from abc import abstractmethod from evalml.pipelines.components.transformers import Transformer from evalml.utils import infer_feature_types class ColumnSelector(Transformer): def __init__(self, columns=None, random_state=None, random_seed=0, **kwargs): """Initalizes an transformer that drops specified columns in input data. Arguments: columns (list(string)): List of column names, used to determine which columns to drop. """ if columns and not isinstance(columns, list): raise ValueError(f"Parameter columns must be a list. Received {type(columns)}.") parameters = {"columns": columns} parameters.update(kwargs) super().__init__(parameters=parameters, component_obj=None, random_state=random_state, random_seed=random_seed) def _check_input_for_columns(self, X): cols = self.parameters.get("columns") or [] column_names = X.columns missing_cols = set(cols) - set(column_names) if missing_cols: raise ValueError( "Columns {} not found in input data".format(', '.join(f"'{col_name}'" for col_name in missing_cols)) ) @abstractmethod def _modify_columns(self, cols, X, y=None): """How the transformer modifies the columns of the input data.""" def fit(self, X, y=None): """Fits the transformer by checking if column names are present in the dataset. Arguments: X (ww.DataTable, pd.DataFrame): Data to check. y (ww.DataColumn, pd.Series, optional): Targets. Returns: self """ X = infer_feature_types(X) self._check_input_for_columns(X) return self def transform(self, X, y=None): X = infer_feature_types(X) self._check_input_for_columns(X) cols = self.parameters.get("columns") or [] modified_cols = self._modify_columns(cols, X, y) return infer_feature_types(modified_cols) [docs]class DropColumns(ColumnSelector): """Drops specified columns in input data.""" name = "Drop Columns Transformer" hyperparameter_ranges = {} needs_fitting = False def _modify_columns(self, cols, X, y=None): return X.drop(columns=cols) [docs] def transform(self, X, y=None): """Transforms data X by dropping columns. Arguments: X (ww.DataTable, pd.DataFrame): Data to transform. y (ww.DataColumn, pd.Series, optional): Targets. Returns: ww.DataTable: Transformed X. """ return super().transform(X, y) [docs]class SelectColumns(ColumnSelector): """Selects specified columns in input data.""" name = "Select Columns Transformer" hyperparameter_ranges = {} needs_fitting = False def _modify_columns(self, cols, X, y=None): return X[cols] [docs] def transform(self, X, y=None): """Transforms data X by selecting columns. Arguments: X (ww.DataTable, pd.DataFrame): Data to transform. y (ww.DataColumn, pd.Series, optional): Targets. Returns: ww.DataTable: Transformed X. """ return super().transform(X, y)