Using Text Data with EvalML

In this demo, we will show you how to use EvalML to build models which use text data.

[1]:
import evalml
from evalml import AutoMLSearch

Dataset

We will be utilizing a dataset of SMS text messages, some of which are categorized as spam, and others which are not (“ham”). This dataset is originally from Kaggle, but modified to produce a slightly more even distribution of spam to ham.

[2]:
from urllib.request import urlopen
import pandas as pd

input_data = urlopen('https://featurelabs-static.s3.amazonaws.com/spam_text_messages_modified.csv')
data = pd.read_csv(input_data)

X = data.drop(['Category'], axis=1)
y = data['Category']

display(X.head())
Message
0 Free entry in 2 a wkly comp to win FA Cup fina...
1 FreeMsg Hey there darling it's been 3 week's n...
2 WINNER!! As a valued network customer you have...
3 Had your mobile 11 months or more? U R entitle...
4 SIX chances to win CASH! From 100 to 20,000 po...

The ham vs spam distribution of the data is 3:1, so any machine learning model must get above 75% accuracy in order to perform better than a trivial baseline model which simply classifies everything as ham.

[3]:
y.value_counts(normalize=True)
[3]:
ham     0.750084
spam    0.249916
Name: Category, dtype: float64

Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a holdout set.

[4]:
X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, problem_type='binary', test_size=0.2, random_state=0)

EvalML uses Woodwork to automatically detect which columns are text columns, so you can run search normally, as you would if there was no text data. We can print out the logical type of the Message column and assert that it is indeed inferred as a natural language column.

[5]:
X_train.types
[5]:
Physical Type Logical Type Semantic Tag(s)
Data Column
Message string NaturalLanguage []

Because the spam/ham labels are binary, we will use AutoMLSearch(X_train=X_train, y_train=y_train, problem_type='binary'). When we call .search(), the search for the best pipeline will begin.

[6]:
automl = AutoMLSearch(X_train=X_train, y_train=y_train,
                      problem_type='binary',
                      max_batches=1,
                      optimize_thresholds=True)

automl.search()
Numerical binary classification target classes must be [0, 1], got [ham, spam] instead
Generating pipelines to search over...
*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Searching up to 1 batches for a total of 9 pipelines.
Allowed model families: linear_model, random_forest, catboost, lightgbm, xgboost, decision_tree, extra_trees

Batch 1: (1/9) Mode Baseline Binary Classification P... Elapsed:00:00
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 8.638
Batch 1: (2/9) Logistic Regression Classifier w/ Imp... Elapsed:00:00
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.214
High coefficient of variation (cv >= 0.2) within cross validation scores. Logistic Regression Classifier w/ Imputer + Text Featurization Component + Standard Scaler may not perform as estimated on unseen data.
Batch 1: (3/9) Random Forest Classifier w/ Imputer +... Elapsed:00:11
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.155
High coefficient of variation (cv >= 0.2) within cross validation scores. Random Forest Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (4/9) XGBoost Classifier w/ Imputer + Text ... Elapsed:00:21
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.179
High coefficient of variation (cv >= 0.2) within cross validation scores. XGBoost Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (5/9) CatBoost Classifier w/ Imputer + Text... Elapsed:00:30
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.526
Batch 1: (6/9) Elastic Net Classifier w/ Imputer + T... Elapsed:00:39
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.543
Batch 1: (7/9) Extra Trees Classifier w/ Imputer + T... Elapsed:00:48
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.252
High coefficient of variation (cv >= 0.2) within cross validation scores. Extra Trees Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (8/9) LightGBM Classifier w/ Imputer + Text... Elapsed:00:58
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.215
High coefficient of variation (cv >= 0.2) within cross validation scores. LightGBM Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (9/9) Decision Tree Classifier w/ Imputer +... Elapsed:01:07
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.802
High coefficient of variation (cv >= 0.2) within cross validation scores. Decision Tree Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.

Search finished after 01:16
Best pipeline: Random Forest Classifier w/ Imputer + Text Featurization Component
Best pipeline Log Loss Binary: 0.154849

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched.

[7]:
automl.rankings
[7]:
id pipeline_name score validation_score percent_better_than_baseline high_variance_cv parameters
0 2 Random Forest Classifier w/ Imputer + Text Fea... 0.154849 0.110302 98.207418 True {'Imputer': {'categorical_impute_strategy': 'm...
1 3 XGBoost Classifier w/ Imputer + Text Featuriza... 0.178639 0.113254 97.932010 True {'Imputer': {'categorical_impute_strategy': 'm...
2 1 Logistic Regression Classifier w/ Imputer + Te... 0.214011 0.165624 97.522538 True {'Imputer': {'categorical_impute_strategy': 'm...
3 7 LightGBM Classifier w/ Imputer + Text Featuriz... 0.214580 0.136260 97.515944 True {'Imputer': {'categorical_impute_strategy': 'm...
4 6 Extra Trees Classifier w/ Imputer + Text Featu... 0.252206 0.216198 97.080377 True {'Imputer': {'categorical_impute_strategy': 'm...
5 4 CatBoost Classifier w/ Imputer + Text Featuriz... 0.526403 0.512717 93.906174 False {'Imputer': {'categorical_impute_strategy': 'm...
6 5 Elastic Net Classifier w/ Imputer + Text Featu... 0.542803 0.529152 93.716325 False {'Imputer': {'categorical_impute_strategy': 'm...
7 8 Decision Tree Classifier w/ Imputer + Text Fea... 0.801766 0.555179 90.718481 True {'Imputer': {'categorical_impute_strategy': 'm...
8 0 Mode Baseline Binary Classification Pipeline 8.638305 8.623860 0.000000 False {'Baseline Classifier': {'strategy': 'mode'}}

To select the best pipeline we can call automl.best_pipeline.

[8]:
best_pipeline = automl.best_pipeline

Describe pipeline

You can get more details about any pipeline, including how it performed on other objective functions.

[9]:
automl.describe_pipeline(automl.rankings.iloc[0]["id"])
**********************************************************************
* Random Forest Classifier w/ Imputer + Text Featurization Component *
**********************************************************************

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Imputer
         * categorical_impute_strategy : most_frequent
         * numeric_impute_strategy : mean
         * categorical_fill_value : None
         * numeric_fill_value : None
2. Text Featurization Component
         * text_columns : ['Message']
3. Random Forest Classifier
         * n_estimators : 100
         * max_depth : 6
         * n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 9.6 seconds

Cross Validation
----------------
             Log Loss Binary  MCC Binary   AUC  Precision    F1  Balanced Accuracy Binary  Accuracy Binary # Training # Validation
0                      0.110       0.895 0.987      0.938 0.921                     0.942            0.961   1594.000      797.000
1                      0.144       0.854 0.980      0.919 0.888                     0.917            0.946   1594.000      797.000
2                      0.210       0.783 0.962      0.839 0.837                     0.891            0.918   1594.000      797.000
mean                   0.155       0.844 0.977      0.899 0.882                     0.917            0.942          -            -
std                    0.051       0.057 0.013      0.052 0.042                     0.026            0.022          -            -
coef of var            0.326       0.067 0.013      0.058 0.048                     0.028            0.023          -            -
[10]:
best_pipeline.graph()
[10]:
../_images/demos_text_input_19_0.svg

Notice above that there is a Text Featurization Component as the second step in the pipeline. The Woodwork DataTable passed in to AutoML search recognizes that 'Message' is a text column, and converts this text into numerical values that can be handled by the estimator.

Evaluate on holdout

Now, we can score the pipeline on the holdout data using the core objectives for binary classification problems.

[11]:
scores = best_pipeline.score(X_holdout, y_holdout,  objectives=evalml.objectives.get_core_objectives('binary'))
print(f'Accuracy Binary: {scores["Accuracy Binary"]}')
Accuracy Binary: 0.9732441471571907

As you can see, this model performs relatively well on this dataset, even on unseen data.

Why encode text this way?

To demonstrate the importance of text-specific modeling, let’s train a model with the same dataset, without letting AutoMLSearch detect the text column. We can change this by explicitly setting the data type of the 'Message' column in Woodwork to Categorical.

[12]:
import woodwork as ww
X_train_categorical = X_train.set_types(logical_types={'Message': 'Categorical'})
[13]:
automl_no_text = AutoMLSearch(X_train=X_train, y_train=y_train,
                              problem_type='binary',
                              max_batches=1,
                              optimize_thresholds=True)

automl_no_text.search()
Numerical binary classification target classes must be [0, 1], got [ham, spam] instead
Generating pipelines to search over...
*****************************
* Beginning pipeline search *
*****************************

Optimizing for Log Loss Binary.
Lower score is better.

Searching up to 1 batches for a total of 9 pipelines.
Allowed model families: linear_model, random_forest, catboost, lightgbm, xgboost, decision_tree, extra_trees

Batch 1: (1/9) Mode Baseline Binary Classification P... Elapsed:00:00
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 8.638
Batch 1: (2/9) Logistic Regression Classifier w/ Imp... Elapsed:00:00
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.214
High coefficient of variation (cv >= 0.2) within cross validation scores. Logistic Regression Classifier w/ Imputer + Text Featurization Component + Standard Scaler may not perform as estimated on unseen data.
Batch 1: (3/9) Random Forest Classifier w/ Imputer +... Elapsed:00:09
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.155
High coefficient of variation (cv >= 0.2) within cross validation scores. Random Forest Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (4/9) XGBoost Classifier w/ Imputer + Text ... Elapsed:00:18
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.179
High coefficient of variation (cv >= 0.2) within cross validation scores. XGBoost Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (5/9) CatBoost Classifier w/ Imputer + Text... Elapsed:00:28
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.526
Batch 1: (6/9) Elastic Net Classifier w/ Imputer + T... Elapsed:00:37
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.543
Batch 1: (7/9) Extra Trees Classifier w/ Imputer + T... Elapsed:00:46
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.252
High coefficient of variation (cv >= 0.2) within cross validation scores. Extra Trees Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (8/9) LightGBM Classifier w/ Imputer + Text... Elapsed:00:55
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.215
High coefficient of variation (cv >= 0.2) within cross validation scores. LightGBM Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.
Batch 1: (9/9) Decision Tree Classifier w/ Imputer +... Elapsed:01:04
        Starting cross validation
        Finished cross validation - mean Log Loss Binary: 0.802
High coefficient of variation (cv >= 0.2) within cross validation scores. Decision Tree Classifier w/ Imputer + Text Featurization Component may not perform as estimated on unseen data.

Search finished after 01:13
Best pipeline: Random Forest Classifier w/ Imputer + Text Featurization Component
Best pipeline Log Loss Binary: 0.154849

Like before, we can look at the rankings and pick the best pipeline.

[14]:
automl_no_text.rankings
[14]:
id pipeline_name score validation_score percent_better_than_baseline high_variance_cv parameters
0 2 Random Forest Classifier w/ Imputer + Text Fea... 0.154849 0.110302 98.207418 True {'Imputer': {'categorical_impute_strategy': 'm...
1 3 XGBoost Classifier w/ Imputer + Text Featuriza... 0.178639 0.113254 97.932010 True {'Imputer': {'categorical_impute_strategy': 'm...
2 1 Logistic Regression Classifier w/ Imputer + Te... 0.214011 0.165624 97.522538 True {'Imputer': {'categorical_impute_strategy': 'm...
3 7 LightGBM Classifier w/ Imputer + Text Featuriz... 0.214580 0.136260 97.515944 True {'Imputer': {'categorical_impute_strategy': 'm...
4 6 Extra Trees Classifier w/ Imputer + Text Featu... 0.252206 0.216198 97.080377 True {'Imputer': {'categorical_impute_strategy': 'm...
5 4 CatBoost Classifier w/ Imputer + Text Featuriz... 0.526403 0.512717 93.906174 False {'Imputer': {'categorical_impute_strategy': 'm...
6 5 Elastic Net Classifier w/ Imputer + Text Featu... 0.542803 0.529152 93.716325 False {'Imputer': {'categorical_impute_strategy': 'm...
7 8 Decision Tree Classifier w/ Imputer + Text Fea... 0.801766 0.555179 90.718481 True {'Imputer': {'categorical_impute_strategy': 'm...
8 0 Mode Baseline Binary Classification Pipeline 8.638305 8.623860 0.000000 False {'Baseline Classifier': {'strategy': 'mode'}}
[15]:
best_pipeline_no_text = automl_no_text.best_pipeline

Here, changing the data type of the text column removed the Text Featurization Component from the pipeline.

[16]:
best_pipeline_no_text.graph()
[16]:
../_images/demos_text_input_32_0.svg
[17]:
automl_no_text.describe_pipeline(automl_no_text.rankings.iloc[0]["id"])
**********************************************************************
* Random Forest Classifier w/ Imputer + Text Featurization Component *
**********************************************************************

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Imputer
         * categorical_impute_strategy : most_frequent
         * numeric_impute_strategy : mean
         * categorical_fill_value : None
         * numeric_fill_value : None
2. Text Featurization Component
         * text_columns : ['Message']
3. Random Forest Classifier
         * n_estimators : 100
         * max_depth : 6
         * n_jobs : -1

Training
========
Training for binary problems.
Total training time (including CV): 9.8 seconds

Cross Validation
----------------
             Log Loss Binary  MCC Binary   AUC  Precision    F1  Balanced Accuracy Binary  Accuracy Binary # Training # Validation
0                      0.110       0.895 0.987      0.938 0.921                     0.942            0.961   1594.000      797.000
1                      0.144       0.854 0.980      0.919 0.888                     0.917            0.946   1594.000      797.000
2                      0.210       0.783 0.962      0.839 0.837                     0.891            0.918   1594.000      797.000
mean                   0.155       0.844 0.977      0.899 0.882                     0.917            0.942          -            -
std                    0.051       0.057 0.013      0.052 0.042                     0.026            0.022          -            -
coef of var            0.326       0.067 0.013      0.058 0.048                     0.028            0.023          -            -
[18]:
# get standard performance metrics on holdout data
scores = best_pipeline_no_text.score(X_holdout, y_holdout, objectives=evalml.objectives.get_core_objectives('binary'))
print(f'Accuracy Binary: {scores["Accuracy Binary"]}')
Accuracy Binary: 0.9732441471571907

Without the Text Featurization Component, the 'Message' column was treated as a categorical column, and therefore the conversion of this text to numerical features happened in the One Hot Encoder. The best pipeline encoded the top 10 most frequent “categories” of these texts, meaning 10 text messages were one-hot encoded and all the others were dropped. Clearly, this removed almost all of the information from the dataset, as we can see the best_pipeline_no_text did not beat the random guess of predicting “ham” in every case.