Source code for evalml.data_checks.target_leakage_data_check

import pandas as pd

from evalml.data_checks import (
    DataCheck,
    DataCheckAction,
    DataCheckActionCode,
    DataCheckMessageCode,
    DataCheckWarning
)
from evalml.utils.woodwork_utils import (
    _convert_woodwork_types_wrapper,
    infer_feature_types,
    numeric_and_boolean_ww
)


[docs]class TargetLeakageDataCheck(DataCheck): """Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation."""
[docs] def __init__(self, pct_corr_threshold=0.95, method="mutual"): """Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation. If `method='mutual'`, this data check uses mutual information and supports all target and feature types. Otherwise, if `method='pearson'`, it uses Pearson correlation and only supports binary with numeric and boolean dtypes. Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1]. Arguments: pct_corr_threshold (float): The correlation threshold to be considered leakage. Defaults to 0.95. method (string): The method to determine correlation. Use 'mutual' for mutual information, otherwise 'pearson' for Pearson correlation. Defaults to 'mutual'. """ if pct_corr_threshold < 0 or pct_corr_threshold > 1: raise ValueError("pct_corr_threshold must be a float between 0 and 1, inclusive.") if method not in ['mutual', 'pearson']: raise ValueError(f"Method '{method}' not in ['mutual', 'pearson']") self.pct_corr_threshold = pct_corr_threshold self.method = method
def _calculate_pearson(self, X, y): highly_corr_cols = [] X_num = X.select(include=numeric_and_boolean_ww) if y.logical_type not in numeric_and_boolean_ww or len(X_num.columns) == 0: return highly_corr_cols X_num = _convert_woodwork_types_wrapper(X_num.to_dataframe()) y = _convert_woodwork_types_wrapper(y.to_series()) highly_corr_cols = [label for label, col in X_num.iteritems() if abs(y.corr(col)) >= self.pct_corr_threshold] return highly_corr_cols def _calculate_mutual_information(self, X, y): highly_corr_cols = [] for col in X.columns: cols_to_compare = infer_feature_types(pd.DataFrame({col: X[col], str(col) + "y": y})) mutual_info = cols_to_compare.mutual_information() if len(mutual_info) > 0 and mutual_info['mutual_info'].iloc[0] > self.pct_corr_threshold: highly_corr_cols.append(col) return highly_corr_cols
[docs] def validate(self, X, y): """Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation. If `method='mutual'`, supports all target and feature types. Otherwise, if `method='pearson'` only supports binary with numeric and boolean dtypes. Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1]. Arguments: X (ww.DataTable, pd.DataFrame, np.ndarray): The input features to check y (ww.DataColumn, pd.Series, np.ndarray): The target data Returns: dict (DataCheckWarning): dict with a DataCheckWarning if target leakage is detected. Example: >>> import pandas as pd >>> X = pd.DataFrame({ ... 'leak': [10, 42, 31, 51, 61], ... 'x': [42, 54, 12, 64, 12], ... 'y': [13, 5, 13, 74, 24], ... }) >>> y = pd.Series([10, 42, 31, 51, 40]) >>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95) >>> assert target_leakage_check.validate(X, y) == {"warnings": [{"message": "Column 'leak' is 95.0% or more correlated with the target",\ "data_check_name": "TargetLeakageDataCheck",\ "level": "warning",\ "code": "TARGET_LEAKAGE",\ "details": {"column": "leak"}}],\ "errors": [],\ "actions": [{"code": "DROP_COL",\ "details": {"column": "leak"}}]} """ results = { "warnings": [], "errors": [], "actions": [] } X = infer_feature_types(X) y = infer_feature_types(y) if self.method == 'pearson': highly_corr_cols = self._calculate_pearson(X, y) else: X = _convert_woodwork_types_wrapper(X.to_dataframe()) y = _convert_woodwork_types_wrapper(y.to_series()) highly_corr_cols = self._calculate_mutual_information(X, y) warning_msg = "Column '{}' is {}% or more correlated with the target" results["warnings"].extend([DataCheckWarning(message=warning_msg.format(col_name, self.pct_corr_threshold * 100), data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_LEAKAGE, details={"column": col_name}).to_dict() for col_name in highly_corr_cols]) results["actions"].extend([DataCheckAction(DataCheckActionCode.DROP_COL, details={"column": col_name}).to_dict() for col_name in highly_corr_cols]) return results