import pandas as pd from evalml.objectives import get_objective from evalml.pipelines.regression_pipeline import RegressionPipeline from evalml.problem_types import ProblemTypes from evalml.utils.gen_utils import ( _convert_to_woodwork_structure, _convert_woodwork_types_wrapper, drop_rows_with_nans, pad_with_nans ) [docs]class TimeSeriesRegressionPipeline(RegressionPipeline): """Pipeline base class for time series regression problems.""" problem_type = ProblemTypes.TIME_SERIES_REGRESSION [docs] def __init__(self, parameters, random_state=0): """Machine learning pipeline for time series regression problems made out of transformers and a classifier. Required Class Variables: component_graph (list): List of components in order. Accepts strings or ComponentBase subclasses in the list Arguments: parameters (dict): Dictionary with component names as keys and dictionary of that component's parameters as values. An empty dictionary {} implies using all default values for component parameters. Pipeline-level parameters such as gap and max_delay must be specified with the "pipeline" key. For example: Pipeline(parameters={"pipeline": {"max_delay": 4, "gap": 2}}). random_state (int): Seed for the random number generator. Defaults to 0. """ if "pipeline" not in parameters: raise ValueError("gap and max_delay parameters cannot be omitted from the parameters dict. " "Please specify them as a dictionary with the key 'pipeline'.") pipeline_params = parameters["pipeline"] self.gap = pipeline_params['gap'] self.max_delay = pipeline_params['max_delay'] super().__init__(parameters, random_state) [docs] def fit(self, X, y): """Fit a time series regression pipeline. Arguments: X (ww.DataTable, pd.DataFrame or np.ndarray): The input training data of shape [n_samples, n_features] y (ww.DataColumn, pd.Series, np.ndarray): The target training targets of length [n_samples] Returns: self """ if X is None: X = pd.DataFrame() X = _convert_to_woodwork_structure(X) y = _convert_to_woodwork_structure(y) X = _convert_woodwork_types_wrapper(X.to_dataframe()) y = _convert_woodwork_types_wrapper(y.to_series()) X_t = self._compute_features_during_fit(X, y) X_t = X_t.to_dataframe() y_shifted = y.shift(-self.gap) X_t, y_shifted = drop_rows_with_nans(X_t, y_shifted) self.estimator.fit(X_t, y_shifted) return self [docs] def predict(self, X, y=None, objective=None): """Make predictions using selected features. Arguments: X (ww.DataTable, pd.DataFrame, or np.ndarray): Data of shape [n_samples, n_features] y (ww.DataColumn, pd.Series, np.ndarray, None): The target training targets of length [n_samples] objective (Object or string): The objective to use to make predictions Returns: ww.DataColumn: Predicted values. """ if X is None: X = pd.DataFrame() X = _convert_to_woodwork_structure(X) y = _convert_to_woodwork_structure(y) X = _convert_woodwork_types_wrapper(X.to_dataframe()) y = _convert_woodwork_types_wrapper(y.to_series()) features = self.compute_estimator_features(X, y) features = _convert_woodwork_types_wrapper(features.to_dataframe()) features_no_nan, y = drop_rows_with_nans(features, y) y_arg = None if self.estimator.predict_uses_y: y_arg = y predictions = self.estimator.predict(features_no_nan, y_arg).to_series() predictions = predictions.rename(self.input_target_name) padded = pad_with_nans(predictions, max(0, features.shape[0] - predictions.shape[0])) return _convert_to_woodwork_structure(padded) [docs] def score(self, X, y, objectives): """Evaluate model performance on current and additional objectives. Arguments: X (ww.DataTable, pd.DataFrame or np.ndarray): Data of shape [n_samples, n_features] y (pd.Series, ww.DataColumn): True labels of length [n_samples] objectives (list): Non-empty list of objectives to score on Returns: dict: Ordered dictionary of objective scores """ # Only converting X for the call to _score_all_objectives if X is None: X = pd.DataFrame() X = _convert_to_woodwork_structure(X) X = _convert_woodwork_types_wrapper(X.to_dataframe()) y = _convert_to_woodwork_structure(y) y = _convert_woodwork_types_wrapper(y.to_series()) y_predicted = self.predict(X, y) y_predicted = _convert_woodwork_types_wrapper(y_predicted.to_series()) y_shifted = y.shift(-self.gap) objectives = [get_objective(o, return_instance=True) for o in objectives] y_shifted, y_predicted = drop_rows_with_nans(y_shifted, y_predicted) return self._score_all_objectives(X, y_shifted, y_predicted, y_pred_proba=None, objectives=objectives)