from abc import ABC, abstractmethod from evalml.data_checks.data_check_message_type import DataCheckMessageType from evalml.utils import classproperty [docs]class DataCheck(ABC): """Base class for all data checks. Data checks are a set of heuristics used to determine if there are problems with input data.""" @classproperty def name(cls): """Returns a name describing the data check.""" return str(cls.__name__) [docs] @abstractmethod def validate(self, X, y=None): """ Inspects and validates the input data, runs any necessary calculations or algorithms, and returns a list of warnings and errors if applicable. Arguments: X (pd.DataFrame): The input data of shape [n_samples, n_features] y (pd.Series, optional): The target data of length [n_samples] Returns: dict (DataCheckMessage): Dictionary of DataCheckError and DataCheckWarning messages """ @staticmethod def _add_message(message, messages): if message.message_type == DataCheckMessageType.ERROR: messages["errors"].append(message.to_dict()) elif message.message_type == DataCheckMessageType.WARNING: messages["warnings"].append(message.to_dict())