InvalidTargetDataCheck.
validate
Checks if the target data contains missing or invalid values.
X (ww.DataTable, pd.DataFrame, np.ndarray) – Features. Ignored.
y (ww.DataColumn, pd.Series, np.ndarray) – Target data to check for invalid values.
List with DataCheckErrors if any invalid values are found in the target data.
dict (DataCheckError)
Example
>>> import pandas as pd >>> X = pd.DataFrame({}) >>> y = pd.Series([0, 1, None, None]) >>> target_check = InvalidTargetDataCheck('binary', 'Log Loss Binary') >>> assert target_check.validate(X, y) == {"errors": [{"message": "2 row(s) (50.0%) of target values are null", "data_check_name": "InvalidTargetDataCheck", "level": "error", "code": "TARGET_HAS_NULL", "details": {"num_null_rows": 2, "pct_null_rows": 50}}], "warnings": []}