Source code for evalml.preprocessing.utils

import pandas as pd
from sklearn.model_selection import ShuffleSplit, StratifiedShuffleSplit

from evalml.preprocessing.data_splitters import TrainingValidationSplit
from evalml.problem_types import (
    is_classification,
    is_regression,
    is_time_series
)
from evalml.utils import infer_feature_types


[docs]def load_data(path, index, target, n_rows=None, drop=None, verbose=True, **kwargs): """Load features and target from file. Arguments: path (str): Path to file or a http/ftp/s3 URL index (str): Column for index target (str): Column for target n_rows (int): Number of rows to return drop (list): List of columns to drop verbose (bool): If True, prints information about features and target Returns: ww.DataTable, ww.DataColumn: Features matrix and target """ feature_matrix = pd.read_csv(path, index_col=index, nrows=n_rows, **kwargs) targets = [target] + (drop or []) y = feature_matrix[target] X = feature_matrix.drop(columns=targets) if verbose: # number of features print(number_of_features(X.dtypes), end='\n\n') # number of total training examples info = 'Number of training examples: {}' print(info.format(len(X)), end='\n') # target distribution print(target_distribution(y)) X = infer_feature_types(X) y = infer_feature_types(y) return X, y
[docs]def split_data(X, y, problem_type, problem_configuration=None, test_size=.2, random_seed=0): """Splits data into train and test sets. Arguments: X (ww.DataTable, pd.DataFrame or np.ndarray): data of shape [n_samples, n_features] y (ww.DataColumn, pd.Series, or np.ndarray): target data of length [n_samples] problem_type (str or ProblemTypes): type of supervised learning problem. see evalml.problem_types.problemtype.all_problem_types for a full list. problem_configuration (dict): Additional parameters needed to configure the search. For example, in time series problems, values should be passed in for the date_index, gap, and max_delay variables. test_size (float): What percentage of data points should be included in the test set. Defaults to 0.2 (20%). random_seed (int): Seed for the random number generator. Defaults to 0. Returns: ww.DataTable, ww.DataTable, ww.DataColumn, ww.DataColumn: Feature and target data each split into train and test sets """ X = infer_feature_types(X) y = infer_feature_types(y) data_splitter = None if is_time_series(problem_type): data_splitter = TrainingValidationSplit(test_size=test_size, shuffle=False, stratify=None, random_seed=random_seed) elif is_regression(problem_type): data_splitter = ShuffleSplit(n_splits=1, test_size=test_size, random_state=random_seed) elif is_classification(problem_type): data_splitter = StratifiedShuffleSplit(n_splits=1, test_size=test_size, random_state=random_seed) train, test = next(data_splitter.split(X.to_dataframe(), y.to_series())) X_train = X.iloc[train] X_test = X.iloc[test] y_train = y.iloc[train] y_test = y.iloc[test] return X_train, X_test, y_train, y_test
[docs]def number_of_features(dtypes): """Get the number of features of each specific dtype in a DataFrame. Arguments: dtypes (pd.Series): DataFrame.dtypes to get the number of features for Returns: pd.Series: dtypes and the number of features for each input type """ dtype_to_vtype = { 'bool': 'Boolean', 'int32': 'Numeric', 'int64': 'Numeric', 'float64': 'Numeric', 'object': 'Categorical', 'datetime64[ns]': 'Datetime', } vtypes = dtypes.astype(str).map(dtype_to_vtype).value_counts() return vtypes.sort_index().to_frame('Number of Features')
[docs]def target_distribution(targets): """Get the target distributions. Arguments: targets (pd.Series): Target data Returns: pd.Series: Target data and their frequency distribution as percentages. """ distribution = targets.value_counts() / len(targets) return distribution.mul(100).apply('{:.2f}%'.format).rename_axis('Targets')
[docs]def drop_nan_target_rows(X, y): """Drops rows in X and y when row in the target y has a value of NaN. Arguments: X (pd.DataFrame, np.ndarray): Data to transform y (pd.Series, np.ndarray): Target data Returns: pd.DataFrame, pd.DataFrame: Transformed X (and y, if passed in) with rows that had a NaN value removed. """ X_t = X y_t = y if not isinstance(X_t, pd.DataFrame): X_t = pd.DataFrame(X_t) if not isinstance(y_t, pd.Series): y_t = pd.Series(y_t) # drop rows where corresponding y is NaN y_null_indices = y_t.index[y_t.isna()] X_t = X_t.drop(index=y_null_indices) y_t.dropna(inplace=True) return X_t, y_t