Source code for evalml.model_family.model_family

from enum import Enum


[docs]class ModelFamily(Enum): """Enum for family of machine learning models.""" K_NEIGHBORS = 'k_neighbors' """K Nearest Neighbors model family.""" RANDOM_FOREST = 'random_forest' """Random Forest model family.""" SVM = 'svm' """SVM model family.""" XGBOOST = 'xgboost' """XGBoost model family.""" LIGHTGBM = 'lightgbm' """LightGBM model family.""" LINEAR_MODEL = 'linear_model' """Linear model family.""" CATBOOST = 'catboost' """CatBoost model family.""" EXTRA_TREES = 'extra_trees' """Extra Trees model family.""" ENSEMBLE = 'ensemble' """Ensemble model family.""" DECISION_TREE = 'decision_tree' """Decision Tree model family.""" ARIMA = 'arima' """ARIMA model family.""" BASELINE = 'baseline' """Baseline model family.""" NONE = 'none' """None""" def __str__(self): model_family_dict = {ModelFamily.K_NEIGHBORS.name: "K Nearest Neighbors", ModelFamily.RANDOM_FOREST.name: "Random Forest", ModelFamily.SVM.name: "SVM", ModelFamily.XGBOOST.name: "XGBoost", ModelFamily.LIGHTGBM.name: "LightGBM", ModelFamily.LINEAR_MODEL.name: "Linear", ModelFamily.CATBOOST.name: "CatBoost", ModelFamily.EXTRA_TREES.name: "Extra Trees", ModelFamily.DECISION_TREE.name: "Decision Tree", ModelFamily.BASELINE.name: "Baseline", ModelFamily.ENSEMBLE.name: "Ensemble", ModelFamily.ARIMA.name: "ARIMA", ModelFamily.NONE.name: "None"} return model_family_dict[self.name] def __repr__(self): return "ModelFamily." + self.name def is_tree_estimator(self): """Checks whether the estimator's model family uses trees.""" tree_estimators = {self.CATBOOST, self.EXTRA_TREES, self.RANDOM_FOREST, self.DECISION_TREE, self.XGBOOST, self.LIGHTGBM} return self in tree_estimators