EvalML
pipeline.

Component Classes

Components can be split into two distinct classes: transformers and estimators.

import numpy as np
import pandas as pd
from evalml.pipelines.components import SimpleImputer

X = pd.DataFrame([[1l, 2, 31, [1l, np.nan, 3]])
display (X)

0 1 2
0 1 2.0 3
1 1 NaN 3

Transformers take in data as input and output altered data. For example, an imputer takes in data and outputs filled in
missing data with the mean, median, or most frequent value of each column.

A transformer can fit on data and then transform it in two steps by calling . fit () and .transform() or in one
step by calling fit_transform().

imp = SimpleImputer (impute_strategy="mean")
X = imp.fit_transform (X)

display (X)

0 1 2
0 1 2.0 3
1 1 2.0 3

On the other hand, an estimator fits on data (X) and labels (y) in order to take in new data as input and return the
predicted label as output. Therefore, an estimator can fit on data and labels by calling . £it () and then predict by
calling .predict () on new data. An example of this would be the LogisticRegressionClassifier. We can now see
how a transformer alters data to make it easier for an estimator to learn and predict.

from evalml.pipelines.components import LogisticRegressionClassifier
clf = LogisticRegressionClassifier ()

X = X
y = [1, 0]

clf.fit (X, vy)
clf.predict (X)

array ([0, 0])

Component Types

Components can further separate into different types that serve different functionality. Below we will go over the
different types of transformers and estimators.

1.6. Whats next? 33

EvalML Documentation, Release 0.9.0

Transformer Types

Imputer: fills missing data
— Ex: Simplelmputer
* Scaler: alters numerical data into different scales
— Ex: StandardScaler
* Encoder: translates different data types
— Ex: OneHotEncoder
* Feature Selection: selects most useful columns of data

— Ex: RFClassifierSelectFromModel

Estimator Types

* Regressor: predicts numerical or continuous labels
— Ex: LinearRegressor
* Classifier: predicts categorical or discrete labels

— Ex: XGBoostClassifier

1.6.11 Custom Pipelines in EvalML

EvalML pipelines consist of modular components combining any number of transformers and an estimator. This
allows you to create pipelines that fit the needs of your data to achieve the best results.

Requirements

A custom pipeline must adhere to the following requirements:
1. Inherit from the proper pipeline base class
* Binary classification - BinaryClassificationPipeline
e Multiclass classification - MulticlassClassificationPipeline
* Regression - RegressionPipeline

2. Have a component_graph list as a class variable detailing the structure of the pipeline. Each component in
the graph can be provided as either a string name or an instance.

Pipeline Configuration

There are a few other options to configure your custom pipeline.

34 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

Custom Name

By default, a pipeline classes name property is the result of adding spaces between each Pascal case capitalization
in the class name. E.g. LogisticRegressionPipeline.name will return ‘Logistic Regression Pipeline’. Therefore, we
suggest custom pipelines use Pascal case for their class names.

If you’d like to override the pipeline classes name attribute so it isn’t derived from the class name, you can set the
custom_name attribute, like so:

from evalml.pipelines import BinaryClassificationPipeline
class CustomPipeline (BinaryClassificationPipeline) :

component_graph = ['Simple Imputer', 'Logistic Regression Classifier']
custom_name = 'A custom pipeline name'

print (CustomPipeline.name)

A custom pipeline name

Custom Hyperparameters

To specify custom hyperparameter ranges, set the custom_hyperparameters property to be a dictionary where each key-
value pair consists of a parameter name and range. AutoML will use this dictionary to override the hyperparameter
ranges collected from each component in the component graph.

class CustomPipeline (BinaryClassificationPipeline) :
component_graph = ['Simple Imputer', 'Logistic Regression Classifier']

print ("Without custom hyperparameters:")
print (CustomPipeline.hyperparameters)

class CustomPipeline (BinaryClassificationPipeline):

component_graph = ['Simple Imputer', 'Logistic Regression Classifier']
custom_hyperparameters = {
'impute_strategy': ['most_frequent']
}
print ()

print ("With custom hyperparameters:")
print (CustomPipeline.hyperparameters)

Without custom hyperparameters:
{’ impute_strategy’: ['mean’, ’'median’, ’'most_frequent’], ’'penalty’: [’12"], 'C’:
—~Real (low=0.01, high=10, prior='uniform’, transform=’identity’)}

[

With custom hyperparameters:
{’impute_strategy’: ['most_frequent’], ’'penalty’: [’12'], 'C’: Real(low=0.01, high=10,
— prior="uniform’, transform='identity’)}

1.6.12 Guardrails

EvalML provides guardrails to help guide you in achieving the highest performing model. These utility functions help
deal with overfitting, abnormal data, and missing data. These guardrails can be found under evalml /guardrails/
utils. Below we will cover abnormal and missing data guardrails. You can find an in-depth look into overfitting
guardrails here.

1.6. Whats next? 35

EvalML Documentation, Release 0.9.0

Missing Data

Missing data or rows with NaN values provide many challenges for machine learning pipelines. In the worst case,
many algorithms simply will not run with missing data! EvalML pipelines contain imputation components to ensure
that doesn’t happen. Imputation works by approximating missing values with existing values. However, if a column
contains a high number of missing values a large percentage of the column would be approximated by a small percent-
age. This could potentially create a column without useful information for machine learning pipelines. By running
the detect_highly_null () guardrail, EvaIML will alert you to this potential problem by returning the columns
that pass the missing values threshold.

import numpy as np
import pandas as pd

from evalml.guardrails.utils import detect_highly_null

X = pd.DataFrame (
[

(1, 2, 31,

[0, 4, np.nan],
[1, 4, np.nan],
[9, 4, np.nan],
[8, 6, np.nan]

detect_highly_null (X, percent_threshold=0.38)

{2: 0.8}

Abnormal Data

EvalML provides two utility functions to check for abnormal data: detect_outliers () and
detect_id_columns ().

ID Columns
ID columns in your dataset provide little to no benefit to a machine learning pipeline as the pipeline cannot extrapolate
useful information from unique identifiers. Thus, detect_id_columns () reminds you if these columns exists.

from evalml.guardrails.utils import detect_id_columns

X = pd.DataFrame([[0O, 53, 6325, 5],I[1, 90, 6325, 101,[2, 90, 18, 20]], columns=['user_
—number', 'cost', 'revenue', 'id'])

display (X)
print (detect_id_columns (X, threshold=0.95))

user_number cost revenue 1d

0 0 53 6325 5
1 1 90 6325 10
2 2 90 18 20

{rid’: 1.0, ’'user_number’: 0.95}

36 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

Outliers

Outliers are observations that differ significantly from other observations in the same sample. Many machine learning
pipelines suffer in performance if outliers are not dropped from the training set as they are not representative of the
data. detect_outliers () uses Isolation Forests to notify you if a sample can be considered an outlier.

Below we generate a random dataset with some outliers.

data = np.random.randn (100, 100)
X = pd.DataFrame (data=data)

outliers

X.iloc[3, :] = pd.Series(np.random.randn (100) * 10)
X.iloc[25 :] = pd.Series (np.random.randn (100) * 20)
X.iloc[55, :] = pd.Series(np.random.randn(100) = 100)
X.iloc[72 :] = pd.Series (np.random.randn (100) = 100)

We then utilize detect_outliers to rediscover these outliers.
from evalml.guardrails.utils import detect_outliers

detect_outliers (X)

[3, 25, 55, 72]

1.6.13 Avoiding Overfitting

The ultimate goal of machine learning is to make accurate predictions on unseen data. EvalML aims to help you build
a model that will perform as you expect once it is deployed in to the real world.

One of the benefits of using EvalML to build models is that it provides guardrails to ensure you are building pipelines
that will perform reliably in the future. This page describes the various ways EvalML helps you avoid overfitting to
your data.

import evalml

Detecting Label Leakage

A common problem is having features that include information from your label in your training data. By default,
EvalML will provide a warning when it detects this may be the case.

Let’s set up a simple example to demonstrate what this looks like
import pandas as pd

X = pd.DataFrame ({

"leaked_feature": [6, 6, 10, 5, 5, 11, 5, 10, 11, 41,
"leaked_feature_2": [3, 2.5, 5, 2.5, 3, 5.5, 2, 5, 5.5, 2],
"valid_feature": [3, 1, 3, 2, 4, 6, 1, 3, 3, 11]

})
y = pd.Series(([1, 1, O, 1, 1, 0, 1, 0, 0, 1])
automl = evalml.AutoClassificationSearch(

max_pipelines=1,

(continues on next page)

1.6. Whats next? 37

EvalML Documentation, Release 0.9.0

(continued from previous page)

allowed_model_families=["linear_model"],

automl.search (X, vy)

hhkhkhkhkhkkhkkkhkkkhkkkkkkkhkkhkhkhkhkhkhkhhkkhk
* Beginning pipeline search =*
khkkkkkkkkhkkkkkkkkkkkhkhkhkhkhkhkhkhkkk

Optimizing for Log Loss Binary. Lower score is better.

Searching up to 1 pipelines.
WARNING: Possible label leakage: leaked_feature, leaked_feature_2

FigureWidget ({

'data': [{'mode': 'lines+markers',
'name': 'Best Score',
'type'...
Logistic Regression Binary Pipeline: 100%| | Elapsed:00:00
Optimization finished 100%|| Elapsed:00:00

In the example above, EvalML warned about the input features leaked_feature and leak_feature_2, which
are both very closely correlated with the label we are trying to predict. If you’d like to turn this check off, set
detect_label_leakage=False.

The second way to find features that may be leaking label information is to look at the top features of the model. As
we can see below, the top features in our model are the 2 leaked features.

best_pipeline = automl.best_pipeline
best_pipeline.feature_importances

feature importance

0 leaked_feature -1.789393
1 leaked_feature_2 -1.645127
2 valid_feature -0.398465

Perform cross-validation for pipeline evaluation

By default, EvalML performs 3-fold cross validation when building pipelines. This means that it evaluates each
pipeline 3 times using different sets of data for training and testing. In each trial, the data used for testing has no
overlap from the data used for training.

While this is a good baseline approach, you can pass your own cross validation object to be used during modeling.
The cross validation object can be any of the CV methods defined in scikit-learn or use a compatible APL

For example, if we wanted to do a time series split:

from sklearn.model_selection import TimeSeriesSplit
X, y = evalml.demos.load_breast_cancer ()
automl = evalml.AutoClassificationSearch(

cv=TimeSeriesSplit (n_splits=6),
max_pipelines=1

automl.search (X, vy)

38 Chapter 1. Quick Start

https://scikit-learn.org/stable/modules/cross_validation.html

EvalML Documentation, Release 0.9.0

Khkkhkkkkkkhhhhkkkkhkkhkhhkkkkhkk
* Beginning pipeline search =*
Ahkkhkkkkkkhhhhhhrkkrkhrkhhhkrkkrkx

Optimizing for Log Loss Binary. Lower score is better.

Searching up to 1 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',
'name': 'Best Score',
'type'...
XGBoost Binary Classification Pipel... 100%|| Elapsed:00:10
Optimization finished 100%|| Elapsed:00:10

if we describe the 1 pipeline we built, we can see the scores for each of the 6 splits as determined by the cross-
validation object we provided. We can also see the number of training examples per fold increased because we were
using TimeSeriesSplit

automl.describe_pipeline (0)

khkkkkkkhkhkhkkhkhkkkhkhkhkkhkhkkkhkhkhkkhkhkhkkhkhkhkhkhkhkkkhkhkkkhkkkx
* XGBoost Binary Classification Pipeline *
LR 2 T T Ty

Problem Type: Binary Classification
Model Family: XGBoost
Number of features: 25

Pipeline Steps

1. One Hot Encoder
* top_n : 10
2. Simple Imputer
* impute_strategy : most_frequent
* fill value : None
3. RF Classifier Select From Model
* percent_features : 0.8487792213962843
* threshold : -inf
4. XGBoost Classifier
* eta : 0.38438170729269994
* max_depth : 7
* min_child _weight : 1.5104167958569887
* n_estimators : 397

Training

Training for Binary Classification problems.
Total training time (including CV): 10.5 seconds

Cross Validation
Warning! High variance within cross validation scores. Model may not perform as
—estimated on unseen data.

Log Loss Binary Accuracy Binary Balanced Accuracy Binary Fl
—Precision Recall AUC MCC Binary # Training # Testing
0 0.532 0.840 0.860 0.863 0.
953 0.788 0.949 0.691 83.000 81.000

(continues on next page)

1.6. Whats next? 39

EvalML Documentation, Release 0.9.0

(continued from previous page)

1 0.045 0.988 0.988 0.988 1.
—000 0.977 1.000 0.976 164.000 81.000
2 0.111 0.975 0.963 0.982 0.
964 1.000 0.990 0.945 245.000 81.000
3 0.062 0.975 0.983 0.982 1.
—000 0.966 0.999 0.942 326.000 81.000
4 0.083 0.963 0.977 0.976 1.
—000 0.953 0.997 0.900 407.000 81.000
5 0.068 0.963 0.944 0.975 0.
—967 0.983 0.998 0.903 488.000 81.000
mean 0.150 0.951 0.952 0.961 0.
981 0.945 0.989 0.893 - -
std 0.189 0.055 0.048 0.048 0.
021 0.078 0.020 0.103 - -
coef of var 1.256 0.058 0.050 0.050 0.
022 0.083 0.020 0.115 - -

Detect unstable pipelines

When we perform cross validation we are trying generate an estimate of pipeline performance. EvalML does this by
taking the mean of the score across the folds. If the performance across the folds varies greatly, it is indicative the the
estimated value may be unreliable.

To protect the user against this, EvalML checks to see if the pipeline’s performance has a variance between the different
folds. EvalML triggers a warning if the “coefficient of variance” of the scores (the standard deviation divided by mean)
of the pipelines scores exeeds .2.

This warning will appear in the pipeline rankings under high_variance_cv.

automl.rankings

id pipeline_name score high_variance_cv \
0 0 XGBoost Binary Classification Pipeline 0.150153 True
parameters
0 {'impute_strategy': 'most_frequent', 'percent_...

Create holdout for model validation

EvalML offers a method to quickly create an holdout validation set. A holdout validation set is data that is not used
during the process of optimizing or training the model. You should only use this validation set once you’ve picked the
final model you’d like to use.

Below we create a holdout set of 20% of our data

X, y = evalml.demos.load_breast_cancer ()
X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data (X, y, test_
<.size=.2)

automl = evalml.AutoClassificationSearch (
objective="recall",
max_pipelines=3,
detect_label_leakage=True

)

automl.search(X_train, y_train)

40 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

: pipeline =

hkkkdkkhkkhkhhkkkhhkkhkkhkkdkhhrk
* Beginning pipeline search =*
hkkkdkdkhkkhkhkkkdkhkhkhhkkhkkkkhkhk
Optimizing for Recall. Greater score is

Searching up to 3 pipelines.

FigureWidget ({

'data': [{'mode': 'lines+markers',
'name': 'Best Score',
'type'...

XGBoost Binary Classification Pipel...
Random Forest Binary Classification...
Logistic Regression Binary Pipeline:
Optimization finished

better.

33%|
67%|
10051 |
10051 |

| Elapsed:00:05
| Elapsed:00:17
Elapsed:00:17
Elapsed:00:17

then we can retrain the best pipeline on all of our training data and see how it performs compared to the estimate

automl .best_pipeline
pipeline.fit (X_train, y_train)
pipeline.score (X_holdout, y_holdout,

OrderedDict ([('Recall’',

1.6.14 Changelog

Future Releases
¢ Enhancements
* Fixes
¢ Changes

¢ Documentation Changes

["recall"])

0.9722222222222222) 1)

— Add instructions to freeze master on release.md #726

* Testing Changes
v0.9.0 Apr. 27,2020

¢ Enhancements

¢ Fixes

Added verbose parameter to load_fraud #560

Added Accuracy metric for multiclass #672

Add testing files to .gitignore #625

Added accuracy as an standard objective #624

Added Balanced Accuracy metric for binary, multiclass #612 #661
Added XGBoost regressor and XGBoost regression pipeline #666

Added objective name in AutoBase.describe_pipeline #686

Removed direct access to cls.component_graph #595

1.6. Whats next?

41

https://github.com/Featurelabs/evalml/pull/726
https://github.com/Featurelabs/evalml/pull/624
https://github.com/Featurelabs/evalml/pull/560
https://github.com/Featurelabs/evalml/pull/612
https://github.com/Featurelabs/evalml/pull/661
https://github.com/Featurelabs/evalml/pull/666
https://github.com/Featurelabs/evalml/pull/672
https://github.com/Featurelabs/evalml/pull/686
https://github.com/Featurelabs/evalml/pull/595
https://github.com/Featurelabs/evalml/pull/625

EvalML Documentation, Release 0.9.0

Remove circular dependencies from Makefile #637

Add error case for normalize_confusion_matrix() #640

Fixed XGBoostClassifier and XGBoostRegressor bug with feature names that contain [,], or <
#659

Update make_pipeline_graph to not accidentally create empty file when testing if path is valid
#649

Fix pip installation warning about docsutils version, from boto dependency #664

Removed zero division warning for F1/precision/recall metrics #671
— Fixed summary for pipelines without estimators #707
¢ Changes

— Updated default objective for binary/multiseries classification to log loss #613

Created classification and regression pipeline subclasses and removed objective as an attribute of
pipeline classes #405

Changed the output of score to return one dictionary #429

Created binary and multiclass objective subclasses #504

Updated objectives API #445

Removed call to get_plot_data from AutoML #615

Set raise_error to default to True for AutoML classes #638

G 9

— Remove unnecessary “u” prefixes on some unicode strings #641

Changed one-hot encoder to return uint8 dtypes instead of ints #653

Pipeline _name field changed to custom_name #650

Removed graphs.py and moved methods into PipelineBase #657, #665

Remove s3fs as a dev dependency #664

Changed requirements-parser to be a core dependency #673

Replace supported_problem_types field on pipelines with problem_type attribute on base classes
#678

— Changed AutoML to only show best results for a given pipeline template in rankings, added
full_rankings property to show all #682

Update ModelFamily values: don’t list xgboost/catboost as classifiers now that we have regression
pipelines for them #677

Changed AutoML’s describe_pipeline to get problem type from pipeline instead #685

Standardize import_or_raise error messages #0683

Updated argument order of objectives to align with sklearn’s #698

Renamed pipeline.feature_importance_graph to pipeline.graph_feature_importances #700

Moved ROC and confusion matrix methods to evalml.pipelines.plot_utils #704

Renamed MultiClassificationObjective to MulticlassClassificationObjective, to align with
pipeline naming scheme #715

* Documentation Changes

42 Chapter 1. Quick Start

https://github.com/Featurelabs/evalml/pull/637
https://github.com/Featurelabs/evalml/pull/640
https://github.com/Featurelabs/evalml/pull/659
https://github.com/Featurelabs/evalml/pull/649
https://github.com/Featurelabs/evalml/pull/664
https://github.com/Featurelabs/evalml/pull/671
https://github.com/Featurelabs/evalml/pull/707
https://github.com/Featurelabs/evalml/pull/613
https://github.com/Featurelabs/evalml/pull/405
https://github.com/Featurelabs/evalml/pull/429
https://github.com/Featurelabs/evalml/pull/504
https://github.com/Featurelabs/evalml/pull/445
https://github.com/Featurelabs/evalml/pull/615
https://github.com/Featurelabs/evalml/pull/638
https://github.com/Featurelabs/evalml/pull/641
https://github.com/Featurelabs/evalml/pull/653
https://github.com/Featurelabs/evalml/pull/650
https://github.com/Featurelabs/evalml/pull/657
https://github.com/Featurelabs/evalml/pull/665
https://github.com/Featurelabs/evalml/pull/664
https://github.com/Featurelabs/evalml/pull/673
https://github.com/Featurelabs/evalml/pull/678
https://github.com/Featurelabs/evalml/pull/682
https://github.com/Featurelabs/evalml/pull/677
https://github.com/Featurelabs/evalml/pull/685
https://github.com/Featurelabs/evalml/pull/683
https://github.com/Featurelabs/evalml/pull/698
https://github.com/Featurelabs/evalml/pull/700
https://github.com/Featurelabs/evalml/pull/704
https://github.com/Featurelabs/evalml/pull/715

EvalML Documentation, Release 0.9.0

Fixed some sphinx warnings #593

Fixed docstring for AutoClassificationSearch with correct command #599

Limit readthedocs formats to pdf, not htmlzip and epub #594 #600

Clean up objectives API documentation #605

Fixed function on Exploring search results page #604

Update release process doc #567

AutoClassificationSearch and AutoRegressionSearch show inherited methods in API reference
#651

Fixed improperly formatted code in breaking changes for changelog #655

Added configuration to treat Sphinx warnings as errors #6060

Removed separate plotting section for pipelines in API reference #657, #665

Have leads example notebook load S3 files using https, so we can delete s3fs dev dependency
#664

Categorized components in API reference and added descriptions for each category #663

Fixed Sphinx warnings about BalancedAccuracy objective #669

Updated API reference to include missing components and clean up pipeline docstrings #689

Reorganize API ref, and clarify pipeline sub-titles #688

Add and update preprocessing utils in API reference #687

Added inheritance diagrams to API reference #695

Documented which default objective AutoML optimizes for #699

Create seperate install page #701

Include more utils in API ref, like import_or_raise #704
— Add more color to pipeline documentation #705

* Testing Changes

Matched install commands of check_latest_dependencies test and it’s GitHub action #578

Added Github app to auto assign PR author as assignee #477

Removed unneeded conda installation of xgboost in windows checkin tests #618

Update graph tests to always use tmpfile dir #649

Changelog checkin test workaround for release PRs: If ‘future release’ section is empty of PR
refs, pass check #658

Add changelog checkin test exception for dep-update branch #723

Warning: Breaking Changes

* Pipelines will now no longer take an objective parameter during instantiation, and will no longer have an
objective attribute.

e fit () and predict () now use an optional ob ject ive parameter, which is only used in binary classi-
fication pipelines to fit for a specific objective.

1.6. Whats next? 43

https://github.com/Featurelabs/evalml/pull/593
https://github.com/Featurelabs/evalml/pull/599
https://github.com/Featurelabs/evalml/pull/594
https://github.com/Featurelabs/evalml/pull/600
https://github.com/Featurelabs/evalml/pull/605
https://github.com/Featurelabs/evalml/pull/604
https://github.com/Featurelabs/evalml/pull/567
https://github.com/Featurelabs/evalml/pull/651
https://github.com/Featurelabs/evalml/pull/655
https://github.com/Featurelabs/evalml/pull/660
https://github.com/Featurelabs/evalml/pull/657
https://github.com/Featurelabs/evalml/pull/665
https://github.com/Featurelabs/evalml/pull/664
https://github.com/Featurelabs/evalml/pull/663
https://github.com/Featurelabs/evalml/pull/669
https://github.com/Featurelabs/evalml/pull/689
https://github.com/Featurelabs/evalml/pull/688
https://github.com/Featurelabs/evalml/pull/687
https://github.com/Featurelabs/evalml/pull/695
https://github.com/Featurelabs/evalml/pull/699
https://github.com/Featurelabs/evalml/pull/701
https://github.com/Featurelabs/evalml/pull/704
https://github.com/Featurelabs/evalml/pull/705
https://github.com/Featurelabs/evalml/pull/578
https://github.com/Featurelabs/evalml/pull/477
https://github.com/Featurelabs/evalml/pull/618
https://github.com/Featurelabs/evalml/pull/649
https://github.com/Featurelabs/evalml/pull/658
https://github.com/Featurelabs/evalml/pull/723

EvalML Documentation, Release 0.9.0

e score () will now use a required object ives parameter that is used to determine all the objectives to
score on. This differs from the previous behavior, where the pipeline’s objective was scored on regardless.

e score () will now return one dictionary of all objective scores.

* ROC and ConfusionMatrix plot methods via Auto () .plot have been removed by #615 and are
replaced by roc_curve and confusion_matrix in evamlm.pipelines.plot_utils‘ in #704

e normalize_confusion_matrix has been movedto evalml.pipelines.plot_utils #704
* Pipelines _name field changed to custom_name

* Pipelines supported_problem_types field is removed because it is no longer necessary #678

» Updated argument order of objectives’ objective_function to align with sklearn #698

e pipeline.feature_importance_graph has been renamed to pipeline.graph_feature_importances in #700

* Removed unsupported MSLE objective #704

v0.8.0 Apr. 1, 2020
* Enhancements
— Add normalization option and information to confusion matrix #484
— Add util function to drop rows with NaN values #487

— Renamed PipelineBase.name as PipelineBase.summary and redefined PipelineBase.name as class
property #491

— Added access to parameters in Pipelines with PipelineBase.parameters (used to be return of
PipelineBase.describe) #501

Added fill_value parameter for SimpleImputer #509

Added functionality to override component hyperparameters and made pipelines take hyper-
paremeters from components #516

Allow numpy.random.RandomState for random_state parameters #556

¢ Fixes

Removed unused dependency matplotlib, and move category_encoders to test reqs #572
¢ Changes

— Undo version cap in XGBoost placed in #402 and allowed all released of XGBoost #407
Support pandas 1.0.0 #486

Made all references to the logger static #503

Refactored model_type parameter for components and pipelines to model_family #507

Refactored problem_types for pipelines and components into supported_problem_types #515

Moved pipelines/utils.save_pipeline and pipelines/utils.load_pipeline to PipelineBase.save and
PipelineBase.load #526

— Limit number of categories encoded by OneHotEncoder #517
* Documentation Changes

— Updated API reference to remove PipelinePlot and added moved PipelineBase plotting methods
#4383

44 Chapter 1. Quick Start

https://github.com/Featurelabs/evalml/pull/615
https://github.com/Featurelabs/evalml/pull/704
https://github.com/Featurelabs/evalml/pull/704
https://github.com/Featurelabs/evalml/pull/678
https://github.com/Featurelabs/evalml/pull/698
https://github.com/Featurelabs/evalml/pull/700
https://github.com/Featurelabs/evalml/pull/704
https://github.com/Featurelabs/evalml/pull/484
https://github.com/Featurelabs/evalml/pull/487
https://github.com/Featurelabs/evalml/pull/491
https://github.com/Featurelabs/evalml/pull/501
https://github.com/Featurelabs/evalml/pull/509
https://github.com/Featurelabs/evalml/pull/516
https://github.com/Featurelabs/evalml/pull/556
https://github.com/Featurelabs/evalml/pull/572
https://github.com/Featurelabs/evalml/pull/402
https://github.com/Featurelabs/evalml/pull/407
https://github.com/Featurelabs/evalml/pull/486
https://github.com/Featurelabs/evalml/pull/503
https://github.com/Featurelabs/evalml/pull/507
https://github.com/Featurelabs/evalml/pull/515
https://github.com/Featurelabs/evalml/pull/526
https://github.com/Featurelabs/evalml/pull/517
https://github.com/Featurelabs/evalml/pull/483

EvalML Documentation, Release 0.9.0

Add code style and github issue guides #463 #512

Updated API reference for to surface class variables for pipelines and components #537

Fixed README documentation link #535

Unhid PR references in changelog #656
 Testing Changes
Added automated dependency check PR #482, #505

Updated automated dependency check comment #497

Have build_docs job use python executor, so that env vars are set properly #547

Added simple test to make sure OneHotEncoder’s top_n works with large number of categories
#552

Run windows unit tests on PRs #557

Warning: Breaking Changes

AutoClassificationSearch and AutoRegressionSearch’s model_types parameter has
been refactored into allowed_model_families

ModelTypes enum has been changed to ModelFamily
Components and Pipelines now have a model_family field instead of model_type

get_pipelines utility function now accepts model_families as an argument instead of
model_types

PipelineBase.name no longer returns structure of pipeline and has been replaced by
PipelineBase.summary

PipelineBase.problem_types and Estimator.problem_types has been renamed to
supported_problem types

pipelines/utils.save_pipeline and pipelines/utils.load_pipeline moved to
PipelineBase.save and PipelineBase.load

v0.7.0 Mar. 9, 2020

¢ Enhancements

Added emacs buffers to .gitignore #350

Add CatBoost (gradient-boosted trees) classification and regression components and pipelines
#247

Added Tuner abstract base class #351

Added n_jobs as parameter for AutoClassificationSearch and AutoRegressionSearch #403

Changed colors of confusion matrix to shades of blue and updated axis order to match scikit-
learn’s #426

Added PipelineBase graph and feature_importance_graph methods, moved from previous loca-
tion #423

Added support for python 3.8 #462

¢ Fixes

1.6. Whats next? 45

https://github.com/Featurelabs/evalml/pull/463
https://github.com/Featurelabs/evalml/pull/512
https://github.com/Featurelabs/evalml/pull/537
https://github.com/Featurelabs/evalml/pull/535
https://github.com/Featurelabs/evalml/pull/656
https://github.com/Featurelabs/evalml/pull/482
https://github.com/Featurelabs/evalml/pull/505
https://github.com/Featurelabs/evalml/pull/497
https://github.com/Featurelabs/evalml/pull/547
https://github.com/Featurelabs/evalml/pull/552
https://github.com/Featurelabs/evalml/pull/557
https://github.com/Featurelabs/evalml/pull/350
https://github.com/Featurelabs/evalml/pull/247
https://github.com/Featurelabs/evalml/pull/351
https://github.com/Featurelabs/evalml/pull/403
https://github.com/Featurelabs/evalml/pull/426
https://github.com/Featurelabs/evalml/pull/423
https://github.com/Featurelabs/evalml/pull/462

EvalML Documentation, Release 0.9.0

— Fixed ROC and confusion matrix plots not being calculated if user passed own addi-
tional_objectives #276

— Fixed ReadtheDocs FileNotFoundError exception for fraud dataset #439

* Changes

Added n_estimators as a tunable parameter for XGBoost #307

— Remove unused parameter ObjectiveBase.fit_needs_proba #320

— Remove extraneous parameter component_type from all components #361
— Remove unused rankings.csv file #397

— Downloaded demo and test datasets so unit tests can run offline #408

— Remove _needs_fitting attribute from Components #398

— Changed plot.feature_importance to show only non-zero feature importances by default, added
optional parameter to show all #413

— Refactored PipelineBase to take in parameter dictionary and moved pipeline metadata to class
attribute #421

— Dropped support for Python 3.5 #438

— Removed unused apply.py file #449

— Clean up requirements.txt to remove unused deps #451

— Support installation without all required dependencies #459
* Documentation Changes

— Update release.md with instructions to release to internal license key #354
 Testing Changes

— Added tests for utils (and moved current utils to gen_utils) #297

Moved XGBoost install into it’s own separate step on Windows using Conda #313

Rewind pandas version to before 1.0.0, to diagnose test failures for that version #325

Added dependency update checkin test #324

Rewind XGBoost version to before 1.0.0 to diagnose test failures for that version #402

Update dependency check to use a whitelist #417

Update unit test jobs to not install dev deps #455

Warning: Breaking Changes

* Python 3.5 will not be actively supported.

v0.6.0 Dec. 16, 2019
* Enhancements
— Added ability to create a plot of feature importances #133
— Add early stopping to AutoML using patience and tolerance parameters #241

— Added ROC and confusion matrix metrics and plot for classification problems and introduce
PipelineSearchPlots class #242

46 Chapter 1. Quick Start

https://github.com/Featurelabs/evalml/pull/276
https://github.com/Featurelabs/evalml/pull/439
https://github.com/Featurelabs/evalml/pull/307
https://github.com/Featurelabs/evalml/pull/320
https://github.com/Featurelabs/evalml/pull/361
https://github.com/Featurelabs/evalml/pull/397
https://github.com/Featurelabs/evalml/pull/408
https://github.com/Featurelabs/evalml/pull/398
https://github.com/Featurelabs/evalml/pull/413
https://github.com/Featurelabs/evalml/pull/421
https://github.com/Featurelabs/evalml/pull/438
https://github.com/Featurelabs/evalml/pull/449
https://github.com/Featurelabs/evalml/pull/451
https://github.com/Featurelabs/evalml/pull/459
https://github.com/Featurelabs/evalml/pull/354
https://github.com/Featurelabs/evalml/pull/297
https://github.com/Featurelabs/evalml/pull/313
https://github.com/Featurelabs/evalml/pull/325
https://github.com/Featurelabs/evalml/pull/324
https://github.com/Featurelabs/evalml/pull/402
https://github.com/Featurelabs/evalml/pull/417
https://github.com/Featurelabs/evalml/pull/455
https://github.com/Featurelabs/evalml/pull/133
https://github.com/Featurelabs/evalml/pull/241
https://github.com/Featurelabs/evalml/pull/242

EvalML Documentation, Release 0.9.0

Enhanced AutoML results with search order #260

Added utility function to show system and environment information #300

* Fixes
— Lower botocore requirement #235
— Fixed decision_function calculation for FraudCost objective #254
— Fixed return value of Recall metrics #264
— Components return self on fit #289
¢ Changes

Renamed automl classes to AutoRegressionSearch and AutoClassificationSearch #287

Updating demo datasets to retain column names #223

Moving pipeline visualization to PipelinePlots class #228

Standarizing inputs as pd.Dataframe / pd.Series #130

Enforcing that pipelines must have an estimator as last component #277

Added ipywidgets as a dependency in requirements.txt #278
Added Random and Grid Search Tuners #240

* Documentation Changes

— Adding class properties to API reference #244

— Fix and filter FutureWarnings from scikit-learn #249, #257

— Adding Linear Regression to API reference and cleaning up some Sphinx warnings #227
 Testing Changes

— Added support for testing on Windows with CircleCI #226

— Added support for doctests #233

Warning: Breaking Changes
e The fit () method for AutoClassifier and AutoRegressor has been renamed to search ().
e AutoClassifier has beenrenamed to AutoClassificationSearch
* AutoRegressor has been renamed to AutoRegressionSearch

e AutoClassificationSearch.results and AutoRegressionSearch.results nowisadic-
tionary with pipeline_results and search_order keys. pipeline_results can be used to
access a dictionary that is identical to the old . results dictionary. Whereas, search_order returns a
list of the search order in terms of pipeline_id.

* Pipelines now require an estimator as the last component in component_1list. Slicing pipelines now
throws an Not ImplementedError to avoid returning pipelines without an estimator.

v0.5.2 Nov. 18, 2019
* Enhancements
— Adding basic pipeline structure visualization #211

* Documentation Changes

1.6. Whats next? 47

https://github.com/Featurelabs/evalml/pull/260
https://github.com/Featurelabs/evalml/pull/300
https://github.com/Featurelabs/evalml/pull/235
https://github.com/Featurelabs/evalml/pull/254
https://github.com/Featurelabs/evalml/pull/264
https://github.com/Featurelabs/evalml/pull/289
https://github.com/Featurelabs/evalml/pull/287
https://github.com/Featurelabs/evalml/pull/223
https://github.com/Featurelabs/evalml/pull/228
https://github.com/Featurelabs/evalml/pull/130
https://github.com/Featurelabs/evalml/pull/277
https://github.com/Featurelabs/evalml/pull/278
https://github.com/Featurelabs/evalml/pull/240
https://github.com/Featurelabs/evalml/pull/244
https://github.com/Featurelabs/evalml/pull/249
https://github.com/Featurelabs/evalml/pull/257
https://github.com/Featurelabs/evalml/pull/227
https://github.com/Featurelabs/evalml/pull/226
https://github.com/Featurelabs/evalml/pull/233
https://github.com/Featurelabs/evalml/pull/211

EvalML Documentation, Release 0.9.0

Added notebooks to build process #212

v0.5.1 Nov. 15, 2019

¢« Enhancements

Added basic outlier detection guardrail #151
Added basic ID column guardrail #135
Added support for unlimited pipelines with a max_time limit #70

Updated .readthedocs.yaml to successfully build #188

* Fixes
— Removed MSLE from default additional objectives #203
— Fixed random_state passed in pipelines #204
— Fixed slow down in RFRegressor #206

¢ Changes

— Pulled information for describe_pipeline from pipeline’s new describe method #190

Refactored pipelines #108
Removed guardrails from Auto(*) #202, #208

* Documentation Changes

Updated documentation to show max_time enhancements #189
Updated release instructions for RTD #193

Added notebooks to build process #212

Added contributing instructions #213

Added new content #222

v0.5.0 Oct. 29, 2019

¢ Enhancements

¢ Fixes

Added basic one hot encoding #73

Use enums for model_type #110

Support for splitting regression datasets #112
Auto-infer multiclass classification #99

Added support for other units in max_time #125
Detect highly null columns #121

Added additional regression objectives #100

Show an interactive iteration vs. score plot when using fit() #134

Reordered describe_pipeline #94
Added type check for model_type #109
Fixed s units when setting string max_time #132

Fix objectives not appearing in API documentation #150

48

Chapter 1. Quick Start

https://github.com/Featurelabs/evalml/pull/212
https://github.com/Featurelabs/evalml/pull/151
https://github.com/Featurelabs/evalml/pull/135
https://github.com/Featurelabs/evalml/pull/70
https://github.com/Featurelabs/evalml/pull/188
https://github.com/Featurelabs/evalml/pull/203
https://github.com/Featurelabs/evalml/pull/204
https://github.com/Featurelabs/evalml/pull/206
https://github.com/Featurelabs/evalml/pull/190
https://github.com/Featurelabs/evalml/pull/108
https://github.com/Featurelabs/evalml/pull/202
https://github.com/Featurelabs/evalml/pull/208
https://github.com/Featurelabs/evalml/pull/189
https://github.com/Featurelabs/evalml/pull/193
https://github.com/Featurelabs/evalml/pull/212
https://github.com/Featurelabs/evalml/pull/213
https://github.com/Featurelabs/evalml/pull/222
https://github.com/Featurelabs/evalml/pull/73
https://github.com/Featurelabs/evalml/pull/110
https://github.com/Featurelabs/evalml/pull/112
https://github.com/Featurelabs/evalml/pull/99
https://github.com/Featurelabs/evalml/pull/125
https://github.com/Featurelabs/evalml/pull/121
https://github.com/Featurelabs/evalml/pull/100
https://github.com/Featurelabs/evalml/pull/134
https://github.com/Featurelabs/evalml/pull/94
https://github.com/Featurelabs/evalml/pull/109
https://github.com/Featurelabs/evalml/pull/132
https://github.com/Featurelabs/evalml/pull/150

EvalML Documentation, Release 0.9.0

¢ Changes

Reorganized tests #93

Moved logging to its own module #119

Show progress bar history #111

Using cloudpickle instead of pickle to allow unloading of custom objectives #113

Removed render.py #154

* Documentation Changes
— Update release instructions #140
— Include additional_objectives parameter #124
— Added Changelog #136

» Testing Changes

Code coverage #90

Added CircleCl tests for other Python versions #104
Added doc notebooks as tests #139

Test metadata for CircleCI and 2 core parallelism #137
v0.4.1 Sep. 16, 2019

¢ Enhancements

Added AutoML for classification and regressor using Autobase and Skopt #7 #9

Implemented standard classification and regression metrics #7

Added logistic regression, random forest, and XGBoost pipelines #7

Implemented support for custom objectives #15

Feature importance for pipelines #18

Serialization for pipelines #19

Allow fitting on objectives for optimal threshold #27
Added detect label leakage #31

Implemented callbacks #42

Allow for multiclass classification #21

Added support for additional objectives #79

¢ Fixes

Fixed feature selection in pipelines #13

Made random_seed usage consistent #45

* Documentation Changes

Documentation Changes

Added docstrings #6

Created notebooks for docs #6
Initialized readthedocs EvalML #6

1.6. Whats next? 49

https://github.com/Featurelabs/evalml/pull/93
https://github.com/Featurelabs/evalml/pull/119
https://github.com/Featurelabs/evalml/pull/111
https://github.com/Featurelabs/evalml/pull/113
https://github.com/Featurelabs/evalml/pull/154
https://github.com/Featurelabs/evalml/pull/140
https://github.com/Featurelabs/evalml/pull/124
https://github.com/Featurelabs/evalml/pull/136
https://github.com/Featurelabs/evalml/pull/90
https://github.com/Featurelabs/evalml/pull/104
https://github.com/Featurelabs/evalml/pull/139
https://github.com/Featurelabs/evalml/pull/137
https://github.com/Featurelabs/evalml/pull/7
https://github.com/Featurelabs/evalml/pull/9
https://github.com/Featurelabs/evalml/pull/7
https://github.com/Featurelabs/evalml/pull/7
https://github.com/Featurelabs/evalml/pull/15
https://github.com/Featurelabs/evalml/pull/18
https://github.com/Featurelabs/evalml/pull/19
https://github.com/Featurelabs/evalml/pull/27
https://github.com/Featurelabs/evalml/pull/31
https://github.com/Featurelabs/evalml/pull/42
https://github.com/Featurelabs/evalml/pull/21
https://github.com/Featurelabs/evalml/pull/79
https://github.com/Featurelabs/evalml/pull/13
https://github.com/Featurelabs/evalml/pull/45
https://github.com/Featurelabs/evalml/pull/6
https://github.com/Featurelabs/evalml/pull/6
https://github.com/Featurelabs/evalml/pull/6

EvalML Documentation, Release 0.9.0

— Added favicon #38
 Testing Changes
— Added testing for loading data #39
v0.2.0 Aug. 13,2019
¢ Enhancements
— Created fraud detection objective #4
v0.1.0 July. 31, 2019
o First Release
* Enhancements
— Added lead scoring objecitve #1
— Added basic classifier #1
* Documentation Changes

— Initialized Sphinx for docs #1

1.6.15 API Reference

Demo Datasets

load fraud

Load credit card fraud dataset.

load_wine

Load wine dataset.

load _breast_cancer

Load breast cancer dataset.

load_diabetes

Load diabetes dataset.

evalml.demos.load_fraud

evalml.demos.load_ fraud (n_rows=None, verbose=True)
Load credit card fraud dataset. The fraud dataset can be used for binary classification problems.

Parameters

e n_rows (int)— number of rows from the dataset to return

* verbose (bool) — whether to print information about features and labels

Returns X,y
Return type pd.DataFrame, pd.Series

evalml.demos.load_wine

evalml.demos.load wine ()
Load wine dataset. Multiclass problem

Returns X,y
Return type pd.DataFrame, pd.Series

50

Chapter 1. Quick Start

https://github.com/Featurelabs/evalml/pull/38
https://github.com/Featurelabs/evalml/pull/39
https://github.com/Featurelabs/evalml/pull/4
https://github.com/Featurelabs/evalml/pull/1
https://github.com/Featurelabs/evalml/pull/1
https://github.com/Featurelabs/evalml/pull/1

EvalML Documentation, Release 0.9.0

evalml.demos.load_breast cancer

evalml.demos.load breast cancer ()
Load breast cancer dataset. Multiclass problem

Returns X,y
Return type pd.DataFrame, pd.Series

evalml.demos.load_diabetes

evalml.demos.load_diabetes ()
Load diabetes dataset. Regression problem

Returns X,y
Return type pd.DataFrame, pd.Series

Preprocessing

Utilities to preprocess data before using evalml.

drop_nan_target_rows Drops rows in X and y when row in the target y has a
value of NaN.

label_distribution Get the label distributions

load data Load features and labels from file.

number._of_features Get the number of features for specific dtypes

split_data Splits data into train and test sets.

evalml.preprocessing.drop_nan_target_rows

evalml.preprocessing.drop_nan_target_rows (X, y)
Drops rows in X and y when row in the target y has a value of NaN.

Parameters
* X (pd.DataFrame)— Data to transform
* v (pd. Series) — Target values
Returns Transformed X (and y, if passed in) with rows that had a NaN value removed.

Return type pd.DataFrame

evalml.preprocessing.label_distribution

evalml.preprocessing.label_distribution (labels)
Get the label distributions

Parameters labels (pd. Series)— Label values
Returns Label values and their frequency distribution as percentages.

Return type pd.Series

1.6. Whats next? 51

EvalML Documentation, Release 0.9.0

evalml.preprocessing.load_data

evalml.preprocessing.load_data (path, index, label, n_rows=None, drop=None, verbose=True,

**kwargs)
Load features and labels from file.

Parameters

* path (str)— Path to file or a http/ftp/s3 URL

¢ index (str)— Column for index

¢ label (str)- Column for labels

* n_rows (int)— Number of rows to return

* drop (11ist) - List of columns to drop

* verbose (bool) - If True, prints information about features and labels
Returns features and labels

Return type pd.DataFrame, pd.Series

evalml.preprocessing.number_of_features

evalml.preprocessing.number of features (diypes)
Get the number of features for specific dtypes

Parameters dtypes (pd. Series)— dtypes to get the number of features for
Returns dtypes and the number of features for each input type

Return type pd.Series

evalml.preprocessing.split_data

evalml.preprocessing.split_data (X, y, regression=Fualse, test_size=0.2, random_state=None)
Splits data into train and test sets.

Parameters
* X(pd.DataFrame or np.array) - data of shape [n_samples, n_features]
* y (pd. Series) — labels of length [n_samples]
* regression (bool) - if true, do not use stratified split
* test_size (float)— percent of train set to holdout for testing

* random_state (int, np.random.RandomState) — seed for the random number
generator

Returns features and labels each split into train and test sets

Return type pd.DataFrame, pd.DataFrame, pd.Series, pd.Series

AutoML

52 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

AutoClassificationSearch Automatic pipeline search class for classification prob-
lems
AutoRegressionSearch Automatic pipeline search for regression problems

evalml.automl.AutoClassificationSearch

evalml.automl.auto_base.AutoBase H evalml.automl.auto_classification_search.AutoClassificationSearch

class evalml.automl.AutoClassificationSearch (objective=None, multiclass=False,
max_pipelines=None, max_time=None,
patience=None, tolerance=None, al-
lowed_model_families=None, cv=None,
tuner=None, detect_label_leakage=True,
start_iteration_callback=None,

add_result_callback=None, addi-
tional_objectives=None, random_state=0,
n_jobs=-1, verbose=True, opti-

mize_thresholds=False)
Automatic pipeline search class for classification problems

Methods
__init__ Automated classifier pipeline search
describe _pipeline Describe a pipeline
get_pipeline Retrieves trained pipeline
search Find best classifier

evalml.automl.AutoClassificationSearch. _init__

AutoClassificationSearch.__init__ (objective=None, multiclass=False,
max_pipelines=None, max_time=None,
patience=None, tolerance=None, al-
lowed_model_families=None, cv=None,
tuner=None, detect_label_leakage=True,
start_iteration_callback=None,
add_result_callback=None, addi-

tional_objectives=None, random_state=0, n_jobs=-1,
verbose=True, optimize_thresholds=False)
Automated classifier pipeline search

Parameters

* objective (Object) — The objective to optimize for. Defaults to LogLossBinary for
binary classification problems and LogLossMulticlass for multiclass classification prob-
lems.

1.6. Whats next? 53

EvalML Documentation, Release 0.9.0

* multiclass (bool) - If True, expecting multiclass data. Defaults to False.

* max_pipelines (int) — Maximum number of pipelines to search. If max_pipelines
and max_time is not set, then max_pipelines will default to max_pipelines of 5.

* max_time (int, str)- Maximum time to search for pipelines. This will not start a
new pipeline search after the duration has elapsed. If it is an integer, then the time will be
in seconds. For strings, time can be specified as seconds, minutes, or hours.

* patience (int) - Number of iterations without improvement to stop search early. Must
be positive. If None, early stopping is disabled. Defaults to None.

* tolerance (float)-—Minimum percentage difference to qualify as score improvement
for early stopping. Only applicable if patience is not None. Defaults to None.

* allowed _model_families (l1ist) — The model families to search. By default,
searches over all model families. Run evalml.list_model_families(‘“binary”) to see op-
tions. Change binary to multiclass if your problem type is different.

* cv — cross-validation method to use. Defaults to StratifiedKFold.
* tuner - the tuner class to use. Defaults to scikit-optimize tuner

* detect_label leakage (bool)-If True, check input features for label leakage and
warn if found. Defaults to true.

* start_iteration_callback (callable) — function called before each pipeline
training iteration. Passed two parameters: pipeline_class, parameters.

* add_result_callback (callable) — function called after each pipeline training
iteration. Passed two parameters: results, trained_pipeline.

* additional_objectives (11ist)— Custom set of objectives to score on. Will over-
ride default objectives for problem type if not empty.

e random_state (int, np.random.RandomState)— The random seed/state. De-
faults to 0.

* n_jobs (int or None)— Non-negative integer describing level of parallelism used
for pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

* verbose (boolean) - If True, turn verbosity on. Defaults to True

evalml.automl.AutoClassificationSearch.describe_pipeline

AutoClassificationSearch.describe_pipeline (pipeline_id, return_dict=False)
Describe a pipeline

Parameters
* pipeline_id (int) - pipeline to describe

* return_dict (bool) — If True, return dictionary of information about pipeline. De-
faults to False.

Returns Description of specified pipeline. Includes information such as type of pipeline com-
ponents, problem, training time, cross validation, etc.

54 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

evalml.automl.AutoClassificationSearch.get_pipeline

AutoClassificationSearch.get_pipeline (pipeline_id)
Retrieves trained pipeline

Parameters pipeline_id (int) — pipeline to retrieve
Returns pipeline associated with id

Return type Pipeline

evalml.automl.AutoClassificationSearch.search

AutoClassificationSearch.search (X, v, feature_types=None, raise_errors=True,

show_iteration_plot=True)
Find best classifier

Parameters
* X (pd.DataFrame) — the input training data of shape [n_samples, n_features]
* y (pd. Series) — the target training labels of length [n_samples]

» feature_types (1ist, optional)-— list of feature types, either numerical or cat-
egorical. Categorical features will automatically be encoded

* raise_errors (boolean) — If True, raise errors and exit search if a pipeline errors
during fitting. If False, set scores for the errored pipeline to NaN and continue search.
Defaults to True.

* show_iteration_plot (boolean, True) - Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Returns self

Attributes
best_pipeline Returns the best model found
full_rankings Returns a pandas.DataFrame with scoring results
from all pipelines searched
rankings Returns a pandas.DataFrame with scoring results

from the highest-scoring set of parameters used with
each pipeline.

evalml.automl.AutoRegressionSearch

evalml.automl.auto_base.AutoBase H evalml.automl.auto_regression_search.AutoRegressionSearch

1.6. Whats next?

55

EvalML Documentation, Release 0.9.0

class evalml.automl.AutoRegressionSearch (objective=None, max_pipelines=None,
max_time=None, patience=None, toler-
ance=None, allowed_model_families=None,
cv=None, tuner=None, de-

tect_label_leakage=True,
start_iteration_callback=None,
add_result_callback=None, addi-
tional_objectives=None, random_state=0,
n_jobs=-1, verbose=True)

Automatic pipeline search for regression problems

Methods
_ init__ Automated regressors pipeline search
describe pipeline Describe a pipeline

get_pipeline

Retrieves trained pipeline

search

Find best classifier

evalml.automl

.AutoRegressionSearch.__init__

AutoRegressionSearch.__init__ (objective=None, max_pipelines=None,

max_time=None, patience=None, tolerance=None, al-
lowed_model_families=None, cv=None, tuner=None,
detect_label_leakage=True, start_iteration_callback=None,
add_result_callback=None, additional_objectives=None,
random_state=0, n_jobs=-1, verbose=True)

Automated regressors pipeline search

Parameters

objective (Object) — The objective to optimize for. Defaults to R2.

max_pipelines (int) — Maximum number of pipelines to search. If max_pipelines
and max_time is not set, then max_pipelines will default to max_pipelines of 5.

max_time (int, str)- Maximum time to search for pipelines. This will not start a
new pipeline search after the duration has elapsed. If it is an integer, then the time will be
in seconds. For strings, time can be specified as seconds, minutes, or hours.

allowed_model_ families (list) — The model families to search. By default
searches over all model families. Run evalml.list_model_families(‘“regression”) to see
options.

patience (int) - Number of iterations without improvement to stop search early. Must
be positive. If None, early stopping is disabled. Defaults to None.

tolerance (float)—Minimum percentage difference to qualify as score improvement
for early stopping. Only applicable if patience is not None. Defaults to None.

cv — cross validation method to use. By default StratifiedKFold
tuner - the tuner class to use. Defaults to scikit-optimize tuner

detect_label_leakage (bool)—If True, check input features for label leakage and
warn if found. Defaults to true.

start_iteration_callback (callable) — function called before each pipeline
training iteration. Passed two parameters: pipeline_class, parameters.

56

Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

* add_result_callback (callable) — function called after each pipeline training
iteration. Passed two parameters: results, trained_pipeline.

* additional_objectives (11ist)— Custom set of objectives to score on. Will over-
ride default objectives for problem type if not empty.

e random_state (int, np.random.RandomState)— The random seed/state. De-
faults to 0.

* n_jobs (int or None) — Non-negative integer describing level of parallelism used
for pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

* verbose (boolean)— If True, turn verbosity on. Defaults to True

evalml.automl.AutoRegressionSearch.describe_pipeline

AutoRegressionSearch.describe_pipeline (pipeline_id, return_dict=False)
Describe a pipeline

Parameters
* pipeline_id (int) - pipeline to describe

* return_dict (bool) — If True, return dictionary of information about pipeline. De-
faults to False.

Returns Description of specified pipeline. Includes information such as type of pipeline com-
ponents, problem, training time, cross validation, etc.

evalml.automl.AutoRegressionSearch.get_pipeline

AutoRegressionSearch.get_pipeline (pipeline_id)
Retrieves trained pipeline

Parameters pipeline_id (int) — pipeline to retrieve
Returns pipeline associated with id

Return type Pipeline

evalml.automl.AutoRegressionSearch.search

AutoRegressionSearch.search (X, y, feature_types=None, raise_errors=True,

show_iteration_plot=True)
Find best classifier

Parameters
* X (pd.DataFrame) — the input training data of shape [n_samples, n_features]
* y (pd. Series) — the target training labels of length [n_samples]

» feature_types (1ist, optional)-— listof feature types, either numerical or cat-
egorical. Categorical features will automatically be encoded

* raise_errors (boolean) — If True, raise errors and exit search if a pipeline errors
during fitting. If False, set scores for the errored pipeline to NaN and continue search.
Defaults to True.

1.6.

Whats next? 57

EvalML Documentation, Release 0.9.0

* show_iteration_plot (boolean, True)— Shows an iteration vs. score plot in
Jupyter notebook. Disabled by default in non-Jupyter enviroments.

Returns self

Attributes

best_pipeline

Returns the best model found

full_rankings

Returns a pandas.DataFrame with scoring results
from all pipelines searched

rankings Returns a pandas.DataFrame with scoring results
from the highest-scoring set of parameters used with
each pipeline.
Pipelines

Pipeline Base Classes

PipelineBase

Base class for all pipelines.

ClassificationPipeline

Pipeline subclass for all classification pipelines.

BinaryClassificationPipeline

Pipeline subclass for all binary classification pipelines.

MulticlassClassificationPipeline

Pipeline subclass for all multiclass classification
pipelines.

RegressionPipeline

Pipeline subclass for all regression pipelines.

evalml.pipelines.PipelineBase

abc.ABC

\ 4

evalml.pipelines.pipeline_base.PipelineBase

class evalml.pipelines.PipelineBase (parameters, random_state=0)

Base class for all pipelines.

Methods
__init__ Machine learning pipeline made out of transformers
and a estimator.
describe Outputs pipeline details including component pa-
rameters
fit Build a model

Continued on next page

58

Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

Table 9 — continued from previous page

get_component Returns component by name

graph Generate an image representing the pipeline graph

graph_feature_importance Generate a bar graph of the pipeline’s feature impor-
tances

load Loads pipeline at file path

predict Make predictions using selected features.

save Saves pipeline at file path

score Evaluate model performance on current and addi-

tional objectives

evalml.pipelines.PipelineBase.__init__

PipelineBase.__init___ (parameters, random_state=0)
Machine learning pipeline made out of transformers and a estimator.

Required Class Variables: component_graph (list): List of components in order. Accepts strings or
ComponentBase objects in the list
Parameters

* parameters (dict) — dictionary with component names as keys and dictionary of that
component’s parameters as values. An empty dictionary { } implies using all default values
for component parameters.

e random_state (int, np.random.RandomState)— The random seed/state. De-
faults to 0.

evalml.pipelines.PipelineBase.describe

PipelineBase.describe ()
Outputs pipeline details including component parameters

Parameters return_dict (bool) - If True, return dictionary of information about pipeline.
Defaults to false

Returns dictionary of all component parameters if return_dict is True, else None

Return type dict

evalml.pipelines.PipelineBase.fit

PipelineBase.fit (X, y)
Build a model

Parameters

* X (pd.DataFrame or np.array) — the input training data of shape [n_samples,
n_features]

* y (pd. Series) — the target training labels of length [n_samples]

Returns self

1.6.

Whats next? 59

EvalML Documentation, Release 0.9.0

evalml.pipelines.PipelineBase.get_component

PipelineBase.get_component (name)
Returns component by name

Parameters name (str)—name of component
Returns component to return

Return type Component

evalml.pipelines.PipelineBase.graph

PipelineBase.graph (filepath=None)
Generate an image representing the pipeline graph

Parameters filepath (str, optional)—Pathto where the graph should be saved. If set
to None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.
Return type graphviz.Digraph

evalml.pipelines.PipelineBase.graph_feature_importance

PipelineBase.graph_feature_importance (show_all_features=False)
Generate a bar graph of the pipeline’s feature importances

Parameters show_all features (bool, optional) — If true, graph features with an
importance value of zero. Defaults to false.

Returns plotly.Figure, a bar graph showing features and their importances

evalml.pipelines.PipelineBase.load

static PipelineBase.load (file_path)
Loads pipeline at file path

Parameters file_path (str) - location to load file

Returns PipelineBase obj

evalml.pipelines.PipelineBase.predict

PipelineBase.predict (X, objective=None)
Make predictions using selected features.

Parameters

* X(pd.DataFrame or np.array) - data of shape [n_samples, n_features]

* objective (Object or string)- the objective to use to make predictions
Returns estimated labels

Return type pd.Series

60 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

evalml.pipelines.PipelineBase.save

PipelineBase.save (file_path)
Saves pipeline at file path

Parameters file_path (str) - location to save file

Returns None

evalml.pipelines.PipelineBase.score

PipelineBase.score (X, y, objectives)
Evaluate model performance on current and additional objectives

Parameters
* X(pd.DataFrame or np.array)— data of shape [n_samples, n_features]
* vy (pd. Series) — true labels of length [n_samples]
* objectives (1ist) - Non-empty list of objectives to score on

Returns ordered dictionary of objective scores

Return type dict

evalml.pipelines.ClassificationPipeline

abc.ABC }——{ evalml.pipelines.pipeline_base.PipelineBase H evalml.pipelines.classification_pipeline.ClassificationPipeline

class evalml.pipelines.ClassificationPipeline (parameters, random_state=0)
Pipeline subclass for all classification pipelines.

Methods

__init___ Machine learning pipeline made out of transformers
and a estimator.

describe Outputs pipeline details including component pa-
rameters

fit Build a model

get_component Returns component by name

graph Generate an image representing the pipeline graph

graph_feature_ importance Generate a bar graph of the pipeline’s feature impor-
tances

load Loads pipeline at file path

predict Make predictions using selected features.

predict_proba Make probability estimates for labels.

save Saves pipeline at file path

Continued on next page

1.6. Whats next? 61

EvalML Documentation, Release 0.9.0

Table 10 — continued from previous page

Evaluate model performance on current and addi-
tional objectives

score

evalml.pipelines.ClassificationPipeline.__init__

ClassificationPipeline.__init__ (parameters, random_state=0)
Machine learning pipeline made out of transformers and a estimator.

Required Class Variables: component_graph (list): List of components in order. Accepts strings or
ComponentBase objects in the list

Parameters

* parameters (dict) — dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary { } implies using all default values
for component parameters.

e random_state (int, np.random.RandomState)— The random seed/state. De-
faults to 0.

evalml.pipelines.ClassificationPipeline.describe

ClassificationPipeline.describe ()
Outputs pipeline details including component parameters

Parameters return_dict (bool) - If True, return dictionary of information about pipeline.
Defaults to false

Returns dictionary of all component parameters if return_dict is True, else None

Return type dict

evalml.pipelines.ClassificationPipeline.fit
ClassificationPipeline.fit (X,y)
Build a model

Parameters

* X (pd.DataFrame or np.array) — the input training data of shape [n_samples,
n_features]

* y (pd. Series) — the target training labels of length [n_samples]

Returns self

evalml.pipelines.ClassificationPipeline.get_component

ClassificationPipeline.get_component (name)
Returns component by name

Parameters name (str)—name of component
Returns component to return

Return type Component

62

Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

evalml.pipelines.ClassificationPipeline.graph

ClassificationPipeline.graph (filepath=None)
Generate an image representing the pipeline graph

Parameters filepath (str, optional)—Pathto where the graph should be saved. If set
to None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.
Return type graphviz.Digraph

evalml.pipelines.ClassificationPipeline.graph_feature_importance

ClassificationPipeline.graph_feature_importance (show_all_features=False)
Generate a bar graph of the pipeline’s feature importances

Parameters show_all_ features (bool, optional) — If true, graph features with an
importance value of zero. Defaults to false.

Returns plotly.Figure, a bar graph showing features and their importances

evalml.pipelines.ClassificationPipeline.load

static ClassificationPipeline.load (file_path)
Loads pipeline at file path

Parameters file_path (str) - location to load file

Returns PipelineBase obj

evalml.pipelines.ClassificationPipeline.predict

ClassificationPipeline.predict (X, objective=None)
Make predictions using selected features.

Parameters

* X(pd.DataFrame or np.array) - data of shape [n_samples, n_features]

* objective (Object or string)- the objective to use to make predictions
Returns estimated labels

Return type pd.Series

evalml.pipelines.ClassificationPipeline.predict_proba

ClassificationPipeline.predict_proba (X)
Make probability estimates for labels.

Parameters X (pd.DataFrame or np.array)- data of shape [n_samples, n_features]
Returns probability estimates

Return type pd.DataFrame

1.6.

Whats next? 63

EvalML Documentation, Release 0.9.0

evalml.pipelines.ClassificationPipeline.save

ClassificationPipeline.save (file_path)
Saves pipeline at file path

Parameters file_path (str)— location to save file

Returns None

evalml.pipelines.ClassificationPipeline.score

ClassificationPipeline.score (X, Yy, objectives)
Evaluate model performance on current and additional objectives

Parameters
* X(pd.DataFrame or np.array)— data of shape [n_samples, n_features]
* y (pd. Series) — true labels of length [n_samples]
* objectives (1ist)— Non-empty list of objectives to score on

Returns ordered dictionary of objective scores

Return type dict

evalml.pipelines.BinaryClassificationPipeline

abc.ABC }—-{ evalml.pipelines.pipeline_base.PipelineBase }—-{ evalml.pipelines.classification_pipeline.ClassificationPipeline ‘—-{ evalml.pipelines.binary_classification_pipeline.BinaryClassificationPipeline

class evalml.pipelines.BinaryClassificationPipeline (parameters, random_state=0)
Pipeline subclass for all binary classification pipelines.

Methods

__init__ Machine learning pipeline made out of transformers
and a estimator.

describe Outputs pipeline details including component pa-
rameters

fit Build a model

get_component Returns component by name

graph Generate an image representing the pipeline graph

graph_feature_importance Generate a bar graph of the pipeline’s feature impor-
tances

load Loads pipeline at file path

predict Make predictions using selected features.

predict_proba Make probability estimates for labels.

save Saves pipeline at file path

score Evaluate model performance on objectives

64 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

evalml.pipelines.BinaryClassificationPipeline.__init__

BinaryClassificationPipeline.__init__ (parameters, random_state=0)
Machine learning pipeline made out of transformers and a estimator.

Required Class Variables: component_graph (list): List of components in order. Accepts strings or
ComponentBase objects in the list

Parameters

* parameters (dict) —dictionary with component names as keys and dictionary of that

component’s parameters as values. An empty dictionary { } implies using all default values
for component parameters.

¢ random_state (int, np.random.RandomState)— The random seed/state. De-
faults to 0.

evalml.pipelines.BinaryClassificationPipeline.describe
BinaryClassificationPipeline.describe ()
Outputs pipeline details including component parameters

Parameters return_dict (bool)— If True, return dictionary of information about pipeline.
Defaults to false

Returns dictionary of all component parameters if return_dict is True, else None

Return type dict

evalml.pipelines.BinaryClassificationPipeline.fit
BinaryClassificationPipeline.fit (X,y)
Build a model

Parameters

* X (pd.DataFrame or np.array) — the input training data of shape [n_samples,
n_features]

* y (pd. Series) — the target training labels of length [n_samples]
Returns self

evalml.pipelines.BinaryClassificationPipeline.get_component
BinaryClassificationPipeline.get_component (name)
Returns component by name
Parameters name (st r)—name of component
Returns component to return

Return type Component

1.6. Whats next? 65

EvalML Documentation, Release 0.9.0

evalml.pipelines.BinaryClassificationPipeline.graph

BinaryClassificationPipeline.graph (filepath=None)
Generate an image representing the pipeline graph

Parameters filepath (str, optional)—Pathto where the graph should be saved. If set
to None (as by default), the graph will not be saved.

Returns Graph object that can be directly displayed in Jupyter notebooks.
Return type graphviz.Digraph

evalml.pipelines.BinaryClassificationPipeline.graph_feature_importance

BinaryClassificationPipeline.graph_feature_importance (show_all_features=False)
Generate a bar graph of the pipeline’s feature importances

Parameters show_all_ features (bool, optional) — If true, graph features with an
importance value of zero. Defaults to false.

Returns plotly.Figure, a bar graph showing features and their importances

evalml.pipelines.BinaryClassificationPipeline.load

static BinaryClassificationPipeline.load (file_path)
Loads pipeline at file path

Parameters file_path (str) - location to load file

Returns PipelineBase obj

evalml.pipelines.BinaryClassificationPipeline.predict

BinaryClassificationPipeline.predict (X, objective=None)
Make predictions using selected features.

Parameters

* X(pd.DataFrame or np.array) - data of shape [n_samples, n_features]

* objective (Object or string)- the objective to use to make predictions
Returns estimated labels

Return type pd.Series

evalml.pipelines.BinaryClassificationPipeline.predict_proba

BinaryClassificationPipeline.predict_proba (X)
Make probability estimates for labels.

Parameters X (pd.DataFrame or np.array)- data of shape [n_samples, n_features]
Returns probability estimates

Return type pd.DataFrame

66 Chapter 1. Quick Start

EvalML Documentation, Release 0.9.0

evalml.pipelines.BinaryClassificationPipeline.save

BinaryClassificationPipeline.save (file_path)

Saves pipeline at file path

Parameters file_path (str)— location to save file

Returns None

evalml.pipelines.BinaryClassificationPipeline.score

BinaryClassificationPipeline.score (X, Yy, objectives)

Evaluate model performance on objectives

Parameters

* X(pd.DataFrame or np.array)— data of shape [n_samples, n_features]

* vy (pd. Series) — true labels of length [n_samples]

* objectives (11ist) - list of objectives to score

Returns ordered dictionary of objective scores

Return type dict

evalml.pipelines.MulticlassClassificationPipeline

abc.ABC ‘—-{ evalml.pipelines.pipeline_base ‘_.(evalml.pipeline:

ipeli }—-{ evalml.pipelines.multiclass_classification_pipeline.} i ipeli

class evalml.pipelines.MulticlassClassificationPipeline (parameters, ran-

dom_state=0)

Pipeline subclass for all multiclass classification pipelines.

Methods

__init___ Machine learning pipeline made out of transformers
and a estimator.

describe Outputs pipeline details including component pa-
rameters

fit Build a model

get_component Returns component by name

graph Generate an image representing the pipeline g