evalml.pipelines.BaselineBinaryPipeline¶
-
class
evalml.pipelines.
BaselineBinaryPipeline
(parameters, random_seed=0)[source]¶ Baseline Pipeline for binary classification.
-
name
= 'Baseline Classification Pipeline'¶
-
custom_name
= 'Baseline Classification Pipeline'¶
-
summary
= 'Baseline Classifier'¶
-
component_graph
= ['Baseline Classifier']¶
-
problem_type
= 'binary'¶
-
model_family
= 'baseline'¶
-
hyperparameters
= {'Baseline Classifier': {}}¶
-
custom_hyperparameters
= None¶
-
default_parameters
= {'Baseline Classifier': {'strategy': 'mode'}}¶
Instance attributes
classes_
Gets the class names for the problem.
feature_importance
Return importance associated with each feature.
linearized_component_graph
parameters
Returns parameter dictionary for this pipeline
threshold
Threshold used to make a prediction.
Methods:
Machine learning classification pipeline made out of transformers and a classifier.
Determine whether the threshold of a binary classification pipeline can be tuned.
Constructs a new pipeline with the same components, parameters, and random state.
Transforms the data by applying all pre-processing components.
Outputs pipeline details including component parameters
Build a classification model. For string and categorical targets, classes are sorted
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Optimize the pipeline threshold given the objective to use.
Make predictions using selected features.
Make probability estimates for labels.
Saves pipeline at file path
Evaluate model performance on objectives
-