Source code for evalml.pipelines.components.estimators.regressors.et_regressor

from sklearn.ensemble import ExtraTreesRegressor as SKExtraTreesRegressor
from skopt.space import Integer

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes


[docs]class ExtraTreesRegressor(Estimator): """Extra Trees Regressor""" name = "Extra Trees Regressor" hyperparameter_ranges = { "n_estimators": Integer(10, 1000), "max_features": ["auto", "sqrt", "log2"], "max_depth": Integer(4, 10) } model_family = ModelFamily.EXTRA_TREES supported_problem_types = [ProblemTypes.REGRESSION]
[docs] def __init__(self, n_estimators=100, max_features="auto", max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=-1, random_state=0): parameters = {"n_estimators": n_estimators, "max_features": max_features, "max_depth": max_depth} et_regressor = SKExtraTreesRegressor(random_state=random_state, n_estimators=n_estimators, max_features=max_features, max_depth=max_depth, min_samples_split=min_samples_split, min_weight_fraction_leaf=min_weight_fraction_leaf, n_jobs=n_jobs) super().__init__(parameters=parameters, component_obj=et_regressor, random_state=random_state)