from evalml.pipelines.components.transformers import Transformer
from evalml.utils import (
_convert_woodwork_types_wrapper,
_retain_custom_types_and_initalize_woodwork,
infer_feature_types
)
def _extract_year(col, encode_as_categories=False):
return col.dt.year, None
_month_to_int_mapping = {"January": 0, "February": 1, "March": 2, "April": 3, "May": 4, "June": 5,
"July": 6, "August": 7, "September": 8, "October": 9, "November": 10, "December": 11}
def _extract_month(col, encode_as_categories=False):
months = col.dt.month_name()
months_unique = months.unique()
months_encoded = months.map(lambda m: _month_to_int_mapping[m])
if encode_as_categories:
months_encoded = months_encoded.astype("category")
return months_encoded, {m: _month_to_int_mapping[m] for m in months_unique}
_day_to_int_mapping = {"Sunday": 0, "Monday": 1, "Tuesday": 2, "Wednesday": 3, "Thursday": 4, "Friday": 5,
"Saturday": 6}
def _extract_day_of_week(col, encode_as_categories=False):
days = col.dt.day_name()
days_unique = days.unique()
days_encoded = days.map(lambda d: _day_to_int_mapping[d])
if encode_as_categories:
days_encoded = days_encoded.astype("category")
return days_encoded, {d: _day_to_int_mapping[d] for d in days_unique}
def _extract_hour(col, encode_as_categories=False):
return col.dt.hour, None
[docs]class DateTimeFeaturizer(Transformer):
"""Transformer that can automatically featurize DateTime columns."""
name = "DateTime Featurization Component"
hyperparameter_ranges = {}
_function_mappings = {"year": _extract_year,
"month": _extract_month,
"day_of_week": _extract_day_of_week,
"hour": _extract_hour}
[docs] def __init__(self, features_to_extract=None, encode_as_categories=False, date_index=None, random_seed=0, **kwargs):
"""Extracts features from DateTime columns
Arguments:
features_to_extract (list): List of features to extract. Valid options include "year", "month", "day_of_week", "hour".
encode_as_categories (bool): Whether day-of-week and month features should be encoded as pandas "category" dtype.
This allows OneHotEncoders to encode these features.
random_seed (int): Seed for the random number generator. Defaults to 0.
date_index (str): Name of the column containing the datetime information used to order the data. Ignored.
"""
if features_to_extract is None:
features_to_extract = ["year", "month", "day_of_week", "hour"]
invalid_features = set(features_to_extract) - set(self._function_mappings.keys())
if len(invalid_features) > 0:
raise ValueError("{} are not valid options for features_to_extract".format(", ".join([f"'{feature}'" for feature in invalid_features])))
parameters = {"features_to_extract": features_to_extract,
"encode_as_categories": encode_as_categories,
"date_index": date_index}
parameters.update(kwargs)
self._date_time_col_names = None
self._categories = {}
self.encode_as_categories = encode_as_categories
super().__init__(parameters=parameters,
component_obj=None,
random_seed=random_seed)
[docs] def fit(self, X, y=None):
X = infer_feature_types(X)
self._date_time_col_names = X.select("datetime").columns
return self
[docs] def get_feature_names(self):
"""Gets the categories of each datetime feature.
Returns:
Dictionary, where each key-value pair is a column name and a dictionary
mapping the unique feature values to their integer encoding.
"""
return self._categories
def _get_feature_provenance(self):
provenance = {}
for col_name in self._date_time_col_names:
provenance[col_name] = []
for feature in self.parameters['features_to_extract']:
provenance[col_name].append(f'{col_name}_{feature}')
return provenance