evalml.pipelines.components.CatBoostClassifier¶
-
class
evalml.pipelines.components.
CatBoostClassifier
(n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=True, allow_writing_files=False, random_seed=0, **kwargs)[source]¶ CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features.
For more information, check out https://catboost.ai/
-
name
= 'CatBoost Classifier'¶
-
model_family
= 'catboost'¶
-
supported_problem_types
= [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>, <ProblemTypes.TIME_SERIES_BINARY: 'time series binary'>, <ProblemTypes.TIME_SERIES_MULTICLASS: 'time series multiclass'>]¶
-
hyperparameter_ranges
= {'eta': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=4, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=4, high=100, prior='uniform', transform='identity')}¶
-
default_parameters
= {'allow_writing_files': False, 'bootstrap_type': None, 'eta': 0.03, 'max_depth': 6, 'n_estimators': 10, 'silent': True}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Return an attribute of instance, which is of type owner.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-