import numpy as np
from sklearn.linear_model import SGDClassifier as SKElasticNetClassifier
from skopt.space import Real
from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes
[docs]class ElasticNetClassifier(Estimator):
"""Elastic Net Classifier"""
name = "Elastic Net Classifier"
hyperparameter_ranges = {
"alpha": Real(0, 1),
"l1_ratio": Real(0, 1),
}
model_family = ModelFamily.LINEAR_MODEL
supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]
[docs] def __init__(self, alpha=0.5, l1_ratio=0.5, n_jobs=-1, random_state=0, max_iter=1000):
parameters = {'alpha': alpha,
'l1_ratio': l1_ratio}
en_classifier = SKElasticNetClassifier(loss="log",
penalty="elasticnet",
alpha=alpha,
l1_ratio=l1_ratio,
n_jobs=n_jobs,
random_state=random_state,
max_iter=max_iter)
super().__init__(parameters=parameters,
component_obj=en_classifier,
random_state=random_state)
@property
def feature_importances(self):
coef_ = self._component_obj.coef_
# binary classification case
if len(coef_) <= 2:
return coef_.flatten()
else:
# mutliclass classification case
return np.linalg.norm(coef_, axis=0, ord=2)