{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tutorials\n", "\n", "Below are examples of how to apply EvalML to a variety of problems:" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx-toctree": { "maxdepth": 1 } }, "source": [ "[Building a Fraud Prediction Model](demos/fraud)" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx-toctree": { "maxdepth": 1 } }, "source": [ "[Building a Lead Scoring Model](demos/lead_scoring)" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx-toctree": { "maxdepth": 1 } }, "source": [ "[Using the Cost-Benefit Matrix Objective](demos/cost_benefit_matrix)" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx-toctree": { "maxdepth": 1 } }, "source": [ "[Using Text Data with EvalML](demos/text_input)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" } }, "nbformat": 4, "nbformat_minor": 4 }