Source code for evalml.pipelines.components.estimators.regressors.elasticnet_regressor
"""Elastic Net Regressor."""importpandasaspdfromsklearn.linear_modelimportElasticNetasSKElasticNetfromskopt.spaceimportRealfromevalml.model_familyimportModelFamilyfromevalml.pipelines.components.estimatorsimportEstimatorfromevalml.problem_typesimportProblemTypes
[docs]classElasticNetRegressor(Estimator):"""Elastic Net Regressor. Args: alpha (float): Constant that multiplies the penalty terms. Defaults to 0.0001. l1_ratio (float): The mixing parameter, with 0 <= l1_ratio <= 1. Only used if penalty='elasticnet'. Setting l1_ratio=0 is equivalent to using penalty='l2', while setting l1_ratio=1 is equivalent to using penalty='l1'. For 0 < l1_ratio <1, the penalty is a combination of L1 and L2. Defaults to 0.15. max_iter (int): The maximum number of iterations. Defaults to 1000. random_seed (int): Seed for the random number generator. Defaults to 0. """name="Elastic Net Regressor"hyperparameter_ranges={"alpha":Real(0,1),"l1_ratio":Real(0,1),}"""{ "alpha": Real(0, 1), "l1_ratio": Real(0, 1), }"""model_family=ModelFamily.LINEAR_MODEL"""ModelFamily.LINEAR_MODEL"""supported_problem_types=[ProblemTypes.REGRESSION,ProblemTypes.TIME_SERIES_REGRESSION,ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]"""[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION, ]"""def__init__(self,alpha=0.0001,l1_ratio=0.15,max_iter=1000,random_seed=0,**kwargs,):parameters={"alpha":alpha,"l1_ratio":l1_ratio,"max_iter":max_iter,}parameters.update(kwargs)en_regressor=SKElasticNet(random_state=random_seed,**parameters)super().__init__(parameters=parameters,component_obj=en_regressor,random_seed=random_seed,)@propertydeffeature_importance(self):"""Feature importance for fitted ElasticNet regressor."""returnpd.Series(self._component_obj.coef_)