from sklearn.ensemble import RandomForestClassifier as SKRandomForestClassifier
from skopt.space import Integer
from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes
[docs]class RandomForestClassifier(Estimator):
"""Random Forest Classifier"""
name = "Random Forest Classifier"
hyperparameter_ranges = {
"n_estimators": Integer(10, 1000),
"max_depth": Integer(1, 10),
}
model_family = ModelFamily.RANDOM_FOREST
supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]
[docs] def __init__(self, n_estimators=100, max_depth=6, n_jobs=-1, random_state=0):
parameters = {"n_estimators": n_estimators,
"max_depth": max_depth}
rf_classifier = SKRandomForestClassifier(n_estimators=n_estimators,
max_depth=max_depth,
n_jobs=n_jobs,
random_state=random_state)
super().__init__(parameters=parameters,
component_obj=rf_classifier,
random_state=random_state)
@property
def feature_importances(self):
return self._component_obj.feature_importances_