[docs]classCostBenefitMatrix(BinaryClassificationObjective):"""Score using a cost-benefit matrix. Scores quantify the benefits of a given value, so greater numeric scores represents a better score. Costs and scores can be negative, indicating that a value is not beneficial. For example, in the case of monetary profit, a negative cost and/or score represents loss of cash flow. Args: true_positive (float): Cost associated with true positive predictions. true_negative (float): Cost associated with true negative predictions. false_positive (float): Cost associated with false positive predictions. false_negative (float): Cost associated with false negative predictions. """name="Cost Benefit Matrix"greater_is_better=Truescore_needs_proba=Falseperfect_score=np.infis_bounded_like_percentage=False# Range (-Inf, Inf)expected_range=[float("-inf"),float("inf")]def__init__(self,true_positive,true_negative,false_positive,false_negative):ifNonein{true_positive,true_negative,false_positive,false_negative}:raiseValueError("Parameters to CostBenefitMatrix must all be numeric values.",)self.true_positive=true_positiveself.true_negative=true_negativeself.false_positive=false_positiveself.false_negative=false_negative
[docs]defobjective_function(self,y_true,y_predicted,y_train=None,X=None,sample_weight=None,):"""Calculates cost-benefit of the using the predicted and true values. Args: y_predicted (pd.Series): Predicted labels. y_true (pd.Series): True labels. y_train (pd.Series): Ignored. X (pd.DataFrame): Ignored. sample_weight (pd.DataFrame): Ignored. Returns: float: Cost-benefit matrix score """conf_matrix=evalml.model_understanding.metrics.confusion_matrix(y_true,y_predicted,normalize_method="all",)cost_matrix=np.array([[self.true_negative,self.false_positive],[self.false_negative,self.true_positive],],)total_cost=np.multiply(conf_matrix.values,cost_matrix).sum()returntotal_cost