import numpy as np from sklearn.svm import SVR from skopt.space import Real from evalml.model_family import ModelFamily from evalml.pipelines.components.estimators import Estimator from evalml.problem_types import ProblemTypes [docs]class SVMRegressor(Estimator): """Support Vector Machine Regressor.""" name = "SVM Regressor" hyperparameter_ranges = { "C": Real(0, 10), "kernel": ["linear", "poly", "rbf", "sigmoid", "precomputed"], "gamma": ["scale", "auto"] } model_family = ModelFamily.SVM supported_problem_types = [ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION] [docs] def __init__(self, C=1.0, kernel="rbf", gamma="scale", random_state=0, **kwargs): parameters = {"C": C, "kernel": kernel, "gamma": gamma} parameters.update(kwargs) # SVR doesn't take a random_state arg svm_regressor = SVR(**parameters) super().__init__(parameters=parameters, component_obj=svm_regressor, random_state=random_state) @property def feature_importance(self): """Feature importance only works with linear kernels. If the kernel isn't linear, we return a numpy array of zeros """ if self._parameters['kernel'] != 'linear': return np.zeros(self._component_obj.n_features_in_) else: return self._component_obj.coef_