import numpy as np
from sklearn.linear_model import LogisticRegression as LogisticRegression
from skopt.space import Real
from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes
[docs]class LogisticRegressionClassifier(Estimator):
"""
Logistic Regression Classifier.
"""
name = "Logistic Regression Classifier"
hyperparameter_ranges = {
"penalty": ["l2"],
"C": Real(.01, 10),
}
model_family = ModelFamily.LINEAR_MODEL
supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS,
ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS]
[docs] def __init__(self, penalty="l2", C=1.0, n_jobs=-1, multi_class="auto", solver="lbfgs", random_seed=0, **kwargs):
parameters = {"penalty": penalty,
"C": C,
"n_jobs": n_jobs,
"multi_class": multi_class,
"solver": solver}
parameters.update(kwargs)
lr_classifier = LogisticRegression(random_state=random_seed,
**parameters)
super().__init__(parameters=parameters,
component_obj=lr_classifier,
random_seed=random_seed)
@property
def feature_importance(self):
coef_ = self._component_obj.coef_
# binary classification case
if len(coef_) <= 2:
return coef_[0]
else:
# multiclass classification case
return np.linalg.norm(coef_, axis=0, ord=2)