Source code for evalml.pipelines.components.estimators.regressors.prophet_regressor
"""Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well."""importcopyfromtypingimportDict,Hashable,List,Optional,Unionimportnumpyasnpimportpandasaspdfromskopt.spaceimportRealfromevalml.model_familyimportModelFamilyfromevalml.pipelines.components.estimatorsimportEstimatorfromevalml.problem_typesimportProblemTypesfromevalml.utilsimportimport_or_raise,infer_feature_typesfromevalml.utils.gen_utilsimportclassproperty
[docs]classProphetRegressor(Estimator):"""Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. More information here: https://facebook.github.io/prophet/ Args: time_index (str): Specifies the name of the column in X that provides the datetime objects. Defaults to None. changepoint_prior_scale (float): Determines the strength of the sparse prior for fitting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to 0.05. seasonality_prior_scale (int): Similar to changepoint_prior_scale. Adjusts the extent to which the seasonality model will fit the data. Defaults to 10. holidays_prior_scale (int): Similar to changepoint_prior_scale. Adjusts the extent to which holidays will fit the data. Defaults to 10. seasonality_mode (str): Determines how this component fits the seasonality. Options are "additive" and "multiplicative". Defaults to "additive". stan_backend (str): Determines the backend that should be used to run Prophet. Options are "CMDSTANPY" and "PYSTAN". Defaults to "CMDSTANPY". interval_width (float): Determines the confidence of the prediction interval range when calling `get_prediction_intervals`. Accepts values in the range (0,1). Defaults to 0.95. random_seed (int): Seed for the random number generator. Defaults to 0. """name="Prophet Regressor"hyperparameter_ranges={"changepoint_prior_scale":Real(0.001,0.5),"seasonality_prior_scale":Real(0.01,10),"holidays_prior_scale":Real(0.01,10),"seasonality_mode":["additive","multiplicative"],}"""{ "changepoint_prior_scale": Real(0.001, 0.5), "seasonality_prior_scale": Real(0.01, 10), "holidays_prior_scale": Real(0.01, 10), "seasonality_mode": ["additive", "multiplicative"], }"""model_family=ModelFamily.PROPHET"""ModelFamily.PROPHET"""supported_problem_types=[ProblemTypes.TIME_SERIES_REGRESSION]"""[ProblemTypes.TIME_SERIES_REGRESSION]"""def__init__(self,time_index:Optional[Hashable]=None,changepoint_prior_scale:float=0.05,seasonality_prior_scale:int=10,holidays_prior_scale:int=10,seasonality_mode:str="additive",stan_backend:str="CMDSTANPY",interval_width:float=0.95,random_seed:Union[int,float]=0,**kwargs,):parameters={"changepoint_prior_scale":changepoint_prior_scale,"seasonality_prior_scale":seasonality_prior_scale,"holidays_prior_scale":holidays_prior_scale,"seasonality_mode":seasonality_mode,"stan_backend":stan_backend,"interval_width":interval_width,}parameters.update(kwargs)c_error_msg=("cmdstanpy is not installed. Please install using `pip install cmdstanpy`.")_=import_or_raise("cmdstanpy",error_msg=c_error_msg)p_error_msg=("prophet is not installed. Please install using `pip install prophet`.")prophet=import_or_raise("prophet",error_msg=p_error_msg)prophet_regressor=prophet.Prophet(**parameters)parameters["time_index"]=time_indexself.time_index=time_indexsuper().__init__(parameters=parameters,component_obj=prophet_regressor,random_state=random_seed,)
[docs]@staticmethoddefbuild_prophet_df(X:pd.DataFrame,y:Optional[pd.Series]=None,time_index:str="ds",)->pd.DataFrame:"""Build the Prophet data to pass fit and predict on."""X=copy.deepcopy(X)y=copy.deepcopy(y)iftime_indexisNone:raiseValueError("time_index cannot be None!")iftime_indexinX.columns:date_column=X.pop(time_index)else:raiseValueError(f"Column {time_index} was not found in X!")prophet_df=XifyisnotNone:y.index=prophet_df.indexprophet_df["y"]=yprophet_df["ds"]=date_columnreturnprophet_df
[docs]deffit(self,X:pd.DataFrame,y:Optional[pd.Series]=None):"""Fits Prophet regressor component to data. Args: X (pd.DataFrame): The input training data of shape [n_samples, n_features]. y (pd.Series): The target training data of length [n_samples]. Returns: self """X,y=super()._manage_woodwork(X,y)prophet_df=ProphetRegressor.build_prophet_df(X=X,y=y,time_index=self.time_index,)self._component_obj.fit(prophet_df)returnself
[docs]defpredict(self,X:pd.DataFrame,y:Optional[pd.Series]=None)->pd.Series:"""Make predictions using fitted Prophet regressor. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. y (pd.Series): Target data. Ignored. Returns: pd.Series: Predicted values. """X=infer_feature_types(X)prophet_df=ProphetRegressor.build_prophet_df(X=X,y=y,time_index=self.time_index,)prophet_output=self._component_obj.predict(prophet_df)predictions=prophet_output["yhat"]predictions=infer_feature_types(predictions)predictions=predictions.rename(None)predictions.index=X.indexreturnpredictions
[docs]defget_prediction_intervals(self,X:pd.DataFrame,y:Optional[pd.Series]=None,coverage:List[float]=None,predictions:pd.Series=None,)->Dict[str,pd.Series]:"""Find the prediction intervals using the fitted ProphetRegressor. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. y (pd.Series): Target data. Ignored. coverage (List[float]): A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. predictions (pd.Series): Not used for Prophet estimator. Returns: dict: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. """ifcoverageisNone:coverage=[0.95]prophet_df=ProphetRegressor.build_prophet_df(X=X,y=y,time_index=self.time_index,)prediction_interval_result={}forconf_intincoverage:self._component_obj.interval_width=conf_intX=infer_feature_types(X)prophet_output=self._component_obj.predict(prophet_df)prophet_output.index=X.indexprediction_interval_lower=prophet_output["yhat_lower"]prediction_interval_upper=prophet_output["yhat_upper"]prediction_interval_result[f"{conf_int}_lower"]=prediction_interval_lowerprediction_interval_result[f"{conf_int}_upper"]=prediction_interval_upperreturnprediction_interval_result
[docs]defget_params(self)->dict:"""Get parameters for the Prophet regressor."""returnself.__dict__["_parameters"]
@propertydeffeature_importance(self)->np.ndarray:"""Returns array of 0's with len(1) as feature_importance is not defined for Prophet regressor."""returnnp.zeros(1)@classpropertydefdefault_parameters(cls)->dict:"""Returns the default parameters for this component. Returns: dict: Default parameters for this component. """parameters={"changepoint_prior_scale":0.05,"time_index":None,"seasonality_prior_scale":10,"holidays_prior_scale":10,"interval_width":0.95,"seasonality_mode":"additive","stan_backend":"CMDSTANPY",}returnparameters