estimators ================================================ .. py:module:: evalml.pipelines.components.estimators .. autoapi-nested-parse:: EvalML estimator components. Subpackages ----------- .. toctree:: :titlesonly: :maxdepth: 3 classifiers/index.rst regressors/index.rst Submodules ---------- .. toctree:: :titlesonly: :maxdepth: 1 estimator/index.rst Package Contents ---------------- Classes Summary ~~~~~~~~~~~~~~~ .. autoapisummary:: evalml.pipelines.components.estimators.ARIMARegressor evalml.pipelines.components.estimators.BaselineClassifier evalml.pipelines.components.estimators.BaselineRegressor evalml.pipelines.components.estimators.CatBoostClassifier evalml.pipelines.components.estimators.CatBoostRegressor evalml.pipelines.components.estimators.DecisionTreeClassifier evalml.pipelines.components.estimators.DecisionTreeRegressor evalml.pipelines.components.estimators.ElasticNetClassifier evalml.pipelines.components.estimators.ElasticNetRegressor evalml.pipelines.components.estimators.Estimator evalml.pipelines.components.estimators.ExponentialSmoothingRegressor evalml.pipelines.components.estimators.ExtraTreesClassifier evalml.pipelines.components.estimators.ExtraTreesRegressor evalml.pipelines.components.estimators.KNeighborsClassifier evalml.pipelines.components.estimators.LightGBMClassifier evalml.pipelines.components.estimators.LightGBMRegressor evalml.pipelines.components.estimators.LinearRegressor evalml.pipelines.components.estimators.LogisticRegressionClassifier evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor evalml.pipelines.components.estimators.ProphetRegressor evalml.pipelines.components.estimators.RandomForestClassifier evalml.pipelines.components.estimators.RandomForestRegressor evalml.pipelines.components.estimators.SVMClassifier evalml.pipelines.components.estimators.SVMRegressor evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator evalml.pipelines.components.estimators.VARMAXRegressor evalml.pipelines.components.estimators.XGBoostClassifier evalml.pipelines.components.estimators.XGBoostRegressor Contents ~~~~~~~~~~~~~~~~~~~ .. py:class:: ARIMARegressor(time_index: Optional[Hashable] = None, trend: Optional[str] = None, start_p: int = 2, d: int = 0, start_q: int = 2, max_p: int = 5, max_d: int = 2, max_q: int = 5, seasonal: bool = True, sp: int = 1, n_jobs: int = -1, random_seed: Union[int, float] = 0, maxiter: int = 10, use_covariates: bool = True, **kwargs) Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the degree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html. Currently ARIMARegressor isn't supported via conda install. It's recommended that it be installed via PyPI. :param time_index: Specifies the name of the column in X that provides the datetime objects. Defaults to None. :type time_index: str :param trend: Controls the deterministic trend. Options are ['n', 'c', 't', 'ct'] where 'c' is a constant term, 't' indicates a linear trend, and 'ct' is both. Can also be an iterable when defining a polynomial, such as [1, 1, 0, 1]. :type trend: str :param start_p: Minimum Autoregressive order. Defaults to 2. :type start_p: int :param d: Minimum Differencing degree. Defaults to 0. :type d: int :param start_q: Minimum Moving Average order. Defaults to 2. :type start_q: int :param max_p: Maximum Autoregressive order. Defaults to 5. :type max_p: int :param max_d: Maximum Differencing degree. Defaults to 2. :type max_d: int :param max_q: Maximum Moving Average order. Defaults to 5. :type max_q: int :param seasonal: Whether to fit a seasonal model to ARIMA. Defaults to True. :type seasonal: boolean :param sp: Period for seasonal differencing, specifically the number of periods in each season. If "detect", this model will automatically detect this parameter (given the time series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected. Defaults to 1. :type sp: int or str :param n_jobs: Non-negative integer describing level of parallelism used for pipelines. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "start_p": Integer(1, 3), "d": Integer(0, 2), "start_q": Integer(1, 3), "max_p": Integer(3, 10), "max_d": Integer(2, 5), "max_q": Integer(3, 10), "seasonal": [True, False],} * - **max_cols** - 7 * - **max_rows** - 1000 * - **model_family** - ModelFamily.ARIMA * - **modifies_features** - True * - **modifies_target** - False * - **name** - ARIMA Regressor * - **supported_problem_types** - [ProblemTypes.TIME_SERIES_REGRESSION] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.ARIMARegressor.clone evalml.pipelines.components.estimators.ARIMARegressor.default_parameters evalml.pipelines.components.estimators.ARIMARegressor.describe evalml.pipelines.components.estimators.ARIMARegressor.feature_importance evalml.pipelines.components.estimators.ARIMARegressor.fit evalml.pipelines.components.estimators.ARIMARegressor.get_prediction_intervals evalml.pipelines.components.estimators.ARIMARegressor.load evalml.pipelines.components.estimators.ARIMARegressor.needs_fitting evalml.pipelines.components.estimators.ARIMARegressor.parameters evalml.pipelines.components.estimators.ARIMARegressor.predict evalml.pipelines.components.estimators.ARIMARegressor.predict_proba evalml.pipelines.components.estimators.ARIMARegressor.save evalml.pipelines.components.estimators.ARIMARegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> numpy.ndarray :property: Returns array of 0's with a length of 1 as feature_importance is not defined for ARIMA regressor. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits ARIMA regressor to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self :raises ValueError: If y was not passed in. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.Series = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted ARIMARegressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Optional. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Not used for ARIMA regressor. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) -> pandas.Series Make predictions using fitted ARIMA regressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. :type y: pd.Series :returns: Predicted values. :rtype: pd.Series :raises ValueError: If X was passed to `fit` but not passed in `predict`. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: BaselineClassifier(strategy='mode', random_seed=0, **kwargs) Classifier that predicts using the specified strategy. This is useful as a simple baseline classifier to compare with other classifiers. :param strategy: Method used to predict. Valid options are "mode", "random" and "random_weighted". Defaults to "mode". :type strategy: str :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **model_family** - ModelFamily.BASELINE * - **modifies_features** - True * - **modifies_target** - False * - **name** - Baseline Classifier * - **supported_problem_types** - [ProblemTypes.BINARY, ProblemTypes.MULTICLASS] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.BaselineClassifier.classes_ evalml.pipelines.components.estimators.BaselineClassifier.clone evalml.pipelines.components.estimators.BaselineClassifier.default_parameters evalml.pipelines.components.estimators.BaselineClassifier.describe evalml.pipelines.components.estimators.BaselineClassifier.feature_importance evalml.pipelines.components.estimators.BaselineClassifier.fit evalml.pipelines.components.estimators.BaselineClassifier.get_prediction_intervals evalml.pipelines.components.estimators.BaselineClassifier.load evalml.pipelines.components.estimators.BaselineClassifier.needs_fitting evalml.pipelines.components.estimators.BaselineClassifier.parameters evalml.pipelines.components.estimators.BaselineClassifier.predict evalml.pipelines.components.estimators.BaselineClassifier.predict_proba evalml.pipelines.components.estimators.BaselineClassifier.save evalml.pipelines.components.estimators.BaselineClassifier.update_parameters .. py:method:: classes_(self) :property: Returns class labels. Will return None before fitting. :returns: Class names :rtype: list[str] or list(float) .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Returns importance associated with each feature. Since baseline classifiers do not use input features to calculate predictions, returns an array of zeroes. :returns: An array of zeroes :rtype: pd.Series .. py:method:: fit(self, X, y=None) Fits baseline classifier component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self :raises ValueError: If y is None. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using the baseline classification strategy. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X) Make prediction probabilities using the baseline classification strategy. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted probability values. :rtype: pd.DataFrame .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: BaselineRegressor(strategy='mean', random_seed=0, **kwargs) Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to compare with other regressors. :param strategy: Method used to predict. Valid options are "mean", "median". Defaults to "mean". :type strategy: str :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **model_family** - ModelFamily.BASELINE * - **modifies_features** - True * - **modifies_target** - False * - **name** - Baseline Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.BaselineRegressor.clone evalml.pipelines.components.estimators.BaselineRegressor.default_parameters evalml.pipelines.components.estimators.BaselineRegressor.describe evalml.pipelines.components.estimators.BaselineRegressor.feature_importance evalml.pipelines.components.estimators.BaselineRegressor.fit evalml.pipelines.components.estimators.BaselineRegressor.get_prediction_intervals evalml.pipelines.components.estimators.BaselineRegressor.load evalml.pipelines.components.estimators.BaselineRegressor.needs_fitting evalml.pipelines.components.estimators.BaselineRegressor.parameters evalml.pipelines.components.estimators.BaselineRegressor.predict evalml.pipelines.components.estimators.BaselineRegressor.predict_proba evalml.pipelines.components.estimators.BaselineRegressor.save evalml.pipelines.components.estimators.BaselineRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Returns importance associated with each feature. Since baseline regressors do not use input features to calculate predictions, returns an array of zeroes. :returns: An array of zeroes. :rtype: np.ndarray (float) .. py:method:: fit(self, X, y=None) Fits baseline regression component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self :raises ValueError: If input y is None. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using the baseline regression strategy. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: CatBoostClassifier(n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=True, allow_writing_files=False, random_seed=0, n_jobs=-1, **kwargs) CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features. For more information, check out https://catboost.ai/ :param n_estimators: The maximum number of trees to build. Defaults to 10. :type n_estimators: float :param eta: The learning rate. Defaults to 0.03. :type eta: float :param max_depth: The maximum tree depth for base learners. Defaults to 6. :type max_depth: int :param bootstrap_type: Defines the method for sampling the weights of objects. Available methods are 'Bayesian', 'Bernoulli', 'MVS'. Defaults to None. :type bootstrap_type: string :param silent: Whether to use the "silent" logging mode. Defaults to True. :type silent: boolean :param allow_writing_files: Whether to allow writing snapshot files while training. Defaults to False. :type allow_writing_files: boolean :param n_jobs: Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "n_estimators": Integer(4, 100), "eta": Real(0.000001, 1), "max_depth": Integer(4, 10),} * - **model_family** - ModelFamily.CATBOOST * - **modifies_features** - True * - **modifies_target** - False * - **name** - CatBoost Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.CatBoostClassifier.clone evalml.pipelines.components.estimators.CatBoostClassifier.default_parameters evalml.pipelines.components.estimators.CatBoostClassifier.describe evalml.pipelines.components.estimators.CatBoostClassifier.feature_importance evalml.pipelines.components.estimators.CatBoostClassifier.fit evalml.pipelines.components.estimators.CatBoostClassifier.get_prediction_intervals evalml.pipelines.components.estimators.CatBoostClassifier.load evalml.pipelines.components.estimators.CatBoostClassifier.needs_fitting evalml.pipelines.components.estimators.CatBoostClassifier.parameters evalml.pipelines.components.estimators.CatBoostClassifier.predict evalml.pipelines.components.estimators.CatBoostClassifier.predict_proba evalml.pipelines.components.estimators.CatBoostClassifier.save evalml.pipelines.components.estimators.CatBoostClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance of fitted CatBoost classifier. .. py:method:: fit(self, X, y=None) Fits CatBoost classifier component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using the fitted CatBoost classifier. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X) Make prediction probabilities using the fitted CatBoost classifier. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted probability values. :rtype: pd.DataFrame .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: CatBoostRegressor(n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=False, allow_writing_files=False, random_seed=0, n_jobs=-1, **kwargs) CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features. For more information, check out https://catboost.ai/ :param n_estimators: The maximum number of trees to build. Defaults to 10. :type n_estimators: float :param eta: The learning rate. Defaults to 0.03. :type eta: float :param max_depth: The maximum tree depth for base learners. Defaults to 6. :type max_depth: int :param bootstrap_type: Defines the method for sampling the weights of objects. Available methods are 'Bayesian', 'Bernoulli', 'MVS'. Defaults to None. :type bootstrap_type: string :param silent: Whether to use the "silent" logging mode. Defaults to True. :type silent: boolean :param allow_writing_files: Whether to allow writing snapshot files while training. Defaults to False. :type allow_writing_files: boolean :param n_jobs: Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "n_estimators": Integer(4, 100), "eta": Real(0.000001, 1), "max_depth": Integer(4, 10),} * - **model_family** - ModelFamily.CATBOOST * - **modifies_features** - True * - **modifies_target** - False * - **name** - CatBoost Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.CatBoostRegressor.clone evalml.pipelines.components.estimators.CatBoostRegressor.default_parameters evalml.pipelines.components.estimators.CatBoostRegressor.describe evalml.pipelines.components.estimators.CatBoostRegressor.feature_importance evalml.pipelines.components.estimators.CatBoostRegressor.fit evalml.pipelines.components.estimators.CatBoostRegressor.get_prediction_intervals evalml.pipelines.components.estimators.CatBoostRegressor.load evalml.pipelines.components.estimators.CatBoostRegressor.needs_fitting evalml.pipelines.components.estimators.CatBoostRegressor.parameters evalml.pipelines.components.estimators.CatBoostRegressor.predict evalml.pipelines.components.estimators.CatBoostRegressor.predict_proba evalml.pipelines.components.estimators.CatBoostRegressor.save evalml.pipelines.components.estimators.CatBoostRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance of fitted CatBoost regressor. .. py:method:: fit(self, X, y=None) Fits CatBoost regressor component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using the fitted CatBoost regressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.DataFrame .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: DecisionTreeClassifier(criterion='gini', max_features='sqrt', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, random_seed=0, **kwargs) Decision Tree Classifier. :param criterion: The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Defaults to "gini". :type criterion: {"gini", "entropy"} :param max_features: The number of features to consider when looking for the best split: - If int, then consider max_features features at each split. - If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split. - If "sqrt", then max_features=sqrt(n_features). - If "log2", then max_features=log2(n_features). - If None, then max_features = n_features. The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. :type max_features: int, float or {"sqrt", "log2"} :param max_depth: The maximum depth of the tree. Defaults to 6. :type max_depth: int :param min_samples_split: The minimum number of samples required to split an internal node: - If int, then consider min_samples_split as the minimum number. - If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split. Defaults to 2. :type min_samples_split: int or float :param min_weight_fraction_leaf: The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0. :type min_weight_fraction_leaf: float :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "criterion": ["gini", "entropy"], "max_features": ["sqrt", "log2"], "max_depth": Integer(4, 10),} * - **model_family** - ModelFamily.DECISION_TREE * - **modifies_features** - True * - **modifies_target** - False * - **name** - Decision Tree Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.DecisionTreeClassifier.clone evalml.pipelines.components.estimators.DecisionTreeClassifier.default_parameters evalml.pipelines.components.estimators.DecisionTreeClassifier.describe evalml.pipelines.components.estimators.DecisionTreeClassifier.feature_importance evalml.pipelines.components.estimators.DecisionTreeClassifier.fit evalml.pipelines.components.estimators.DecisionTreeClassifier.get_prediction_intervals evalml.pipelines.components.estimators.DecisionTreeClassifier.load evalml.pipelines.components.estimators.DecisionTreeClassifier.needs_fitting evalml.pipelines.components.estimators.DecisionTreeClassifier.parameters evalml.pipelines.components.estimators.DecisionTreeClassifier.predict evalml.pipelines.components.estimators.DecisionTreeClassifier.predict_proba evalml.pipelines.components.estimators.DecisionTreeClassifier.save evalml.pipelines.components.estimators.DecisionTreeClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: DecisionTreeRegressor(criterion='squared_error', max_features='sqrt', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, random_seed=0, **kwargs) Decision Tree Regressor. :param criterion: The function to measure the quality of a split. Supported criteria are: - "squared_error" for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node - "friedman_mse", which uses mean squared error with Friedman"s improvement score for potential splits - "absolute_error" for the mean absolute error, which minimizes the L1 loss using the median of each terminal node, - "poisson" which uses reduction in Poisson deviance to find splits. :type criterion: {"squared_error", "friedman_mse", "absolute_error", "poisson"} :param max_features: The number of features to consider when looking for the best split: - If int, then consider max_features features at each split. - If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split. - If "sqrt", then max_features=sqrt(n_features). - If "log2", then max_features=log2(n_features). - If None, then max_features = n_features. The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. :type max_features: int, float or {"sqrt", "log2"} :param max_depth: The maximum depth of the tree. Defaults to 6. :type max_depth: int :param min_samples_split: The minimum number of samples required to split an internal node: - If int, then consider min_samples_split as the minimum number. - If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split. Defaults to 2. :type min_samples_split: int or float :param min_weight_fraction_leaf: The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0. :type min_weight_fraction_leaf: float :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "criterion": ["squared_error", "friedman_mse", "absolute_error"], "max_features": ["sqrt", "log2"], "max_depth": Integer(4, 10),} * - **model_family** - ModelFamily.DECISION_TREE * - **modifies_features** - True * - **modifies_target** - False * - **name** - Decision Tree Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.DecisionTreeRegressor.clone evalml.pipelines.components.estimators.DecisionTreeRegressor.default_parameters evalml.pipelines.components.estimators.DecisionTreeRegressor.describe evalml.pipelines.components.estimators.DecisionTreeRegressor.feature_importance evalml.pipelines.components.estimators.DecisionTreeRegressor.fit evalml.pipelines.components.estimators.DecisionTreeRegressor.get_prediction_intervals evalml.pipelines.components.estimators.DecisionTreeRegressor.load evalml.pipelines.components.estimators.DecisionTreeRegressor.needs_fitting evalml.pipelines.components.estimators.DecisionTreeRegressor.parameters evalml.pipelines.components.estimators.DecisionTreeRegressor.predict evalml.pipelines.components.estimators.DecisionTreeRegressor.predict_proba evalml.pipelines.components.estimators.DecisionTreeRegressor.save evalml.pipelines.components.estimators.DecisionTreeRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15, multi_class='auto', solver='saga', n_jobs=-1, random_seed=0, **kwargs) Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator. :param penalty: The norm used in penalization. Defaults to "elasticnet". :type penalty: {"l1", "l2", "elasticnet", "none"} :param C: Inverse of regularization strength. Must be a positive float. Defaults to 1.0. :type C: float :param l1_ratio: The mixing parameter, with 0 <= l1_ratio <= 1. Only used if penalty='elasticnet'. Setting l1_ratio=0 is equivalent to using penalty='l2', while setting l1_ratio=1 is equivalent to using penalty='l1'. For 0 < l1_ratio <1, the penalty is a combination of L1 and L2. Defaults to 0.15. :type l1_ratio: float :param multi_class: If the option chosen is "ovr", then a binary problem is fit for each label. For "multinomial" the loss minimised is the multinomial loss fit across the entire probability distribution, even when the data is binary. "multinomial" is unavailable when solver="liblinear". "auto" selects "ovr" if the data is binary, or if solver="liblinear", and otherwise selects "multinomial". Defaults to "auto". :type multi_class: {"auto", "ovr", "multinomial"} :param solver: Algorithm to use in the optimization problem. For small datasets, "liblinear" is a good choice, whereas "sag" and "saga" are faster for large ones. For multiclass problems, only "newton-cg", "sag", "saga" and "lbfgs" handle multinomial loss; "liblinear" is limited to one-versus-rest schemes. - "newton-cg", "lbfgs", "sag" and "saga" handle L2 or no penalty - "liblinear" and "saga" also handle L1 penalty - "saga" also supports "elasticnet" penalty - "liblinear" does not support setting penalty='none' Defaults to "saga". :type solver: {"newton-cg", "lbfgs", "liblinear", "sag", "saga"} :param n_jobs: Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to -1. :type n_jobs: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "C": Real(0.01, 10), "l1_ratio": Real(0, 1)} * - **model_family** - ModelFamily.LINEAR_MODEL * - **modifies_features** - True * - **modifies_target** - False * - **name** - Elastic Net Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.ElasticNetClassifier.clone evalml.pipelines.components.estimators.ElasticNetClassifier.default_parameters evalml.pipelines.components.estimators.ElasticNetClassifier.describe evalml.pipelines.components.estimators.ElasticNetClassifier.feature_importance evalml.pipelines.components.estimators.ElasticNetClassifier.fit evalml.pipelines.components.estimators.ElasticNetClassifier.get_prediction_intervals evalml.pipelines.components.estimators.ElasticNetClassifier.load evalml.pipelines.components.estimators.ElasticNetClassifier.needs_fitting evalml.pipelines.components.estimators.ElasticNetClassifier.parameters evalml.pipelines.components.estimators.ElasticNetClassifier.predict evalml.pipelines.components.estimators.ElasticNetClassifier.predict_proba evalml.pipelines.components.estimators.ElasticNetClassifier.save evalml.pipelines.components.estimators.ElasticNetClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance for fitted ElasticNet classifier. .. py:method:: fit(self, X, y) Fits ElasticNet classifier component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15, max_iter=1000, random_seed=0, **kwargs) Elastic Net Regressor. :param alpha: Constant that multiplies the penalty terms. Defaults to 0.0001. :type alpha: float :param l1_ratio: The mixing parameter, with 0 <= l1_ratio <= 1. Only used if penalty='elasticnet'. Setting l1_ratio=0 is equivalent to using penalty='l2', while setting l1_ratio=1 is equivalent to using penalty='l1'. For 0 < l1_ratio <1, the penalty is a combination of L1 and L2. Defaults to 0.15. :type l1_ratio: float :param max_iter: The maximum number of iterations. Defaults to 1000. :type max_iter: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "alpha": Real(0, 1), "l1_ratio": Real(0, 1),} * - **model_family** - ModelFamily.LINEAR_MODEL * - **modifies_features** - True * - **modifies_target** - False * - **name** - Elastic Net Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.ElasticNetRegressor.clone evalml.pipelines.components.estimators.ElasticNetRegressor.default_parameters evalml.pipelines.components.estimators.ElasticNetRegressor.describe evalml.pipelines.components.estimators.ElasticNetRegressor.feature_importance evalml.pipelines.components.estimators.ElasticNetRegressor.fit evalml.pipelines.components.estimators.ElasticNetRegressor.get_prediction_intervals evalml.pipelines.components.estimators.ElasticNetRegressor.load evalml.pipelines.components.estimators.ElasticNetRegressor.needs_fitting evalml.pipelines.components.estimators.ElasticNetRegressor.parameters evalml.pipelines.components.estimators.ElasticNetRegressor.predict evalml.pipelines.components.estimators.ElasticNetRegressor.predict_proba evalml.pipelines.components.estimators.ElasticNetRegressor.save evalml.pipelines.components.estimators.ElasticNetRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance for fitted ElasticNet regressor. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: Estimator(parameters: dict = None, component_obj: Type[evalml.pipelines.components.ComponentBase] = None, random_seed: Union[int, float] = 0, **kwargs) A component that fits and predicts given data. To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define an `__init__` method which sets up any necessary state and objects. Make sure your `__init__` only uses standard keyword arguments and calls `super().__init__()` with a parameters dict. You may also override the `fit`, `transform`, `fit_transform` and other methods in this class if appropriate. To see some examples, check out the definitions of any Estimator component subclass. :param parameters: Dictionary of parameters for the component. Defaults to None. :type parameters: dict :param component_obj: Third-party objects useful in component implementation. Defaults to None. :type component_obj: obj :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **model_family** - ModelFamily.NONE * - **modifies_features** - True * - **modifies_target** - False * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.Estimator.clone evalml.pipelines.components.estimators.Estimator.default_parameters evalml.pipelines.components.estimators.Estimator.describe evalml.pipelines.components.estimators.Estimator.feature_importance evalml.pipelines.components.estimators.Estimator.fit evalml.pipelines.components.estimators.Estimator.get_prediction_intervals evalml.pipelines.components.estimators.Estimator.load evalml.pipelines.components.estimators.Estimator.model_family evalml.pipelines.components.estimators.Estimator.name evalml.pipelines.components.estimators.Estimator.needs_fitting evalml.pipelines.components.estimators.Estimator.parameters evalml.pipelines.components.estimators.Estimator.predict evalml.pipelines.components.estimators.Estimator.predict_proba evalml.pipelines.components.estimators.Estimator.save evalml.pipelines.components.estimators.Estimator.supported_problem_types evalml.pipelines.components.estimators.Estimator.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: model_family(cls) :property: Returns ModelFamily of this component. .. py:method:: name(cls) :property: Returns string name of this component. .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: supported_problem_types(cls) :property: Problem types this estimator supports. .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: ExponentialSmoothingRegressor(trend: Optional[str] = None, damped_trend: bool = False, seasonal: Optional[str] = None, sp: int = 2, n_jobs: int = -1, random_seed: Union[int, float] = 0, **kwargs) Holt-Winters Exponential Smoothing Forecaster. Currently ExponentialSmoothingRegressor isn't supported via conda install. It's recommended that it be installed via PyPI. :param trend: Type of trend component. Defaults to None. :type trend: str :param damped_trend: If the trend component should be damped. Defaults to False. :type damped_trend: bool :param seasonal: Type of seasonal component. Takes one of {“additive”, None}. Can also be multiplicative if :type seasonal: str :param none of the target data is 0: :param but AutoMLSearch wiill not tune for this. Defaults to None.: :param sp: The number of seasonal periods to consider. Defaults to 2. :type sp: int :param n_jobs: Non-negative integer describing level of parallelism used for pipelines. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "trend": [None, "additive"], "damped_trend": [True, False], "seasonal": [None, "additive"], "sp": Integer(2, 8),} * - **model_family** - ModelFamily.EXPONENTIAL_SMOOTHING * - **modifies_features** - True * - **modifies_target** - False * - **name** - Exponential Smoothing Regressor * - **supported_problem_types** - [ProblemTypes.TIME_SERIES_REGRESSION] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.clone evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.default_parameters evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.describe evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.feature_importance evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.fit evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.get_prediction_intervals evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.load evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.needs_fitting evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.parameters evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.predict evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.predict_proba evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.save evalml.pipelines.components.estimators.ExponentialSmoothingRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns array of 0's with a length of 1 as feature_importance is not defined for Exponential Smoothing regressor. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits Exponential Smoothing Regressor to data. :param X: The input training data of shape [n_samples, n_features]. Ignored. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self :raises ValueError: If y was not passed in. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted ExponentialSmoothingRegressor. Calculates the prediction intervals by using a simulation of the time series following a specified state space model. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Optional. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: List[float] :param predictions: Not used for Exponential Smoothing regressor. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) -> pandas.Series Make predictions using fitted Exponential Smoothing regressor. :param X: Data of shape [n_samples, n_features]. Ignored except to set forecast horizon. :type X: pd.DataFrame :param y: Target data. :type y: pd.Series :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: ExtraTreesClassifier(n_estimators=100, max_features='sqrt', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=-1, random_seed=0, **kwargs) Extra Trees Classifier. :param n_estimators: The number of trees in the forest. Defaults to 100. :type n_estimators: float :param max_features: The number of features to consider when looking for the best split: - If int, then consider max_features features at each split. - If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split. - If "sqrt", then max_features=sqrt(n_features). - If "log2", then max_features=log2(n_features). - If None, then max_features = n_features. The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. :type max_features: int, float or {"sqrt", "log2"} :param max_depth: The maximum depth of the tree. Defaults to 6. :type max_depth: int :param min_samples_split: The minimum number of samples required to split an internal node: - If int, then consider min_samples_split as the minimum number. - If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split. :type min_samples_split: int or float :param Defaults to 2.: :param min_weight_fraction_leaf: The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0. :type min_weight_fraction_leaf: float :param n_jobs: Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "n_estimators": Integer(10, 1000), "max_features": ["sqrt", "log2"], "max_depth": Integer(4, 10),} * - **model_family** - ModelFamily.EXTRA_TREES * - **modifies_features** - True * - **modifies_target** - False * - **name** - Extra Trees Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.ExtraTreesClassifier.clone evalml.pipelines.components.estimators.ExtraTreesClassifier.default_parameters evalml.pipelines.components.estimators.ExtraTreesClassifier.describe evalml.pipelines.components.estimators.ExtraTreesClassifier.feature_importance evalml.pipelines.components.estimators.ExtraTreesClassifier.fit evalml.pipelines.components.estimators.ExtraTreesClassifier.get_prediction_intervals evalml.pipelines.components.estimators.ExtraTreesClassifier.load evalml.pipelines.components.estimators.ExtraTreesClassifier.needs_fitting evalml.pipelines.components.estimators.ExtraTreesClassifier.parameters evalml.pipelines.components.estimators.ExtraTreesClassifier.predict evalml.pipelines.components.estimators.ExtraTreesClassifier.predict_proba evalml.pipelines.components.estimators.ExtraTreesClassifier.save evalml.pipelines.components.estimators.ExtraTreesClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: ExtraTreesRegressor(n_estimators: int = 100, max_features: str = 'sqrt', max_depth: int = 6, min_samples_split: int = 2, min_weight_fraction_leaf: float = 0.0, n_jobs: int = -1, random_seed: Union[int, float] = 0, **kwargs) Extra Trees Regressor. :param n_estimators: The number of trees in the forest. Defaults to 100. :type n_estimators: float :param max_features: The number of features to consider when looking for the best split: - If int, then consider max_features features at each split. - If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split. - If "sqrt", then max_features=sqrt(n_features). - If "log2", then max_features=log2(n_features). - If None, then max_features = n_features. The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. :type max_features: int, float or {"sqrt", "log2"} :param max_depth: The maximum depth of the tree. Defaults to 6. :type max_depth: int :param min_samples_split: The minimum number of samples required to split an internal node: - If int, then consider min_samples_split as the minimum number. - If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split. :type min_samples_split: int or float :param Defaults to 2.: :param min_weight_fraction_leaf: The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0. :type min_weight_fraction_leaf: float :param n_jobs: Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "n_estimators": Integer(10, 1000), "max_features": ["sqrt", "log2"], "max_depth": Integer(4, 10),} * - **model_family** - ModelFamily.EXTRA_TREES * - **modifies_features** - True * - **modifies_target** - False * - **name** - Extra Trees Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.ExtraTreesRegressor.clone evalml.pipelines.components.estimators.ExtraTreesRegressor.default_parameters evalml.pipelines.components.estimators.ExtraTreesRegressor.describe evalml.pipelines.components.estimators.ExtraTreesRegressor.feature_importance evalml.pipelines.components.estimators.ExtraTreesRegressor.fit evalml.pipelines.components.estimators.ExtraTreesRegressor.get_prediction_intervals evalml.pipelines.components.estimators.ExtraTreesRegressor.load evalml.pipelines.components.estimators.ExtraTreesRegressor.needs_fitting evalml.pipelines.components.estimators.ExtraTreesRegressor.parameters evalml.pipelines.components.estimators.ExtraTreesRegressor.predict evalml.pipelines.components.estimators.ExtraTreesRegressor.predict_proba evalml.pipelines.components.estimators.ExtraTreesRegressor.save evalml.pipelines.components.estimators.ExtraTreesRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted ExtraTreesRegressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Optional. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, random_seed=0, **kwargs) K-Nearest Neighbors Classifier. :param n_neighbors: Number of neighbors to use by default. Defaults to 5. :type n_neighbors: int :param weights: Weight function used in prediction. Can be: - ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally. - ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Defaults to "uniform". :type weights: {‘uniform’, ‘distance’} or callable :param algorithm: Algorithm used to compute the nearest neighbors: - ‘ball_tree’ will use BallTree - ‘kd_tree’ will use KDTree - ‘brute’ will use a brute-force search. ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to fit method. Defaults to "auto". Note: fitting on sparse input will override the setting of this parameter, using brute force. :type algorithm: {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’} :param leaf_size: Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. Defaults to 30. :type leaf_size: int :param p: Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. Defaults to 2. :type p: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "n_neighbors": Integer(2, 12), "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"], "leaf_size": Integer(10, 30), "p": Integer(1, 5),} * - **model_family** - ModelFamily.K_NEIGHBORS * - **modifies_features** - True * - **modifies_target** - False * - **name** - KNN Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.KNeighborsClassifier.clone evalml.pipelines.components.estimators.KNeighborsClassifier.default_parameters evalml.pipelines.components.estimators.KNeighborsClassifier.describe evalml.pipelines.components.estimators.KNeighborsClassifier.feature_importance evalml.pipelines.components.estimators.KNeighborsClassifier.fit evalml.pipelines.components.estimators.KNeighborsClassifier.get_prediction_intervals evalml.pipelines.components.estimators.KNeighborsClassifier.load evalml.pipelines.components.estimators.KNeighborsClassifier.needs_fitting evalml.pipelines.components.estimators.KNeighborsClassifier.parameters evalml.pipelines.components.estimators.KNeighborsClassifier.predict evalml.pipelines.components.estimators.KNeighborsClassifier.predict_proba evalml.pipelines.components.estimators.KNeighborsClassifier.save evalml.pipelines.components.estimators.KNeighborsClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Returns array of 0's matching the input number of features as feature_importance is not defined for KNN classifiers. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: LightGBMClassifier(boosting_type='gbdt', learning_rate=0.1, n_estimators=100, max_depth=0, num_leaves=31, min_child_samples=20, bagging_fraction=0.9, bagging_freq=0, n_jobs=-1, random_seed=0, **kwargs) LightGBM Classifier. :param boosting_type: Type of boosting to use. Defaults to "gbdt". - 'gbdt' uses traditional Gradient Boosting Decision Tree - "dart", uses Dropouts meet Multiple Additive Regression Trees - "goss", uses Gradient-based One-Side Sampling - "rf", uses Random Forest :type boosting_type: string :param learning_rate: Boosting learning rate. Defaults to 0.1. :type learning_rate: float :param n_estimators: Number of boosted trees to fit. Defaults to 100. :type n_estimators: int :param max_depth: Maximum tree depth for base learners, <=0 means no limit. Defaults to 0. :type max_depth: int :param num_leaves: Maximum tree leaves for base learners. Defaults to 31. :type num_leaves: int :param min_child_samples: Minimum number of data needed in a child (leaf). Defaults to 20. :type min_child_samples: int :param bagging_fraction: LightGBM will randomly select a subset of features on each iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8, LightGBM will select 80% of features before training each tree. This can be used to speed up training and deal with overfitting. Defaults to 0.9. :type bagging_fraction: float :param bagging_freq: Frequency for bagging. 0 means bagging is disabled. k means perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0. :type bagging_freq: int :param n_jobs: Number of threads to run in parallel. -1 uses all threads. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "learning_rate": Real(0.000001, 1), "boosting_type": ["gbdt", "dart", "goss", "rf"], "n_estimators": Integer(10, 100), "max_depth": Integer(0, 10), "num_leaves": Integer(2, 100), "min_child_samples": Integer(1, 100), "bagging_fraction": Real(0.000001, 1), "bagging_freq": Integer(0, 1),} * - **model_family** - ModelFamily.LIGHTGBM * - **modifies_features** - True * - **modifies_target** - False * - **name** - LightGBM Classifier * - **SEED_MAX** - SEED_BOUNDS.max_bound * - **SEED_MIN** - 0 * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.LightGBMClassifier.clone evalml.pipelines.components.estimators.LightGBMClassifier.default_parameters evalml.pipelines.components.estimators.LightGBMClassifier.describe evalml.pipelines.components.estimators.LightGBMClassifier.feature_importance evalml.pipelines.components.estimators.LightGBMClassifier.fit evalml.pipelines.components.estimators.LightGBMClassifier.get_prediction_intervals evalml.pipelines.components.estimators.LightGBMClassifier.load evalml.pipelines.components.estimators.LightGBMClassifier.needs_fitting evalml.pipelines.components.estimators.LightGBMClassifier.parameters evalml.pipelines.components.estimators.LightGBMClassifier.predict evalml.pipelines.components.estimators.LightGBMClassifier.predict_proba evalml.pipelines.components.estimators.LightGBMClassifier.save evalml.pipelines.components.estimators.LightGBMClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X, y=None) Fits LightGBM classifier component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using the fitted LightGBM classifier. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.DataFrame .. py:method:: predict_proba(self, X) Make prediction probabilities using the fitted LightGBM classifier. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted probability values. :rtype: pd.DataFrame .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: LightGBMRegressor(boosting_type='gbdt', learning_rate=0.1, n_estimators=20, max_depth=0, num_leaves=31, min_child_samples=20, bagging_fraction=0.9, bagging_freq=0, n_jobs=-1, random_seed=0, **kwargs) LightGBM Regressor. :param boosting_type: Type of boosting to use. Defaults to "gbdt". - 'gbdt' uses traditional Gradient Boosting Decision Tree - "dart", uses Dropouts meet Multiple Additive Regression Trees - "goss", uses Gradient-based One-Side Sampling - "rf", uses Random Forest :type boosting_type: string :param learning_rate: Boosting learning rate. Defaults to 0.1. :type learning_rate: float :param n_estimators: Number of boosted trees to fit. Defaults to 100. :type n_estimators: int :param max_depth: Maximum tree depth for base learners, <=0 means no limit. Defaults to 0. :type max_depth: int :param num_leaves: Maximum tree leaves for base learners. Defaults to 31. :type num_leaves: int :param min_child_samples: Minimum number of data needed in a child (leaf). Defaults to 20. :type min_child_samples: int :param bagging_fraction: LightGBM will randomly select a subset of features on each iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8, LightGBM will select 80% of features before training each tree. This can be used to speed up training and deal with overfitting. Defaults to 0.9. :type bagging_fraction: float :param bagging_freq: Frequency for bagging. 0 means bagging is disabled. k means perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0. :type bagging_freq: int :param n_jobs: Number of threads to run in parallel. -1 uses all threads. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "learning_rate": Real(0.000001, 1), "boosting_type": ["gbdt", "dart", "goss", "rf"], "n_estimators": Integer(10, 100), "max_depth": Integer(0, 10), "num_leaves": Integer(2, 100), "min_child_samples": Integer(1, 100), "bagging_fraction": Real(0.000001, 1), "bagging_freq": Integer(0, 1),} * - **model_family** - ModelFamily.LIGHTGBM * - **modifies_features** - True * - **modifies_target** - False * - **name** - LightGBM Regressor * - **SEED_MAX** - SEED_BOUNDS.max_bound * - **SEED_MIN** - 0 * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.LightGBMRegressor.clone evalml.pipelines.components.estimators.LightGBMRegressor.default_parameters evalml.pipelines.components.estimators.LightGBMRegressor.describe evalml.pipelines.components.estimators.LightGBMRegressor.feature_importance evalml.pipelines.components.estimators.LightGBMRegressor.fit evalml.pipelines.components.estimators.LightGBMRegressor.get_prediction_intervals evalml.pipelines.components.estimators.LightGBMRegressor.load evalml.pipelines.components.estimators.LightGBMRegressor.needs_fitting evalml.pipelines.components.estimators.LightGBMRegressor.parameters evalml.pipelines.components.estimators.LightGBMRegressor.predict evalml.pipelines.components.estimators.LightGBMRegressor.predict_proba evalml.pipelines.components.estimators.LightGBMRegressor.save evalml.pipelines.components.estimators.LightGBMRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X, y=None) Fits LightGBM regressor to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using fitted LightGBM regressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: LinearRegressor(fit_intercept=True, n_jobs=-1, random_seed=0, **kwargs) Linear Regressor. :param fit_intercept: Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults to True. :type fit_intercept: boolean :param n_jobs: Number of jobs to run in parallel. -1 uses all threads. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "fit_intercept": [True, False],} * - **model_family** - ModelFamily.LINEAR_MODEL * - **modifies_features** - True * - **modifies_target** - False * - **name** - Linear Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.LinearRegressor.clone evalml.pipelines.components.estimators.LinearRegressor.default_parameters evalml.pipelines.components.estimators.LinearRegressor.describe evalml.pipelines.components.estimators.LinearRegressor.feature_importance evalml.pipelines.components.estimators.LinearRegressor.fit evalml.pipelines.components.estimators.LinearRegressor.get_prediction_intervals evalml.pipelines.components.estimators.LinearRegressor.load evalml.pipelines.components.estimators.LinearRegressor.needs_fitting evalml.pipelines.components.estimators.LinearRegressor.parameters evalml.pipelines.components.estimators.LinearRegressor.predict evalml.pipelines.components.estimators.LinearRegressor.predict_proba evalml.pipelines.components.estimators.LinearRegressor.save evalml.pipelines.components.estimators.LinearRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance for fitted linear regressor. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: LogisticRegressionClassifier(penalty='l2', C=1.0, multi_class='auto', solver='lbfgs', n_jobs=-1, random_seed=0, **kwargs) Logistic Regression Classifier. :param penalty: The norm used in penalization. Defaults to "l2". :type penalty: {"l1", "l2", "elasticnet", "none"} :param C: Inverse of regularization strength. Must be a positive float. Defaults to 1.0. :type C: float :param multi_class: If the option chosen is "ovr", then a binary problem is fit for each label. For "multinomial" the loss minimised is the multinomial loss fit across the entire probability distribution, even when the data is binary. "multinomial" is unavailable when solver="liblinear". "auto" selects "ovr" if the data is binary, or if solver="liblinear", and otherwise selects "multinomial". Defaults to "auto". :type multi_class: {"auto", "ovr", "multinomial"} :param solver: Algorithm to use in the optimization problem. For small datasets, "liblinear" is a good choice, whereas "sag" and "saga" are faster for large ones. For multiclass problems, only "newton-cg", "sag", "saga" and "lbfgs" handle multinomial loss; "liblinear" is limited to one-versus-rest schemes. - "newton-cg", "lbfgs", "sag" and "saga" handle L2 or no penalty - "liblinear" and "saga" also handle L1 penalty - "saga" also supports "elasticnet" penalty - "liblinear" does not support setting penalty='none' Defaults to "lbfgs". :type solver: {"newton-cg", "lbfgs", "liblinear", "sag", "saga"} :param n_jobs: Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to -1. :type n_jobs: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "penalty": ["l2"], "C": Real(0.01, 10),} * - **model_family** - ModelFamily.LINEAR_MODEL * - **modifies_features** - True * - **modifies_target** - False * - **name** - Logistic Regression Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.LogisticRegressionClassifier.clone evalml.pipelines.components.estimators.LogisticRegressionClassifier.default_parameters evalml.pipelines.components.estimators.LogisticRegressionClassifier.describe evalml.pipelines.components.estimators.LogisticRegressionClassifier.feature_importance evalml.pipelines.components.estimators.LogisticRegressionClassifier.fit evalml.pipelines.components.estimators.LogisticRegressionClassifier.get_prediction_intervals evalml.pipelines.components.estimators.LogisticRegressionClassifier.load evalml.pipelines.components.estimators.LogisticRegressionClassifier.needs_fitting evalml.pipelines.components.estimators.LogisticRegressionClassifier.parameters evalml.pipelines.components.estimators.LogisticRegressionClassifier.predict evalml.pipelines.components.estimators.LogisticRegressionClassifier.predict_proba evalml.pipelines.components.estimators.LogisticRegressionClassifier.save evalml.pipelines.components.estimators.LogisticRegressionClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance for fitted logistic regression classifier. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: MultiseriesTimeSeriesBaselineRegressor(gap=1, forecast_horizon=1, random_seed=0, **kwargs) Multiseries time series regressor that predicts using the naive forecasting approach. This is useful as a simple baseline estimator for multiseries time series problems. :param gap: Gap between prediction date and target date and must be a positive integer. If gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1. :type gap: int :param forecast_horizon: Number of time steps the model is expected to predict. :type forecast_horizon: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **model_family** - ModelFamily.BASELINE * - **modifies_features** - True * - **modifies_target** - False * - **name** - Multiseries Time Series Baseline Regressor * - **supported_problem_types** - [ ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.clone evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.default_parameters evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.describe evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.feature_importance evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.fit evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.get_prediction_intervals evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.load evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.needs_fitting evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.parameters evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.predict evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.predict_proba evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.save evalml.pipelines.components.estimators.MultiseriesTimeSeriesBaselineRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Returns importance associated with each feature. Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes. :returns: An array of zeroes. :rtype: np.ndarray (float) .. py:method:: fit(self, X, y=None) Fits multiseries time series baseline regressor to data. :param X: The input training data of shape [n_samples, n_features * n_series]. :type X: pd.DataFrame :param y: The target training data of shape [n_samples, n_features * n_series]. :type y: pd.DataFrame :returns: self :raises ValueError: If input y is None or if y is not a DataFrame with multiple columns. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using fitted multiseries time series baseline regressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.DataFrame :raises ValueError: If the lagged columns are not present in X. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: ProphetRegressor(time_index: Optional[Hashable] = None, changepoint_prior_scale: float = 0.05, seasonality_prior_scale: int = 10, holidays_prior_scale: int = 10, seasonality_mode: str = 'additive', stan_backend: str = 'CMDSTANPY', interval_width: float = 0.95, random_seed: Union[int, float] = 0, **kwargs) Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. More information here: https://facebook.github.io/prophet/ :param time_index: Specifies the name of the column in X that provides the datetime objects. Defaults to None. :type time_index: str :param changepoint_prior_scale: Determines the strength of the sparse prior for fitting on rate changes. Increasing this value increases the flexibility of the trend. Defaults to 0.05. :type changepoint_prior_scale: float :param seasonality_prior_scale: Similar to changepoint_prior_scale. Adjusts the extent to which the seasonality model will fit the data. Defaults to 10. :type seasonality_prior_scale: int :param holidays_prior_scale: Similar to changepoint_prior_scale. Adjusts the extent to which holidays will fit the data. Defaults to 10. :type holidays_prior_scale: int :param seasonality_mode: Determines how this component fits the seasonality. Options are "additive" and "multiplicative". Defaults to "additive". :type seasonality_mode: str :param stan_backend: Determines the backend that should be used to run Prophet. Options are "CMDSTANPY" and "PYSTAN". Defaults to "CMDSTANPY". :type stan_backend: str :param interval_width: Determines the confidence of the prediction interval range when calling `get_prediction_intervals`. Accepts values in the range (0,1). Defaults to 0.95. :type interval_width: float :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "changepoint_prior_scale": Real(0.001, 0.5), "seasonality_prior_scale": Real(0.01, 10), "holidays_prior_scale": Real(0.01, 10), "seasonality_mode": ["additive", "multiplicative"],} * - **model_family** - ModelFamily.PROPHET * - **modifies_features** - True * - **modifies_target** - False * - **name** - Prophet Regressor * - **supported_problem_types** - [ProblemTypes.TIME_SERIES_REGRESSION] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.ProphetRegressor.build_prophet_df evalml.pipelines.components.estimators.ProphetRegressor.clone evalml.pipelines.components.estimators.ProphetRegressor.default_parameters evalml.pipelines.components.estimators.ProphetRegressor.describe evalml.pipelines.components.estimators.ProphetRegressor.feature_importance evalml.pipelines.components.estimators.ProphetRegressor.fit evalml.pipelines.components.estimators.ProphetRegressor.get_params evalml.pipelines.components.estimators.ProphetRegressor.get_prediction_intervals evalml.pipelines.components.estimators.ProphetRegressor.load evalml.pipelines.components.estimators.ProphetRegressor.needs_fitting evalml.pipelines.components.estimators.ProphetRegressor.parameters evalml.pipelines.components.estimators.ProphetRegressor.predict evalml.pipelines.components.estimators.ProphetRegressor.predict_proba evalml.pipelines.components.estimators.ProphetRegressor.save evalml.pipelines.components.estimators.ProphetRegressor.update_parameters .. py:method:: build_prophet_df(X: pandas.DataFrame, y: Optional[pandas.Series] = None, time_index: str = 'ds') -> pandas.DataFrame :staticmethod: Build the Prophet data to pass fit and predict on. .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) -> dict Returns the default parameters for this component. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> numpy.ndarray :property: Returns array of 0's with len(1) as feature_importance is not defined for Prophet regressor. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits Prophet regressor component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self .. py:method:: get_params(self) -> dict Get parameters for the Prophet regressor. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted ProphetRegressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: List[float] :param predictions: Not used for Prophet estimator. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) -> pandas.Series Make predictions using fitted Prophet regressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: RandomForestClassifier(n_estimators=100, max_depth=6, n_jobs=-1, random_seed=0, **kwargs) Random Forest Classifier. :param n_estimators: The number of trees in the forest. Defaults to 100. :type n_estimators: float :param max_depth: Maximum tree depth for base learners. Defaults to 6. :type max_depth: int :param n_jobs: Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "n_estimators": Integer(10, 1000), "max_depth": Integer(1, 10),} * - **model_family** - ModelFamily.RANDOM_FOREST * - **modifies_features** - True * - **modifies_target** - False * - **name** - Random Forest Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.RandomForestClassifier.clone evalml.pipelines.components.estimators.RandomForestClassifier.default_parameters evalml.pipelines.components.estimators.RandomForestClassifier.describe evalml.pipelines.components.estimators.RandomForestClassifier.feature_importance evalml.pipelines.components.estimators.RandomForestClassifier.fit evalml.pipelines.components.estimators.RandomForestClassifier.get_prediction_intervals evalml.pipelines.components.estimators.RandomForestClassifier.load evalml.pipelines.components.estimators.RandomForestClassifier.needs_fitting evalml.pipelines.components.estimators.RandomForestClassifier.parameters evalml.pipelines.components.estimators.RandomForestClassifier.predict evalml.pipelines.components.estimators.RandomForestClassifier.predict_proba evalml.pipelines.components.estimators.RandomForestClassifier.save evalml.pipelines.components.estimators.RandomForestClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: RandomForestRegressor(n_estimators: int = 100, max_depth: int = 6, n_jobs: int = -1, random_seed: Union[int, float] = 0, **kwargs) Random Forest Regressor. :param n_estimators: The number of trees in the forest. Defaults to 100. :type n_estimators: float :param max_depth: Maximum tree depth for base learners. Defaults to 6. :type max_depth: int :param n_jobs: Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. :type n_jobs: int or None :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "n_estimators": Integer(10, 1000), "max_depth": Integer(1, 32),} * - **model_family** - ModelFamily.RANDOM_FOREST * - **modifies_features** - True * - **modifies_target** - False * - **name** - Random Forest Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.RandomForestRegressor.clone evalml.pipelines.components.estimators.RandomForestRegressor.default_parameters evalml.pipelines.components.estimators.RandomForestRegressor.describe evalml.pipelines.components.estimators.RandomForestRegressor.feature_importance evalml.pipelines.components.estimators.RandomForestRegressor.fit evalml.pipelines.components.estimators.RandomForestRegressor.get_prediction_intervals evalml.pipelines.components.estimators.RandomForestRegressor.load evalml.pipelines.components.estimators.RandomForestRegressor.needs_fitting evalml.pipelines.components.estimators.RandomForestRegressor.parameters evalml.pipelines.components.estimators.RandomForestRegressor.predict evalml.pipelines.components.estimators.RandomForestRegressor.predict_proba evalml.pipelines.components.estimators.RandomForestRegressor.save evalml.pipelines.components.estimators.RandomForestRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Returns importance associated with each feature. :returns: Importance associated with each feature. :rtype: np.ndarray :raises MethodPropertyNotFoundError: If estimator does not have a feature_importance method or a component_obj that implements feature_importance. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted RandomForestRegressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Optional. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: SVMClassifier(C=1.0, kernel='rbf', gamma='auto', probability=True, random_seed=0, **kwargs) Support Vector Machine Classifier. :param C: The regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to 1.0. :type C: float :param kernel: Specifies the kernel type to be used in the algorithm. Defaults to "rbf". :type kernel: {"poly", "rbf", "sigmoid"} :param gamma: Kernel coefficient for "rbf", "poly" and "sigmoid". Defaults to "auto". - If gamma='scale' is passed then it uses 1 / (n_features * X.var()) as value of gamma - If "auto" (default), uses 1 / n_features :type gamma: {"scale", "auto"} or float :param probability: Whether to enable probability estimates. Defaults to True. :type probability: boolean :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "C": Real(0, 10), "kernel": ["poly", "rbf", "sigmoid"], "gamma": ["scale", "auto"],} * - **model_family** - ModelFamily.SVM * - **modifies_features** - True * - **modifies_target** - False * - **name** - SVM Classifier * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.SVMClassifier.clone evalml.pipelines.components.estimators.SVMClassifier.default_parameters evalml.pipelines.components.estimators.SVMClassifier.describe evalml.pipelines.components.estimators.SVMClassifier.feature_importance evalml.pipelines.components.estimators.SVMClassifier.fit evalml.pipelines.components.estimators.SVMClassifier.get_prediction_intervals evalml.pipelines.components.estimators.SVMClassifier.load evalml.pipelines.components.estimators.SVMClassifier.needs_fitting evalml.pipelines.components.estimators.SVMClassifier.parameters evalml.pipelines.components.estimators.SVMClassifier.predict evalml.pipelines.components.estimators.SVMClassifier.predict_proba evalml.pipelines.components.estimators.SVMClassifier.save evalml.pipelines.components.estimators.SVMClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance only works with linear kernels. If the kernel isn't linear, we return a numpy array of zeros. :returns: Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is not linear. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: SVMRegressor(C=1.0, kernel='rbf', gamma='auto', random_seed=0, **kwargs) Support Vector Machine Regressor. :param C: The regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to 1.0. :type C: float :param kernel: Specifies the kernel type to be used in the algorithm. Defaults to "rbf". :type kernel: {"poly", "rbf", "sigmoid"} :param gamma: Kernel coefficient for "rbf", "poly" and "sigmoid". Defaults to "auto". - If gamma='scale' is passed then it uses 1 / (n_features * X.var()) as value of gamma - If "auto" (default), uses 1 / n_features :type gamma: {"scale", "auto"} or float :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "C": Real(0, 10), "kernel": ["poly", "rbf", "sigmoid"], "gamma": ["scale", "auto"],} * - **model_family** - ModelFamily.SVM * - **modifies_features** - True * - **modifies_target** - False * - **name** - SVM Regressor * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.SVMRegressor.clone evalml.pipelines.components.estimators.SVMRegressor.default_parameters evalml.pipelines.components.estimators.SVMRegressor.describe evalml.pipelines.components.estimators.SVMRegressor.feature_importance evalml.pipelines.components.estimators.SVMRegressor.fit evalml.pipelines.components.estimators.SVMRegressor.get_prediction_intervals evalml.pipelines.components.estimators.SVMRegressor.load evalml.pipelines.components.estimators.SVMRegressor.needs_fitting evalml.pipelines.components.estimators.SVMRegressor.parameters evalml.pipelines.components.estimators.SVMRegressor.predict evalml.pipelines.components.estimators.SVMRegressor.predict_proba evalml.pipelines.components.estimators.SVMRegressor.save evalml.pipelines.components.estimators.SVMRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance of fitted SVM regresor. Only works with linear kernels. If the kernel isn't linear, we return a numpy array of zeros. :returns: The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel is not linear. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using selected features. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict method or a component_obj that implements predict. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: TimeSeriesBaselineEstimator(gap=1, forecast_horizon=1, random_seed=0, **kwargs) Time series estimator that predicts using the naive forecasting approach. This is useful as a simple baseline estimator for time series problems. :param gap: Gap between prediction date and target date and must be a positive integer. If gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1. :type gap: int :param forecast_horizon: Number of time steps the model is expected to predict. :type forecast_horizon: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **model_family** - ModelFamily.BASELINE * - **modifies_features** - True * - **modifies_target** - False * - **name** - Time Series Baseline Estimator * - **supported_problem_types** - [ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.clone evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.default_parameters evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.describe evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.feature_importance evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.fit evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.get_prediction_intervals evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.load evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.needs_fitting evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.parameters evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.predict evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.predict_proba evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.save evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Returns importance associated with each feature. Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes. :returns: An array of zeroes. :rtype: np.ndarray (float) .. py:method:: fit(self, X, y=None) Fits time series baseline estimator to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self :raises ValueError: If input y is None. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using fitted time series baseline estimator. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises ValueError: If input y is None. .. py:method:: predict_proba(self, X) Make prediction probabilities using fitted time series baseline estimator. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted probability values. :rtype: pd.DataFrame :raises ValueError: If input y is None. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: VARMAXRegressor(time_index: Optional[Hashable] = None, p: int = 1, q: int = 0, trend: Optional[str] = 'c', random_seed: Union[int, float] = 0, maxiter: int = 10, use_covariates: bool = False, **kwargs) Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html. Currently VARMAXRegressor isn't supported via conda install. It's recommended that it be installed via PyPI. :param time_index: Specifies the name of the column in X that provides the datetime objects. Defaults to None. :type time_index: str :param p: Maximum Autoregressive order. Defaults to 1. :type p: int :param q: Maximum Moving Average order. Defaults to 0. :type q: int :param trend: Controls the deterministic trend. Options are ['n', 'c', 't', 'ct'] where 'c' is a constant term, 't' indicates a linear trend, and 'ct' is both. Can also be an iterable when defining a polynomial, such as [1, 1, 0, 1]. :type trend: str :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int :param max_iter: Maximum number of iterations for solver. Defaults to 10. :type max_iter: int :param use_covariates: If True, will pass exogenous variables in fit/predict methods. If False, forecasts will solely be based off of the datetimes and target values. Defaults to True. :type use_covariates: bool **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "p": Integer(1, 10), "q": Integer(1, 10), "trend": Categorical(['n', 'c', 't', 'ct']),} * - **model_family** - ModelFamily.VARMAX * - **modifies_features** - True * - **modifies_target** - False * - **name** - VARMAX Regressor * - **supported_problem_types** - [ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.VARMAXRegressor.clone evalml.pipelines.components.estimators.VARMAXRegressor.default_parameters evalml.pipelines.components.estimators.VARMAXRegressor.describe evalml.pipelines.components.estimators.VARMAXRegressor.feature_importance evalml.pipelines.components.estimators.VARMAXRegressor.fit evalml.pipelines.components.estimators.VARMAXRegressor.get_prediction_intervals evalml.pipelines.components.estimators.VARMAXRegressor.load evalml.pipelines.components.estimators.VARMAXRegressor.needs_fitting evalml.pipelines.components.estimators.VARMAXRegressor.parameters evalml.pipelines.components.estimators.VARMAXRegressor.predict evalml.pipelines.components.estimators.VARMAXRegressor.predict_proba evalml.pipelines.components.estimators.VARMAXRegressor.save evalml.pipelines.components.estimators.VARMAXRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> numpy.ndarray :property: Returns array of 0's with a length of 1 as feature_importance is not defined for VARMAX regressor. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None) Fits VARMAX regressor to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of shape [n_samples, n_series_id_values]. :type y: pd.DataFrane :returns: self :raises ValueError: If y was not passed in. .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted VARMAXRegressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data of shape [n_samples, n_series_id_values]. Optional. :type y: pd.DataFrame :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Not used for VARMAX regressor. :type predictions: pd.Series :returns: A dict of prediction intervals, where the dict is in the format {series_id: {coverage}_lower or {coverage}_upper}. :rtype: dict[dict] .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None) -> pandas.Series Make predictions using fitted VARMAX regressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data of shape [n_samples, n_series_id_values]. :type y: pd.DataFrame :returns: Predicted values. :rtype: pd.Series :raises ValueError: If X was passed to `fit` but not passed in `predict`. .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: XGBoostClassifier(eta=0.1, max_depth=6, min_child_weight=1, n_estimators=100, random_seed=0, eval_metric='logloss', n_jobs=12, **kwargs) XGBoost Classifier. :param eta: Boosting learning rate. Defaults to 0.1. :type eta: float :param max_depth: Maximum tree depth for base learners. Defaults to 6. :type max_depth: int :param min_child_weight: Minimum sum of instance weight (hessian) needed in a child. Defaults to 1.0 :type min_child_weight: float :param n_estimators: Number of gradient boosted trees. Equivalent to number of boosting rounds. Defaults to 100. :type n_estimators: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int :param n_jobs: Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to 12. :type n_jobs: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "eta": Real(0.000001, 1), "max_depth": Integer(1, 10), "min_child_weight": Real(1, 10), "n_estimators": Integer(1, 1000),} * - **model_family** - ModelFamily.XGBOOST * - **modifies_features** - True * - **modifies_target** - False * - **name** - XGBoost Classifier * - **SEED_MAX** - None * - **SEED_MIN** - None * - **supported_problem_types** - [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.XGBoostClassifier.clone evalml.pipelines.components.estimators.XGBoostClassifier.default_parameters evalml.pipelines.components.estimators.XGBoostClassifier.describe evalml.pipelines.components.estimators.XGBoostClassifier.feature_importance evalml.pipelines.components.estimators.XGBoostClassifier.fit evalml.pipelines.components.estimators.XGBoostClassifier.get_prediction_intervals evalml.pipelines.components.estimators.XGBoostClassifier.load evalml.pipelines.components.estimators.XGBoostClassifier.needs_fitting evalml.pipelines.components.estimators.XGBoostClassifier.parameters evalml.pipelines.components.estimators.XGBoostClassifier.predict evalml.pipelines.components.estimators.XGBoostClassifier.predict_proba evalml.pipelines.components.estimators.XGBoostClassifier.save evalml.pipelines.components.estimators.XGBoostClassifier.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) :property: Feature importance of fitted XGBoost classifier. .. py:method:: fit(self, X, y=None) Fits XGBoost classifier component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted regressor. This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: list[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict :raises MethodPropertyNotFoundError: If the estimator does not support Time Series Regression as a problem type. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X) Make predictions using the fitted XGBoost classifier. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.DataFrame .. py:method:: predict_proba(self, X) Make predictions using the fitted CatBoost classifier. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.DataFrame .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: XGBoostRegressor(eta: float = 0.1, max_depth: int = 6, min_child_weight: int = 1, n_estimators: int = 100, random_seed: Union[int, float] = 0, n_jobs: int = 12, **kwargs) XGBoost Regressor. :param eta: Boosting learning rate. Defaults to 0.1. :type eta: float :param max_depth: Maximum tree depth for base learners. Defaults to 6. :type max_depth: int :param min_child_weight: Minimum sum of instance weight (hessian) needed in a child. Defaults to 1.0 :type min_child_weight: float :param n_estimators: Number of gradient boosted trees. Equivalent to number of boosting rounds. Defaults to 100. :type n_estimators: int :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int :param n_jobs: Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to 12. :type n_jobs: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "eta": Real(0.000001, 1), "max_depth": Integer(1, 20), "min_child_weight": Real(1, 10), "n_estimators": Integer(1, 1000),} * - **model_family** - ModelFamily.XGBOOST * - **modifies_features** - True * - **modifies_target** - False * - **name** - XGBoost Regressor * - **SEED_MAX** - None * - **SEED_MIN** - None * - **supported_problem_types** - [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.MULTISERIES_TIME_SERIES_REGRESSION,] * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.estimators.XGBoostRegressor.clone evalml.pipelines.components.estimators.XGBoostRegressor.default_parameters evalml.pipelines.components.estimators.XGBoostRegressor.describe evalml.pipelines.components.estimators.XGBoostRegressor.feature_importance evalml.pipelines.components.estimators.XGBoostRegressor.fit evalml.pipelines.components.estimators.XGBoostRegressor.get_prediction_intervals evalml.pipelines.components.estimators.XGBoostRegressor.load evalml.pipelines.components.estimators.XGBoostRegressor.needs_fitting evalml.pipelines.components.estimators.XGBoostRegressor.parameters evalml.pipelines.components.estimators.XGBoostRegressor.predict evalml.pipelines.components.estimators.XGBoostRegressor.predict_proba evalml.pipelines.components.estimators.XGBoostRegressor.save evalml.pipelines.components.estimators.XGBoostRegressor.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: feature_importance(self) -> pandas.Series :property: Feature importance of fitted XGBoost regressor. .. py:method:: fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None) Fits XGBoost regressor component to data. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) -> Dict[str, pandas.Series] Find the prediction intervals using the fitted XGBoostRegressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: Target data. Ignored. :type y: pd.Series :param coverage: A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for. :type coverage: List[float] :param predictions: Optional list of predictions to use. If None, will generate predictions using `X`. :type predictions: pd.Series :returns: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper. :rtype: dict .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: predict(self, X: pandas.DataFrame) -> pandas.Series Make predictions using fitted XGBoost regressor. :param X: Data of shape [n_samples, n_features]. :type X: pd.DataFrame :returns: Predicted values. :rtype: pd.Series .. py:method:: predict_proba(self, X: pandas.DataFrame) -> pandas.Series Make probability estimates for labels. :param X: Features. :type X: pd.DataFrame :returns: Probability estimates. :rtype: pd.Series :raises MethodPropertyNotFoundError: If estimator does not have a predict_proba method or a component_obj that implements predict_proba. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional