[docs]classLinearRegressor(Estimator):"""Linear Regressor. Args: fit_intercept (boolean): Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults to True. n_jobs (int or None): Number of jobs to run in parallel. -1 uses all threads. Defaults to -1. random_seed (int): Seed for the random number generator. Defaults to 0. """name="Linear Regressor"hyperparameter_ranges={"fit_intercept":[True,False]}"""{ "fit_intercept": [True, False], }"""model_family=ModelFamily.LINEAR_MODEL"""ModelFamily.LINEAR_MODEL"""supported_problem_types=[ProblemTypes.REGRESSION,ProblemTypes.TIME_SERIES_REGRESSION,ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,]"""[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION, ]"""def__init__(self,fit_intercept=True,n_jobs=-1,random_seed=0,**kwargs):parameters={"fit_intercept":fit_intercept,"n_jobs":n_jobs,}parameters.update(kwargs)linear_regressor=SKLinearRegression(**parameters)super().__init__(parameters=parameters,component_obj=linear_regressor,random_seed=random_seed,)@propertydeffeature_importance(self):"""Feature importance for fitted linear regressor."""returnpd.Series(self._component_obj.coef_)