Source code for evalml.automl.auto_search_base

import time
import warnings
from collections import OrderedDict
from sys import stdout

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tqdm import tqdm

from .pipeline_search_plots import PipelineSearchPlots

from evalml.automl.automl_algorithm import IterativeAlgorithm
from evalml.data_checks import DataChecks, DefaultDataChecks
from evalml.data_checks.data_check_message_type import DataCheckMessageType
from evalml.model_family import handle_model_family
from evalml.objectives import get_objective, get_objectives
from evalml.pipelines import (
    MeanBaselineRegressionPipeline,
    ModeBaselineBinaryPipeline,
    ModeBaselineMulticlassPipeline,
    get_pipelines
)
from evalml.problem_types import ProblemTypes, handle_problem_types
from evalml.tuners import SKOptTuner
from evalml.utils import convert_to_seconds, get_random_state
from evalml.utils.logger import get_logger, log_subtitle, log_title

logger = get_logger(__file__)


[docs]class AutoSearchBase: """Base class for AutoML searches.""" _MAX_NAME_LEN = 40 # Necessary for "Plotting" documentation, since Sphinx does not work well with instance attributes. plot = PipelineSearchPlots
[docs] def __init__(self, problem_type=None, objective=None, max_pipelines=None, max_time=None, patience=None, tolerance=None, cv=None, allowed_pipelines=None, allowed_model_families=None, start_iteration_callback=None, add_result_callback=None, additional_objectives=None, random_state=0, n_jobs=-1, tuner_class=None, verbose=True, optimize_thresholds=False, multiclass=None): self.problem_type = problem_type self.tuner_class = tuner_class or SKOptTuner self.start_iteration_callback = start_iteration_callback self.add_result_callback = add_result_callback self.cv = cv self.verbose = verbose self.optimize_thresholds = optimize_thresholds self.objective = get_objective(objective) if self.problem_type != self.objective.problem_type: raise ValueError("Given objective {} is not compatible with a {} problem.".format(self.objective.name, self.problem_type.value)) if additional_objectives is None: additional_objectives = get_objectives(self.problem_type) # if our main objective is part of default set of objectives for problem_type, remove it existing_main_objective = next((obj for obj in additional_objectives if obj.name == self.objective.name), None) if existing_main_objective is not None: additional_objectives.remove(existing_main_objective) else: additional_objectives = [get_objective(o) for o in additional_objectives] self.additional_objectives = additional_objectives if max_time is None or isinstance(max_time, (int, float)): self.max_time = max_time elif isinstance(max_time, str): self.max_time = convert_to_seconds(max_time) else: raise TypeError("max_time must be a float, int, or string. Received a {}.".format(type(max_time))) self.max_pipelines = max_pipelines if self.max_pipelines is None and self.max_time is None: self.max_pipelines = 5 logger.info("Using default limit of max_pipelines=5.\n") if patience and (not isinstance(patience, int) or patience < 0): raise ValueError("patience value must be a positive integer. Received {} instead".format(patience)) if tolerance and (tolerance > 1.0 or tolerance < 0.0): raise ValueError("tolerance value must be a float between 0.0 and 1.0 inclusive. Received {} instead".format(tolerance)) self.patience = patience self.tolerance = tolerance or 0.0 self.results = { 'pipeline_results': {}, 'search_order': [] } self.trained_pipelines = {} self.random_state = get_random_state(random_state) self.n_jobs = n_jobs self.plot = None try: self.plot = PipelineSearchPlots(self) except ImportError: logger.warning("Unable to import plotly; skipping pipeline search plotting\n") self._data_check_results = None self.allowed_pipelines = allowed_pipelines or get_pipelines(problem_type=self.problem_type, model_families=allowed_model_families) self.allowed_model_families = [handle_model_family(f) for f in (allowed_model_families or [])] or list(set([p.model_family for p in self.allowed_pipelines])) self._automl_algorithm = None
@property def data_check_results(self): return self._data_check_results def __str__(self): def _print_list(obj_list): lines = ['\t{}'.format(o.name) for o in obj_list] return '\n'.join(lines) def _get_funct_name(function): if callable(function): return function.__name__ else: return None search_desc = ( f"{handle_problem_types(self.problem_type).name} Search\n\n" f"Parameters: \n{'='*20}\n" f"Objective: {get_objective(self.objective).name}\n" f"Max Time: {self.max_time}\n" f"Max Pipelines: {self.max_pipelines}\n" f"Allowed Pipelines: \n{_print_list(self.allowed_pipelines or [])}\n" f"Patience: {self.patience}\n" f"Tolerance: {self.tolerance}\n" f"Cross Validation: {self.cv}\n" f"Tuner: {self.tuner_class.__name__}\n" f"Start Iteration Callback: {_get_funct_name(self.start_iteration_callback)}\n" f"Add Result Callback: {_get_funct_name(self.add_result_callback)}\n" f"Additional Objectives: {_print_list(self.additional_objectives or [])}\n" f"Random State: {self.random_state}\n" f"n_jobs: {self.n_jobs}\n" f"Verbose: {self.verbose}\n" f"Optimize Thresholds: {self.optimize_thresholds}\n" ) try: rankings_str = self.rankings.drop(['parameters'], axis='columns').to_string() rankings_desc = f"\nSearch Results: \n{'='*20}\n{rankings_str}" except KeyError: rankings_desc = "" return search_desc + rankings_desc
[docs] def search(self, X, y, data_checks=None, feature_types=None, raise_errors=True, show_iteration_plot=True): """Find best classifier Arguments: X (pd.DataFrame): the input training data of shape [n_samples, n_features] y (pd.Series): the target training labels of length [n_samples] feature_types (list, optional): list of feature types, either numerical or categorical. Categorical features will automatically be encoded raise_errors (boolean): If True, raise errors and exit search if a pipeline errors during fitting. If False, set scores for the errored pipeline to NaN and continue search. Defaults to True. show_iteration_plot (boolean, True): Shows an iteration vs. score plot in Jupyter notebook. Disabled by default in non-Jupyter enviroments. data_checks (DataChecks, None): A collection of data checks to run before searching for the best classifier. If data checks produce any errors, an exception will be thrown before the search begins. If None, uses DefaultDataChecks. Defaults to None. Returns: self """ # don't show iteration plot outside of a jupyter notebook if show_iteration_plot: try: get_ipython except NameError: show_iteration_plot = False # make everything pandas objects if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(y, pd.Series): y = pd.Series(y) if self.problem_type != ProblemTypes.REGRESSION: self._check_multiclass(y) if data_checks is None: data_checks = DefaultDataChecks() if not isinstance(data_checks, DataChecks): raise ValueError("data_checks parameter must be a DataChecks object!") data_check_results = data_checks.validate(X, y) if len(data_check_results) > 0: self._data_check_results = data_check_results for message in self._data_check_results: if message.message_type == DataCheckMessageType.WARNING: logger.warning(message) elif message.message_type == DataCheckMessageType.ERROR: logger.error(message) if any([message.message_type == DataCheckMessageType.ERROR for message in self._data_check_results]): raise ValueError("Data checks raised some warnings and/or errors. Please see `self.data_check_results` for more information or pass data_checks=EmptyDataChecks() to search() to disable data checking.") self._automl_algorithm = IterativeAlgorithm( max_pipelines=self.max_pipelines, allowed_pipelines=self.allowed_pipelines, tuner_class=self.tuner_class, random_state=self.random_state, n_jobs=self.n_jobs, number_features=X.shape[1] ) log_title(logger, "Beginning pipeline search") logger.info("Optimizing for %s. " % self.objective.name) logger.info("{} score is better.\n".format('Greater' if self.objective.greater_is_better else 'Lower')) if self.max_pipelines is not None: logger.info("Searching up to %s pipelines. " % self.max_pipelines) if self.max_time is not None: logger.info("Will stop searching for new pipelines after %d seconds.\n" % self.max_time) logger.info("Allowed model families: %s\n" % ", ".join([model.value for model in self.allowed_model_families])) search_iteration_plot = None if self.plot: search_iteration_plot = self.plot.search_iteration_plot(interactive_plot=show_iteration_plot) if self.max_pipelines is None: pbar = tqdm(total=self.max_time, disable=not self.verbose, file=stdout, bar_format='{desc} | Elapsed:{elapsed}') else: pbar = tqdm(range(self.max_pipelines), disable=not self.verbose, file=stdout, bar_format='{desc} {percentage:3.0f}%|{bar}| Elapsed:{elapsed}') pbar._instances.clear() start = time.time() self._add_baseline_pipelines(X, y, pbar, raise_errors=raise_errors) current_batch_pipelines = [] while self._check_stopping_condition(start): if len(current_batch_pipelines) == 0: try: current_batch_pipelines = self._automl_algorithm.next_batch() except StopIteration: logger.info('AutoML Algorithm out of recommendations, ending') break pipeline = current_batch_pipelines.pop(0) parameters = pipeline.parameters logger.debug('Evaluating pipeline {}'.format(pipeline.name)) logger.debug('Pipeline parameters: {}'.format(parameters)) pbar.update(1) if self.start_iteration_callback: self.start_iteration_callback(pipeline.__class__, parameters) desc = "▹ {}: ".format(pipeline.name) if len(desc) > self._MAX_NAME_LEN: desc = desc[:self._MAX_NAME_LEN - 3] + "..." desc = desc.ljust(self._MAX_NAME_LEN) pbar.set_description_str(desc=desc, refresh=True) evaluation_results = self._evaluate(pipeline, X, y, raise_errors=raise_errors, pbar=pbar) logger.debug('Adding results for pipeline {}\nparameters {}\nevaluation_results {}'.format(pipeline.name, parameters, evaluation_results)) score = evaluation_results['cv_score_mean'] score_to_minimize = -score if self.objective.greater_is_better else score self._automl_algorithm.add_result(score_to_minimize, pipeline) logger.debug('Adding results complete') self._add_result(trained_pipeline=pipeline, parameters=parameters, training_time=evaluation_results['training_time'], cv_data=evaluation_results['cv_data'], cv_scores=evaluation_results['cv_scores']) desc = "✔" + desc[1:] pbar.set_description_str(desc=desc, refresh=True) if self.verbose: # To force new line between progress bar iterations print('') if search_iteration_plot: search_iteration_plot.update() desc = "✔ Optimization finished" desc = desc.ljust(self._MAX_NAME_LEN) pbar.set_description_str(desc=desc, refresh=True) pbar.close()
def _check_stopping_condition(self, start): should_continue = True num_pipelines = len(self.results['pipeline_results']) if num_pipelines == 0: return True # check max_time and max_pipelines elapsed = time.time() - start if self.max_time and elapsed >= self.max_time: return False elif self.max_pipelines and num_pipelines >= self.max_pipelines: return False # check for early stopping if self.patience is None: return True first_id = self.results['search_order'][0] best_score = self.results['pipeline_results'][first_id]['score'] num_without_improvement = 0 for id in self.results['search_order'][1:]: curr_score = self.results['pipeline_results'][id]['score'] significant_change = abs((curr_score - best_score) / best_score) > self.tolerance score_improved = curr_score > best_score if self.objective.greater_is_better else curr_score < best_score if score_improved and significant_change: best_score = curr_score num_without_improvement = 0 else: num_without_improvement += 1 if num_without_improvement >= self.patience: logger.info("\n\n{} iterations without improvement. Stopping search early...".format(self.patience)) return False return should_continue def _check_multiclass(self, y): if y.nunique() <= 2: return if self.objective.problem_type != ProblemTypes.MULTICLASS: raise ValueError("Given objective {} is not compatible with a multiclass problem.".format(self.objective.name)) for obj in self.additional_objectives: if obj.problem_type != ProblemTypes.MULTICLASS: raise ValueError("Additional objective {} is not compatible with a multiclass problem.".format(obj.name)) def _add_baseline_pipelines(self, X, y, pbar, raise_errors=True): if self.problem_type == ProblemTypes.BINARY: strategy_dict = {"strategy": "random_weighted"} baseline = ModeBaselineBinaryPipeline(parameters={"Baseline Classifier": strategy_dict}) elif self.problem_type == ProblemTypes.MULTICLASS: strategy_dict = {"strategy": "random_weighted"} baseline = ModeBaselineMulticlassPipeline(parameters={"Baseline Classifier": strategy_dict}) elif self.problem_type == ProblemTypes.REGRESSION: strategy_dict = {"strategy": "mean"} baseline = MeanBaselineRegressionPipeline(parameters={"Baseline Regressor": strategy_dict}) if self.start_iteration_callback: self.start_iteration_callback(baseline.__class__, baseline.parameters) desc = "▹ {}: ".format(baseline.name) if len(desc) > self._MAX_NAME_LEN: desc = desc[:self._MAX_NAME_LEN - 3] + "..." desc = desc.ljust(self._MAX_NAME_LEN) pbar.set_description_str(desc=desc, refresh=True) baseline_results = self._evaluate(baseline, X, y, raise_errors=raise_errors, pbar=pbar) self._add_result(trained_pipeline=baseline, parameters=strategy_dict, training_time=baseline_results['training_time'], cv_data=baseline_results['cv_data'], cv_scores=baseline_results['cv_scores']) desc = "✔" + desc[1:] pbar.set_description_str(desc=desc, refresh=True) if self.verbose: # To force new line between progress bar iterations print('') def _evaluate(self, pipeline, X, y, raise_errors=True, pbar=None): start = time.time() cv_data = [] for train, test in self.cv.split(X, y): if isinstance(X, pd.DataFrame): X_train, X_test = X.iloc[train], X.iloc[test] else: X_train, X_test = X[train], X[test] if isinstance(y, pd.Series): y_train, y_test = y.iloc[train], y.iloc[test] else: y_train, y_test = y[train], y[test] objectives_to_score = [self.objective] + self.additional_objectives try: X_threshold_tuning = None y_threshold_tuning = None if self.optimize_thresholds and self.objective.problem_type == ProblemTypes.BINARY and self.objective.can_optimize_threshold: X_train, X_threshold_tuning, y_train, y_threshold_tuning = train_test_split(X_train, y_train, test_size=0.2, random_state=self.random_state) pipeline.fit(X_train, y_train) if self.objective.problem_type == ProblemTypes.BINARY: pipeline.threshold = 0.5 if self.optimize_thresholds and self.objective.can_optimize_threshold: y_predict_proba = pipeline.predict_proba(X_threshold_tuning) if isinstance(y_predict_proba, pd.DataFrame): y_predict_proba = y_predict_proba.iloc[:, 1] else: y_predict_proba = y_predict_proba[:, 1] pipeline.threshold = self.objective.optimize_threshold(y_predict_proba, y_threshold_tuning, X=X_threshold_tuning) scores = pipeline.score(X_test, y_test, objectives=objectives_to_score) score = scores[self.objective.name] except Exception as e: logger.error("Exception during automl search: {}".format(str(e))) if raise_errors: raise e if pbar: pbar.write(str(e)) score = np.nan scores = OrderedDict(zip([n.name for n in self.additional_objectives], [np.nan] * len(self.additional_objectives))) ordered_scores = OrderedDict() ordered_scores.update({self.objective.name: score}) ordered_scores.update(scores) ordered_scores.update({"# Training": len(y_train)}) ordered_scores.update({"# Testing": len(y_test)}) cv_data.append({"all_objective_scores": ordered_scores, "score": score}) training_time = time.time() - start cv_scores = pd.Series([fold['score'] for fold in cv_data]) return {'cv_data': cv_data, 'training_time': training_time, 'cv_scores': cv_scores, 'cv_score_mean': cv_scores.mean()} def _add_result(self, trained_pipeline, parameters, training_time, cv_data, cv_scores): cv_score = cv_scores.mean() # calculate high_variance_cv # if the coefficient of variance is greater than .2 with warnings.catch_warnings(): warnings.simplefilter('ignore') high_variance_cv = (cv_scores.std() / cv_scores.mean()) > .2 pipeline_name = trained_pipeline.name pipeline_summary = trained_pipeline.summary pipeline_id = len(self.results['pipeline_results']) self.results['pipeline_results'][pipeline_id] = { "id": pipeline_id, "pipeline_name": pipeline_name, "pipeline_class": type(trained_pipeline), "pipeline_summary": pipeline_summary, "parameters": parameters, "score": cv_score, "high_variance_cv": high_variance_cv, "training_time": training_time, "cv_data": cv_data } self.results['search_order'].append(pipeline_id) if self.add_result_callback: self.add_result_callback(self.results['pipeline_results'][pipeline_id], trained_pipeline) self._save_pipeline(pipeline_id, trained_pipeline) def _save_pipeline(self, pipeline_id, trained_pipeline): self.trained_pipelines[pipeline_id] = trained_pipeline
[docs] def get_pipeline(self, pipeline_id): """Retrieves trained pipeline Arguments: pipeline_id (int): pipeline to retrieve Returns: Pipeline: pipeline associated with id """ if pipeline_id not in self.trained_pipelines: raise RuntimeError("Pipeline not found") return self.trained_pipelines[pipeline_id]
[docs] def describe_pipeline(self, pipeline_id, return_dict=False): """Describe a pipeline Arguments: pipeline_id (int): pipeline to describe return_dict (bool): If True, return dictionary of information about pipeline. Defaults to False. Returns: Description of specified pipeline. Includes information such as type of pipeline components, problem, training time, cross validation, etc. """ if pipeline_id not in self.results['pipeline_results']: raise RuntimeError("Pipeline not found") pipeline = self.get_pipeline(pipeline_id) pipeline_results = self.results['pipeline_results'][pipeline_id] pipeline.describe() log_subtitle(logger, "Training") logger.info("Training for {} problems.".format(pipeline.problem_type)) if self.optimize_thresholds and self.objective.problem_type == ProblemTypes.BINARY and self.objective.can_optimize_threshold: logger.info("Objective to optimize binary classification pipeline thresholds for: {}".format(self.objective)) logger.info("Total training time (including CV): %.1f seconds" % pipeline_results["training_time"]) log_subtitle(logger, "Cross Validation", underline="-") if pipeline_results["high_variance_cv"]: logger.warning("High variance within cross validation scores. " + "Model may not perform as estimated on unseen data.") all_objective_scores = [fold["all_objective_scores"] for fold in pipeline_results["cv_data"]] all_objective_scores = pd.DataFrame(all_objective_scores) for c in all_objective_scores: if c in ["# Training", "# Testing"]: all_objective_scores[c] = all_objective_scores[c].astype("object") continue mean = all_objective_scores[c].mean(axis=0) std = all_objective_scores[c].std(axis=0) all_objective_scores.loc["mean", c] = mean all_objective_scores.loc["std", c] = std all_objective_scores.loc["coef of var", c] = std / mean if abs(mean) > 0 else np.inf all_objective_scores = all_objective_scores.fillna("-") with pd.option_context('display.float_format', '{:.3f}'.format, 'expand_frame_repr', False): logger.info(all_objective_scores) if return_dict: return pipeline_results
@property def rankings(self): """Returns a pandas.DataFrame with scoring results from the highest-scoring set of parameters used with each pipeline.""" return self.full_rankings.drop_duplicates(subset="pipeline_name", keep="first") @property def full_rankings(self): """Returns a pandas.DataFrame with scoring results from all pipelines searched""" ascending = True if self.objective.greater_is_better: ascending = False rankings_df = pd.DataFrame(self.results['pipeline_results'].values()) rankings_df = rankings_df[["id", "pipeline_name", "score", "high_variance_cv", "parameters"]] rankings_df.sort_values("score", ascending=ascending, inplace=True) rankings_df.reset_index(drop=True, inplace=True) return rankings_df @property def best_pipeline(self): """Returns the best model found""" best = self.rankings.iloc[0] return self.get_pipeline(best["id"])