evalml.model_understanding.calculate_permutation_importance_one_column(pipeline, X, y, col_name, objective, n_repeats=5, fast=True, precomputed_features=None, random_seed=0)[source]

Calculates permutation importance for one column in the original dataframe.

  • pipeline (PipelineBase or subclass) – Fitted pipeline.

  • X (pd.DataFrame) – The input data used to score and compute permutation importance.

  • y (pd.Series) – The target data.

  • col_name (str, int) – The column in X to calculate permutation importance for.

  • objective (str, ObjectiveBase) – Objective to score on.

  • n_repeats (int) – Number of times to permute a feature. Defaults to 5.

  • fast (bool) – Whether to use the fast method of calculating the permutation importance or not. Defaults to True.

  • precomputed_features (pd.DataFrame) – Precomputed features necessary to calculate permutation importance using the fast method. Defaults to None.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.


Mean feature importance scores over a number of shuffles.

Return type