Source code for evalml.data_checks.default_data_checks

from .data_checks import DataChecks
from .highly_null_data_check import HighlyNullDataCheck
from .id_columns_data_check import IDColumnsDataCheck
from .invalid_targets_data_check import InvalidTargetDataCheck
from .label_leakage_data_check import LabelLeakageDataCheck
from .no_variance_data_check import NoVarianceDataCheck


[docs]class DefaultDataChecks(DataChecks): """A collection of basic data checks that is used by AutoML by default. Includes HighlyNullDataCheck, IDColumnsDataCheck, LabelLeakageDataCheck, InvalidTargetDataCheck, and NoVarianceDataCheck.""" _DEFAULT_DATA_CHECK_CLASSES = [HighlyNullDataCheck, IDColumnsDataCheck, LabelLeakageDataCheck, InvalidTargetDataCheck, NoVarianceDataCheck]
[docs] def __init__(self, problem_type): """ A collection of basic data checks. Arguments: problem_type (str): The problem type that is being validated. Can be regression, binary, or multiclass. """ super().__init__(self._DEFAULT_DATA_CHECK_CLASSES, data_check_params={"InvalidTargetDataCheck": {"problem_type": problem_type}})