import copy from abc import ABC, ABCMeta, abstractmethod from functools import wraps from evalml.exceptions import ( ComponentNotYetFittedError, MethodPropertyNotFoundError ) from evalml.utils import ( classproperty, get_logger, get_random_state, log_subtitle ) logger = get_logger(__file__) class ComponentBaseMeta(ABCMeta): """Metaclass that overrides creating a new component by wrapping method with validators and setters""" from evalml.exceptions import ComponentNotYetFittedError NO_FITTING_REQUIRED = ['DropColumns', 'SelectColumns'] @classmethod def set_fit(cls, method): @wraps(method) def _set_fit(self, X, y=None): return_value = method(self, X, y) self._is_fitted = True return return_value return _set_fit @classmethod def check_for_fit(cls, method): """`check_for_fit` wraps a method that validates if `self._is_fitted` is `True`. It raises an exception if `False` and calls and returns the wrapped method if `True`. """ @wraps(method) def _check_for_fit(self, X=None, y=None): klass = type(self).__name__ if not self._is_fitted and klass not in cls.NO_FITTING_REQUIRED: raise ComponentNotYetFittedError(f'This {klass} is not fitted yet. You must fit {klass} before calling {method.__name__}.') elif X is None and y is None: return method(self) elif y is None: return method(self, X) else: return method(self, X, y) return _check_for_fit def __new__(cls, name, bases, dct): if 'predict' in dct: dct['predict'] = cls.check_for_fit(dct['predict']) if 'predict_proba' in dct: dct['predict_proba'] = cls.check_for_fit(dct['predict_proba']) if 'transform' in dct: dct['transform'] = cls.check_for_fit(dct['transform']) if 'feature_importance' in dct: fi = dct['feature_importance'] new_fi = property(cls.check_for_fit(fi.__get__), fi.__set__, fi.__delattr__) dct['feature_importance'] = new_fi if 'fit' in dct: dct['fit'] = cls.set_fit(dct['fit']) if 'fit_transform' in dct: dct['fit_transform'] = cls.set_fit(dct['fit_transform']) return super().__new__(cls, name, bases, dct) [docs]class ComponentBase(ABC, metaclass=ComponentBaseMeta): """Base class for all components.""" _default_parameters = None [docs] def __init__(self, parameters=None, component_obj=None, random_state=0, **kwargs): self.random_state = get_random_state(random_state) self._component_obj = component_obj self._parameters = parameters or {} self._is_fitted = False @property @classmethod @abstractmethod def name(cls): """Returns string name of this component""" @property @classmethod @abstractmethod def model_family(cls): """Returns ModelFamily of this component""" @property def parameters(self): """Returns the parameters which were used to initialize the component""" return copy.copy(self._parameters) @classproperty def default_parameters(cls): """Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. Returns: dict: default parameters for this component. """ if cls._default_parameters is None: cls._default_parameters = cls().parameters return cls._default_parameters [docs] def clone(self, random_state=0): """Constructs a new component with the same parameters Arguments: random_state (int): the value to seed the random state with. Can also be a RandomState instance. Defaults to 0. Returns: A new instance of this component with identical parameters """ return self.__class__(**self.parameters, random_state=random_state) [docs] def fit(self, X, y=None): """Fits component to data Arguments: X (pd.DataFrame or np.array): the input training data of shape [n_samples, n_features] y (pd.Series, optional): the target training labels of length [n_samples] Returns: self """ try: self._component_obj.fit(X, y) return self except AttributeError: raise MethodPropertyNotFoundError("Component requires a fit method or a component_obj that implements fit") [docs] def describe(self, print_name=False, return_dict=False): """Describe a component and its parameters Arguments: print_name(bool, optional): whether to print name of component return_dict(bool, optional): whether to return description as dictionary in the format {"name": name, "parameters": parameters} Returns: None or dict: prints and returns dictionary """ if print_name: title = self.name log_subtitle(logger, title) for parameter in self.parameters: parameter_str = ("\t * {} : {}").format(parameter, self.parameters[parameter]) logger.info(parameter_str) if return_dict: component_dict = {"name": self.name} component_dict.update({"parameters": self.parameters}) return component_dict