evalml.pipelines.components.ElasticNetRegressor¶
-
class
evalml.pipelines.components.
ElasticNetRegressor
(alpha=0.5, l1_ratio=0.5, random_state=0, normalize=False, max_iter=1000, n_jobs=-1)[source]¶ Elastic Net Regressor
-
name
= 'Elastic Net Regressor'¶
-
model_family
= 'linear_model'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>]¶
-
hyperparameter_ranges
= {'alpha': Real(low=0, high=1, prior='uniform', transform='identity'), 'l1_ratio': Real(low=0, high=1, prior='uniform', transform='identity')}¶
Instance attributes
feature_importances
Returns feature importances.
Methods:
Initialize self.
Describe a component and its parameters
Fits component to data
Make predictions using selected features.
Make probability estimates for labels.
-