import pandas as pd
from .binary_classification_pipeline_mixin import (
BinaryClassificationPipelineMixin
)
from evalml.objectives import get_objective
from evalml.pipelines.classification_pipeline import ClassificationPipeline
from evalml.pipelines.pipeline_meta import TimeSeriesPipelineBaseMeta
from evalml.problem_types import ProblemTypes
from evalml.utils import (
_convert_woodwork_types_wrapper,
drop_rows_with_nans,
infer_feature_types,
pad_with_nans
)
[docs]class TimeSeriesClassificationPipeline(ClassificationPipeline, metaclass=TimeSeriesPipelineBaseMeta):
"""Pipeline base class for time series classifcation problems."""
[docs] def __init__(self, parameters, random_seed=0):
"""Machine learning pipeline for time series classification problems made out of transformers and a classifier.
Required Class Variables:
component_graph (list): List of components in order. Accepts strings or ComponentBase subclasses in the list
Arguments:
parameters (dict): Dictionary with component names as keys and dictionary of that component's parameters as values.
An empty dictionary {} implies using all default values for component parameters. Pipeline-level
parameters such as gap and max_delay must be specified with the "pipeline" key. For example:
Pipeline(parameters={"pipeline": {"max_delay": 4, "gap": 2}}).
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
if "pipeline" not in parameters:
raise ValueError("gap and max_delay parameters cannot be omitted from the parameters dict. "
"Please specify them as a dictionary with the key 'pipeline'.")
pipeline_params = parameters["pipeline"]
self.gap = pipeline_params['gap']
self.max_delay = pipeline_params['max_delay']
super().__init__(parameters, random_seed)
@staticmethod
def _convert_to_woodwork(X, y):
if X is None:
X = pd.DataFrame()
X = infer_feature_types(X)
y = infer_feature_types(y)
return X, y
[docs] def fit(self, X, y):
"""Fit a time series classification pipeline.
Arguments:
X (ww.DataTable, pd.DataFrame or np.ndarray): The input training data of shape [n_samples, n_features]
y (ww.DataColumn, pd.Series, np.ndarray): The target training targets of length [n_samples]
Returns:
self
"""
X, y = self._convert_to_woodwork(X, y)
X = _convert_woodwork_types_wrapper(X.to_dataframe())
y = _convert_woodwork_types_wrapper(y.to_series())
self._encoder.fit(y)
y = self._encode_targets(y)
X_t = self._compute_features_during_fit(X, y)
X_t = _convert_woodwork_types_wrapper(X_t.to_dataframe())
y_shifted = y.shift(-self.gap)
X_t, y_shifted = drop_rows_with_nans(X_t, y_shifted)
self.estimator.fit(X_t, y_shifted)
self.input_feature_names = self._component_graph.input_feature_names
return self
def _estimator_predict(self, features, y):
"""Get estimator predictions.
This helper passes y as an argument if needed by the estimator.
"""
y_arg = None
if self.estimator.predict_uses_y:
y_arg = y
return self.estimator.predict(features, y=y_arg)
def _estimator_predict_proba(self, features, y):
"""Get estimator predicted probabilities.
This helper passes y as an argument if needed by the estimator.
"""
y_arg = None
if self.estimator.predict_uses_y:
y_arg = y
return self.estimator.predict_proba(features, y=y_arg)
def _predict(self, X, y, objective=None, pad=False):
features = self.compute_estimator_features(X, y)
features = _convert_woodwork_types_wrapper(features.to_dataframe())
features_no_nan, y_no_nan = drop_rows_with_nans(features, y)
predictions = self._estimator_predict(features_no_nan, y_no_nan)
if pad:
padded = pad_with_nans(predictions.to_series(), max(0, features.shape[0] - predictions.shape[0]))
return infer_feature_types(padded)
return predictions
[docs] def predict(self, X, y=None, objective=None):
"""Make predictions using selected features.
Arguments:
X (ww.DataTable, pd.DataFrame, or np.ndarray): Data of shape [n_samples, n_features]
y (ww.DataColumn, pd.Series, np.ndarray, None): The target training targets of length [n_samples]
objective (Object or string): The objective to use to make predictions
Returns:
ww.DataColumn: Predicted values.
"""
X, y = self._convert_to_woodwork(X, y)
X = _convert_woodwork_types_wrapper(X.to_dataframe())
y = _convert_woodwork_types_wrapper(y.to_series())
y = self._encode_targets(y)
n_features = max(len(y), X.shape[0])
predictions = self._predict(X, y, objective=objective, pad=False)
predictions = _convert_woodwork_types_wrapper(predictions.to_series())
# In case gap is 0 and this is a baseline pipeline, we drop the nans in the
# predictions before decoding them
predictions = pd.Series(self._decode_targets(predictions.dropna()), name=self.input_target_name)
padded = pad_with_nans(predictions, max(0, n_features - predictions.shape[0]))
return infer_feature_types(padded)
[docs] def predict_proba(self, X, y=None):
"""Make probability estimates for labels.
Arguments:
X (ww.DataTable, pd.DataFrame or np.ndarray): Data of shape [n_samples, n_features]
Returns:
ww.DataTable: Probability estimates
"""
X, y = self._convert_to_woodwork(X, y)
X = _convert_woodwork_types_wrapper(X.to_dataframe())
y = _convert_woodwork_types_wrapper(y.to_series())
y = self._encode_targets(y)
features = self.compute_estimator_features(X, y)
features = _convert_woodwork_types_wrapper(features.to_dataframe())
features_no_nan, y_no_nan = drop_rows_with_nans(features, y)
proba = self._estimator_predict_proba(features_no_nan, y_no_nan).to_dataframe()
proba.columns = self._encoder.classes_
padded = pad_with_nans(proba, max(0, features.shape[0] - proba.shape[0]))
return infer_feature_types(padded)
[docs] def score(self, X, y, objectives):
"""Evaluate model performance on current and additional objectives.
Arguments:
X (ww.DataTable, pd.DataFrame or np.ndarray): Data of shape [n_samples, n_features]
y (ww.DataColumn, pd.Series): True labels of length [n_samples]
objectives (list): Non-empty list of objectives to score on
Returns:
dict: Ordered dictionary of objective scores
"""
X, y = self._convert_to_woodwork(X, y)
X = _convert_woodwork_types_wrapper(X.to_dataframe())
y = _convert_woodwork_types_wrapper(y.to_series())
objectives = self.create_objectives(objectives)
y_encoded = self._encode_targets(y)
y_shifted = y_encoded.shift(-self.gap)
y_predicted, y_predicted_proba = self._compute_predictions(X, y, objectives, time_series=True)
if y_predicted is not None:
y_predicted = _convert_woodwork_types_wrapper(y_predicted.to_series())
if y_predicted_proba is not None:
y_predicted_proba = _convert_woodwork_types_wrapper(y_predicted_proba.to_dataframe())
y_shifted, y_predicted, y_predicted_proba = drop_rows_with_nans(y_shifted, y_predicted, y_predicted_proba)
return self._score_all_objectives(X, y_shifted, y_predicted,
y_pred_proba=y_predicted_proba,
objectives=objectives)
[docs]class TimeSeriesBinaryClassificationPipeline(BinaryClassificationPipelineMixin, TimeSeriesClassificationPipeline, metaclass=TimeSeriesPipelineBaseMeta):
problem_type = ProblemTypes.TIME_SERIES_BINARY
def _predict(self, X, y, objective=None, pad=False):
features = self.compute_estimator_features(X, y)
features = _convert_woodwork_types_wrapper(features.to_dataframe())
features_no_nan, y_no_nan = drop_rows_with_nans(features, y)
if objective is not None:
objective = get_objective(objective, return_instance=True)
if not objective.is_defined_for_problem_type(self.problem_type):
raise ValueError(f"Objective {objective.name} is not defined for time series binary classification.")
if self.threshold is None:
predictions = self._estimator_predict(features_no_nan, y_no_nan).to_series()
else:
proba = self._estimator_predict_proba(features_no_nan, y_no_nan).to_dataframe()
proba = proba.iloc[:, 1]
if objective is None:
predictions = proba > self.threshold
else:
predictions = objective.decision_function(proba, threshold=self.threshold, X=features_no_nan)
if pad:
predictions = pad_with_nans(predictions, max(0, features.shape[0] - predictions.shape[0]))
return infer_feature_types(predictions)
@staticmethod
def _score(X, y, predictions, objective):
"""Given data, model predictions or predicted probabilities computed on the data, and an objective, evaluate and return the objective score.
"""
if predictions.ndim > 1:
predictions = predictions.iloc[:, 1]
return TimeSeriesClassificationPipeline._score(X, y, predictions, objective)
[docs]class TimeSeriesMulticlassClassificationPipeline(TimeSeriesClassificationPipeline):
problem_type = ProblemTypes.TIME_SERIES_MULTICLASS