evalml.pipelines.components.StackedEnsembleRegressor¶
-
class
evalml.pipelines.components.StackedEnsembleRegressor(input_pipelines=None, final_estimator=None, cv=None, n_jobs=- 1, random_seed=0, **kwargs)[source]¶ Stacked Ensemble Regressor.
-
name= 'Stacked Ensemble Regressor'¶
-
model_family= 'ensemble'¶
-
supported_problem_types= [<ProblemTypes.REGRESSION: 'regression'>, <ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges= {}¶
-
default_parameters= {'cv': None, 'final_estimator': None, 'n_jobs': -1}¶
-
predict_uses_y= False¶
Instance attributes
feature_importanceNot implemented for StackedEnsembleClassifier and StackedEnsembleRegressor
needs_fittingparametersReturns the parameters which were used to initialize the component
Methods:
Stacked ensemble regressor.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-
Class Inheritance¶
