from abc import ABC, abstractmethod
import numpy as np
import pandas as pd
import woodwork as ww
from evalml.problem_types import handle_problem_types
from evalml.utils import _convert_woodwork_types_wrapper, classproperty
[docs]class ObjectiveBase(ABC):
"""Base class for all objectives."""
problem_types = None
@property
@classmethod
@abstractmethod
def name(cls):
"""Returns a name describing the objective."""
@property
@classmethod
@abstractmethod
def greater_is_better(cls):
"""Returns a boolean determining if a greater score indicates better model performance."""
@property
@classmethod
@abstractmethod
def score_needs_proba(cls):
"""Returns a boolean determining if the score() method needs probability estimates. This should be true for objectives which work with predicted probabilities, like log loss or AUC, and false for objectives which compare predicted class labels to the actual labels, like F1 or correlation.
"""
@property
@classmethod
@abstractmethod
def perfect_score(cls):
"""Returns the score obtained by evaluating this objective on a perfect model."""
@property
@classmethod
@abstractmethod
def is_bounded_like_percentage(cls):
"""Returns whether this objective is bounded between 0 and 1, inclusive."""
[docs] @classmethod
@abstractmethod
def objective_function(cls, y_true, y_predicted, X=None):
"""Computes the relative value of the provided predictions compared to the actual labels, according a specified metric
Arguments:
y_predicted (pd.Series): Predicted values of length [n_samples]
y_true (pd.Series): Actual class labels of length [n_samples]
X (pd.DataFrame or np.ndarray): Extra data of shape [n_samples, n_features] necessary to calculate score
Returns:
Numerical value used to calculate score
"""
@classproperty
def positive_only(cls):
"""If True, this objective is only valid for positive data. Default False."""
return False
[docs] def score(self, y_true, y_predicted, X=None):
"""Returns a numerical score indicating performance based on the differences between the predicted and actual values.
Arguments:
y_predicted (pd.Series): Predicted values of length [n_samples]
y_true (pd.Series): Actual class labels of length [n_samples]
X (pd.DataFrame or np.ndarray): Extra data of shape [n_samples, n_features] necessary to calculate score
Returns:
score
"""
if X is not None:
X = self._standardize_input_type(X)
y_true = self._standardize_input_type(y_true)
y_predicted = self._standardize_input_type(y_predicted)
self.validate_inputs(y_true, y_predicted)
return self.objective_function(y_true, y_predicted, X=X)
@staticmethod
def _standardize_input_type(input_data):
"""Standardize input to pandas for scoring.
Arguments:
input_data (list, ww.DataTable, ww.DataColumn, pd.DataFrame, pd.Series, or np.ndarray): A matrix of predictions or predicted probabilities
Returns:
pd.DataFrame or pd.Series: a pd.Series, or pd.DataFrame object if predicted probabilities were provided.
"""
if isinstance(input_data, (pd.Series, pd.DataFrame)):
return input_data
if isinstance(input_data, ww.DataTable):
return _convert_woodwork_types_wrapper(input_data.to_dataframe())
if isinstance(input_data, ww.DataColumn):
return _convert_woodwork_types_wrapper(input_data.to_series())
if isinstance(input_data, list):
if isinstance(input_data[0], list):
return pd.DataFrame(input_data)
return pd.Series(input_data)
if isinstance(input_data, np.ndarray):
if len(input_data.shape) == 1:
return pd.Series(input_data)
return pd.DataFrame(input_data)
[docs] @classmethod
def calculate_percent_difference(cls, score, baseline_score):
"""Calculate the percent difference between scores.
Arguments:
score (float): A score. Output of the score method of this objective.
baseline_score (float): A score. Output of the score method of this objective. In practice,
this is the score achieved on this objective with a baseline estimator.
Returns:
float: The percent difference between the scores. Note that for objectives that can be interpreted
as percentages, this will be the difference between the reference score and score. For all other
objectives, the difference will be normalized by the reference score.
"""
if pd.isna(score) or pd.isna(baseline_score):
return np.nan
if np.isclose(baseline_score - score, 0, atol=1e-10):
return 0
# Return inf when dividing by 0
if np.isclose(baseline_score, 0, atol=1e-10) and not cls.is_bounded_like_percentage:
return np.inf
decrease = False
if (baseline_score > score and cls.greater_is_better) or (baseline_score < score and not cls.greater_is_better):
decrease = True
difference = (baseline_score - score)
change = difference if cls.is_bounded_like_percentage else difference / baseline_score
return 100 * (-1) ** (decrease) * np.abs(change)
[docs] @classmethod
def is_defined_for_problem_type(cls, problem_type):
return handle_problem_types(problem_type) in cls.problem_types