Source code for evalml.pipelines.utils

import pandas as pd

from .binary_classification_pipeline import BinaryClassificationPipeline
from .multiclass_classification_pipeline import (
    MulticlassClassificationPipeline
)
from .regression_pipeline import RegressionPipeline

from evalml.model_family import ModelFamily
from evalml.pipelines.components import (  # noqa: F401
    CatBoostClassifier,
    CatBoostRegressor,
    ComponentBase,
    DateTimeFeaturizer,
    DropNullColumns,
    Estimator,
    Imputer,
    OneHotEncoder,
    RandomForestClassifier,
    StandardScaler
)
from evalml.pipelines.components.utils import get_estimators
from evalml.problem_types import ProblemTypes, handle_problem_types
from evalml.utils import get_logger
from evalml.utils.gen_utils import categorical_dtypes, datetime_dtypes

logger = get_logger(__file__)


def _get_preprocessing_components(X, y, problem_type, estimator_class):
    """Given input data, target data and an estimator class, construct a recommended preprocessing chain to be combined with the estimator and trained on the provided data.

    Arguments:
        X (pd.DataFrame): The input data of shape [n_samples, n_features]
        y (pd.Series): The target data of length [n_samples]
        problem_type (ProblemTypes or str): Problem type
        estimator_class (class): A class which subclasses Estimator estimator for pipeline

    Returns:
        list[Transformer]: A list of applicable preprocessing components to use with the estimator
    """
    if not isinstance(X, pd.DataFrame):
        X = pd.DataFrame(X)
    pp_components = []
    all_null_cols = X.columns[X.isnull().all()]
    if len(all_null_cols) > 0:
        pp_components.append(DropNullColumns)

    pp_components.append(Imputer)

    datetime_cols = X.select_dtypes(include=datetime_dtypes)
    add_datetime_featurizer = len(datetime_cols.columns) > 0
    if add_datetime_featurizer:
        pp_components.append(DateTimeFeaturizer)

    # DateTimeFeaturizer can create categorical columns
    categorical_cols = X.select_dtypes(include=categorical_dtypes)
    if (add_datetime_featurizer or len(categorical_cols.columns) > 0) and estimator_class not in {CatBoostClassifier, CatBoostRegressor}:
        pp_components.append(OneHotEncoder)

    if estimator_class.model_family == ModelFamily.LINEAR_MODEL:
        pp_components.append(StandardScaler)
    return pp_components


def _get_pipeline_base_class(problem_type):
    """Returns pipeline base class for problem_type"""
    if problem_type == ProblemTypes.BINARY:
        return BinaryClassificationPipeline
    elif problem_type == ProblemTypes.MULTICLASS:
        return MulticlassClassificationPipeline
    elif problem_type == ProblemTypes.REGRESSION:
        return RegressionPipeline


[docs]def make_pipeline(X, y, estimator, problem_type): """Given input data, target data, an estimator class and the problem type, generates a pipeline class with a preprocessing chain which was recommended based on the inputs. The pipeline will be a subclass of the appropriate pipeline base class for the specified problem_type. Arguments: X (pd.DataFrame): The input data of shape [n_samples, n_features] y (pd.Series): The target data of length [n_samples] estimator (Estimator): Estimator for pipeline problem_type (ProblemTypes or str): Problem type for pipeline to generate Returns: class: PipelineBase subclass with dynamically generated preprocessing components and specified estimator """ problem_type = handle_problem_types(problem_type) if estimator not in get_estimators(problem_type): raise ValueError(f"{estimator.name} is not a valid estimator for problem type") preprocessing_components = _get_preprocessing_components(X, y, problem_type, estimator) complete_component_graph = preprocessing_components + [estimator] hyperparameters = None if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) base_class = _get_pipeline_base_class(problem_type) class GeneratedPipeline(base_class): custom_name = f"{estimator.name} w/ {' + '.join([component.name for component in preprocessing_components])}" component_graph = complete_component_graph custom_hyperparameters = hyperparameters return GeneratedPipeline
[docs]def make_pipeline_from_components(component_instances, problem_type, custom_name=None): """Given a list of component instances and the problem type, an pipeline instance is generated with the component instances. The pipeline will be a subclass of the appropriate pipeline base class for the specified problem_type. The pipeline will be untrained, even if the input components are already trained. A custom name for the pipeline can optionally be specified; otherwise the default pipeline name will be 'Templated Pipeline'. Arguments: component_instances (list): a list of all of the components to include in the pipeline problem_type (str or ProblemTypes): problem type for the pipeline to generate custom_name (string): a name for the new pipeline Returns: Pipeline instance with component instances and specified estimator Example: >>> components = [Imputer(), StandardScaler(), RandomForestClassifier()] >>> pipeline = make_pipeline_from_components(components, problem_type="binary") >>> pipeline.describe() """ for i, component in enumerate(component_instances): if not isinstance(component, ComponentBase): raise TypeError("Every element of `component_instances` must be an instance of ComponentBase") if i == len(component_instances) - 1 and not isinstance(component, Estimator): raise ValueError("Pipeline needs to have an estimator at the last position of the component list") if custom_name and not isinstance(custom_name, str): raise TypeError("Custom pipeline name must be a string") pipeline_name = custom_name problem_type = handle_problem_types(problem_type) class TemplatedPipeline(_get_pipeline_base_class(problem_type)): custom_name = pipeline_name component_graph = [c.__class__ for c in component_instances] return TemplatedPipeline({c.name: c.parameters for c in component_instances})