Source code for evalml.pipelines.components.estimators.classifiers.et_classifier
from sklearn.ensemble import ExtraTreesClassifier as SKExtraTreesClassifier
from skopt.space import Integer
from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes
[docs]class ExtraTreesClassifier(Estimator):
"""Extra Trees Classifier"""
name = "Extra Trees Classifier"
hyperparameter_ranges = {
"n_estimators": Integer(10, 1000),
"max_features": ["auto", "sqrt", "log2"],
"max_depth": Integer(4, 10)
}
model_family = ModelFamily.EXTRA_TREES
supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]
[docs] def __init__(self,
n_estimators=100,
max_features="auto",
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=-1,
random_state=0):
parameters = {"n_estimators": n_estimators,
"max_features": max_features,
"max_depth": max_depth}
et_classifier = SKExtraTreesClassifier(n_estimators=n_estimators,
max_features=max_features,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_weight_fraction_leaf=min_weight_fraction_leaf,
n_jobs=n_jobs,
random_state=random_state)
super().__init__(parameters=parameters,
component_obj=et_classifier,
random_state=random_state)