[docs]classStackedEnsembleBase(Estimator):"""Stacked Ensemble Base Class. Arguments: final_estimator (Estimator or subclass): The estimator used to combine the base estimators. n_jobs (int or None): Integer describing level of parallelism used for pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1 + n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown for values of `n_jobs != 1`. If this is the case, please use `n_jobs = 1`. random_seed (int): Seed for the random number generator. Defaults to 0. """model_family=ModelFamily.ENSEMBLE"""ModelFamily.ENSEMBLE"""_default_final_estimator=None_can_be_used_for_fast_partial_dependence=Falsedef__init__(self,final_estimator=None,n_jobs=-1,random_seed=0,**kwargs,):final_estimator=final_estimatororself._default_final_estimator()parameters={"final_estimator":final_estimator,"n_jobs":n_jobs,}parameters.update(kwargs)super().__init__(parameters=parameters,component_obj=final_estimator,random_seed=random_seed,)@propertydeffeature_importance(self):"""Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor."""raiseNotImplementedError("feature_importance is not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor",)@classpropertydefdefault_parameters(cls):"""Returns the default parameters for stacked ensemble classes. Returns: dict: default parameters for this component. """return{"final_estimator":cls._default_final_estimator,"n_jobs":-1,}