[docs]classRandomForestClassifier(Estimator):"""Random Forest Classifier. Args: n_estimators (float): The number of trees in the forest. Defaults to 100. max_depth (int): Maximum tree depth for base learners. Defaults to 6. n_jobs (int or None): Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. random_seed (int): Seed for the random number generator. Defaults to 0. """name="Random Forest Classifier"hyperparameter_ranges={"n_estimators":Integer(10,1000),"max_depth":Integer(1,10),}"""{ "n_estimators": Integer(10, 1000), "max_depth": Integer(1, 10), }"""model_family=ModelFamily.RANDOM_FOREST"""ModelFamily.RANDOM_FOREST"""supported_problem_types=[ProblemTypes.BINARY,ProblemTypes.MULTICLASS,ProblemTypes.TIME_SERIES_BINARY,ProblemTypes.TIME_SERIES_MULTICLASS,]"""[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ]"""def__init__(self,n_estimators=100,max_depth=6,n_jobs=-1,random_seed=0,**kwargs):parameters={"n_estimators":n_estimators,"max_depth":max_depth,"n_jobs":n_jobs,}parameters.update(kwargs)rf_classifier=SKRandomForestClassifier(random_state=random_seed,**parameters)super().__init__(parameters=parameters,component_obj=rf_classifier,random_seed=random_seed,)