import pandas as pd from .data_check import DataCheck from .data_check_message import DataCheckError, DataCheckWarning [docs]class ClassImbalanceDataCheck(DataCheck): """Checks if any target labels are imbalanced beyond a threshold. Use for classification problems""" [docs] def __init__(self, threshold=0.1, num_cv_folds=3): """Check if any of the target labels are imbalanced, or if the number of values for each target are below 2 times the number of cv folds Arguments: threshold (float): The minimum threshold allowed for class imbalance before a warning is raised. A perfectly balanced dataset would have a threshold of (1/n_classes), ie 0.50 for binary classes. Defaults to 0.10 num_cv_folds (int): The number of cross-validation folds. Must be positive. Choose 0 to ignore this warning. """ if threshold <= 0 or threshold > 0.5: raise ValueError("Provided threshold {} is not within the range (0, 0.5]".format(threshold)) self.threshold = threshold if num_cv_folds < 0: raise ValueError("Provided number of CV folds {} is less than 0".format(num_cv_folds)) self.cv_folds = num_cv_folds * 2 [docs] def validate(self, X, y): """Checks if any target labels are imbalanced beyond a threshold for binary and multiclass problems Ignores nan values in target labels if they appear Arguments: X (pd.DataFrame, pd.Series, np.array, list): Features. Ignored. y: Target labels to check for imbalanced data. Returns: list (DataCheckWarning, DataCheckError): list with DataCheckWarnings if imbalance in classes is less than the threshold, and DataCheckErrors if the number of values for each target is below 2 * num_cv_folds. Example: >>> X = pd.DataFrame({}) >>> y = pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) >>> target_check = ClassImbalanceDataCheck(threshold=0.10) >>> assert target_check.validate(X, y) == [DataCheckError("The number of instances of these targets is less than 2 * the number of cross folds = 6 instances: [0]", "ClassImbalanceDataCheck"), DataCheckWarning("The following labels fall below 10% of the target: [0]", "ClassImbalanceDataCheck")] """ if not isinstance(y, pd.Series): y = pd.Series(y) messages = [] fold_counts = y.value_counts(normalize=False) # search for targets that occur less than twice the number of cv folds first below_threshold_folds = fold_counts.where(fold_counts < self.cv_folds).dropna() if len(below_threshold_folds): warning_msg = "The number of instances of these targets is less than 2 * the number of cross folds = {} instances: {}" messages.append(DataCheckError(warning_msg.format(self.cv_folds, below_threshold_folds.index.tolist()), self.name)) counts = fold_counts / fold_counts.sum() below_threshold = counts.where(counts < self.threshold).dropna() # if there are items that occur less than the threshold, add them to the list of messages if len(below_threshold): warning_msg = "The following labels fall below {:.0f}% of the target: {}" messages.append(DataCheckWarning(warning_msg.format(self.threshold * 100, below_threshold.index.tolist()), self.name)) return messages