Source code for evalml.pipelines.components.estimators.regressors.multiseries_time_series_baseline_regressor

"""Time series estimator that predicts using the naive forecasting approach."""
import numpy as np
import pandas as pd

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.pipelines.components.transformers import TimeSeriesFeaturizer
from evalml.problem_types import ProblemTypes
from evalml.utils import infer_feature_types


[docs]class MultiseriesTimeSeriesBaselineRegressor(Estimator): """Multiseries time series regressor that predicts using the naive forecasting approach. This is useful as a simple baseline estimator for multiseries time series problems. Args: gap (int): Gap between prediction date and target date and must be a positive integer. If gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1. forecast_horizon (int): Number of time steps the model is expected to predict. random_seed (int): Seed for the random number generator. Defaults to 0. """ name = "Multiseries Time Series Baseline Regressor" hyperparameter_ranges = {} """{}""" model_family = ModelFamily.BASELINE """ModelFamily.BASELINE""" supported_problem_types = [ ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION, ] """[ ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION, ]""" def __init__(self, gap=1, forecast_horizon=1, random_seed=0, **kwargs): self._prediction_value = None self.start_delay = forecast_horizon + gap self._num_features = None if gap < 0: raise ValueError( f"gap value must be a positive integer. {gap} was provided.", ) parameters = {"gap": gap, "forecast_horizon": forecast_horizon} parameters.update(kwargs) super().__init__( parameters=parameters, component_obj=None, random_seed=random_seed, )
[docs] def fit(self, X, y=None): """Fits multiseries time series baseline regressor to data. Args: X (pd.DataFrame): The input training data of shape [n_samples, n_features * n_series]. y (pd.DataFrame): The target training data of shape [n_samples, n_features * n_series]. Returns: self Raises: ValueError: If input y is None or if y is not a DataFrame with multiple columns. """ if y is None: raise ValueError( "Cannot train Multiseries Time Series Baseline Regressor if y is None", ) if isinstance(y, pd.Series): raise ValueError( "y must be a DataFrame with multiple columns for Multiseries Time Series Baseline Regressor", ) self._target_column_names = list(y.columns) self._num_features = X.shape[1] return self
[docs] def predict(self, X): """Make predictions using fitted multiseries time series baseline regressor. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.DataFrame: Predicted values. Raises: ValueError: If the lagged columns are not present in X. """ X = infer_feature_types(X) feature_names = [ TimeSeriesFeaturizer.df_colname_prefix.format(col, self.start_delay) for col in self._target_column_names ] if not set(feature_names).issubset(set(X.columns)): raise ValueError( "Multiseries Time Series Baseline Regressor is meant to be used in a pipeline with " "a Time Series Featurizer", ) delayed_features = X.ww[feature_names] # Get the original column names, rather than the lagged column names new_column_names = { col_name: col_name.split("_delay_")[0] for col_name in feature_names } return delayed_features.ww.rename(columns=new_column_names)
@property def feature_importance(self): """Returns importance associated with each feature. Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes. Returns: np.ndarray (float): An array of zeroes. """ importance = np.array([0] * self._num_features) return importance