import pandas as pd
from evalml.data_checks import (
DataCheck,
DataCheckAction,
DataCheckActionCode,
DataCheckMessageCode,
DataCheckWarning
)
from evalml.utils.woodwork_utils import (
_convert_woodwork_types_wrapper,
infer_feature_types,
numeric_and_boolean_ww
)
[docs]class TargetLeakageDataCheck(DataCheck):
"""Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation."""
[docs] def __init__(self, pct_corr_threshold=0.95, method="mutual"):
"""Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.
If `method='mutual'`, this data check uses mutual information and supports all target and feature types.
Otherwise, if `method='pearson'`, it uses Pearson correlation and only supports binary with numeric and boolean dtypes.
Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1].
Arguments:
pct_corr_threshold (float): The correlation threshold to be considered leakage. Defaults to 0.95.
method (string): The method to determine correlation. Use 'mutual' for mutual information, otherwise 'pearson' for Pearson correlation. Defaults to 'mutual'.
"""
if pct_corr_threshold < 0 or pct_corr_threshold > 1:
raise ValueError("pct_corr_threshold must be a float between 0 and 1, inclusive.")
if method not in ['mutual', 'pearson']:
raise ValueError(f"Method '{method}' not in ['mutual', 'pearson']")
self.pct_corr_threshold = pct_corr_threshold
self.method = method
def _calculate_pearson(self, X, y):
highly_corr_cols = []
X_num = X.select(include=numeric_and_boolean_ww)
if y.logical_type not in numeric_and_boolean_ww or len(X_num.columns) == 0:
return highly_corr_cols
X_num = _convert_woodwork_types_wrapper(X_num.to_dataframe())
y = _convert_woodwork_types_wrapper(y.to_series())
highly_corr_cols = [label for label, col in X_num.iteritems() if abs(y.corr(col)) >= self.pct_corr_threshold]
return highly_corr_cols
def _calculate_mutual_information(self, X, y):
highly_corr_cols = []
for col in X.columns:
cols_to_compare = infer_feature_types(pd.DataFrame({col: X[col], str(col) + "y": y}))
mutual_info = cols_to_compare.mutual_information()
if len(mutual_info) > 0 and mutual_info['mutual_info'].iloc[0] > self.pct_corr_threshold:
highly_corr_cols.append(col)
return highly_corr_cols
[docs] def validate(self, X, y):
"""Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.
If `method='mutual'`, supports all target and feature types. Otherwise, if `method='pearson'` only supports binary with numeric and boolean dtypes.
Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1].
Arguments:
X (ww.DataTable, pd.DataFrame, np.ndarray): The input features to check
y (ww.DataColumn, pd.Series, np.ndarray): The target data
Returns:
dict (DataCheckWarning): dict with a DataCheckWarning if target leakage is detected.
Example:
>>> import pandas as pd
>>> X = pd.DataFrame({
... 'leak': [10, 42, 31, 51, 61],
... 'x': [42, 54, 12, 64, 12],
... 'y': [13, 5, 13, 74, 24],
... })
>>> y = pd.Series([10, 42, 31, 51, 40])
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
>>> assert target_leakage_check.validate(X, y) == {"warnings": [{"message": "Column 'leak' is 95.0% or more correlated with the target",\
"data_check_name": "TargetLeakageDataCheck",\
"level": "warning",\
"code": "TARGET_LEAKAGE",\
"details": {"column": "leak"}}],\
"errors": [],\
"actions": [{"code": "DROP_COL",\
"metadata": {"column": "leak"}}]}
"""
results = {
"warnings": [],
"errors": [],
"actions": []
}
X = infer_feature_types(X)
y = infer_feature_types(y)
if self.method == 'pearson':
highly_corr_cols = self._calculate_pearson(X, y)
else:
X = _convert_woodwork_types_wrapper(X.to_dataframe())
y = _convert_woodwork_types_wrapper(y.to_series())
highly_corr_cols = self._calculate_mutual_information(X, y)
warning_msg = "Column '{}' is {}% or more correlated with the target"
results["warnings"].extend([DataCheckWarning(message=warning_msg.format(col_name, self.pct_corr_threshold * 100),
data_check_name=self.name,
message_code=DataCheckMessageCode.TARGET_LEAKAGE,
details={"column": col_name}).to_dict()
for col_name in highly_corr_cols])
results["actions"].extend([DataCheckAction(DataCheckActionCode.DROP_COL,
metadata={"column": col_name}).to_dict()
for col_name in highly_corr_cols])
return results